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Abstract 

Telephone cord blisters (TCBs) are frequently observed in film/substrate material systems. 

They nucleate and propagate forward with wavy boundaries between the film and the substrate 

like worms. The current study views the problem from a completely new angle: It is discovered 

that the spontaneous formation and morphology of TCBs in thin films under biaxial 

compressive residual stresses can be accurately explained and determined by assuming the 

existence of a pocket of energy concentration (PEC) instead of the existence of a separation of 

critical size. For the first time, completely-analytical formulae—the ‘Ω formulae’—are derived 

for the two local morphology parameters of TCBs of any shape, that is, width and height, and 

for the two global morphology parameters of TCBs of sinusoidal shape, that is, the wavelength 

and transverse amplitude. Mechanical conditions are also given for the first time for the 

formation of TCBs. Predictions for the four morphology parameters of the developed theory 

agree very well with extensive experimental results. In addition, by reversing the calculation, 

the residual stress and the film/substrate interface fracture toughness are also accurately 

determined from measurements of the TCB morphology parameters. 
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1 Introduction 

Thin solid films are found in many different applications fulfilling various roles [1] such as 

confinement of electric charge in integrated electronic circuits, thermal insulation in thermal 

barrier coatings, and protection against corrosion, friction and wear in surface coatings. 

Although thin films are not usually expected to have a primary load-carrying capability, they 

often experience residual stresses due to the fabrication process and working conditions. One 

typical example is the in-plane compressive stress in thermal barrier coatings caused by the 

mismatch of thermal expansion coefficient between the coating and alloy substrate. Residual 

stresses are a major cause of film wrinkles, blisters, cracks and de-bonding, which all involve 

complex instabilities and morphologies [1–5]. So-called buckling-driven delamination is a 

typical example of film failure under in-plane compressive residual stress, which has been 

extensively studied in the last few decades. Among many others, Refs. [6–11] report studies 

on buckling-driven straight blisters [6,8,10], circular blisters [6,7], elliptical blisters [6], 

telephone cord blisters (TCBs) [9], and branched blisters [11]. Among these different types of 

blisters, the TCB is the most interesting and challenging one, and predicting TCB morphology 

has attracted the attention of many researchers worldwide. A recent and comprehensive review 

on the topic is given in Ref. [12]. 

In studies on so-called buckling-driven delamination, it is conventional to assume either a 

pre-existing interface crack which is larger than the critical buckling characteristic dimension 

or a pre-existing imperfection [7,9,13,14]. In some cases, thin-film blisters spontaneously form 

under constant biaxial compressive residual stresses at sizes which are much smaller than the 

critical buckling characteristic dimensions [15,16], and so buckling-driven approach is unable 

to explain the phenomenon. A new hypothesis has recently been proposed by Wang et al. 

[17,18] to explain this behavior. According to this hypothesis, the delamination is driven by 

pockets of energy concentration (PECs) in the form of pockets of tensile stress and shear stress 

[15,16] on and around the interface between a thin film and a thick substrate. Furthermore, 

PECs can be caused by a number of different processes, including the commonly-seen edge 

cracks [2,12], indentation cracks [9], thermal cooling such as in thermal barrier coating material 

systems, electro-chemical reaction such as in solid thin film electrode material systems [19], 

and thermal heating such as surface pattern fabrication on thin films under a scanning laser 
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beam [20]. The exact origin of PECs is not discussed in the current work; instead, the existence 

of PECs is taken as given and then the mechanical consequences for TCBs are established. 

What is important, and what is addressed in this work, is whether the developed theory based 

on the hypothesis of PECs can predict the major behaviors of TCBs. 

It is, however, pertinent to describe the essential differences between the PECs hypothesis 

approach to solving the TCB problem, and the conventional buckling approach. The PECs 

hypothesis establishes a pure energy balance approach whereby blister growth is driven by an 

energy source in addition to the constant residual stress. More specifically, with the PECs 

hypothesis, a blister experiences two stages of growth: During the first stage, the PEC drives 

the blister’s nucleation, its bending-away from the substrate, and its propagation. The blister 

energy, including the strain energy and fractured surface energy, is larger than the initial 

residual strain energy in the un-delaminated film and it increases until it reaches a maximum 

at the end of the first stage. During the second stage, the blister energy decreases again and the 

blister stops growing when blister energy is balanced with the initial residual strain energy in 

the un-delaminated film. Since the biaxial compressive residual stresses remain constant in 

both stages, the TCB formation process can described as ‘spontaneous’. 

Based on Refs. [6–11] and many others, there are also two stages of blister growth in the 

buckling-driven approach: During the first stage, the separation nucleates and grows without 

bending-away from the substrate resulting in zero energy release rate at the separation edge. 

When the size of separation reaches the conventional buckling size, the separated film starts to 

bend away from the substrate, resulting in energy release rate at the separation edge, that is, a 

blister is formed. At a critical size slightly larger than the conventional buckling size the energy 

release rate exceeds the interface fracture toughness and the second stage starts: The blister 

quickly grows to a certain size beyond which the energy release rate is lower than the interface 

fracture toughness, and then stops. A detailed description of the buckling-driven approach is 

given in Appendix A. 

This work views TCB formation and development from the novel mechanical understanding 

that the blisters are driven by PECs. For the first time, completely analytical formulae—the ‘Ω 

formulae’—are derived for the TCB width 2R , height xA , transverse amplitude yA  and 

wavelength  , in addition to the mechanical conditions of their formation. The theory is 

validated by extensive independent experimental results. 
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2 Analytical mechanical model for telephone cord blisters 

2.1 Nucleation and early-growth of telephone cord blisters 

Fig. 1 shows a TCB nucleating and beginning to grow from an edge. It is approximately in 

the shape of a thumbnail: It consists of a straight blister, and a half-circular blister that 

represents the TCB tip. The relevant geometrical parameters are also shown in Fig. 1. 

 

Fig. 1. A telephone cord blister nucleating and beginning to grow from an edge. (a): Top 

view, (b): 3D view of cut A (shown in a). 

The blister energy aU  is defined as the difference between the strain energy combined with 

the interface fracture energy, and the initial residual strain energy in the film. The blister 

energies during growth for the straight blister and the half-circular blister [17,18] are  
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where the subscripts ‘s’ and ‘c’ denote the straight blister and half-circular blister respectively, 

cG  is the interface fracture toughness,  2
0 0 1 E     is the compressive residual strain in 

the plane-strain condition, 0  is the biaxial compressive residual stress in the film, and E ,   

and h  are the Young’s modulus, Poisson’s ratio and the film thickness respectively. Note that 

the blister energy during growth of a full-circular blister in a central region (i.e. not from an 

edge) is  a c
2 U . The key quantity   represents the ratio between the plane-strain energy 



 5 

density and the interface fracture toughness. It will be shown that the   provides the 

mechanical condition for the formation of a TCB, as follows: 
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The variations of  
saU  and  

caU  with R  are presented in Fig. 2 for 3 2  , which 

provides the basis for an initial qualitative discussion. Several important observations are 

noted: 

 

Fig. 2. The variations of  
saU  and  

caU  with R  for: (a), 3 2   and (b), 3 2  . 

(i) In the range 
cri
s0 R R  ,  

saU  and  
caU  increase monotonically with R , which 

indicates that an energy source such as PECs is required for the nucleation and growth of the 

blister. 
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(ii) At  cri
s 02 3R R h    and  cri

c 01.22 2 3R R h   , conventional primary 

buckling occurs in the straight blister and circular blister respectively. In the range 

 cri
s M s

R R R  , both  
saU  and  

caU  continue increasing with R . This reveals that PECs 

are still required to drive blister growth even though primary buckling has occurred in the 

straight blister. 

(iii) At MR R , the blister energy during growth reaches its maximum value, which is called 

the ‘blister energy capacity’ aÛ . For the straight blister and the circular blister respectively: 
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Eqs. (4) and (5) show that    M Ms c
R R . This indicates that the straight blister reaches its 

blister energy capacity faster than the half-circular blister, after which,  
saU  decreases from 

 a
s

Û  while  
caU  continues to increase with R . This means that blister energy is being 

released from the straight blister and transmitted to the half-circular blister so that  
caU  can 

increase to  a
c

Û . Note that    cri
M c Ms c

R R R  , which indicates that conventional primary 

buckling and receiving energy from the straight blister occur simultaneously in the half-circular 

blister. 

(iv) Zero blister energy occurs at two values of R , given by 0R

 and 0R


 for both straight 

and circular blisters respectively: 
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When 3 2  , then Eqs. (6) and (7) give i
0

cr
s0 0 6R RR R

 
   , as shown in Fig. 2a. 

(v) In the range   0M c
R R R


   for 3 2  , or equivalently in the range   0M c

R RR   

for 3 2  , both  
saU  and  

caU  monotonically decrease with R . This indicates that both 

the straight and half-circular blisters are releasing their stored energy. Based on energy 

conservation, this released energy is transmitted to the TCB tip to provide the energy for 

forward propagation. The half-circular blister therefore develops a sharper tip where  M c
R R

, while the straight blister remains straight. The dashed line for the half-circular blister in Fig. 

2 indicates that the original half-circular blister is no longer growing with a circular edge. This 

does not affect the validity of the Ω formulae, which are derived later and apply to the fully-

developed region. 

(vi) Secondary buckling occurs in the longitudinal direction in the straight blister at 

cri
s6R R . Secondary buckling of the straight blister changes the propagation direction of the 

TCB tip and generates the waviness of a TCB. The dashed line in Fig. 2 for the straight blister 

shows that the original blister no longer grows with straight edges. The TCB tip receives blister 

energy from the immediately-adjacent region and its radius is much smaller than  M c
R . In the 

range cri
s6R R , the blister energy for TCBs cannot be described by Eqs. (1) and (2) since 

the blister edges have become wavy. Nevertheless, the normal cross-section profile of TCBs 

(as shown in Fig. 3c) is still sinusoidal, which means that the energy balance approach in the 

current work is still applicable for the determination of morphology parameters. In the fully-

developed TCB region, the width is 02R  . Details are presented in Section 2.2. 

(vii) Once  M c
R R , no further PEC energy is required for TCB growth. The TCB growth 

energy is completely supplied by the energy supplied from the region adjacent to the TCB tip. 

This is self-sustaining due to energy conservation: The fully-developed TCB region has zero 

blister energy and so the net energy requirement is zero, even though PEC energy is initially 

required to nucleate a TCB, which is then continually transmitted forward to the TCB for 

further growth. 

(viii) For 3 2  ,  
s

cri
s MR R  and  

c

cri
c MR R , which shows that the primary buckling 

happens simultaneously with the maximum blister energy for both straight and half-circular 

blisters. Therefore when 3 2  , PECs are not required to drive blister growth once primary 

buckling has occurred. 
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The preceding qualitative discussion shows that PECs are required to nucleate and drive 

straight and half-circular blisters in their early-growth stages. For a TCB to develop, the blister 

energy capacity  a
c

Û  of a half-circular blister at an edge, or alternatively  
c

a2 Û  for a full-

circular blister in a central region, must be achieved, and the quantity   must not be less than 

3/2. Furthermore, the width of a straight blister must be greater than 02h   for secondary 

buckling to occur, which brings about the waviness of a TCB. 

2.2 Morphology parameters of fully-developed telephone cord blisters 

Fig. 3 shows a typical TCB in a thin film on a thick substrate where 2R , xA , yA  and   

represent the width, height, transverse amplitude and wavelength of the TCB respectively. This 

part of the TCB is regarded as fully developed with no further growth. This section aims to 

derive analytical formulae to determine the values of the four morphology parameters. The part 

close to the TCB tip is regarded as the non-fully developed part. 

 

Fig. 3. A telephone cord blister. (a): Top view. (b): 3D view of cut A (shown in a) which is 

perpendicular to the sinusoidal centerline of the TCB. (c): 3D view of cut B (shown in a) 

which is parallel to the global x  axis. 

Each narrow normal slice of the fully-developed TCB can be considered as a straight blister. 

By considering energy conservation, the blister energy aU  should be zero. Therefore, the TCB 

half-width 0R R


 , or equivalently, after some manipulation of Eq. (7), 
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where cri
c sR R , and where 
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which varies from 1   at 3 2  to 2   at  . In Eq. (8), cR  is given by 
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The TCB height xA  during growth (i.e. the amplitude of the upward deflection of the TCB) 

is calculated based on Refs. [17,18] with R  given by Eq. (8): The crack tip bending moment 

due to the sinusoidal normal cross-section profile (as shown in Fig. 3c) produces energy release 

rate which is equated to the fracture toughness, giving 

 
1 24

.
3

xA

h

 
   (11) 

Substituting 3 2  into Eqs. (11) and (8) gives the minimum values of 2 2xA h   and 

c 6R R  . Secondary buckling occurs in the longitudinal direction, resulting in worm-like or 

telephone-cord-like morphology, when 2 2xA h   or c 6R R  . Both xA h  and cR R  

increase with increasing  . 

The in-plane stresses are 
R

0x x     and R
0y y     with 

R
x  and R

y  being the 

relaxation stresses that are positive in tension. In the plane-strain condition, R R
y x  . Based 

on the sinusoidal normal cross-section profile and the von Kármán geometric nonlinearity 

assumption with R  given by Eq. (8), Refs. [17,18] also give 

 
R

0 .x    (12) 

When 3 2  , then 0
R
x  . When 3 2  , then 

R
x  approaches to 02 . The half-width 

R , the height xA  and the relaxation stress 
R
x  together provide the basis to determine the 

wavelength   and transverse amplitude yA . 

An approximate calculation of the wavelength   is now developed. Consider a separated 

flat film with width 2R  given by Eq. (8) and length   with no outward deflection. The 

separated flat film is under in-plane stresses 
R

0x x     and 
R

0y y     with 
R
x  given 

by Eq. (12) and 
R R
y x  . The following assumed perturbed outward deflection is applied to 

the separated flat film: 
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in which xa  and ya  are two imaginary arbitrarily-small perturbation parameters and   is the 

wavelength. A similar perturbed deflection is used in Ref. [21]. The perturbed strain energy is 

purely due to bending and is calculated as 
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The perturbed potential of the in-plane stresses, 
R

0x x     and R
0y y    , is 

calculated by using the von Kármán geometrical nonlinearity assumption: 
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The total perturbed potential energy p U V    is then expressed as 
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Setting 0   gives the primary buckling or Euler column buckling condition as 
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and the secondary buckling or the TCB buckling condition as 
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Since the magnitude of first term in Eq. (18) is usually one order smaller than the magnitudes 

of the other two terms, then, by neglecting the first term, Eq. (18) gives the global TCB 

wavelength as 
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x
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 

 

 
  

 
  (19) 

Substituting Eq. (12) into Eq. (19) gives 

 

1/2
1

.
2 1R

   
  

 
  (20) 

Eq. (20) shows that the transition from a straight blister to a TCB occurs at 3 2   where the 

wavelength   approaches infinity. Eq. (20) also shows that 2 R  decreases with increasing 

  and Poisson’s ratio  . 

Now, an approximate method is developed to determine the transverse amplitude yA . With 

the TCB growing along the global y  axis, as shown in Fig. 3a, the TCB shape is assumed to 

be in the following sinusoidal form: 

  
2

, 1 cos 1 cos sin ,
2 2

x x
y

A Ax y
w x y x A

R R

  



       
          

       

%
% %   (21) 

where R%  is the distance from the TCB sinusoidal centerline to the crack tips as shown in Fig. 

3c, and x%  is the local axis, parallel to the global x  axis, as shown in Fig. 3a and c, defined as 

 
2

sin .y

y
x x A





 
   

 
%   (22) 

The sinusoidal centerline of the TCB is represented by 0x % , that is, 

 
2

sin .y

y
x A





 
  

 
  (23) 

The variable R%  varies along the length and is related to the half-width R  approximately by 

 

1 22 2
1

1 1 .
2

dx dx
R R R

dy dy

      
         
         

%   (24) 

The average value of the second term over a wavelength is yA  . An approximation for R%  

is therefore taken as 

 

2

1  .




  
    
   

% y

y

A
R R A R   (25) 
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When the transverse amplitude-to-wavelength ratio yA   is less than approximately 1/10, Eqs. 

(24) and (25) have high accuracy; otherwise, significant inaccuracy can occur as shown in 

Section 3. 

The in-plane strains in the TCB are 

 
22

0 2

1
,

2
x

w w
z

x x
 

  
     

  
  (26) 
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0 2

1

2
y

w w
z

y y
 

  
     

  
  (27) 

and 

 
2

2 ,xy

w w w
z

x y x y


  
  

   
  (28) 

where  0 01 E     is the residual compressive strain. The bending strain energy is 

therefore 

  
2 2 23 2 2 2 2 2

b 2 2 2 20

1
2 2 1 ,

2 12

R

R

Eh w w w w w
U dydx

x y x y x y



 


          
          

            
 
%

%
%   (29) 

and the in-plane strain energy is 

 

4 24 2

i 20 2

2
0 0

1
2

8
,

1 1

2

R

R

w w w w
E

x y x y
U hdydx

w w

x y E




 



                    
             

  
      

      
       

 
%

%
%   (30) 

and the interface fracture energy is 

 s c c
0

2 .
R

R
U G dydx R G






  
%

%
%%   (31) 

Conservation of energy requires that 

 
2

b i s 0

1
2 .U U U R h

E


 


   %   (32) 

Substituting Eqs. (21), (29), (30) and (31) into Eq. (32) gives the following equation: 
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         
          

            
  

      
   

   

   
   

  

% %

%

%

%

%

c

2 4

2 0.
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 
 
 
 
 
 
 
 

  
 
 
 
 

      
      

        

%   (33) 

Neglecting the underlined higher-order terms leads to 

 

2 2222
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3 16
1 2 0.
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AA Gh R

R R A Eh




 

        
             

            

%

% %   (34) 

Substituting R%  in Eq. (25) into Eq. (34) gives 

  
2222

2 2
02

3 16
2 1 0.

12 4
x c

y y y

x

A Gh R
A A A

R R A Eh






      
           

           

  (35) 

Eq. (35) can be further simplified by using Eqs. (8) and (10), which gives 

  2 2 21 3 2 2 2 1 0,y y yA A A           (36) 

where 

  
1 2

1 .y yA A



    (37) 

An iterative method can be used to determine yA  and then yA . It is easy to verify that 

0.0930yA   if 3 2  and that the maximum value is 0.1053yA   for 3 2  . Now all 

four morphology parameters, that is the width 2R , height xA , transverse amplitude yA  and 

the wavelength  , can be determined. 

The above formulae are called the ‘Ω formulae’ in this work and their validity for predicting 

the formation, morphology, residual stress and interface fracture toughness of TCBs will be 

examined by using extensive independent experimental data [9,12,19,22–34] in Section 3. 

Finally, it is worth noting that the above development applies equally to the mixed-mode 

fracture partition theories based on classical plate theory [17,18,35–39], first-order shear-

deformable plate theory [17,18,35–39] and 2D elasticity [17,18,35,40,41]. The phase angles 
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 
1 2

II Iarctan G G   of the mixed-mode fracture here are independent of the blister width or 

radius under the developed theory and are calculated as 0°, 60° and 37.9° for these three mixed-

mode fracture partition theories respectively [17,18]. When using the linear propagation 

criterion, the respective interface fracture toughness cG  is 

 c IcG G   (38) 

for the classical plate theory, or 

 c Ic

4

1 3
G G

 
  (39) 

for first-order shear-deformable plate theories respectively, or 

 c Ic

1

0.6227 0.3773
G G

 
  (40) 

for 2D elasticity. The interface mode I fracture toughness is IcG , and the mode II fracture 

toughness is IIc IcG G  . The 2D elasticity partition theory is used in the present study since 

Refs. [17,18] have demonstrated that it gives the most accurate predictions for thin film 

interface fracture. 

Note that in Section 3, cG  is obtained by using the measured blister width and residual 

stress. In general, cG  can be obtained from any two measured blister morphology parameters. 

By this approach, any of the mixed-mode fracture partition theories give the same cG  value, 

and consequently the same values for the remaining TCB morphology parameters. If, however, 

IcG  and IIcG  are specified individually to determine the overall cG , then the TCB morphology 

parameters do then depend on the mixed-mode fracture partition theory, as each one will give 

a different cG  value. 

3 Experimental validation 

The Ω formulae above are now validated by using the various independent experimental 

measurements of TCB morphology reported in the literature, which are tabulated in Appendix 

B. 

The condition of TCB formation, namely, that 3 2  from Eq. (3), or equivalently, that 

2 2xA h   from Eq. (11), is examined first using experimental data from Refs. 

[9,12,19,22,24,28,30,31,33]. As shown in Fig. 4, all the measurement data are above the 
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horizontal dotted line representing 2 2xA h   except for one [24]. This one exception lies 

just on the line and so represents the point of transition from a straight blister to a TCB. It is 

worth noting that the conventional buckling-driven approach [5] requires that 

0.255 0.001    which is the vertical dashed line in Fig. 4. It is clearly seen that one 

measurement [28] does not satisfy this condition. 

 

Fig. 4. Validation of the condition of TCB formation, namely, that 3 2  from Eq. (3), or 

equivalently, that 2 2xA h   from Eq. (11). 

In the second exercise, the accuracy of Eqs. (8) and (11) is examined for predicting the two 

local morphology parameters, namely, the TCB half-width R  and height xA , by using 

experimental data from Refs. [12,19,24,31]. Since Eq. (8) involves both the measured TCB 

half-width R  and the residual stress 0 , this exercise also examines the accuracy of the 

developed theory for the prediction of residual stress 0  in the film. The results are shown in 

Fig. 5. It is seen that the experimental data are in an excellent agreement with the predictions 

of the PEC-driven approach, shown as the solid curve, and are far away from the buckling-

driven straight blister model [40], shown as the dashed line. The buckling-driven pinned-

circular model [5] is shown in Fig. 5 for 0.3  , but it should be noted that the curve is not 

particularly sensitive to Poisson’s ratio. Although the buckling-driven pinned-circular blister 

model [9], shown as the dash-dotted line, gives improved predictions, particularly in the region 

where   is close to 3 2 , its predictions are still significantly far from the experimental 

measurements. It is worth noting that the conventional buckling-driven approach [5] requires 
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that c 6.5R R   which is the vertical dashed line in Fig. 5. It is clearly seen that one 

measurement [24] does not satisfy this condition. Conversely, the PEC-driven approach 

requires that c 6R R   which is the vertical dotted line in Fig. 5, and all the measurement 

data obey this condition. 

 

Fig. 5. Validation of Eqs. (8) and (11) for predicting the two local morphology parameters, 

namely, the TCB half-width R  and height xA . 

Fig. 5 also clearly shows that the residual stress 0  is accurately predicted by the PEC-

driven approach while the two buckling-driven approaches, particularly the buckling-driven 

straight blister model [40], make severe overestimates. Since the buckling-driven approaches 

are unable to predict residual stress 0 , it is reasonable to expect they are also unable to predict 

the interface fracture toughness cG . Conversely, it is reasonable to expect that the PEC-driven 

approach can also accurately predict the interface fracture toughness cG . A detailed 

examination will be presented in Table 2 later. 

In the next exercise, the variation of  2R  from Eq.(20), in which the TCB wavelength 

  is a global morphology parameter, is examined. First, its variation with respect to Poisson’s 

ratio   and   is considered using the experimental results from Refs. 

[9,12,22,23,26,27,29,30,32–34] in Fig. 6. The buckling-driven approach [5,40] predicts that 

 2 0.95R  , shown as the horizontal dashed line. This clearly disagrees with the experiment 

measurements in Refs. [9,12,22,23,26,27,29,30,32–34]. In contrast, the PEC-driven approach 

predicts via Eq. (20) that  2R decreases with increasing   and Poisson’s ratio  . It is 
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worth noting again that TCBs can indeed occur when the Poisson’s ratio   is smaller than 

0.255 0.001   , shown as the vertical dashed line in Fig. 6, which also breaks the 

requirement of the conventional buckling-driven approach [5,40]. 

 

Fig. 6. Variation of  2R , given by Eq. (20), with respect to Poisson’s ratio   and  . 

To validate Eq. (20), an additional comparison is made in Fig. 7 using the experimental 

measurements of TCB half-width R , height xA  and wavelength   from Refs. [9,12,22,30,33]. 

The Poisson’s ratio   of the films in Refs. [9,12,22,33] is 0.3 and it is 0.28 in Ref. [30]. It is 

seen that measured experimental data lie close to the solid curve which represents the PEC-

driven approach. 

 

Fig. 7. Validation of Eq. (20) for predicting the wavelength  , which is a global morphology 

parameter. 
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In the fourth exercise, the accuracy of Eq. (36) is examined for predicting the TCB 

transverse amplitude yA , which is the other global morphology parameter, by using 

experimental data from Refs. [9,12,22,23,25–27,29,30,32–34]. The results are shown in Fig. 

8. Several observations are worthy of discussion: (1) Most of the experimental data fall in or 

close to the region 0.10530.0930 yA   corresponding to 1.5     , as predicted by 

Eq.(36); (2) The experimental data in the region 0.10530.0930 yA   follow Eq. (36) well; 

(3) Two data points from Ref. [23] lie far below the predicted region. This is because these two 

TCBs have not yet developed fully. In contrast, the other data point from Ref. [23], which does 

represent a fully-developed TCB, does indeed lie inside the predicted the region; (4) One data 

point from Ref. [25] lies far above the predicted region. This is because this TCB is not 

sinusoidal, and has a very large transverse amplitude yA . It can therefore be concluded that Eq. 

(36) is able to give good predictions for the transverse amplitude yA  of fully-developed 

sinusoidal TCBs. 

 

Fig. 8. Validation of Eq. (36) for predicting the transverse amplitude yA , which is a global 

morphology parameter. 

Further evaluation of the Ω formulae in Eqs. (3), (11), (20) and (36) is now made by using 

tabulated numerical values to assess their accuracy more precisely. Two specific examples are 

considered for this purpose. The first example is from Ref. [9], in which diamond-like carbon 

film is deposited on glass substrate. The film thickness is 0.13 μmh  , and the Young’s 

modulus and Poisson’s ratio are 120 GPaE   and 0.3   respectively. The TCB morphology 

was measured at three different locations in the fully-developed region of the TCB, which are 
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shown in Fig. 9a. The TCB width 2R  and height xA  were measured from Fig. 9b. These 

measurements also provided the scale at each location for making measurements directly from 

Fig. 9a. The TCB wavelength   and transverse amplitude yA  were measured directly from 

Fig. 9a using the aforementioned scales. The measurements of TCB width 2R  and wavelength 

  were used in Eq. (20)  to calculate the corresponding   values. The TCB height xA  and 

transverse amplitude yA  were then predicted using Eqs. (11) and (36) respectively. 

Comparisons between the theoretical predictions and the experimental measurements are 

shown in Table 1. It is seen that the predicted xA  and yA  are in excellent agreement with the 

experimental measurements. 

 

Fig. 9. Telephone cord blister morphology measurements from Ref. [9]. (a) Measurements 

locations. (b) Blister profiles. 

Table 1. Theoretical predictions and experimental measurements of TCB morphology 

parameters in Refs. [9,30]. 

Ref.  
Theoretical predictions (PEC-driven) Experimental measurements 

Ω Ax or λ [μm]  Ay [μm] 2R [μm] λ [μm] Ax [μm] Ay [μm] 

[9] 

Curved-1 1.674 0.514 (Ax) 0.49 3.64 4.98 0.527 0.48 

Curved-2 1.690 0.521 (Ax) 0.52 3.80 5.08 0.527 0.45 

Curved-3 1.674 0.514 (Ax) 0.49 3.64 4.98 0.527 0.48 

Average 1.679 0.516 (Ax) 0.50 3.69 5.01 0.527 0.47 

[30] 

Straight 2.000 40.49 (λ) 4.08 37.60 40.09 1.47 3.98 

Curved 2.399 37.87 (λ) 3.86 40.00 40.09 1.73 3.98 

Average 2.200 39.18 (λ) 3.97 38.80 40.09 1.60 3.98 
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The second example is from Ref. [30]. The thin film is tungsten and the substrate is silica. 

The film thickness is 300 nmh  , and the Young’s modulus and Poisson’s ratio are 

411 GPaE   and 0.28   respectively. By using the measured values of TCB width 2R  and 

height xA  from Ref. [30], the   value at each location is calculated with Eq. (11), and the 

TCB wavelength   and transverse amplitude yA  are then predicted then by Eqs. (20) and (36) 

respectively. It is seen from Table 1 that the predicted   and yA  are again in excellent 

agreement with the experimental measurements in Ref. [30]. 

Attention is now turned to the prediction of residual stress 0  in the film and interface 

fracture toughness cG  by using measured morphology parameters. Table 2 corresponds to Fig. 

5, and records the predicted residual stress 0  based on the measured TCB height xA , width 

2R  in Refs. [12,19,24,31] and wavelength   in Ref. [12]. It is seen that the PEC-driven 

approach gives excellent predictions. In contrast, the buckling-driven straight blister model 

gives severe overestimations. The pinned-circular blister approach also gives significant 

overestimates when   is not close to 3/2. 

Table 2. Theoretical predictions and experimental measurements of residual stress in Refs. 

[12,19,24,31]. 

    Experimental measurements Theoretical predictions 

       PEC-driven 

Buckling-
driven 
(straight 
blister 
model) 

Buckling-
driven 
(pinned-
circular 
blister 
model) 

Ref. 
h 
[μm] 

E 
[GPa] 

ν 
Ax or λ 
[μm] 

2R 
[μm] 

σ0 
[GPa] 

Ω 
σ0 
[GPa] 

σ0 [GPa] σ0 [GPa] 

[24] 0.300 150.0 0.30 0.84 (Ax) 14.40 1.414 1.500 1.412 1.619 1.301 
[31] 0.300 171.8 0.288 1.25 (Ax) 22.93 1.000 1.737 1.003 1.479 1.150 
[19] 0.130 186.0 0.33 0.60 (Ax) 16.00 0.500 1.889 0.498 0.770 0.600 

[12] 0.225 175.0 0.30 
1.10 (Ax) 20.00 1.000 1.996 0.958 1.515 1.172 
20.00 (λ) 20.00 1.000 2.113 1.041 - - 

 

Finally, the Ω formulae in Eqs. (3), (11), (20) and (36) are examined for their capability to 

predict the interface fracture toughness using the measured morphology parameters. As shown 

in the previous comparison in Table 2, the PEC-driven approach gives excellent predictions of 

the residual stress 0 . Now these experimental results are used again to predict the fracture 

toughness. Following the PEC-driven approach, the   value is calculated using Eq. (8) with 

the measured blister width 2R  and residual stress 0 . The fracture toughness is then calculated 
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using Eq. (3). The fracture toughness is also calculated using the two buckling-driven 

approaches (the straight blister model, and pinned circular blister model). The results of all 

three approaches are presented in Table 3. Several points are worthy of discussion: 

(1) The PEC-driven approach and the buckling-driven straight blister model give the 

smallest and the largest predictions of interface fracture toughness respectively. 

(2) The mode I and II toughness, IcG  and IIcG , are not available in Refs. [12,19,24,31], so 

it is not possible to conclude which of the theoretical predictions are in best agreement with 

experimental test data. 

(3) The numerical simulations in Ref. [25], however, use Ic 00.176G u  and IIc 028.5G u  

with   2
0 01u h E    and achieve good agreement with experimentally-observed TCB 

shapes. They are therefore taken to be the measured values for Ref. [25] only. 

(4) The PEC-driven approach predicts a constant phase angle of 37.9  o
 where 

 
1 2

II Iarctan G G  . For Ref. [25] only, the fracture toughness can therefore also be 

calculated using the linear propagation criterion 
12

c Ic 1 ( 1)sinG G 


       with 37.9  o . 

For Ref. [25], the first value (top row) of the fracture toughness is the one calculated by Eq. 

(1); the second value is from the linear propagation criterion. A third way to calculate the 

fracture toughness is by using the nonlinear propagation criterion 
12

c Ic 1 (1 ) tanG G 


    

. This is the third value (bottom row) of Ref. [25]. The   formula in Eq. (1) is in excellent 

agreement with the two fracture toughness values calculated using propagation criteria. 

(5) Based on the measured blister width 2R  and residual stress 0 , the buckling-driven 

straight blister and pinned-circular blister approaches predict phase angles of 79.4  o
and 

83.2  o
 respectively. For Ref. [25], the first value (top row) of the fracture toughness is the 

one calculated directly from the respective approaches. The second and third values are 

calculated using the linear and nonlinear propagation criteria respectively. These three fracture 

toughness values are completely different from each other. 

(6) It is therefore reasonable to conclude that the PEC-driven approach gives correct 

predictions for the interface fracture toughness while the buckling-driven approaches cannot. 
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Table 3. Theoretical predictions and experimental measurements of interface fracture 

toughness in Refs. [12,19,24,25,31]. 

    Experimental measurements Theoretical predictions 

        PEC-driven 

Buckling-
driven 
(straight 
blister 
model) 

Buckling-
driven 
(pinned-
circular 
blister 
model) 

Ref. 
h 
[μm] 

E 
[GPa] 

ν 
2R 
[μm] 

σ0 
[GPa] 

GIc 
[N/m] 

GIIc 
[N/m] 

Ω 
Gc 
[N/m] 

Gc [N/m] Gc [N/m] 

[24] 0.300 150.0 0.30 14.40 1.414 - - 1.500 1.213 2.275 1.661 
[31] 0.300 171.8 0.288 22.93 1.000 - - 1.734 0.462 0.943 0.747 
[19] 0.130 186.0 0.33 16.00 0.500 - - 1.894 0.041 0.090 0.072 
[12] 0.225 175.0 0.30 20.00 1.000 - - 2.055 0.285 0.667 0.548 

[25] 0.120 329.0 0.30 9.84 2.700 0.328 53.046 2.375 
0.509 1.353 1.135 
0.524 8.235 16.432 
0.525 9.630 23.514 

4 Conclusions 

The PEC-driven approach provides ‘Ω formulae’ which: (1) give accurate predictions of the 

formation condition and the two local morphology parameters, namely, the half-width R  and 

height xA  for TCBs of any shape; (2) give accurate predictions of the two global morphology 

parameters, namely, the wavelength   and transverse amplitude yA  for TCBs of sinusoidal 

shape provided that the transverse amplitude-to-wavelength ratio 
yA   is less than 

approximately 1/10; (3) give accurate predictions of the residual stress 0  and interface 

fracture toughness cG  by using the measured morphology parameters. 

Concerning the conventional buckling-driven approaches: The buckling-driven straight 

blister model severely overestimates the residual stress 0  while the buckling-driven pinned-

circular blister model also significantly overestimates the residual stress 0  when   is not 

close to 3/2. Both buckling-driven models severely overestimate the interface fracture 

toughness cG . 

The PEC-driven approach and its Ω formulae provide a valuable means to better design 

film/substrate material systems. A significant milestone has been reached in understanding the 

mechanics and reliability of thin films. 
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Data availability 

The authors confirm that the data supporting the findings of this study are available within 

the article. 
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 Appendix A: Introduction to the buckling-driven approach 

TCBs have been studied extensively using buckling-driven straight [40] and pinned-circular 

[9] models. Some essential formulae are recorded here. 

In the buckling-driven straight blister model [40], the height xA  is given by 
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where c  is the critical buckling stress, which is given by 
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The energy release rate at the crack tip is 

  
 2 2

0 c c

0 0

1
1 1 3 .

2

h
G

E

   


 

   
    

  
  (A.3) 

The phase angle  
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II Iarctan G G   can be calculated from 
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in which the parameter   is a function of the Dundurs parameters, which describe the elastic 

mismatch between the film and the substrate respectively. 

In the buckling-driven pinned-circular blister model [9], the height xA  is given by 
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where c  is the critical buckling stress, which is given by 
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The energy release rate at the crack tip is 
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The phase angle is 
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Two fracture propagation criteria, proposed in Ref. [40], are often used to determine the 

interface fracture toughness between the film and the substrate. One is the linear propagation 

criterion: 

 
12

c Ic 1 ( 1)sin .G G 


        (A.9) 

The other is the nonlinear propagation criterion: 

 
12

c Ic 1 (1 ) tan .G G 

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Note that the parameter   varies from 0 to 1. 

A brief explanation of the buckling-driven approach in the study of TCBs is illustrated in 

Fig. A.1. The variations of both the normalized energy release rate 0G u  and the normalized 

interface fracture toughness c 0G u  are shown with respect to the normalized blister growth 

cR R . The compressive residual strain energy density is   2
0 01u h E   . There are two 

stages of blister growth in the buckling-driven approach. During the first stage, the separation 

nucleates and grows without bending-away from the substrate resulting in zero energy release 

rate G  at the separation edge. When the size of separation reaches the conventional buckling 
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size, that is, cR R , the separated film starts to bend away from the substrate, resulting in 

energy release rate at the separation edge, that is, a blister is formed. At a critical size slightly 

larger than the conventional buckling size, that is, 1R R  in Fig. A.1, the energy release rate 

G  exceeds the interface fracture toughness cG  and the second stage starts. The blister quickly 

grows to a certain size, that is, 2R R , beyond which the energy release rate is lower than the 

interface fracture toughness, and then stops. 

 

Fig. A.1. Illustration of buckling-driven approach. 
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Appendix B: Independent experimental measurements of telephone cord blister 
morphology 

Table B.1. Material properties and measurements of residual stress and TCB morphologies. 

 Films Measurements 

Ref. Material E [GPa] ν h 
[μm] 

σ0 [GPa] Ax [μm] 2R [μm] λ [μm] Ay [μm] 

[28] Si 105 0.19 18.00 - 58.80 188.22 - - 

[29] 
Fe 200 0.2 0.92 - - 60.56 99.16 9.86 
Fe 200 0.2 0.59 - - 48.00 85.00 - 

[30] 

Tungsten 411 0.28 0.10 - 0.817 15.51 - - 
Tungsten 411 0.28 0.20 - 0.652 10.56 - - 
Tungsten 411 0.28 0.225 - 1.40 34.70 - - 
Tungsten 411 0.28 0.30 - 1.60 38.80 40.09 3.98 

[31] TiW 171.8 0.288 0.30 1.000 1.25 22.93 - - 

[27] 
TiW 275 0.3 1.00 - - 78.09 82.77 8.17 
TiW 275 0.3 1.00 - - 52.96 56.79 5.47 
TiW 275 0.3 1.00 - - 78.09 118.20 11.36 

[32] TiW 275 0.3 1.00 - - 94.00 108.13 10.82 

[33] 

SiAlNx 200 0.3 0.38 - - 39.28 44.94 4.41 
SiAlNx 200 0.3 0.38 - 1.50 32.00 40.00 - 
SiAlNx 200 0.3 0.38 - - 33.86 46.36 5.15 
SiAlNx 200 0.3 0.38 - 1.50 31.40 40.33 - 

[34] SiAlNx 200 0.3 0.44 - - 34.90 42.20 4.16 

[22] 

SiAlNx 200 0.3 0.44 - 1.58 39.44 57.31 4.62 
SiAlNx 200 0.3 0.38 - - 46.38 61.45 6.96 
SiAlNx 200 0.3 0.62 - - 53.33 57.97 5.80 
SiAlNx 200 0.3 0.86 - - 73.04 82.32 8.12 
SiAlNx 200 0.3 1.10 - 4.20 92.00 106.67 13.13 

[23] 
SiAlNx 200 0.3 1.10 - - 48.00 60.90 3.20 
SiAlNx 200 0.3 1.10 - - 63.67 80.54 5.39 
SiAlNx 200 0.3 1.10 - - 71.53 95.64 9.39 

[24] SiNx 150 0.3 0.30 1.414 0.84 14.40 - - 
[25] Molybdenum 329 0.3 0.12 2.700 - 9.84 32.70 10.05 

[12] 
SiAlNx 200 0.3 0.40 - - 59.29 73.57 5.99 
SiAlNx 200 0.3 0.40 - - 127.43 108.78 11.59 
Ta 175 0.3 0.225 1.00 1.10 20.53 20.53 1.64 

[9] 
Diamond-
like carbon 

120 0.3 0.13 - 0.527 3.70 5.01 0.47 

[19] Ta 186 0.33 0.13 0.500 0.60 16.00 - - 

[26] 
Gold 79 0.4 0.01 - - 24.16 20.23 2.09 
Gold 79 0.4 0.01 - - 24.42 20.97 2.13 
Gold 79 0.4 0.20 - - 27.29 31.95 3.26 
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