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Abstract 

A green approach is employed to prepare mechanically-enhanced composites by adding non-

covalently proanthocyanidins (PC)-modified graphene (PC-rGO) into poly(vinyl alcohol) 

(PVA). Ascorbic acid (AA) is used as the reducing agent and PC is used as a dispersant to 

synthesize low-defect and fully dispersed graphene. After static treatment, the PC-rGO sheets 

in the composite form a horizontally arranged structure. Compared with neat PVA, the Young’s 

modulus of the graphene-modified composites is significantly enhanced by 79.3% with 

incorporation of 0.9 wt% PC-rGO. The composites incorporated with GO or AA-rGO (without 

PC) have randomly distributed GO structures and apparent rGO agglomeration, resulting in a 

weaker mechanical property. The dispersibility, degree of defects, distribution state of graphene, 

and interactions with the polymer matrix are directly related to the final mechanical 

performance. This new approach for mechanical enhancement of the graphene-embedded PVA 

composites provides the possibility for large-scale production of graphene-reinforced 

composite materials. 

Keywords: nanocomposites; mechanical properties; green method; noncovalent 

functionalization graphene; self-assembly 

1. Introduction 

Graphene has been regarded as a rising star in material science since its discovery in 2004,[1]

due to its excellent properties, such as huge specific surface area,[2] extremely high charge 

mobility,[3] great thermal conductivity,[4] and high Young's modulus.[5] Among them, the 

excellent mechanical properties make it be a good choice for nanofillers. Recently, graphene 

and its derivatives including graphene oxide (GO) and functionalized graphene oxide (FGO), 

are widely studied as composite nanofillers.[6] The key points, determining the final mechanical 

properties in the polymer/graphene systems, are high-quality graphene, excellent interface 

compatibility and horizontal arrangement, which means higher mechanical strength of graphene 

and more efficient transferring of the interfacial stress between graphene and polymer matrix.[7]

Therefore, the choice of nanofillers becomes especially important. 

In regard to mechanical properties, GO is inferior to graphene due to oxygen-containing 

functional groups on the surface and will form defect sites when subjected to external forces.[5a, 

8] It can be speculated that nanofillers with stronger intrinsic properties exhibit better 

mechanical properties.[9] For instance, Liang et al., for the first time, prepared poly(vinyl 

alcohol) (PVA)/GO composites and revealed a 76 % improvement of tensile strength and a 
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62 % increase in Young’s modulus at a low concentration of 0.7 wt% graphene oxide.[10]

Meanwhile, Zhao et al. prepared PVA/rGO composites by directly heating the mixture of 

hydrazine hydrate, GO and PVA. An obvious 150 % improvement of tensile strength and an 

astonishing nearly 10 times increase of Young’s modulus is achieved by incorporation of 1 wt% 

graphene.[11] In addition, fewer oxygen-containing functional groups in rGO in comparison with 

GO mean weaker interlayer hydrogen bonding.[12] It is for this reason that commonly used 

strong reducing agents would induce irreversible agglomeration of graphene occurring through 

strong π-π stacking and Van der Waals’ interactions.[13] In order to avoid agglomeration of 

graphene sheets and promote good interactions between graphene and polymer matrix, FGO 

have been widely developed. Dispersible graphene sheets are usually prepared via chemical 

modification[9, 14] or non-covalent functionalization[7a, 15]. In contrast, non-covalent 

functionalization is identified to have less damage to the structure and properties of graphene.[16]

Moreover, non-covalently modified graphene possesses free functional groups derived from 

adsorbed molecules, which can interact with the polymer substrate. The type and quantity of 

those functional groups directly determine the compatibility of graphene with the polymer. 

Wang et al. demonstrated the fabrication of poly(sodium 4-styrenesulfonate) (PSS)-coated 

PVA/rGO composites. An improvement of 48 % in tensile strength was obtained by adding 

only 0.3 wt% rGO, and a maximum increase of 55 % in the Young’s modulus was achieved by 

adding barely 0.1 wt% rGO.[7b] Some attempts have been taken to prepare non-covalently 

modified graphene. Those chemical agents have been used as dispersants, such as poly-o-

phenylenediamine (PoPD),[17] Poly(amic acid),[18] pyrene-terminated molecule (Py-LC),[19]

polyethylene[20] and phosphorus–nitrogen compound.[21] Among them, the toxic characteristic 

of these chemical agents prevents the application of modified graphene in certain fields such as 

biomaterials, biosensors and food packaging. To solve this problem, green modifiers including 

pyrene derivative,[16c] tea polyphenol,[22] gallic acid[16a] and dopamine[23] have been used. 

Nevertheless, a part of the modifier is involved in the reduction of GO, while the redundant part 

acts as the stabilizer. Since the modifiers usually do not have high reduction ability, the low 

degree of reduction cannot maximize the enhancement of graphene/composite mechanical 

performance. Accordingly, the development of a green method for preparing high quality 

graphene nanofillers by combining strong reductant and dispersant will add a significant 

practical value for applications.[24]

In this study, a green method was adopted to modify graphene via non-covalent 

treatment. Proanthocyanidins (PC), which can be easily extracted from the skin and seed of Paiś 

grapes (Vitisvinifera L.), was chosen as stabilizer.[25] There are four separate branched chains, 
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one benzene ring on each branched chain and two hydroxyl groups on each benzene ring. This 

structure is similar to that of borate ions, which can promote the formation of layered 

structures.[26] Meanwhile, ascorbic acid (AA), which has a similar reducing power as hydrazine 

hydrate, was selected as a green reducing agent.[27] PVA was chose as the polymer matrix 

because of its excellent properties, including biodegradability, recyclability, and alternative.[10]

The reaction mechanism of PC-rGO was discussed and the mechanical properties of the 

PVA/PC-rGO composites were tested. Attributed to the interaction bonding of PC molecules, 

it was found that after 6 h static treatment, PC-rGO sheets in the composites spontaneously 

formed a horizontal arrangement structure, even when they were dried at 50 ℃. (Scheme 1) 

However, there was no horizontal distribution in graphene oxide composites, suggesting that 

PC molecules promoted the process of self-assembly. Different from the traditional layer-by-

layer deposition assembly and vacuum filtration assembly to prepare layered films, graphene 

tends to be horizontally distributed under the driving forces of solvent evaporation and 

gravity.[28] This way of self-assembly is simple and less energy consumption. Correspondingly, 

the mechanical properties of PVA/PC-rGO composites also showed higher improvements. 

Benefiting from excellent dispersibility and interfacial compatibility, as well as the regular 

horizontal arrangement of graphene sheets, the tensile strength and Young's modulus of the 

polymer are significantly improved.[18, 29] So far, this is the first discovery that PC molecules 

can induce the formation of the layered graphene composite. Without common vacuum 

filtration and layer-by-layer assembly processes and toxic chemicals, this method is feasibly 

promising for industrial large-scale production. 

2. Experimental Section

2.1. Materials 

Graphite powders of 325 mesh were purchased from Nanjing XFNANO Materials Tech Co., 

Ltd. Proanthocyanidins (PC, 98 %) was purchased from Shanghai Macklin Biochemical Co., 

Ltd. P2O5, K2S2O8 and PVA1788 were purchased from Aladdin Chemical Co., Ltd. Ascorbic 

acid (AA), potassium permanganate (KMnO4), sulfuric acid (H2SO4, 98 %), hydrogen peroxide 

(H2O2, 30 %), and hydrochloric acid (HCl) were purchased from Sinopharm Chemical Reagent 

Co., Ltd. All reagents used here were of analytical grade and used without further purification. 

The water used in this work was deionized water (resistivity > 18.25 MΩ·cm). 
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2.2 Preparation of graphene oxide 

The GO sheets were prepared from purified natural graphite by a modified Hummers 

method.[30] Briefly, concentrated H2SO4 (40 mL) was added into a 150 mL flask filled with 

graphite (5 g), followed by the addition of K2S2O8 (5 g) and P2O5 (5 g) was gradually added 

with stirring. The mixture was stirred at 80 ℃ for 4.5 h. The resultant blue dark mixture was 

cooled to room temperature, then diluted, filtered and washed with distilled water till the pH 

became neutral, and then the solid was dried at 40 ℃ under vacuum for 2 days. We named it 

pretreated graphite (P-G). H2SO4 (40 mL) was added to a three-necked flask and stirred in an 

ice bath. To this flask, P-G powder (1 g) and KMnO4 (5 g) were gradually added into the above 

solution under controlled temperature of 10 ℃. Then stirring was continued for 2 hours. The 

temperature of the entire ice bath process was controlled below 10 ℃. The mixture was then 

stirred at 35 ℃ for 2 hours in an oil bath. The resulting solution was diluted by adding the 

deionized water (90 mL) under vigorous stirring for 1 hour, under controlled temperature less 

than 90 ℃. The obtained brick-red suspension was further diluted by adding extra deionized 

water (90 mL). H2O2 solution (10 mL, 30 %) was then added drop-wise with constantly stirring. 

The mixture became bright yellow. The resulting GO suspension was washed by repeated 

centrifugation, first with 10 % aqueous HCl solution to remove excess of manganese salt 

followed by deionized water until the pH of the solution became neutral. The suspension was 

successively centrifuged at 3000 and 10,000 rpm for 30 min to remove thick multilayer flakes 

and small pieces, respectively. Finally, the product was dried in vacuum. 

2.3 Synthesis of PC-modified reduced graphene oxide 

The sample was prepared according to the flow chart as shown in Scheme 1. Firstly, GO (100 

mg) was added to the deionized water (100 mL) and exfoliated by ultrasonication for 30 min. 

After being completely dispersed, the suspension turned yellow brown and became 

homogeneously transparent. Then, PC (100 mg) was added to the GO dispersion and stirred at 

room temperature. After 2 h, AA (100 mg) was added to the above suspension. The mixture 

was then stirred at 90 ℃ for another 6 hours. Finally, the obtained dispersion was subjected to 

dialysis for a week to completely remove excess PC and reaction residues. The obtained 

dispersion was directly used after the concentration was calibrated, which was designated as 

PC-rGO. For comparison, the reduced graphene oxide (rGO) was synthesized by adding 100 

mg of AA to GO dispersion (1 mg mL−1) with continuous stirring and heating at 90 ℃ for 6 h. 

The same method was used to remove impurities. This sample was named as AA-rGO. 
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2.4 Preparation of PVA/PC-rGO composite films 

A range of PC-rGO dispersions with known concentrations were prepared. Then PVA was 

added to each of these PC-rGO dispersion, stirring at 90 ℃ for 2 hours until completely 

dissolved. The obtained dispersion was degassed in an ultrasonic bath for 30 min. Then, the 

dispersion was poured into a petri dish and dried in an oven at 50 ℃ until the mass was 

completely constant. Prior to this, the Petri dish was sealed and placed on a horizontal abutment 

for 12 h to ensure self-assembly was completed. Among them, the mass fraction of PC-rGO 

relative to PVA was 0 %, 0.3 %, 0.5 %, 0.7 % and 0.9 %, which were designated as PVA, 

PVA/0.3PC-rGO, PVA/0.5PC-rGO, PVA/0.7PC-rGO and PVA/0.9PC-rGO, respectively. 

PVA/GO composites were prepared through the exactly same procedure, including 

PVA/0.3GO, PVA/0.5GO, PVA/0.7GO and PVA/0.9GO. At the same time, the PVA film 

containing 0.9 % AA-rGO was prepared by the same procedure as a reference, which was 

named PVA/AA-rGO.  

2.5 Characterization 

UV-vis absorption spectra were examined by a UV-vis-NIR spectrophotometer (Lambda 750S, 

PerkinElmer) in the spectral range of 800-200 nm with 1 nm step. FT-IR spectra 

characterizations were measured at ambient temperature by a FT-IR microscope and 

spectrometer (Nicolet 6700, Thermo Fisher). The spectral range was set to 500-4000 cm-1. X-

ray photoelectron spectra (XPS) were determined on an XSAM800 (Kratos Company, UK) 

with Al Kα radiation. Raman spectra (Renishaw-InVia) were carried out using a 514 nm laser 

to monitor the structural changes. X-ray diffraction patterns were examined by an X-ray 

Diffractometer (D8 advance, Bruker) provided Cu Kα radiation with λ = 1.5418 Å at 40 kV 

voltage and 40 mA current. Atomic force microscopy (AFM, Park NX10) was used to test the 

thickness of graphene with tapping-mode. The AFM samples were prepared by spin-coating 

the dispersed droplets (50 μL) on Si/SiO2 wafers surface at 3000 rpm for 20 seconds. Field 

emission scanning electron microscopy (FESEM, Hitachi S-4800) was used to observe the cross 

section of composite films. Pre-place samples in a vacuum environment to remove the adsorbed 

water vapor, then slide out a notch with a surgical blade, quickly tear the film along the small 

nick. Thermogravimetric analysis tests were conducted in TGA Q50 (TA, USA). The tests 

started at room temperature and heated to 800 ℃ at a heating rate of 10 ℃ min−1 under N2

atmosphere. Tensile tests were performed by MTS systems (China) Co., Ltd. at room 

temperature (60 % RH) with a cross-head speed of 2 mm min−1. The tensile samples were made 
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into dumbbell-shaped according to ASTM D638, and five specimens for each sample were 

tested to obtain average and standard deviation values. 

3. Results and discussion 

3.1 Characterization of graphene-based nanofillers 

The reduction process was detected by UV-vis absorption spectroscopy. In the digital images 

(Figure 1a), there were two groups: 1. GO: AA=1:1 wt% and 2. GO: PC: AA=1:1:1 wt%. The 

color gradually turned black from yellow brown. After the reaction was carried out for 40 min, 

significant agglomerated particles appeared in Group 1 (the red square part of Figure 1a). In 

contrast, the dispersion was still stable in Group 2 after 6 hours. At regular intervals, a portion 

of the dispersion was extracted from the reaction mixture for analysis. In order to avoid the 

influence of reaction residues, the suspension was washed with dilute hydrochloric acid solution 

and deionized water for several times. The spectra of Figure 1b corresponded to the dispersions 

of Group 2 at different times. GO dispersion showed a strong absorption peak at around 230 

nm, which corresponded to the π-π* transition.[31] With the reaction time prolonged, the 

absorption peak gradually red-shifted and the absorbance in the whole visible range increased 

evidently, signifying the restoration of conjugated structure of graphene.[32] This transform 

corresponded to the change in the color of the dispersion. After an hour, the peak red-shifted to 

268 nm, and then it remained unchanged over time. Consequently, the completion time of 

reaction was determined as an hour. In Figure S1, PC could not effectively disperse the 

graphene. These changes confirmed that PC and AA could work together to obtain a well-

dispersed graphene dispersion with high degree of reduction. 

FT-IR was investigated to detect the changing of oxygen-containing groups. In Figure 

1c, the GO characteristic peaks correspond to various functional groups, including C–OH 

(alkoxy) stretching vibration peak at 1060 cm−1, C–O (epoxy) stretching peak at 1226 cm−1, O–

H at 1412 and 3395 cm−1, aromatic C=C stretching vibration at 1622 cm−1 and C=O stretching 

vibration peak (in both ketone and carboxylic acid groups) at 1733 cm−1.[25] After reduced via 

AA, the absorption intensities of ketone and carboxylic acid groups (1720 cm−1), O–H groups 

(3395 and 1410 cm−1) and alkoxy groups (1052 cm−1) decreased remarkably, which was similar 

to the previous literature.[33] After adding extra PC to the reaction, the intensity of absorption 

peaks correlated to the oxygen containing groups also decreased dramatically. Compared with 

that of AA-rGO, the C=O stretching vibration peak showed a similar degree of reduction. The 

absorption at the peak of epoxy groups exhibited a more significant reduction, which indicated 

that the epoxy groups were removed more thoroughly and that PC-rGO showed a higher degree 
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of reduction than AA-rGO. Conversely, in the range of 3300-3500 cm−1, the IR absorption of 

PC-rGO slightly increased, indicating that the hydroxyl content of rGO was slightly increased. 

To explain this phenomenon, PC molecules were also detected, whose spectrum exhibited a 

strong hydroxyl characteristic peak, ascribing to PC molecules adsorbed onto graphene sheets 

by π-π interactions. This result was achieved probably because the PC molecules as dispersant 

restrained agglomeration, allowing more in-plane groups to be exposed and the reduction 

proceeds more thoroughly.[27]

To further determine the structural changes of functionalized graphene, XPS was 

performed to characterize the GO and rGO. As shown in Figure 1d, there were four 

distinguishable carbon-containing functional groups, which were located at 284.6 (C=C/C-C), 

286.8 (C–O), 287.4 (C=O) and 289.0 eV (O–C=O).[34] In Figure 1e and 1f, those peak intensity 

of the C–O groups dramatically decreased after reaction, implying the effective reduction of 

GO. Meanwhile, the C/O ratio of GO was 2.13. After reduction, the C/O ratio of PC-rGO (3.33) 

presented a slightly higher than that of AA-rGO (3.16), suggesting that PC-rGO showed a 

slightly higher degree of reduction. As indicated in the FT-IR spectra (Figure 1c), the removal 

effect of the PC-rGO and AA-rGO on carbonyls is similar. PC-rGO displayed evidently less 

residue of epoxy groups and a slight increase in hydroxyl groups. In a previous report, a rGO 

stabilizer also made it exhibit a relatively lower C/O.[16a] If the hydroxyls introduced by the 

adsorption of PC molecules were removed, the C/O ratio of the actual graphene sheets would 

be higher. In other words, graphene received a higher degree of reduction after adding PC. This 

observation was in good agreement with the UV-vis and the FT-IR results. 

The Raman spectra of GO and rGO were shown in Figure 2a. Two fundamental 

vibrations were observed at 1580 cm−1 and 1357 cm−1, which were attributed to the G band and 

D band, respectively. The peak intensity ratio of the D band to the G band was used to estimate 

the ratio of the number of sp2 carbon atoms to that of sp3 carbon atoms.[35] It provides a strong 

evidence for the change in the electronic structure of graphene.[36] The D/G intensity ratio of 

AA-rGO was 1.46, which was higher than that of GO (1.29). The removal of hydroxyls and 

epoxy groups corresponded to the reduction of in-plane and edge defects. Simultaneously, the 

edge defects increased ascribed to the cracking of graphene sheets.[18] Unexpectedly, the D/G 

intensity ratio of PC-rGO (1.15) was even less than that of GO. This might be due to PC 

molecules adsorbed to the surface of graphene sheets, and the in-plane shear stress was balanced 

around the reduction process, which ultimately inhibited the cracking of graphene sheets.

It was natural to think that the adsorption of PC molecules might increase the interlayer 

spacing, which was confirmed by X-ray diffraction measurement (Figure 2b). As expected, GO 
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exhibited a relatively sharp diffraction peak at 9.8° with an interlayer spacing of 0.902 nm, in 

contrast to the peak of the graphite, that was more intense and thinner at 26.6° (d-spacing of 

0.336 nm).[37] The inter-sheet distance was enhanced because of the insertion of water 

molecules and other oxygenated moieties generated by oxidation of graphite.[38] Meanwhile, 

AA-rGO and PC-rGO showed no diffraction peak around 9.8°, declaring that the oxygen-

containing functional groups were mostly removed. In addition, AA-rGO and PC-rGO showed 

a wide diffraction peak at about 23.6° (0.377 nm) and 23.2° (0.383 nm), respectively, which 

were ascribed to the reduction and restacking of graphene sheets.[39] We could find that the 

addition of PC did give rise to the layer spacing, which was due to the adsorption of PC 

molecules on the rGO surface. Similar findings had also been found on tannin functionalized 

graphene.[40] The PC molecules were coated on the surface of graphene through π-π stacking, 

while hydroxyl groups of PC molecules formed hydrogen bonds between the graphene layers, 

increasing the interlamellar spacing.

The thickness of the samples was measured and characterized using atomic force 

microscope. In Figure 3a, the average thickness of GO was tested to be about 1.08 nm, which 

was similar to the previous literature.[16a] It was confirmed that GO sheets were single layers. 

In Figure 3c, AA-rGO presented a multi-layer stacking structure, which was consistent with the 

previous conclusions (Figure 1a). Meanwhile, Figure 3b showed that the average thickness of 

PC-rGO was about 2.57 nm. Referred to the previous literature, the thickness of the single-layer 

graphene sheets should be about 1.0 nm.[41] The thickness would apparently be increased due 

to adsorption of molecules.[42] Combining previous tests (Figure 1), it was absolutely 

determined that graphene was highly reduced. The increase in thickness of PC-rGO confirmed 

that the PC molecules were indeed adsorbed to the surface of graphene sheets. From another 

perspective, this result also confirmed the reason for the increase of interlayer spacing in X-ray 

diffraction (Figure 2b). To further verify their morphology, similar results were found using 

FESEM to detect the corresponding AFM samples (Figure S2, Supporting Information). 

3.2 Characterization of PVA/PC-rGO composite films 

Figure 4 showed the FESEM images for the cross sections of the composite films. Compared 

with the smooth surface of pure PVA, an apparent layered structure appeared after adding the 

PC-rGO, which implied that a self-assembly of PC-rGO and PVA in the film happened and the 

PC-rGO has excellent interactions with PVA.[18, 29] The nanostructure of the hybrid films clearly 

indicated the graphene layers.[7b] Although only 0.3 wt% PC-rGO was added, a small amount 

of discontinuous horizontal distribution could be observed in Figure S3c. As the content of PC-
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rGO increased, a more pronounced horizontal distribution of the fault structure can be 

recognized. Between the layers, the notches and sheet-like protruding structures could be 

clearly observed, which was arranged in a state of uniform horizontal distribution. However, in 

some areas of PVA/AA-rGO, agglomerated graphene clusters could be easily distinguished, 

and other parts were similar to pure PVA. In order to compare the cross-sectional morphology, 

PVA/GO composite samples were prepared through the same preparation method. This 

phenomenon proved that PC-rGO could be well dispersed in the PVA and spontaneously form 

layered structure.[24, 29] The driving force of self-assembly came from the bridge-grafting effect 

of PC molecules. The benzene rings in the PC molecules adsorbed graphene sheets surface via 

the π-π bonds, and its hydroxyls form hydrogen bonds with the PVA matrix. Graphene tends to 

be horizontally distributed under the driving forces of solvent evaporation and gravity, and the 

viscosity of the corresponding dispersion becomes the resistance.[28a, 43] As shown in Figure S3e, 

the composite of PVA/0.9PC-rGO without the static treatment exhibited a chaotic distribution. 

Perhaps due to the difference in viscosity, PC-rGO needed to overcome less resistance than GO 

under the force of gravity and solvent evaporation.[44]

FT-IR had also been used to explore the changes of functional groups in composite 

membranes.[7b] As shown in Figure 5a, the wide and strong band at around 3451 cm−1 shifted 

to a lower wave number with the loading of PC-rGO increasing. This band was corresponded 

to the free and H-bonded hydroxyls.[31a] In addition to the shift of hydroxyl band, no new peak 

was observed, indicating that PC did not react with PVA. The shift of the hydroxyl band could 

be attributed to the formation of hydrogen bonds between the nanofillers and the hydroxyls of 

the PVA molecules, reducing the amount of hydrogen bonds between the PVA molecules.[9]

The higher the weight fraction of PC-rGO, the larger the offset value of the hydroxyl bond. 

Compared with PVA/0.9PC-rGO (3427 cm−1), PVA/AA-rGO had the same weight ratio of 

nanofillers, but the peak position was 3440 cm−1, indicating that good dispersion facilitated 

hydrogen bonds formation. This result was consistent with the variation of the layered structure 

in the FESEM (Figure 4). Furthermore, this phenomenon could demonstrate that the hydrogen 

bonding between layers promoted the horizontal arrangement of graphene sheets. 

XRD was also utilized to investigate the degree of crystallization of the polymer. Figure 

5b and Figure S4 illustrated the XRD patterns of neat PVA and its nanocomposite films. There 

were no characteristic peaks of GO and PC-rGO in the XRD patterns of composites, which 

implied that both GO and PC-rGO were well dispersed in the PVA matrix.[26, 28a] However, AA-

rGO/PVA did not show the characteristic peak of AA-rGO, probably because the amount of 

graphene added was not enough.[11] The broadened peak at about 19.3° indicated the existence 
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of an amorphous structure.[45] It was noticed that incorporation of less than 0.5 wt% PC-rGO 

only slightly increases the intensity of the unique characteristic peak of composite films. As the 

amount of PC-rGO added increased, the intensity of the peak at about 19.3° gradually increased. 

A similar phenomenon also could be found in many polymer/graphene nanocomposites and 

was considered to be a result of polymer crystallization that was induced by graphene.[46] Since 

the fully exfoliated and well-dispersed graphene nanosheets act as nucleating agents, the 

crystallinity of the composites will be improved, corresponding to the intensity of the 

characteristic peak.[11] In contrast, PVA/0.9PC-rGO exhibited more pronounced enhancement 

of the characteristic peak than PVA/0.9GO and PVA/AA-rGO, implying that the adding of 

graphene sheets promoted crystallization of PVA and uniform dispersion was the guarantee of 

higher crystallinity. This result was consistent with the images shown in the FESEM (Figure 4). 

TGA was further employed to characterize the thermal properties of PVA and its 

nanocomposites. Figure 6a showed the trend of weight with temperature increasing. PVA 

degraded at a relatively higher temperature than those nanocomposites. Furthermore, the 

temperature of the maximum degradation rate was determined by differential 

thermogravimetric analysis (DTA) results (Figure 6b). The peak temperature (Tp) of the DTG 

curve represented the temperature at which the maximum weight loss rate was reached. The Tp

of PVA/PC-rGO showed a decreasing trend as the amount of nanofillers added increased, 

indicating that decomposition occurred at lower temperatures.[47] In contrast, the Tp of 

PVA/AA-rGO was just slightly reduced. These phenomena were attributed to uniform 

distribution and outstanding thermal conductivity of graphene, accelerating the decomposition 

rate of the PVA. 

Figure 7a, b exhibited the typical tensile stress-strain curves of the PVA, PVA/PC-rGO 

and PVA/GO composite films. Figures 7c-7d showed the corresponding Young's modulus and 

tensile strength as the changes of nanofillers’ amount (specific values are presented in Table 

S1). With the increase of nanofillers, the modulus of the PVA/PC-rGO composites increased 

gradually, from 2.66 GPa for neat PVA to a maximum value of 4.77 GPa for the PVA/0.9PC-

rGO nanocomposites (an increase of 79.3 %). Meanwhile, the tensile strength of PVA/PC-rGO 

nanocomposites increased sharply by 75.2 % to 103.0 MPa with the addition of 0.7 wt% PC-

rGO, and then decreased slightly with further increase in PC-rGO content. Even just 0.3 wt% 

PC-rGO could significantly improve the mechanical properties. In contrast to PVA/PC-rGO 

composites, the tensile strength increased by 42.5 % to 83.8 MPa and the Young's modulus 

increased by 48.9 % to 3.96 GPa with the concentration of 0.7 wt% GO. Those composites with 

GO showed a relatively lower improvement, ascribing to the random disorder of GO sheets. 
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Due to the horizontal arrangement of graphene sheets and strong hydrogen bonding, tensile 

stress would be effectively transferred onto graphene sheets.[48] Whereas, after the nanofillers 

were added in excess, the distance between PC-rGO sheets became smaller and the interactions 

between PC-rGO sheets became stronger, which made rGO sheets tend to distribute obliquely 

and even vertically.[7b, 29] Thus, the mechanical properties of PVA/0.9PC-rGO appeared to 

decrease. In addition, the test of PVA/AA-rGO can be found in Figure S5. As expected, 

PVA/AA-rGO exhibited a very limited improvement in mechanical properties. Therefore, to 

enhance mechanical properties as much as possible, the ordered horizontal alignment and 

intrinsic excellent properties of graphene are critical. 

4. Conclusion 

Highly dispersible non-covalently modified graphene was prepared using natural substances, 

PC (dispersant) and AA (reducing agent). This method eventually obtains a high-quality 

graphene sheet with more excellent dispersibility, lower defectivity and higher degree of 

reduction relative to the use of AA alone. In the process of compounding with PVA, PC 

molecules act as the critical bridges in the formation of layered structures. Specifically, the 

aromatic rings of PC and graphene sheets form π-π interactions, and its hydroxyl groups form 

hydrogen bonds with the hydroxyl groups inside the PVA molecules. The mechanical properties 

of the PVA/PC-rGO composites showed a significant enhancement, with a 75.2 % improvement 

of tensile strength in the incorporation of 0.7 wt% PC-rGO and a 79.3 % increase of Young’s 

modulus in its incorporation of 0.9 wt%. Through the comparison of the properties obtained 

from various samples, dispersion and interfacial interactions was considered to act as the 

indispensable roles in mechanical properties of polymer/graphene system. Ultimately, it is 

worth noting that the addition of PC molecules induces the production of horizontal structures, 

which suggests a new route for the preparation of graphene layered materials with high 

mechanical performance. The entire process of self-assembly is spontaneously performed under 

intermolecular interactions, which makes large-scale production possible. 
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Scheme 1. A probable mechanism of fabrication of layered structure PVA/PC-rGO composites. 

Figure 1. Characterization of GO, AA-rGO and PC-rGO. (a) Digital images, (b) UV-vis spectra, 
(c) FT-IR spectra, and (d, e, f) XPS spectrum (C1s) of the GO, AA-rGO and PC-rGO, 
respectively. 
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Figure 2. (a) XRD patterns of graphite, GO, AA-rGO and PC-rGO, and (b) Raman spectra of 
GO, AA-rGO and PC-rGO. 

Figure 3. AFM images of (a) GO, (b) PC-rGO, and (c) AA-rGO deposited on Si/SiO2 wafers 
surface.
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Figure 4. FESEM images of cross-section. (The scale rod represents 10 μm for all the 

images.)

Figure 5. (a) FT-IR spectra of composite films, and (b) XRD patterns of PVA, PVA/0.9GO, 
PVA/AA-rGO and PVA/0.9PC-rGO composite films.
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Figure 6. (a) TGA curves of the samples of PVA, PVA/PC-rGO and PVA/AA-rGO composite 
films, and (b) DTG curves of those samples obtained by calculating the first derivative. 
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Figure 7. (a, b) Representative stress–strain curves for neat PVA and PVA/PC-rGO, as well as 
PVA/GO and (c, d) the variations of Young’s modulus and tensile corresponding to different 
content of PC-rGO and GO. 



21 

Layered structure of graphene/poly(vinyl alcohol) mechanically reinforced film is prepared by 
proanthocyanidins grafting. As a nanofiller, graphene oxide is randomly distributed. Attributed 
to the grafting effect of proanthocyanidins at the interface, a layered distribution exhibits after 
modification, as well as mechanical properties increasing. This green synthesis method is 
promising for the large-scale production of horizontal arrangement mechanically reinforced 
graphene composites.
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Figure S1. Digital images of (a) graphene dispersion dispersed by PC, (b) and (c) the dispersion 
after standing for 1 h. 

Figure S2. FESEM images of (a & b) GO, (c & d) PC-rGO and (e) AA-rGO deposited on 
Si/SiO2 wafers surface.
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Figure S3. FESEM images of cross-section of (a) PVA/0.3GO, (b) PVA/0.5GO, (c) 
PVA/0.3PC-rGO, (b) PVA/0.5PC-rGO and (e) PVA/0.9PC-rGO (directly dried without 6 hours' 
static self-assembly). 

Figure S4. XRD patterns of composite films. 
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Figure S5. Representative stress–strain curves for PVA/AA-rGO. 

Table S1. Mechanical property of neat PVA and its composite films. 
Samples Tensile strength (MPa) Young's modulus (GPa) Elongation (%)

PVA 58.8±3.5 2.66±0.18 78.4±2.9 
PVA/0.3PC-rGO 81.0±2.9 (37.8 %) 3.66±0.10 (37.6 %) 49.1±3.4 
PVA/0.5PC-rGO 89.7±4.9 (52.6 %) 4.46±0.19 (67.7 %) 38.5±2.9 
PVA/0.7PC-rGO 103.0±3.1 (75.2 %) 4.59±0.17 (72.6 %) 27.6±5.2 
PVA/0.9PC-rGO 99.6±2.1 (69.4 %) 4.77±0.22 (79.3 %) 18.4±3.1 

PVA/0.3GO 65.7±1.5 (11.7 %) 2.96±0.15 (10.5 %) 56.9±4.6 
PVA/0.5GO 70.5±4.3 (19.9 %) 3.11±0.24 (16.9 %) 46.6±6.3 
PVA/0.7GO 77.8±2.8 (32.3 %) 3.64±0.19 (36.8 %) 35.2±2.7 
PVA/0.9GO 83.8±5.4 (42.5 %) 3.96±0.31 (48.9 %) 22.0±4.2 

PVA/AA-rGO 74.6±2.5 (26.9 %) 2.92±0.13 (9.8 %) 20.7±2.5 
Note: Percentage values within parentheses are the relative change compared with PVA 
reference. 
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