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Abstract

Fast and scalable software modules for image segmentation are needed for
modern high–throughput screening platforms in Computational Biology. In-
deed, accurate segmentation is one of the main steps to be applied in a
basic software pipeline aimed to extract accurate measurements from a large
amount of images. Image segmentation is often formulated through a varia-
tional principle, where the solution is the minimum of a suitable functional,
as in the case of the Ambrosio–Tortorelli model. Euler–Lagrange equations
associated with the above model are a system of two coupled elliptic partial
differential equations whose finite–difference discretization can be efficiently
solved by a generalized relaxation method, such as Jacobi or Gauss–Seidel,
corresponding to a first–order alternating minimization scheme. In this work
we present a parallel software module for image segmentation based on the
Parallel Sparse Basic Linear Algebra Subprograms (PSBLAS), a general–
purpose library for parallel sparse matrix computations, using its Graphics
Processing Unit (GPU) extensions that allow us to exploit in a simple and
transparent way the performance capabilities of both multi–core CPUs and
of many–core GPUs. We discuss performance results in terms of execution
times and speed–up of the segmentation module running on GPU as well
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as on multi-core CPUs, in the analysis of 2D gray–scale images of mouse
embryonic stem cells colonies coming from biological experiments.

Keywords: Image Segmentation, Variational Models, Relaxation Methods,
GPU
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1. Introduction

Accurate and fast image segmentation is a key issue when thousands of
images have to be processed to extract relevant measurements from cell or
tissues images arising in modern high–throughput screening and analysis [1].

Image segmentation is generally defined as the problem of identifying the
image regions corresponding to the single objects. From a mathematical
point of view, if f is an image defined on a Lipschitz bounded domain Ω,
segmentation can be defined as the problem to find a suitable boundary set
Γ (the edge set) corresponding to a complete partition of Ω, where each con-
nected component Ωi corresponds to a single physical object. This problem
has a basic formulation in terms of the well–known Mumford–Shah (MS)
functional, whose theory and approximation methods for practical solutions
have been widely studied in the last 20 years [2, 3, 4]. In this paper we
focus on the Ambrosio–Tortorelli approximation of the MS functional and
discuss an efficient implementation of the solution algorithm introduced in
[5] on modern General–Purpose Graphics Processing Units (GPGPUs) for
high–performance computing.

Our implementation relies on Parallel Sparse Basic Linear Algebra (PS-
BLAS) software framework which implements basic Linear Algebra operators
on sparse matrices for an efficient and transparent implementation on par-
allel architectures where MPI is available [6, 7]1. PSBLAS is a library that
allows easy and convenient implementation of iterative methods by providing
sparse matrix operators such as matrix–vector product, sparse triangular sys-
tem solution, splitting of a sparse matrix into upper and lower triangles, and
more. These operators are complemented by an infrastructure that allows
building and handling the necessary sparse matrix data structures in a simple
way, even when dealing with sophisticated schemes for storing the coefficient

1The PSBLAS software is freely available from http://www.ce.uniroma2.it/psblas.
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entries into the computer memory. The resulting expressiveness of the ma-
trix operators allows implementation of iterative methods in a notation that
is extremely similar to a blackboard description in pseudo code. The PS-
BLAS framework also forms the base for a package of algebraic multilevel
preconditioners [8, 9].

Recently we introduced a plugin for PSBLAS that enables computations
on GPGPUs; the software architecture allows us to have a code that is capa-
ble of running on parallel multi-core CPUs with MPI as well as on GPU with
Cuda in a transparent way, as described in [10]. This capability has been
exploited in this work to make the image segmentation GPU–enabled; to this
end we have also had to extend some of the functionalities, as described in
more details in Section 3.

The paper is organized as follows: in Section 2 we briefly describe the
image segmentation model and its numerical solution algorithm, in Section
3 we discuss the main issues involved in an efficient implementation of the
algorithm on GPU and describe the optimizations applied to critical phases
of the computations. In Section 4 we discuss performance results and, finally,
in Section 5 we give some remarks and future plans.

2. Mathematical Model and Numerical Algorithm

In this work we focus on the MS model, which is the prototype of all the
variational models for image segmentation. In particular, we are interested
in the phase–field approximation of the MS model, introduced in [11] by
Ambrosio and Tortorelli, where the original grayscale image function f is
approximated by a piecewise smooth function u, which can be discontinuous
across a closed set K ⊂ Ω represented by a suitable function z.

Let Ω ⊂ R2 be a Lipschitz bounded open set and f ∈ L∞(Ω) the observed
grayscale image, the segmentation problem can be described in terms of the
minimization of the following functional:

Eε(u, z) =

∫
Ω

(u− f)2dxdy + β

∫
Ω

z2|∇u|2dxdy+

α

∫
Ω

(
ε|∇z|2 +

(z − 1)2

4ε

)
dxdy, (1)

where u ∈ C1(Ω\K), and z, 0 ≤ z ≤ 1, is a function which controls |∇u| and
gives an approximate representation of the set K (z(x, y) ≈ 0 if (x, y) ∈ K
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and z(x, y) ≈ 1 if (x, y) is part of the smooth regions), α and β are positive
coefficients and ε is a positive sufficiently small parameter. Coefficients α and
β are suitable weights which control the so–called penalizing terms in (1);
in particular, parameter β controls the smoothness of the function u outside
of the edge set K (for increasing β we look for very small gradients outside
of K), while parameter α controls the length of the edge set, so that large
values for α require less jumps in the recovered image function.

Parameter ε was introduced by the phase–field approximation to obtain
a sequence of elliptic functionals which, for ε → 0, are Γ−convergent to
the original MS functional [12]. The need to choose a good ε is one of the
main drawbacks, together with non–convexity, in numerical approximations
of (1); generally a good choice for ε is such that h/ε < 1, where h is the
discretization mesh–size. Further details on this issue may be found in [5]
and the references therein.

The interest for model (1) is related to the the fact that its minimization
is achievable by well–known techniques from Calculus of Variations, i.e., by
writing the corresponding Euler–Lagrange equations. Our numerical algo-
rithm for solving (1) is based on a second–order finite–difference discretiza-
tion of the following Euler–Lagrange equations:{

2(u− f)− 2β∇ · (z2∇u) = 0
2βz|∇u|2 − 2αε∇2z + α

2ε
(z − 1) = 0

(x, y) ∈ Ω, (2)

coupled with natural boundary conditions. Equations (2) are a system of
coupled elliptic partial differential equations which, in discrete form, when
the image domain Ω has been discretized by fixing a mesh–size h > 0 (usually
related to the original image size) and a so–called unknown–based discretiza-
tion of the equations has been applied [13], can be written in the following
block form: [

A(z) 0
0 B(u)

](
u
z

)
=

(
f1
f2

)
. (3)

Details on the discretization scheme used for system (2) can be found in [5],
here we note that matrices A(z) and B(u) have the same symmetric sparsity
pattern and are both diagonally dominant M–matrices, per each finite vector
(u, z).

In [5] we propose to solve system (3) by using a generalized relaxation
method, such as the Gauss–Seidel method, accelerated by inner linear iter-
ations. We proved that this approach is more efficient and reliable when
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compared both with standard non–linear Gauss–Seidel iterations and with
other first–order alternating minimization schemes, such as gradient descent.
The solution algorithm is described in Algorithm 1.

Algorithm 1: Gauss–Seidel method coupled with inner linear iterations

k = 0, z0 = 1 (all–ones vector) and u0 = fh (original image);
build r.h.s. f1 and f2;
repeat

build matrix A(zk);
compute uk+1 by iterative solution of system A(zk)u = f1, starting
from uk;
build matrix B(uk+1) ;
compute zk+1 by iterative solution of system B(uk+1)z = f2,
starting from zk;
k = k + 1;

until convergence;

Since matrices A(z) and B(u) are both M–matrices and diagonally dom-
inant, classical relaxation methods, such as Jacobi and Gauss–Seidel, are
convergent methods for the inner linear systems [14]. In this work we use
Jacobi iterations for the reasons discussed in the next section, regarding the
exploitation of parallelism of modern GPUs.

3. Parallel Implementation Issues on GPU

GPGPUs have gained widespread adoption in the scientific computing
community and are now routinely used to accelerate a broad range of science
and engineering applications, delivering dramatically improved performance
in many cases. They are used to build the core of the most advanced super-
computers, as demonstrated by the latest list(s) of the TOP500 supercom-
puter sites2; cloud–computing providers are deploying clusters with multiple
GPUs per node and high–speed network interconnections (e.g., Cluster GPU
instances in Amazon EC2) in order to make them a feasible option for HPC
as a Service (HPCaaS) [15].

2http://www.top500.org/
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The NVIDIA GPU is based on a scalable array of multi–threaded, stream-
ing multi–processors, each composed of a fixed number of scalar processors, a
dual–issue instruction fetch unit, an on–chip fast memory with a configurable
partitioning of shared memory, an L1 cache plus additional special–function
hardware.

Computations are carried out by threads grouped into blocks; more than
one block can execute on the same multiprocessor, and each block executes
concurrently. Each multiprocessor employs a Single Instruction Multiple
Threads (SIMT) architecture akin to the SIMD architecture of traditional
vector supercomputers. The multiprocessor creates, schedules, and executes
threads in groups called warps; threads in a warp start together at the same
program address but can execute their own instructions and are free to branch
independently. A warp executes one common instruction at a time, so the
maximum performance is achieved when all threads in a warp follow the
same path. A very important issue is the access to the memory subsystem
on the GPU device; to achieve best performance, threads in a warp should
access contiguous memory locations, executing so–called coalesced accesses,
since this guarantees full memory bandwidth utilization.

One peculiar aspect of the GPUs is that they are throughput oriented,
that is, they strive to achieve maximal utilization of the available arithmetic
units by scheduling and launching many threads. This scheme works well
under two main assumptions, first, that context switching between threads
is extremely fast, and second, that there are enough resources to be shared
among the threads; the resources are shared among all blocks executing on
the same muiltiprocessors. Hence, there should be enough blocks to keep all
multiprocessors busy, but the number of threads per block cannot increase
too much because there is a fixed number of registers to be shared among all
threads in a multiprocessor (see Section 4).

3.1. Basic Sparse Linear Algebra Operators on GPUs

Our segmentation algorithm, as described in Algorithm 1, involves com-
putations with sparse matrices arising from the discretization of 2D elliptic
operators with standard 5–point stencils. The main computational kernel of
the inner iterative linear solvers is the matrix–vector product y ← αAx+βy,
where A is large and sparse and x and y are column vectors. It is well known
that the Sparse Matrix–Vector product (SpMV) is a memory–bound kernel;
on GPGPUs it introduces additional challenges with respect to operations
on dense matrices because on sparse matrices we have much less regular data
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accesses patterns [16]. Indeed, efficient implementations of the operation re-
quires to devise a specific storage format for the matrix A. Typical storage
formats include variations on the CSR (Compressed Sparse Rows) and ELL-
PACK (ELL) formats; in this work we have employed an ELL–like format,
which gives the best results for standard sparse matrices, such as that arising
from elliptic operators [17]. The usage of the ELL format and its variants on
GPUs has been analyzed in, for example, [16, 18]; the implementation used
in PSBLAS is described in [17], whereas a review of many storage formats
will be available in [19].

In the standard ELL format [20], an M -by-N sparse matrix with at most
K nonzeros per row is stored as dense M -by-K arrays val and ja holding
the nonzero matrix values and the corresponding column indices, respectively.
The rows in val and ja with fewer than K nonzero elements are filled in with
appropriate padding values. The ELL format thus fits a sparse matrix into a
regular data structure, making it a good candidate for implementing sparse–
matrix operations on SIMT architectures. In the computational kernel, each
row of the sparse matrix is assigned to a small set of threads that performs
the associated (sparse) dot product with the input vector x. The padding
in the shorter rows introduces a certain amount of memory overhead with
respect to the CSR format; this is acceptable if the maximum number of
nonzeros K is not much larger than the average, which is the case in the
current application.

As already mentioned, threads are organized in groups called warps, and
to maximize memory bandwidth usage each warp should handle a group of
consecutive rows of the sparse matrix. The storage of the matrix data in a
regular, (2D) array allows each thread to compute easily where its data (i.e.,
the relevant matrix row) reside in memory given only the row index and the
size of the 2D array: it enables coordination among the various threads in
accessing consecutive elements of the ja and val arrays, thereby maximizing
the utilization of memory bandwidth through so-called coalesced memory ac-
cesses. These techniques are standard practice on GPUs, as attested by the
analysis in [16]; in our case, the matrices A(z) and B(u) are very regular,
with almost all rows having the same number of nonzeros and very few rows
having fewer nonzeros. These features make the ELL format very attractive,
since padding will be quite limited, with only a few smaller rows impacted.
Moreover, our equations are discretized with a 5-point stencil, therefore the
resulting matrices will have short rows; in our implementation [17] we choose
dynamically the number of threads per row based on the average number
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of nonzeros, and in this case we always use one thread per row. The per-
formance we get for these matrices is on par with that of the HYB format
from the NVIDIA cuSPARSE library [21]; note that even though we do have
an interface available for cuSPARSE, we cannot use it directly in this appli-
cation because their data structures are opaque, whereas one of the critical
issues for this application is the ability to update the matrix coefficients.

A further critical issue in writing efficient codes for GPU is the need to
move data from main memory to the GPU memory (host memory to device
memory in CUDA nomenclature), and vice versa. Unfortunately, the above
data movement is very slow compared to the high bandwidth internal to the
GPU, and this is one of the major challenges in GPU programming [22].
Therefore, we have to prearrange relevant data to reside on the GPU; this
can be achieved by using a careful object–oriented design in which the GPU–
enabled data structures keep track of the location of the data on the host/de-
vice side and move data only when needed. More details can be found in [10],
together with performance results quantifying the data movement overhead.
The linear solver code shown in Fig. 1 relies on this infrastructure and works
on the CPU or the GPU according to the dynamic (i.e., runtime) type of its
arguments without the need for any modifications.

3.2. Data management

A salient feature of the method implemented in this application, as in
general non-linear iterative computations, is the fact that we are solving a
sequence of linear systems in which the coefficient matrix changes at each
non–linear iteration. Thus, the computations necessary to update the coeffi-
cient matrices use a significant percentage of the total runtime (see Section 4);
it is therefore essential to optimize them.

The library framework provides the functionality necessary to incremen-
tally build or update a sparse matrix from a sequence of triples (row, col, val)
provided by the user; therefore the application will have to

1. “Walk” through the discretization mesh and build the updates to the
coefficients for A(z) and B(u);

2. Pass these coefficients to the library to store them into the matrix data
structure.

Since this is a very heavy part of the application (see 4), it should be im-
plemented on the GPU, and again care should be taken to avoid as much as
possible data traffic between host and device. Hence
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• The generation of the updates must be performed in the GPU;

• The updates to the sparse matrix structure must work with both the
matrix and the coefficient updates already in the GPU device memory;

For the second item, we needed to extend the sparse matrix management layer
of PSBLAS to make available sparse matrix and vector update functions on
the GPU, since they had previously only been implemented for CPU. The
new functionality has been included in the PBSLAS framework for general
non–linear computations on GPUs and will be made available publicly with
the next release of the toolkit.

In our application, at each non–linear iteration only a subset of the ma-
trix coefficients are updated; therefore the matrix generation functions have
been split into an initial phase in which we generate the entire linear system
matrices (this is done on the CPU, since it needs only be executed once),
and a selective update phase to be performed at each non–linear iteration.
The updates are arranged by groups of rows; the number of rows in a group
should be sufficiently large as to reduce the overhead of the calls to the up-
date routines, but not too large to avoid excessive memory footprint and (on
the CPU) to make effective use of the cache; in the current implementation
on the CPU we used groups of 512 rows, which in our tests gave the best
results.

The optimal size and schedule of the updates on the GPU is guided by
different considerations. The GPU code that regenerates the coefficients
inspects all the matrix rows, with each thread responsible for the updates of
one row. The number of rows to be handled in a single invocation must be
much greater than with the CPU because there must be enough threads to
keep all the multiprocessors busy. On the other hand, each multiprocessor
should have a number of thread blocks available, but not too many, because
they share the available registers; for the update generation code on the
device employed in Section 4, a block size of 256 is adequate, given the
maximum number of registers per multiprocessor available. The total number
of threads, and hence the number of rows in a group, is then determined by
ensuring that each multiprocessor receives a given number of blocks, and
multiplying by the number of multiprocessors on the particular device; the
experiments of Section 4 have been run with groups of 16640 rows.

The sequence of coefficients update on the GPU has been carefully ar-
ranged to guarantee coalesced accesses to both the two-dimensional image
data used in the update formulae as well as to the buffers holding the updates
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for subsequent copy into the matrix data structure. The image data is stored
in a two–dimensional dense array, hence its accesses are quite efficient since
they do not involve indirect addressing; the number of arithmetic operations
is however relatively low, hence this kernel is also memory–bound and adds
difficulties in exploiting GPUs capabilities.

3.3. Linear Solvers

As mentioned in Section 2, both A(z) and B(u) are M–matrices, there-
fore both Jacobi and Gauss–Seidel methods converge. It would therefore
seem natural to employ the Gauss–Seidel method, since it has better conver-
gence properties for matrices arising from discretizations of elliptic partial
differential equations; however this does not necessarily mean that it will
achieve the fastest overall solution time.

The reason for this particular behaviour lies in the architectural charac-
teristics of GPU devices. Each individual processing element is slower than
most commodity CPU cores; the speedup in the application is determined
by the ability to keep many processing elements constantly busy. To achieve
this, the GPU programming model is based on the usage of many threads,
more than the available processing elements, relying on a very fast context
switching mechanism; it is the responsibility of the application to make sure
that there is enough thread–level parallelism to fully utilize the device.

In the sparse matrix–vector product it is common to assign the compu-
tations related to one row of the matrix to an individual thread; similarly,
each thread is responsible for the computation of the sum of two elements of
a vector, or of their products. If the matrix size is sufficiently large we au-
tomatically have enough parallelism to achieve a good speedup. The Jacobi
method relies on the execution of a matrix–vector product of the off–diagonal
part of the matrix, thus having one less nonzero element per row, and on the
element–by–element product by the vector containing the inverses of the di-
agonal elements; it is therefore relatively easy to achieve a good speedup.

The situation is quite different with the Gauss–Seidel method. The so-
lution of a sparse triangular system with the lower part of the coefficient
matrix is a very difficult operation for the GPU; in principle, the solution of
a triangular system has a strong dependency of each row on previous ones.
In dense triangular systems this problem is usually overcome by proceeding
in the computation by blocks of data, and parallelizing on the matrix–vector
products corresponding to the off–diagonal blocks. However in the sparse ma-
trix case, the off–diagonal blocks will be sparse, therefore the amount of work
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to be distributed among threads will tend to be small; this is compounded
with the fact that the structure of most sparse matrices, including the ones
appearing in this application, has most nonzeros concentrated around the
main diagonal, hence most of the work is in the diagonal blocks. Moreover,
the amount of nonzeros in the lower triangle is half than that of the complete
matrix, and similarly for the upper part; not only there are few nonzeros in
the system solution, but also in the product by the upper triangle.

In summary, solving sparse triangular systems on a GPU is a difficult and
inefficient task; in this situation, the Jacobi method enjoys a parallelization
advantage over the Gauss–Seidel that more than compensates the increase in
the number of iterations, especially for relatively well–conditioned systems
and for low accuracy requests, as is the case in our application.

Another important consideration is that in our application, as we will
see in Section 4, for usual parameter choices, the linear systems are not too
difficult to solve; therefore the coefficient update phase actually becomes the
most time consuming of the whole application. In this context, the Jacobi
iteration requires the update of one iteration matrix (the off–diagonal part of
the original A(z) or B(u)), and of one vector containing the inverses of the
diagonal elements. The Gauss–Seidel iteration instead requires two matrix
updates, one on the lower part and one on the upper part. This is due to
the fact that in most sparse storage formats it is too expensive to extract
“on–the–fly” one triangle from a matrix: to perform multiplication by the
lower triangle having the storage for the complete matrix, given that we do
not have dense rows, we would have to inspect each and every element in a
row to detect whether it lies in the lower or upper triangle. It is much more
convenient to perform this screening only once and store the two triangles
separately; however this results in the matrix update kernels being called
twice, and therefore being generally more expensive, for Gauss–Seidel method
compared to Jacobi also on CPU (see Section 4).

A final consideration is in order regarding the software implementation
we propose: to substantiate the claim to expressiveness made in Section 1,
we show in Fig. 1 the code for the Jacobi iteration. The code makes use of
the following kernels:

• Matrix–vector product: psb_spmm(alpha,a,x,beta,y,desc,info) com-
putes

y← αAx + βy
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!
! Unro l l the loop so t ha t XIT and XV can exchange r o l e s as
! x {k} and x {k+1}
!
i t x = 0
do

ca l l psb geaxpby ( done , bv , dzero , x i t , desc , i n f o )
ca l l psb spmm(−done , a nd , xv , done , x i t , desc , i n f o )
ca l l x i t%mlt ( ainvd , i n f o )

nrmden = psb genrmi ( x i t , desc , i n f o )
ca l l psb geaxpby ( done , x i t ,−done , xv , desc , i n f o )
nrmdi f f = psb genrmi (xv , desc , i n f o )

i t x = i t x + 1
i f ( ( nrmdi f f <= to l ∗nrmden ) . or . ( i t x > maxit ) ) then

ca l l psb geaxpby ( done , x i t , dzero , xv , desc , i n f o )
exit

end i f
ca l l psb geaxpby ( done , bv , dzero , xv , desc , i n f o )
ca l l psb spmm(−done , a nd , x i t , done , xv , desc , i n f o )
ca l l xv%mlt ( ainvd , i n f o )

nrmden = psb genrmi (xv , desc , i n f o )
ca l l psb geaxpby ( done , xv,−done , x i t , desc , i n f o )
nrmdi f f = psb genrmi ( x i t , desc , i n f o )

i t x = i t x + 1
i f ( ( nrmdi f f <= to l ∗nrmden ) . or . ( i t x > maxit ) ) then

exit
end i f

end do

Figure 1: Code for the Jacobi iteration
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• Scaled vector sum: psb_geaxpby(alpha,x,beta,y,desc,info) com-
putes

y← αx + βy

• Vector norms: nr = psb_genrmi(x,desc,info)

nr = ‖x‖∞

• Element–wise vector product: call x%mlt(v,info)

x(i)← x(i) · v(i), ∀i = 1, . . . , n.

The argument desc keeps track in a transparent manner of the necessary
communication steps required when the code is run as an MPI application;
within each MPI process, the other arguments contain the data (vectors and
matrices) that are involved in the local part of the computation. This code
is therefore capable of running in either a distributed–memory environments
based on multi–core CPUs, where MPI is available, or on cores paired with
GPUs, with no modifications, indeed not even a recompilation, according
to the dynamic type of the data that is passed inside the various sparse
matrices. Note in particular that the choice of the data storage format is
made at the application level by simply declaring a variable of the desired
type; this approach works even for storage formats developed at a different
time than the main library, as indeed is the case of our GPU plugin, thus
allowing the freedom to experiment with many variations (for a complete
discussion see [10]).

4. Performance Analysis

In the following we discuss results of the PSBLAS–based GPU implemen-
tation of Algorithm 1 with respect the corresponding sequential and parallel
implementation on multi-core CPUs, when grayscale real images of mouse
stem cell colonies of increasing size were segmented.

We ran our code on a hybrid node of the yoda cluster operated by the
Naples branch of ICAR–CNR. Each computing node is composed of 2 eight–
core CPUs Intel Sandy Bridge E5–2670 and 192 GB of RAM and it is
equipped with a GPGPU Nvidia K20, with 2496 cores organized in 13 mul-
tiprocessors, equipped with 5GB of RAM. We built our code with the GNU
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compilers suite version 4.9.1, a development version of PSBLAS 3.3 and of
the PSBLAS-EXT plugin, and version 2.0 of MVAPICH.

In Fig. 2 we show the original image (a), the computed image (b) and the
corresponding edge set (c), when the image size is 1024×1024, corresponding
to a mesh–size h = 0.0009, α = β = 1.0 and ε = 10−3, which satisfies the
condition h/ε < 1. The stopping criterion for Algorithm 1 was based on the
maximum norm of the overall system residual and the numerical results were
obtained when the requested accuracy was set to 10−10, while the inner linear
iterations were stopped when the relative maximum norm of the difference
between two successive linear solutions was smaller than 10−3.

(a) original image (b) computed image (c) edge set

Figure 2: Segmentation Results

In the following we discuss performance results for increasing image sizes
nx = ny = 256, 512, 1024, 2000, 2500, 3000 (nx and ny are the number of
image pixels in each dimension). Model and algorithmic parameters are the
same as in the case of the image in Fig. 2 per each size, therefore, for the first
two image sizes the condition h/ε < 1 is violated, but this allowed us in this
discussion to release the choice of ε from the image size without observing
significative changes in the obtained edge set.

In Fig. 3 we show the executions times of the segmentation codes based
on the Jacobi (JAC) linear solver and on the Gauss–Seidel (GS) one, when
they run on a single core of a CPU. In details, we show both the total
execution times to reach convergence (on the left) and the execution times of
the main kernels of the codes, i.e., accumulated times of linear solvers and of
matrices updates (on the right). We can observe that, as already mentioned,
the best total execution times are obtained when the JAC solver is applied.
This behaviour is due to the small number of iterations needed to obtain
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the requested accuracy (see discussion in [5]), for both the linear solvers on
the inner linear systems. Indeed, since the most computational demanding
kernels are the updates of the matrices at each non–linear iteration and, as
discussed in Section 3.3, the application of GS requires more sparse matrix
updates (two per each one of the linear systems) than the JAC solver, the
best execution times per each phase of the code are observed when JAC
linear solver is applied. On many common CPU models and across many
different matrices the CSR format gives a very good speed for matrix-vector
product; however for our application on the Intel Sandy Bridge processor, we
found that the ELL format is more performant, although not by a very large
a2mount. Hence all CPU runs have been performed using the ELL format.

(a) Total times (b) Main kernels

Figure 3: Execution Times: JAC vs GS linear solver on CPU.

We now shift our focus on the performance behaviour of our code, based
on the JAC solver, when it runs in a parallel setting. We consider perfor-
mances of the same code when it runs on the 2 eight-core CPUs of a single
node and when it runs on a single GPU of the same node. In the multi-
ple CPU case, data parallelism is introduced by a domain decomposition
approach, i.e, by partitioning the image into 2D subimages and assigning a
subimage to each available processing unit. This decomposition results into a
a general row–block distribution of the matrices involved in the computation,
since to each element of the subimage there corresponds a row in the sparse
matrices involved in Algorithm 1. The general row–block distribution is the
one assumed by PSBLAS for its parallelization by using MPI.
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In Fig. 4 we show the execution times of the overall segmentation (on the
left) and the execution times of the main kernels of the segmentation code
(on the right). We can see that both parallel runs allow to obtain a large

(a) Total times (b) Main kernels

Figure 4: Execution Times of parallel segmentation: GPU vs CPU-16 cores

reduction of the execution time with respect to the sequential run. Indeed,
for the image with the largest size, total execution time is reduced from about
640 seconds on 1 core (see Fig. 3) to about 83 seconds and 46 seconds on
the dual eight-core CPUs and on the GPU, respectively. We can observe
that, as expected, the total execution time of the code on 16 cores is less
than the execution time on the GPU when the size of the image is small.
Indeed for the two smaller image sizes we have execution times of about 0.2
and 1 seconds on 16 cores, respectively, while on the GPU we have about
0.96 and 1.3 seconds, respectively. Very similar execution times of about 2.5
seconds can be observed for the image size of 1024×1024, while the execution
times on the GPU becomes better than that on 16 cores for increasing image
sizes. The CPU advantage at small sizes is related to the efficient use of the
cache memory hierarchy, while memory bandwidth limits performance when
image size increases. On the other hand, the SIMT architecture benefits
of a larger number of available threads when the image size and hence the
involved sparse matrix dimensions increase, leading to a speedup of about
2 on all the sufficiently large image sizes for the overall segmentation. If
we look at the main kernels of the computation (see Fig. 4 right), we can
observe that speedup is obtained by GPU both in the linear solvers, where
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the execution time at largest size is reduced from about 23 seconds to about
10 seconds with respect to the run on 16 cores, and in the matrix updates
kernels, where the execution time is reduced from about 52 seconds to 35
seconds. For our test cases and image sizes, we can conclude that GPU runs
of the segmentation code allow to obtain better execution times when image
sizes are sufficiently large if compared with parallel runs on the multi-core
CPUs of a single node.

(a) GPU vs 1 core (b) 16 cores vs 1 core

Figure 5: Speedup

Finally, in order to analyze the efficiency of the different versions of the
parallel code in using the available resources, in Fig. 5 we show the speedup
obtained against a single CPU core by the GPU code (on the left) and by
the 16 cores of a single node (on the right), at varying matrix dimensions.
The GPU code is capable of obtaining an overall speedup from about 11 to
about 13 for typical test cases with sizes from 1024× 1024. In more details,
as expected, the solver kernels are able to exploit the parallel capabilities of
GPU when image size increases, due to the increasing number of available
threads efficiently using GPU resources, and speedup of the solver kernels
rapidly increases with the image size till to reach a value of more than 11
in the case of the largest size. This value of the speedup was expected if we
consider performance results of the sparse matrix-vector product available for
our GPU and sparse matrices with the same sparsity pattern and dimensions
of our problem (see [17, 19]), where maximum speedup between 9 and 11
were measured for different sparse matrix storage schemes. The best value of
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about 11, corresponding to about 17 Gflops of measured performance with
the ELL format. This is much less than the declared double-precision peak
performance of 1100 Gflops on the K20; however we know that the SpMV
kernel is memory-bound, and therefore it is more realistic to measure the
sustained memory bandwidth. Our PSBLAS software has been measured
sustaining 145 GB/s, which is reasonably good compared to the declared
peak bandwidth of 208 GB/s, and also compared with a sustained bandwidth
between 135 and 140 GB/s reported in [23] for the K20c. At this time there
is no widely accepted way to define peak performance for sparse kernels,
although some efforts in this direction look promising [24]. Finally, for the
dense image matrix update kernels, we observe a speedup of about 14 for
image sizes 1024× 1024 or larger.

If we look at the parallel performance of the code on multi-core CPUs, we
can observe a different behaviour of the speedup of the overall segmentation
as well as of its main kernels, varying image sizes, with respect to the GPU
code. As expected, speedup of the overall segmentation decreases with the
image size due to the impact of memory bandwidth to the solver kernels.
The best speedup of about 11 is obtained in the solver kernel for image
size 512 × 512, while a speedup of about 9 is measured in the case of the
largest image size. We can observe that also on CPUs the matrix updates
obtain better speedup than the solvers since this computation, in a parallel
distributed memory setting, has a better ratio between computation and
communication, indeed, at each update phase, data communication is only
required to updates matrix values corresponding to boundary points among
different image partitions. However, the impact of memory bandwidth when
dealing with increasing image size is also observed on the update phase,
whose speedup decreases to values between 9 and 10 for image sizes larger
than 2000× 2000.

To conclude our discussion, we can observe that in both CPU and GPU
the attained level of performance is quite low with respect to the theoretical
peak performance; this is not too surprising given that most of the kernels
are memory-bound. A single 8-core Sandy-Bridge node has a peak perfor-
mance of 166 Gflops, or approximately 20 Gflops per core. However for a
memory-bound kernel a more meaningful measure [24] would be obtained
by computing the time to move the nonzero coefficients through the mem-
ory bus, and using this as a lower bound on the time for a sparse matrix-
vector product. The Sandy-Bridge peak bandwidth is 51.2 GB/s; measur-
ing the sustained single-core bandwidth with the STREAM benchmark from
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http://www.cs.virginia.edu/stream/ gives an effective rate of 13.5 GB/s,
to which there corresponds a peak performance of 2.4 Gflops, not too far from
our measured speed of 1.9 Gflops with the matrices arising from our appli-
cation in the case of the largest image size. To have a better bandwidth
utilization we need to use more than one core; indeed, the best performance
we got on 8 cores for a single SpMV is about 4.8 Gflops, and going to the
full 16-cores node, the best sustained computation rate is 7.4 Gflops, again
for the largest image size. Note that for the smallest image size performance
at 16 cores is much higher because the size is sufficiently small to fit most
data into the (aggregated) cache memories, thus boosting the computation
speed.

5. Concluding Remarks

In this paper we have described a parallel implementation for modern
GPUs of a generalized relaxation method for image segmentation. Our main
goal was to develop an efficient software module for accurate segmentation
of thousands of images, as required in high-throughput screening platforms
in Computational Biology.

Our implementation is based on an available software framework which
allows efficient and transparent use of massively parallel architectures includ-
ing heterogeneous nodes. We show that for a typical test case arising from
biological experiments our GPU implementation is able to reach speedup in
line with that available in the literature for memory-bound applications with
respect to the corresponding multi-core CPU implementation. Our code is
designed with modern features based on dynamic data type implemented in
the base software platform, and therefore it can run without modifications
on either CPU or GPU nodes in a way transparent to the end users.

Future work will include the extension of the application code for running
on heterogeneous platforms made of multi-core and many-core nodes to be
used for massively parallel image segmentation.
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