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Abstract  

The problem of trajectory tracking control for an underactuated stratospheric airship with model 

parameter uncertainties and wind disturbances is addressed in the paper. An adaptive backstepping 

sliding-mode controller is designed from the airship nonlinear dynamics model. The proposed controller has 

a two-level structure for trajectory guidance, tracking and stability, and the developed controller, based on 

nonlinear adaptive sliding-mode backstepping method, provides airship attitude and velocity control for the 

entire flight process. Furthermore, an active set based weighted least square algorithm is applied to find the 

optimal control surface inputs and the thruster commands under constraints of actuator saturation. The 

closed-loop system of trajectory tracking control plant is proved to be globally asymptotically stable by using 

Lyapunov theory. By comparing with traditional backstepping control and PID design, the results obtained 

demonstrate the capacity of the airship to execute a realistic trajectory tracking mission under two cases of  

lateral- and roll- underactuations, even in the presence of aerodynamic coefficient uncertainties, and wind 

disturbances. 
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1. Introduction  

 
Stratospheric airships, like other unmanned aerial vehicles (UAVs), have potential military and civilian 

applications as observation, remote sensing and communication relay platforms. However, the airship 

dynamics is inherently nonlinear and distinct from common aircraft dynamics. The center of gravity (CG) of 

the airship is usually beneath the center of volume (CV), which is easily affected by air pressure and 

temperature, and the apparent mass and inertia of the airship are not constant. So it’s rather complicated to 

design flight control for the stratospheric airship. Traditional control design approaches such as gain 

scheduling are hard to accomplish [1-3], because they are valid only in a small neighborhood of the 

equilibrium state. To overcome the theoretical limitations of linear control methods, many nonlinear control 

approaches have been studied for airship dynamics. Moutinho et al. proposed a dynamic inversion method to 

control the AURORA airship [4]. This approach cancels out the system nonlinearities completely, enables 

linear control design methods to be applied to the resulted feedback linearized system. However, there are 

some shortcomings such as over dependence on precise models for design. If the model has uncertainty, then 

robustness is not guaranteed. 

To apply some useful nonlinear information, the backstepping approach is proposed to design robust 

controller for strict feedback systems through construction of Control Lyapunov functions (CLFs). Nonlinear 

backstepping design has been widely studied for other aircraft [5-6]. The backstepping method was first 

applied to process the flight decomposition control problem of an unmanned airship model [7]. A 

50-meter-length mid-altitude unmanned airship was controlled by using a vectorial backstepping controller 

[8]. However, these designs are based on fully-actuated airship models, which cannot assure the performance 

for underactuated cases.  

In this paper the airship is studied as an underactuated vehicle, mostly due to absence of a lateral force 

actuator to oppose aerodynamic side forces, to the limited roll moments available, and to the reduced 

authority of the control surfaces at low airspeeds [9-10]. Compared to fully actuated systems, it is more 
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challenging to control underactuated systems because at least one degree of freedom cannot be directly 

controlled with an independent control input. Therefore, the underactuated airship control problem has been 

an active topic recently. Trajectory tracking, path following and hover stabilization controllers have been 

studied for underactuated vehicles via fuzzy control [11], robust gain scheduling [12], robust model 

predictive control [13] and some backstepping approaches [14-15]. Recently a controller without model 

information was proposed by using an expert demonstrations and a reinforcement learning method [16]. 

However, although the airship is underactuated, the vehicle has multiple effectors acting on the directly 

controlled degrees of freedom. This necessitates the use of control allocation. The above methods do not 

consider this. 

Azinheira et al. proposed backstepping control designs for hover stabilization and path-tracking of a 

nonlinear underactuated airship model [9-10]. But their control allocation approach was based on the given 

relation between actuators and force inputs without given any optimization objective. Liesk et al. proposed a 

waypoint tracking controller for an unmanned finless airship [17]. However, the quadratic optimization 

control allocation algorithm in Liesk et al. requires an intensive computational load [17]. Liu et al. developed 

a vectorial backstepping method with active set control allocation to deal with saturation [18]. Yang et al. 

proposed a neural network approximation-based sliding-mode approach for positioning control of an 

autonomous airship[19]. However, these methods depend on the accurate model and are hard to deal with 

highly nonlinear airship dynamics with aerodynamic model uncertainties. 

Motivated by the work of  Liesk et al., Liu et al. and Yang et al. [17-19], this paper mainly concerns 

trajectory tracking control for the underactuated stratospheric airship, and the main contributions are as 

follows. A novel adaptive sliding-mode backstepping trajectory tracking controller (ASMB-TTC) is 

proposed for an underactuated stratospheric airship. The ASMB-TTC has two-level control structure 

including trajectory guider and the attitude and velocity controller. The ASMB-TTC has been applied to 

process two cases of underactuation for the airship in the lateral and roll motions. An active set based 
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weighted least squares control allocation is embedded into the ASMB to find the optimal control inputs under 

underactuation and constraints of actuator saturation. The adaptive observers are designed for aerodynamic 

coefficient uncertainty and variable wind disturbances. Simulation results show the proposed ASMB -TTC 

has better performances in the trajectory tracking control for an underactuated airship in comparison with 

Azinheira’s backstepping method and PID control. 

This paper is organized as follows. Section 2 gives the nonlinear dynamics model of the underactuated 

stratospheric airship and presents the trajectory tracking problem. Section 3 proposes an ASMB-TTC design, 

and stability is analyzed for the associated closed-loop tracking error system. Simulations and performances 

of two underactuated cases with the ASMB-TTC are demonstrated in Section4. Section 5 gives some 

conclusions. 

2.  Dynamics modeling and problem formulation   

 
The studied stratospheric airship is shown as Fig.1. There are two rudders and two elevators in the tail fins 

of the airship, two vectored propellers on both sides of the hull, and another on the stern for hovering control. 

The gondola is beneath the airship envelope to house the flight control system and other payloads. 

 

Fig. 1. structure of the stratospheric airship 

2.1 Airship Kinematics Model 

The kinematics model of the airship’s position and attitude are as follows [12],[18], 

   g = a w       R R  ,                                                   (1.a)  

( )   J ,                                                                 (1.b) 
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where  Tx y z   ,  T    ,  Ta u v w  ,  Tp q r  , υw denotes the wind speed 

vector, and the wind field is assumed to be constant due to the stable meteorological condition in the 

stratosphere,  

( ) ( )

( ) ( )

( )

w w w

w w w w

w w

V c c

V s c

V s

 
  



 
   
  

                                                            (2)  

where s(.) and c(.) denote sine and cosine functions respectively. 0wV  is the wind speed, w , w denote the 

horizontal and vertical wind direction angles.  The direction cosine matrix  R  and the rotational matrix J 

are as in Ref.[18]. 

2.2 Airship Dynamics Model 
 

The airship dynamics is established as follows [20-24]: 

( )

( )
k w GB A CPa

a
k w GB A CP

t

t




      
             




f f f f f
M

n n n n n
   ,                                      (3) 

where aM denotes the generalized mass matrix as in [18]. Let 
TT T

CP CPU    f n , 
TT T

a    x , then (3) 

can be written as 

( ) ( ) ( ) ( )t U t x f x g x ,                                                       (4) 

where 

 1 3 1

3 1

( )
( )

k w GB A V
a

k w GB A 

 



     
          

f f f f f
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g x M
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.              (5) 

Vg , Vg , Vg and g denote the sub-matrices of 1
a
M , 

  k w GB A
V V V

k w GB A


   
      

f f f f
f g g

n n n n
,   k w GB A

V
k w GB A

  

   
      

f f f f
f g g

n n n n
.              (6) 

The airship aerodynamic forces and moments on the right hand side of (3) can be expressed as follows [22, 
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24], 

Ai ref i

Ai ref ref mi

qS C

qS l C


 

f

n
(i = x, y, z)  ,                                          (7) 

where iC and miC denote aerodynamic coefficients of forces and moments along x-,y-,and z-axes in Fb. refS  

and refl  denote the reference area and the reference length of the airship. 

The kinematics force vector of the airship in (3) is 

2 2

2 2

( )

( )

z y G G

k x z G G

y x G G

m wq m vr mz pr mx r q

m ur m wp mz qr mx pq

m vp m uq mz p q mx pr

     
      
      

f ,                                      (8) 

2 2

( ) ( )

( ) ( ) ( ) ( )

( ) ( )

y z xz G

k z x xz G G

x y xz G

J J qr J pq mz ru pw

J J pr J r p mz qw rv mx pv qu

J J qp J qr mx ru pw

    
         
     

n .                         (9) 

The wind-induced force vector of the airship is 

                          w Ba w Ba wM M    f ,                                                           (10) 

w Ba w Ba wJ J    n                                                               (11) 

where w and w denote the wind linear speed and angular rate vectors. Assuming the wind field constant in 

the stratosphere, the matrix BaM and BaJ of apparent buoyancy mass and its inertial moment are 

                                                               3Ba v BM M m I  , Ba v BJ J J                                                    (12) 

where Bm denotes buoyancy mass meeting Bm   , and 3
BJ R is the inertial matrix of the buoyancy air. 

vM denotes virtual mass matrix subject to ( , , )v u v wM diag X Y Z      , vJ denotes virtual inertial matrix 

subject to ( )v p q rJ diag L M N   , , , , ,u v wX Y Z   , p q rL M N  , , are Lamb’s virtual mass and inertia terms, which 

are all proportional to the buoyancy mass mB. 

The wind-induced forces and moments are [25] 
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0

( ) 0 0 ( )

0 0

w w w

w u v w u v w

w w

r q u v r w q

X Y r v X Y u r

q w u q

      
               
           

   f ,                        (13) 

0w n .                                                                      (14) 

The sum force of gravity and buoyancy of (3) in the body-fixed frame can be described as 

   
   
   

 
   

 

3,1

3,2

3,3

3,2

3,1 3,3
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R

R

f R

n R

R R

R  
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(15) 

where  ,i jR denotes the element in the ith line and the jth column of the direction cosine matrix  R .  

The thrust on the stern is not considered in flight, which is mainly used for hovering. For simplicity, two tilt 

angles and thrusts of the vectored propellers are assumed to be equal, and the effect of rudders on the side 

force is also ignored. The virtual control force in (3) is described as following 

( ) ( )CP

CP

t t
 

  
 

U u
f

B
n  ,                                                   (16) 

where B is the control effectiveness matrix, u represents thrusts and control surface deflections. If the airship 

is underactuated in y-direction, or a lateral force actuator to oppose aerodynamic side forces is absent [9], then 

(16) can be rewritten as  

1 0 0 0 0 0

0 1 0 0

0 0

0 0

0 0 0 0

e e

e e r r

e e

r r

x
CPx

z
z z

CPz
eL

l l l lCPx
eR

CPy m m
rU

CPz n n
rB

T
f

TqC qCf
qC qC qC qCn

n dz dx qC qC

n qC qC

 

   

 

 






                                      

,                         (17) 

where , , , ,
e e r e rz l l m nC C C C C     are the aerodynamic coefficients of the control surfaces, Tx and Tz are the thrust 

components in xb axis and zb axis, respectively, dx and dz denote distances from the centre of volume (CV) to 

the propeller in the xb- and zb- axis. The thrusts in (17) can be linearized by the following transformation: 
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cos

sin

x p s

z p s

T T T

T T T





  


  
                                                           (18) 

Since the aerodynamic coefficients are varying with AOA and airspeed, which results in bounded model 

uncertainties in the dynamics system (4), thus the model uncertainty d is introduced and the system of (4) can 

be modified as 

( ) ( ) ( ) ( )+t U t x f x g x d                                                      (19) 

where
T ref iT T

V
ref ref mi

qS C

qS l C

 
       

d d d , and iC and miC (i = x, y, z) denote uncertainties of the aerodynamic 

coefficients along x-,y-,and z-axes in Fb. Since the airship has large inertia and its motion is slow and sedate, 

then d can be assumed to be slow-varying disturbance, which can be estimated on-line by using adaptive law.   

If d is a fast-varying disturbance, an observer with its state augmented with disturbance acceleration can be 

applied. 

In this paper two underactuated cases are considered as follows: 

Case 1. The airship is underactuated in y-direction (that is, the lateral control force fCPy = 0 in Eq.(16)), thus 

sway velocity v cannot be directly controlled. If cross-wind is present, then the airship can align into the wind 

through yaw motion and so reduce lateral forces requirement to a low and acceptable value, in which the 

limited lateral forces result from available damping forces and the body and fin drags can stabilize a steady 

lateral motion, thus the lateral force input will gradually decrease and disappear in stationary conditions. 

Case 2. The airship works in Case 1 and without ailerons or differential actuators (i.e., δeL = δeR, δrU = δrB, 

and the roll control moment nCPx = 0 in Eq.(16)), thus sway velocity v and bank angle φ cannot be directly 

controlled. In this case the disturbance of the roll moment resulted from wind can be attenuated by the airship 

roll damping, thus the roll moment input will gradually decrease and disappear in stationary conditions. 

2.3 The Trajectory Tracking Control Problem 

Consider the airship models of (1.a), (1.b) and (19). Let 3( ) :[0, )r t     be a given sufficiently smooth 
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time-varying reference trajectory with its time-derivatives ( ( )r t ， ( )r t ) bounded. The control task is to 

design a trajectory tracking controller such that the closed-loop system meets following requirements: 

1) The trajectory tracking error dynamics are globally asymptotically stable under specified model 

uncertainty and external disturbances, where the trajectory tracking error ( ) ( ) ( )rt t t e   ; 

2) The output trajectory ξ is steered towards a given reference trajectory ξr with 0lim ( )
t

t 


e , where ε0 is a 

prescribed constant, 2-norm ( ) Tt e e e .  

3 ASMB trajectory tracking control design 

This section gives the overview of the ASMB-TTC for the under-actuated airship. The controller structure 

is proposed as Fig.2, where the trajectory guider provides attitude and velocity commands for the speed and 

attitude controller; while the inner-loop controller can be treated as an autopilot to stabilize the airship 

attitude and track the desired velocity. The structure of the ASMB-TTC design includes an adaptive sliding 

mode backstepping based attitude controller, a CLF based velocity controller, a virtual control calculation 

part and an active set control allocation module. The controller design is presented in detail in the next 

section.  

 p
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               Fig. 2. Block diagram of the ASMB-TTC architecture 

3.1 Adaptive Sliding Mode Backstepping Based Attitude Controller  

In this section an adaptive sliding mode backstepping controller is designed; the objective is to make the 

attitude output η converge to the desired value vector ηd. First a SMC control is introduced to improve system 
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adaptiveness. Since the general SMC control law is not designed to directly meet some desired closed-loop 

system performance, but to ensure the sliding surface is reached and motion on sliding mode surface is 

maintained, the so called reachability condition must be satisfied. The reachability condition means the 

trajectory of the system states must always point towards the sliding surface. In the case of single input system, 

it follows from Lyapunov method that 

0ss                                                                               (20) 

around s(t) = 0, where s denotes sliding mode surface. If a positive parameter or function ς is defined then 

global asymptotic stability for the dynamics of s(t) will given by [26] 

sgn( ) s s .                                                                     (21) 

where sgn(.) is sign function. A more strict reachability condition that ensures the sliding surface is reached 

despite the presence of uncertainty and in finite time, so the sliding surface is chosen as follows [27] 

sgn( )SMC h    s u s s ,                                                     (22) 

where h, ς are sliding mode surface parameters with h>0, ς>0.  

Now consider the kinematics model (1.a), (1.b) and the dynamics model (19). The attitude controller is 

derived in two steps. 

Step 1 (Backstepping for the variation of z1). The tracking error vector of attitudes is defined as 

1 dz η η ,                                                                 (23) 

and its derivative is 

1 d dJ  z η η ω η     .                                                    (24) 

Now let us define the Lyapunov function V1, which is required to be positive definite around the desired 

position as follows: 

1 1 1

1

2
TV  z z .                                                             (25) 

Since the desired behavior for η  can still be chosen and it can be considered as the “virtual” control input. In 
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the backstepping design this desired dynamic behavior is called the stabilizing function. Define the 

stabilizing function α, as the virtual angular rate vector of rη , 

1 1d Kη z ,                                                           (26) 

where r represents the reference or virtual angular rate vector, K1 > 0 is often chosen as a diagonal matrix to 

simplify the design, i.e., K1 = diag(k11, k12, k13), k1i (i = 1, 2, 3) is constant value. 

Step 2 (Backstepping for the variation of z2). Because the angular rate   is not a control input, there exists 

a dynamic error between it and its desired behavior of r . To compensate this dynamic error, the speed 

tracking error vector for the attitude dynamics is defined as 

2 r J  z η η      .                                                (27) 

By using (3) and (19) the angular acceleration can be simplified as 

CP     ω η f g n d     .                                            (28) 

where d denotes the uncertainty of attitude dynamics, mainly including aerodynamic coefficient 

uncertainties. 

Substituting (1.b) with consideration of attitude disturbance d  yields the derivative of z2 as follows 

 
2

d d

d dr

J
J J

t t        
ω

z η η d ω ω d     
  .                                 (29) 

Substituting (26) and (27) into (24) yields 

1 2 2 1 1d K    z z η z z  .                                                   (30) 

that is, 

2 1 1 1+Kz z z  .                                                                (31) 

Differentiating (31) and substituting (23) yields 

2 1 1d K  z η η z    .                                                        (32) 

From (26) and (30), the derivative of the stabilizing function α is 
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  2
1 2 1 1 1 2 1 1= +d dK K K K   η z z η z z    .                                (33) 

The derivative of the first CLF of (25) can be rewritten as follows by substituting (30) 

1 1 1 1 2 1 1 1 1 1 1 2( )T T T TV K K     z z z z z z z z z    .                                   (34) 

Now following the conventional linear sliding surface design method, the sliding surface s is defined as 

follows  

1 1 2 s z z  ,                                                              (35) 

where the SMC parameter λ1 = diag(λ11, λ12, λ13) with λ1i >0 (i = 1, 2, 3), and the derivative of sliding mode 

surface s is  

1 1 2 s z z    .                                                              (36) 

The second augmented CLF is constructed as 

2 1

1 1

2 2
T T

d

V V  
  s s d d  ,

                                               
 (37) 

where γd is a positive constant that determines the convergence speed of the estimate. Differentiating (37) 

yields 

2 1 1

1T T T

d

V  
  z z s s d d     .                                               (38) 

Since dω is an unknown constant or slow-varying disturbance, the derivative of the estimated parameter error 

is 

ˆ ˆ=    d d d d
   .                                                               (39) 

where d̂ and d
 are the estimated parameter vector of dω and the associated estimated parameter error vector. 

Substituting (29), (30), (32), (34), (35) and (39) into (38) yields 

2 1 1

1T T T

d

V  
  z z s s d d    
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 1 1 1 1 2 1 1 2

1 ˆT T T T

d

K  


     z z z z s z z d d
   

    1 1 1 1 2 1 2 1 1 1 1

1 ˆT T T T
d

d

K K K  
        z z z z s z z η η z d d

    

  1 1 1 1 2 1 2 1 1 1 1

1 ˆT T T T
d

d

K K J J K   
          z z z z s z z ω ω z d d d

     .         (40) 

A desired control input is selected as follows to make (38) semi-negative definite, 

    1
1 2 1 1 1 1

ˆ sgn( )d dJ K J K h         z z ω η z d s s    

    1
1 1 1

ˆ sgn( )dJ K J h        z ω η d s s 
 
,                

                 
(41) 

where h, ς are sliding-mode parameters as in (22). 

The sliding mode term in the backstepping design is to improve system adaptiveness to model uncertainties, 

even in the presence of the disturbances. Substituting (41) with T T
 s d d s  into (40) yields 

   2 1 1 1 1 2

1ˆ ˆ| |T T T T T

d

V K h h    


 
         

 
z z z z s s s s d d d d

  

  2
1 1 1 1 2

1 ˆ| |T T T

d

K h h d 

 

       
 

z z z z s s d s
 .                                      (42) 

Choose the update law as: 

ˆ
d d s


,                                                                    (43) 

and yields 

  2
2 1 1 1 1 2 | |T TV K h h    z z z z s s                                             (44) 

Define Q as a positive definite symmetric matrix 

2
1 1 1

1

0.5

0.5
n

n n

K h h
Q

h h

  
  

I

I I
  


                                                 (45) 

where In denotes the n× n unit matrix. Let
T

12 1 2
T TZ   z z ，this then yields 
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2
12 12 1 1 1 1 1 1 1 1 2 1 2 2 22T T T T T TZ QZ K h h h    z z z z z z z z z z   

   1 1 1 1 2 1 1 2 1 1 2

TT TK h    z z z z z z z z   

 1 1 1 1 2
T T TK h  z z z z s s  .                                                                   (46) 

Substituting (46) into (44) yields 

2 12 12 | |TV Z QZ h   s  .                                                        (47) 

Using (45), it is obtained that 

2
1 1 1

1

0.5

0.5
n

n n

K h h
Q

h h

  
   

I

I I

 


 

1 1( ) (1/ 4) nh K   I .                                                  (48)  

If the following condition is satisfied, 

1 1( ) 1/ 4 nh K   I ,                                                          (49) 

then Q is positive definite, and if 0h  , then 

2 12 12 | | 0TV Z QZ h   s .                                              (50) 

Therefore, robust stability of the closed-loop system can be guaranteed by using the ASMB controller 

according to Lyapunov theory. 

From above analysis, the structure of the adaptive integral backstepping controller for attitude control can 

be designed as Fig.3, which includes attitude dynamics of the airship and adaptive sliding mode backstepping 

control with an adaptive disturbance estimator.  
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d


s
2z

1 2( , , , )ds U z z

f

g

d

r

1z

1z

1( , )d
  z

d



1z

2z

d̂ ˆ
d

SMCu

d


dn

 

Fig.3 block of the adaptive sliding mode backstepping controller 

So the desired control (41) can be implemented as following information flow: 

1 1
1 2

2

.(23) ;   .(26) ;   .(27) ;   .(35) ;r
d d r

Eq Eq Eq Eq
   

   
   

  

η z η z
z η z s

η η η z




 
 

 ˆ ˆ ˆ.(43) ; sgn( )  ;smcEq dt h   


     s d d d s u s s
 

  

1
1 1

2

ˆ.(30) ;    .(41)  d smc d dEq Eq J
 






z
z z ω d u ω n

z
   ,                                    (51) 

where  dn is the desired moment input. 

Remark 1. It can be seen from the control input design in (41), λ1 affects the transient response, K1 has an 

influence when the system approaches the sliding surface, and h affects the steady-state response. If these 

three parameters are chosen to be too large or too small, the system will have large overshoot and steady-state 

error or one have a slow rise time and settling time. 

3.2 Velocity Control Based on CLF  

This section is to design a backstepping velocity controller, and the objective is to make the airspeed a of 

the airship converge to the desired values ,a d . The velocity can be controlled directly via the acceleration of 
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the airship. However, the vectored propellers are mounted such that they can generate forces in xb–and zb–

directions but not in the lateral yb–direction. This means that the velocity in the body y–direction cannot be 

controlled directly. The lateral underactuated problem of the airship is discussed here. Now the velocity 

tracking error vector is defined as 

3 a dz                                                                           (52) 

where  Ta u w . And the associated CLF is chosen as 

3 3 3

1

2
TV  z z .                                                                          (53) 

Differentiating (53) with respect to time yields 

3 3 3 3 ( )T T
a dV   z z z     .                                                           (54) 

In according to Lyapunov theory, 
3V  is required to be semi-negative definite (that is, 3 3 3 3

TV K  z z ). To 

stabilize the closed-loop system, the desired linear acceleration vector can be obtained from (53) and (54): 

, 3 3 3 3a d d d d aK K K    z                                                 (55) 

where control gain matrices K3 = diag(k31, k32) > 0. k31 and k32 are constant, ,a d denotes desired linear 

acceleration vector in Fb. 

Remark 2. The parameters 2
,a d  , 2

d  , and 2 2
3K   (for Case 1 and Case 2). 

2 , 2
d   , 2 , and 2 2

PK  , 2 2
DK  , 2 2J    (for Case 2). 

3.3 Calculation of the Virtual Control 

This section is to achieve the virtual control inputs of the underactuated airship. The objective is to get the 

virtual control of mv  and mp  and form the total control force and moment of U for control allocation. To 

calculate the virtual control inputs under condition of underactuated cases accurately, the control law of 

acceleration must be modified. Two cases as in Section 2.2 are discussed here.  

For Case 1, the lateral acceleration v in (55) cannot be directly applied. By using the motion relation 



 
 

17 

described in (3), the lateral velocity of v can be achieved to make the desired control force in yb-direction 

vanish in stationary conditions, that is, 

0CPyf  ,                                                                         (56) 

where the dynamics of the control force in yb-direction is described as 

G GCPy y ky wy GBy Ayf m v mz p mx r f f f f         .                                  (57) 

Since p  and r  are given control laws in (41), the control law of lateral acceleration v is updated as follows 

( )
G

ky wy GBy Ay
m G

y

f f f fm
v z p x r

m m

  
     .                                 (58) 

where vm is the control law integration of the lateral acceleration. 

For Case 2, the roll acceleration p in (41) and the lateral acceleration v  in (55) cannot be directly applied. 

So it should find values for v  and p  simultaneously which make the desired lateral force and roll moment 

vanish in stationary conditions, and it yields  

0CPyf  , 0
CPx

n  ,                                                       (59) 

where the dynamics equations are as follows 

G G

CPx G Ax

CPy y ky wy GBy Ay

x xz kx wx GBx

f m v mz p mx r f f f f

n mz v J p J r n n n n

      


       

  
  

 .                           (60) 

Since the yaw acceleration of r  is a given control law in (41), the control laws of v  and p can be updated as 

2 2

( ) ( ) ( )
G G GBy Ay G Ax

G

x xz x ky wy kx wx GBx
m

x y

J mx J mz r J f f f f mz n n n n
v

m z J m

        





 ,                  (61) 

2

2 2

( ) ( ) ( )
G G G kx wx GBx Ax

G

GBy Ayxz y ky wy y
m

x y

m z x J m r mz f f f f m n n n n
p

m z J m

        





  ,            (62) 

when all of the control laws of the desired linear accelerations and angular accelerations are obtained, the 

associated control forces and moments can be achieved by the following equation: 

a k w GB A    U M V F F F F ,                                               (63) 
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where  , , , , ,
T

mV u v w p q r        for Case 1, and  , , , , ,
T

m mV u v w p q r        for Case 2. 

To obtain the practical control surfaces and thruster inputs, a control allocation problem is presented to 

solve (16) with actuator saturation constraints: 

CP

CP

 
  
 

U Bu
f

n
  ,                                                             (64) 

subject to 

min min max maxmax( ( ) , ) min( ( ) , )t T T u u t T T       u u u u u u u   ,                     (65) 

where umin, umax minu and 
maxu  denote lower and upper bounds of the actuator position and rotating rate, 

respectively, u  and u  are lower and upper bounds of the actuator inputs, T denotes the sample period or 

motion period. 

The control allocation problem of (63) ~ (65) can be transformed into a constrained optimization problem 

by using the Active Set (AS) based Weighted Least Square (WLS) allocation principle [18].  Through the AS 

control allocation algorithm, the control allocation component can be implemented and incorporated into the 

ASMB-TTC scheme. When the optimal solution u∗  is found, the practical control input signals, including 

thrust, tilt angle and control surface deflections, are obtained. 

3.4 The trajectory guider controller 

This section is to realize the trajectory guider, and the objective is to generate the desired attitude and 

velocity commands. For the trajectory guider controller, it has to calculate the desired attitudes and speeds in 

x and z–direction such that the airship follows the desired path despite the inability to exert direct control over 

the speed in y-direction. According to the virtual spring damping principle, the desired or commanded 

velocity 
c in Fg is first obtained by the following differential equation as in the reference [28],  

 2 1( )c r c r g r         r r ,                                                  (66) 

where σ1 and σ2 are the controller design parameters with σ1 > 0 and σ2 > 0. σ1﹒σ2 represents the spring 
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stiffness coefficient andσ2 denotes the damping coefficient, rg is the actual position ξ of the airship, rr is the 

desired position ξd , g is the actual airship velocity in Fg. The airship desired attitude 
d  and velocity in Fb 

can be calculated by using the vehicle reference velocity 
r  and the current distance 

Dr  between the airship 

and the reference vehicle, see Fig.4. 

 

Fig.4 the virtual spring-damper system used for trajectory tracking control 

It can be seen that perfect tracking without wind requires that
g g c  r     , and the desired attitude 

d  

and velocity d in the body-fixed frame are generated by using kinematics relation and the command velocity 

of c , the detailed design procedure of the trajectory guider can be seen from the reference [18], so this will 

not be described here. 

Remark 3. For underactuated airships, the desired attitude 
d  and velocity d generated by the trajectory 

guider controller are part of the whole vector, that is, for Case 1: d  = [udb, wdb]
T,  ηd = [ϕd, θd, ψd]

T; for Case 

2: d  = [udb, wdb]
T, ηd = [θd, ψd]

T. 

3.5 Stability Analysis 

Lemma 1. [29]. Consider the nonlinear system ( ) ( )t fx x with the equilibrium point x*. Let 

( ) :V x   be a continuously differentiable function such that for x∈  ( n  ) 
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1) ( ) 0V x (positive definite) with ( ) 0V  x (negative definite),                

2) ( )V x as 
2 x (radially unbounded),                 

then the equilibrium point x = 0 satisfying f(x*) = 0 is globally asymptotically stable. 

 Assumption A1. The reference trajectory ( ) :r t  3[0, )    is sufficiently smooth with its 

time-derivatives ( ( ) ( )r rt t   ， ( )r t ) bounded. 

Because the trajectory tracking control is based on guidance, the control objective in the speed loop is that 

the guidance-based command signal ( )c t  can be tracked by the system output of velocity ( )t . 

Assumption A2.  The output signal ( )t  or ( )gr t tracks the commanded signal ( )c t  in (66) without steady 

tracking error, i.e., lim ( ) lim ( )ct t
t t

 
  with ( ) ( ) a wt R     .  

 Although wind speed w can be regarded as one kind of external disturbances and adaptively estimated by 

the adaptive estimator as Eq.(43),  it is hard to separate wind and model uncertainty. So a wind observer is 

introduced to improve tracking performances. 

Choose a wind observer with the states
ˆ

ˆw

 
 
 




, ̂ and ˆw denote estimation of  and w , and design its 

dynamics as [10]  

3
ˆ ˆ( )

ˆˆ

a

w ww

L IR

L
              

        



 00

  


                                              (67) 

The estimation error can be obtained as 

3
4 4 4

ˆ

ˆ e
ww w

L I
A

L
   

        
e e e

0

 
 

                                              (68) 

where L , wL are gain matrices subject to eA  be Hurwitz. So there exists a positive definite symmetrical matrix 

eP such that 
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 4 4 4 4
T T

e e

d
P Q

dt
 e e e e ,                                                            (69) 

where ( , )
weQ diag Q Q  , Q  and

w
Q are symmetric positive definite matrices and the weight matrix 

eP satisfies the algebra Riccati equation, 

T
e e e e eA P P A Q                                                          (70) 

Theorem 1. Consider the system of (1.a), (1.b) and (19) with Assumption A1 and A2 being satisfied. If 

there exist appropriately dimensioned diagonal matrices of K1, K3, λ1, Lξ, Lw, constant parameters of h, ς, γd, 

and sufficiently small scalar parameter ε, such that K1 > 0, K3 > 0, λ1 > 0, h > 0, ς > 0, γd meeting with (43), 

1 2 1 2 1 2min{ ,4 (4 )}        , and L , wL are subject to eA  being Hurwitz , then the ASMB-TTC, given by 

(41), (55) and (63), can guarantee the requirements of 1) and 2) in section 2.3. 

Proof. 

 Define tracking error of position and velocity for the trajectory guider controller as 4
r

c r

 
  

z 
 
 

.  A 

Lyapunov function for the entire system is established in accordance with (37) and (53): 

1 1 3 3 4 4 4 4

1 1 1 1 1 1

2 2 2 2 2 2
T T T T T T

l h e
d

V V V P P 
             

  
z z s s d d z z z z e e   ,               (71) 

where zi (i = 1, 2, 3, 4) are the tracking error vectors defined in Section 3.1 and 3.2. e4 is the estimation 

error 4

ˆ

ˆw w

 
  

 
e

 
 

, P and Pe are positive definite for sufficiently small values of ε. The Lyapunov function 

in (71) is chosen for the high-level controller as follows: 

4 4 4 4

1 1

2 2
T T

h eV P Pz z e e  ,    
                          

                         (72)
 

where 
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1 2

1 2 1 2

1

1
P


 


   

 
 
 
 
 
 

.                                                         (73) 

Then the derivative with respect to time of (72) can be obtained by using (66) 

1 2
4 4 4 4 4 4

2 1 2 2

0 0 11
0

12 w

T T T T T
h e w wV P P Q Q Q Q 

 
   

    
                

z z e e z z          

 

,

      

(74) 

where ˆ    , ˆw w w    , 1

2

1 1 2

2

2

Q




 
  

 
 
 
 
 
 

.  Substituting (50), (54) and (74) into the derivative of (71) 

yields 

12 12 3 4 4 4 4| | ( )T T T T
d eV Z QZ h Qz Q      s z z e e   

 

 12 12 3 3 3 4 4 | |
w

T T T T T
w wZ QZ K Q Q Q h        z z z z s      

 

| |
w

T T T
w wQ Q h      z z s       

 

w

T T T
w wQ Q     z z         

min ( )
w

T T T
w wQ Q     z z         ,                                           (75) 

where  3diag , ,Q K Q  , λmin (Ʌ) is the minimum eigenvalue of Ʌ, and 1 2 3 4

TT T T T   z z z z z . For 

sufficiently small value of ε meeting with
1 2 1 2 1 2min{ , 4 (4 )}      , then 0Q  , 3 0K  , as 0Q   

and 0
w

Q  , so Ʌ is positive definite and V is negative definite. According to Lemma 1, the system is globally 

asymptotically stable at z = 0. Thus, the reference trajectory r  is precisely tracked with lim ( ) ( ) 0rt
t t


   .  

3.6 Controllability of the underactuated system analysis 

For the underactuated system, there is no direct control input for one of more degree of freedom, thus the 

associated oscillatory responses of lateral motion and roll motion will be attenuated by their damping forces. 
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Usually the roll damping moment coefficient of Clp is so large that the corresponding roll moment makes the 

roll motion convergent quickly [23]. However, this underactuated system without control will be unstable 

when some adverse weathers are met. Fortunately this underactuated system can be stabilized by coupled 

moments from other channels. It can be seen from Eq. (63), the control force or moments are determined by 

their accelerations  , , , , ,
T

mV u v w p q r        for Case 1, and  , , , , ,
T

m mV u v w p q r        for Case 2. According to 

Eq.(61) and Eq.(62), the virtual acceleration of mv and mp are related to the yaw acceleration r  and 

non-control force of ( , , , )
GBy Ayky wyf f f f  or non-control moment of ( , , , )

Axkx wx GBxn n n n . Meanwhile, the yaw 

acceleration can be obtained from Eq.(4),  

 1 1
kz wz GBz Az CPz

z z

r
J J

     n n n n n                                           (76) 

where =
rCPz n r ref refC qS l n .  

Therefore, the coupled moment resulted from other channel can compensate the  underactuate control input. 

However, since the rudder is mainly for control yaw motion, the roll moment resulted by the simultaneous 

deflection of the rudder is less than the yaw moment. If a large roll moment input is required to balance the 

underactuated roll motion, then a large deflection of the rudder is needed which can easily cause the rudder 

saturation. Therefore, the controllability of the underactuated system is constrained by the coupled channel 

moment or the coupled control surface deflection. 

4. Simulation and Analysis 

The structure parameters and aerodynamic coefficients of the stratospheric airship are listed in Table 1[24].  

Table 1 Parameters and coefficients for the studied airship 

 

Parameter Value Unit Coefficient Value 

m 5.3×104 kg k1 0.1054 
ρ 0.072 kg/m3 k2 0.8259 
▽ 7.4×105 m3 k3 0.1247 

xG, zG 0, 20 m Cz ﹣657 
dx, dz 5, 5 m Cl 2.4×104 

Ix 4×107 kg·m2 Cm ﹣7.7×104 
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Iy 2.3×108 kg·m2 Cn ﹣7.7×104 
Iz 2.2×108 kg·m2 k1 0.1054 
Ixz ﹣4.8×106 kg·m2   

m 5.3×104 kg   
  

The controller parameters for Case 1 are designed as follows  

1 2

6
1 3 1 3 3 2 5 6

0

1 1 deg s deg s
0.1  , 0.2  , 1  , 12  ,

s s m m

0.5 , 0.5 , 4 , 1 10 , , ,

0.2, 1, 1, 0.4, 0
v u

d

c c

K I I K I W I W I

h

  

 
   

                         
      
             

 (Case 1)       (77) 

where K1, λ1 and K3 are chosen to meet the requirements 1) and 2) in Section 2 through iterative design. Ii 

denotes the i ×i unit matrix, i = 2, 3, 5, 6. 

The position range for the actuators is [− 25◦ , 25◦ ], and their rate is confined in [− 80◦ /s, 80◦ /s]. The 

initial position is 0 = [0, 0, − 20000 m]T, the initial body velocity is υ0 = [18 m/s,0,0]T, the initial attitude is η0 

= [0, 0, 0]T, and the initial angular velocity is ω0= [0, 0, 0]T. 

To validate the trajectory tracking control performance of the ASMB-TTC, a helix reference trajectory 

function is defined as 

0

0

( ) [ , , ] ( )
t

T
r r r r r rt x y z t d       ,                                               (78) 

where the reference velocity 2 2
( ) [ cos( ), sin( ), ]T

r r h h zt V t V t V
T T

    π π  and its initial reference position is 

0 [40 , 50 , 19960 ]T
r m m m    . The horizontal tracking speed is Vh = 20 m/s, the ascending speed is Vz = 1 m/s, 

and the motion period is T = 300 s. 

Scenario I:  Case 1.  Trajectory tracking control under small winds. 

 In this case the wind vector is initially set as [3,2,1]T
w  (m/s) during t < 40(s), and is changed into 

[1,3,0]T
w  (m/s) for t > 40(s).  

To illustrate our method in attitude control, a backstepping control design by Azinheira [10] is used to 

compare. In [10], the backstepping control is designed as 
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3( 2 ) ( 2 ) way y ay y aI                                                                   (79) 

where dy    , ˆ
w w w      , 0w  denotes attitude variation induced by wind,  is a diagonal 

positive-definite matrix used as a tuning parameter, a denotes a scalar tuning parameter. 

Then  

                                               3 3( ) (2 )( ) ( 2 )d d d wa aI J aI                      ,                            (80) 

so the desired angular acceleration is obtained as follows 

1
3 3( ) (2 )( ) ( 2 )d d w dJ a aI J aI J                      

                    (81) 

The control parameters in (81) are designed as a = 1,  =0.5I3.Wind parameters in (68) and (69) are chosen as  

(1,1,1)L diag   , (0.1,0.1,0.1)wL diag , 3Q I    , 3w
Q I   . Meanwhile the parameters in the guidance loop are 

chosen as (77). The simulation results are shown in Fig.5-8.  
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Fig. 5. Position variables and roll-pitch-yaw Euler angles for Case1 with wind inputs 
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Fig. 6. Airspeed (Va), AOA (α) and sideslip angle (β) for Case1 with wind inputs 
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Fig. 7. Wind inputs and their estimation for Case 1 
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Fig. 8. Control inputs for Case 1 with wind  
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From Fig.5, it is clear that the reference trajectory and attitudes have been accurately tracked by using 

ASMB control and the tracking errors converge to the desired position within 50 seconds, even in presence of 

the wind disturbance. For the response of roll motion there are some oscillations because of weak roll 

damping of the airship, so they need more regulating time for convergence. Comparing with Azinheira’s 

Backsptepping control, the proposed ASMB control has less tracking errors in roll angle motion, which 

shows ASMB has more capability to deal with the under actuation of the airship. In Fig.6 the tracking 

response of airspeed (VT) has a fast convergence with small oscillation, and the AOA (α) response of ASMB 

has more overshoot than that of Azinheira’s Backsptepping design due to wind disturbances, also for the 

sliding angle (β) response. Fig.7 shows the wind vector can be accurately estimated by the wind observer. 

Here the deflections of the left- and right- elevator are equal half of the total elevator deflection, see Fig.8. 

Similarly for the upper and lower rudders. From Fig.8 it can be seen that the control surface inputs and the 

thruster of ASMB are greater than Azinheira’s BS control, but the tilt angle of the propellers is less than those 

of Azinheira’s BS control. Furthermore Azinheira’s BS control is easy affected by the wind speed (changing 

at the time 40s). This demonstrates the sliding mode term in the backstepping design improves the system 

adaptive performance. 

Scenario II: Case 2 Trajectory tracking control under parameter uncertainty  

This scenario considers model parameter uncertainty having the aerodynamic derivatives vary with angle of 

attack (AOA). So aerodynamic coefficients are set as follows 

 
 
 
 
 
 

1.2 0.5
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,                                           (82)  

where a subscript of t denotes perturbation value. In this scenario the parameter uncertainty and external wind 

disturbances are considered simultaneously. 
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The control parameters are designed as follows, 

1 2

6
1 1 2 3 2 4

4 0

1 1 deg s
0.1  , 0.2  , 12  ,

s s m

0.5 , 4 , 1 10 , ,

, 0.2, 1, 0.4, 0
v

u d

c

K I K I W I

W I h

 

 
   

                 
     

        

(Case 2)                          (83) 

The reference trajectory function of (78) is the same as Case 1. To compare control performances, Scenario 

II is simulated by using the PID controller with control parameters of KP = 4, KI = 0.0 and KD = 0.08 in the 

three channels of roll, pitch and yaw. Meanwhile the parameters in the guidance loop are chosen as (77). The 

3-D reference trajectory and its trajectory tracking responses are shown in Fig.9-14.  It can be seen that 

desired positions are well tracked, but the roll responses are fluctuating with a small amplitude. The reason is 

the underactuation in the roll motion of the airship.  
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Fig.9. Positions and Euler angles for Case 2 with model uncertainty and variable winds 

From Fig.9 it can be seen that responses of attitude angles for Azinheira’s BS control have large overshoot 

and tracking errors than those for the ASMB method, which shows the ASMB design has more adaptive 

capability for aerodynamic coefficient uncertainty. 
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Fig. 10.  Euler angles of ASMB control for Case1 and Case 2. 
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Comparing Case 1 with Case 2 in roll responses, it can be seen from Fig.10 that the bank angle  in Case 

1 is smaller than that in Case 2. The reason is that the roll moment is actuated in Case 1 while it is 

underactuated in Case2, the desired pitch and  bank angles can be tracked with good performance. 

From Fig.6 and 11 it is observed that sideslip angles of both cases are bounded, which implies that the sway 

velocities of both cases are bounded. The simulation results are in accordance with Theorem 1 and Remark 5.  
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Fig.11. Airspeed, AOA and side-sliding angle for Case2 with model uncertainty and disturbances. 

 

Fig.11 shows the PID control is more affected by the parameter uncertainty, and ASMB control is robust 

and adaptive for this uncertainty. The control inputs are shown in Fig.12, from which it can be seen that the 

responses of the control input are oscillating for more than 80s because of the roll underactuation. The rudder 

δr and propeller tilt angle using Azinheira’s BS control are more than those using ASMB and PID in transient 

time, but the elevator δe and thruster input of Azinheira’s BS control are less than those of the ASMB, and 

PID controller. This shows that the ASMB control makes the response converge faster by using large thruster 

inputs. Azinheira’s BS control needs more input of the rudder and propeller tilt angle to stabilize for model 

parameter uncertainty, especially for the wind changing at the time of 40s.  Thus it shows ASMB has more 
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capability to reject model parameter uncertainty. 
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Fig. 12. Control inputs for Case2 with model uncertainty and external disturbances. 
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Fig.13.  Estimation of wind speed 



 
 

33 

 

 d
w

y (
ra

d/
s2

)
 d

w
z (

ra
d/

s2
)

 

Fig. 14.  Estimation of the attitude disturbance in Case 2.  

The wind and aerodynamic coefficient uncertainty disturbances in the pitch and yaw directions as (38) are 

estimated, the results are shown in Fig.13 and 14.  

Scenario III: Case 1 & 2 controllability of the underactuated system under large wind disturbances 

First the coupled channel control compensation is studied for Case 1. The wind vector is initially set 

as [3,12,1]T
w  (m/s) for t < 40(s), and is changed to [1,2,0]T

w  (m/s) for t > 40(s). When there is no 

coupled channel control compensation for roll motion, a roll damping moment is used to control the roll 

motion with a damping coefficient sin( )sin(abs( ))lp Dcg g gzC C S l    [24]. By using the proposed ASMB control, 

the results are shown in Fig.15 and 16. 
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Fig. 15. Position variables and Euler angles for Case1 with wind inputs 
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Fig. 16. Control inputs for Case 1 with and without coupled compensation 

Fig.15 shows that subject to wind with lateral speed υwy= 12m/s, the east position has large tracking errors 

whether there is coupled channel compensation or not. Meanwhile, the roll angle responses oscillate with the 

increase of wind speed. From the control inputs it can be seen from Fig.16 that the inputs with roll 

compensation from coupled channels are smaller than those without compensation. This is because the roll 

coupled channel compensation makes the output roll response converge quickly while the other converges 

very slowly and only depends on its damping moment. 

Second, the large lateral winds are chosen to excite system instability under lateral and roll underactuated 

cases. The wind vector is initially set [3,12,1]T
w  (m/s) for t < 40(s), and is changed to [1, 20,0]T

w  (m/s) 

for t > 40(s). The proposed ASMB control results are shown as Fig.17-19.  
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Fig.17. Position variables and Euler angles with different lateral wind speeds 
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Fig. 18. Wind inputs and their estimation for Case 1 and Case 2 

 
Fig. 19. Control inputs for Case 1 with different wind speeds. 

From Fig.17, it can be seen that the underactuated system becomes unstable when the lateral wind speed 

increases from υwy = 12m/s to υwy = 20m/s, the attitude outputs begin to diverge from the references, and the 

output responses of the position have increasing magnitude oscillations for Case 1 and Case 2. This shows 

that the large lateral wind speed makes the underactuated system lose control or exceed the controllability for 

the underactuated airship. The corresponding wind speeds are estimated in Fig.18. Fig.19 shows the control 
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inputs with different wind speeds. It can be seen that the control inputs of thrust and control surfaces saturate 

when the lateral wind speed increases to υwy = 20m/s. So the controllability for the underactuated airship is 

constrained by the available control inputs. 

5. Conclusion   

In this paper we propose the ASMB-TTC approach for the underactuated stratospheric airship. Based on a 

full 6-DOF nonlinear model, the trajectory tracking controller is designed. The developed controller stabilizes 

the attitude and velocity of the airship via the adaptive sliding mode backstepping method. Furthermore, an 

active set base weighted least square algorithm is applied to find the optimal thruster and control surface 

inputs under constraints of saturation. Stability analysis shows that the closed-loop trajectory tracking error 

dynamics are globally exponentially stable. Two cases of the lateral and roll underactuations were simulated 

and showed the proposed robustness. Compared with a conventional PID controller, the ASMB-TTC 

achieves better trajectory tracking performances even though the airship is affected by parametric 

uncertainties and external bounded disturbances. Therefore, the effectiveness and availability of the 

ASMB-TTC design are demonstrated. The approach could possibly be extended to other airship 

configurations. For example, airships can be controlled by moving mass technologies [30]. Investigation of 

the proposed method for such technologies remains for future work [31, 32].   
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Nomenclature   

α, β angle of attack, sideslip angle, rad 
B, G airship buoyancy, gravity, N 

Cl, Cm, Cn aerodynamic moment coefficients along the body axis 
d, dV, dω model uncertainty or external disturbances, its subvariant of 

linear and angular acceleration, m/s2, rad/s2 
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Fb, Fg, Fw the body fixed frame, the Earth reference frame, the 
wind-axes frame 

FA, FCP, Fk, 
Fw,FGB 

vectors of aerodynamic force, sum of control and thrusts, 
kinematics force, wind-induced force,sum of gravity and 
buoyancy respectively, N 

fAi, fCPi, fki, fwi,fGBi forces of FA, FCP, Fk, Fw,FGB along i axis (i =xb, yb, zb), N 
nAi , nCPi , nki , 
nwi ,nGBi 

moments resulted by FA, FCP, Fk, Fw, FGB (i =xb, yb, zb), N·m 

nd desired moment vector, N·m 
q  dynamic pressure, Pa 

Tp, Ts thrusts of the port side and the starboard side, N 
υ, υd, υc, υr airship practical, desired, commanded and reference 

translational velocity vector in Fg, m/s 
υa, υg, υw airship airspeed in Fb, ground speed and wind speed in Fg, 

m/s 
ω  airship angular rate vector [p, q, r]T, rad/s 
V = [ υ , ω ]T the generalized velocity in Fb 
zi virtual state in the controller design (i =1,2,3,4) 
δeL, δeR left and right elevator deflection, rad 
δrU, δrB upper and bottom rudder deflection, rad 
μ tilt angle of the propellers, rad 
η, ηd, ηr practical attitude vector, desired and reference attitude 

vectors, rad 
ξ, ξr practical and reference position vectors [x, y, z]T in Fg, m 
ξw wind position vectors [xw, yw, zw]T in Fg, m 
φ, θ, ψ airship Euler angles: roll, pitch, yaw, rad 
  volume of the airship hull, m3 
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