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An Improved Thevenin Model of Lithium-ion Battery with High Accuracy 

for Electric Vehicles  

Abstract: This paper proposes an improved Thevenin model of the Lithium-ion battery taking 

into account temperature influence on the calculation accuracy of the open circuit voltage of a 

battery. The calculation accuracy of the terminal voltage of a battery is improved without 

increasing the order of the model. Firstly, the model was proposed based on Thevenin model 

and the relationship between the open-circuit voltage and the state of charge. Then, based on 

the experimental results of the open-circuit voltage test and hybrid power pulse characteristic 

test, the parameters of the battery model were identified by polynomial fitting and genetic 

algorithm, respectively. Furthermore, the temperature effects were considered in both the 

open-circuit voltage and hybrid power pulse characteristic tests. Finally, the proposed model 

was tested and verified by experiments under the Dynamic Stress Test condition and the Urban 

Dynamometer Driving Schedule at different temperatures. The accuracy of the proposed 

model is high and the parameter identification error is less than 1%. 
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Nomenclature 

R0 the ohmic internal resistance of the battery（Ω） 

RPi the polarization internal resistance of the battery（Ω） 

CPi the polarization internal capacitance of the battery（F） 

T temperature（℃） 

UOC the open circuit voltage of the battery（V） 

UP the resulting voltage drop on the polarization resistance （V） 

IL the operation current（A） 

Ut the battery terminal voltage（V） 

Δt the sampling interval（s） 

( )i
GA x  Individual i

x  fitness 

max

k
ga  The maximum objective function value of the generation k 

( )i
ga x  The objective function value of individual i

x  

k
b  

The selection offset value of individuals in generation k 

N sampling number  

Acronyms 

OCV Open-Circuit Voltage 

SOC State of Charge 

HPPC Hybrid Power Pulse Characteristic 

DST Dynamic Stress Test 

UDDS Urban Dynamometer Driving Schedule 

EVs Electric Vehicles 

SOT State of Temperature 

SOH State of Health 

SOP State of Power 

PNGV Partnership for a New Generation of Vehicles 

GNL General Non-Linear 
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DOD Depths of Discharge 

GA Genetic Algorithm 
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1. Introduction 

With the development of economic globalization, energy security and energy economic 

have been given new meaning. Serious questions are also raised about its potential impacts on 

our environment . It has become a global consensus that a key solution to these challenges is 

to accelerate the development of Electric Vehicles (EVs). Lithium-ion battery, which is 

considered as a great development potential battery in electric vehicles, has key advantages 

including high nominal voltage, large specific energy and long life. Hence, it is widely used 

in EVs [1]. Since the lithium-ion batteries for EVs have high capacity and large number of 

serial-parallel circuits, coupled with such issues as safety, durability, uniformity and cost, 

battery management is vital. Battery management systems include thermal management, 

charge and discharge control, status diagnostics and protection mechanisms for EVs [2]. The 

battery management system can maintain the temperature of the battery pack between 20℃ 

and 40℃ through the heat dissipation system and heating assembly, so that the battery pack 

works optimally under different operating conditions [3]. Meanwhile it can control the charge 

and discharge of the battery between the batteries and the battery packs so that the State of 

Charge (SOC) can be quickly balanced to extend battery life and improve the endurance of 

EVs. At the same time, the voltage, current, temperature and other information of the battery 

pack can be fed back in real-time to avoid serious accidents such as battery thermal runaway 

and high voltage electric shock,  resulting in  more safe and reliable driving of the EVs. 

The performance of lithium-ion batteries directly affects the long-term and stable operation 

of the energy storage system in EVs. An effective battery management system is needed to 

detect and diagnose the state of the lithium-ion battery in real-time. The state diagnostics of 
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lithium-ion batteries includes: State of Charge (SOC), State of Temperature (SOT), State of 

Health (SOH) and State of Power (SOP) [4-6]. A battery model is the basis  for SOC 

estimation, SOH evaluation and other performances analysis.  

Therefore, many battery models that describe the battery performances have been 

established. In general, the models can be divided into two categories: electrochemical models 

and equivalent circuit models. The electrochemical models are generally based on the 

electrochemical reaction mechanism inside the battery. The parameters are determined by 

factors such as battery structure, materials and size, etc. Therefore, this structure of the model 

is complex, and the model parameters are difficult to calculate and determine, and it is not 

suitable for analysis based on simulation [7-9]. The equivalent circuit models are circuit 

topology models that use electrical components such as voltage sources, resistors, and 

capacitors to form a specific structure and network. Hence, the equivalent circuit models can 

also be seen as  lumped parameter models, in which variables are independent of the spatial 

position and uniform throughout the models. It is suitable for simulation with related circuits. 

It can be used to simulate the dynamic characteristics of the battery more intuitively. Therefore, 

the equivalent circuit models are the more widely used [2], such as Rint model, Thevenin 

equivalent circuit model, second-order RC model, Partnership for a New Generation of 

Vehicles (PNGV) model, General Non-Linear (GNL) model. 

Rint model is a structure formed by connecting an ideal voltage source and an ohmic internal 

resistance in series. The structure is simple and has the smallest number of parameters. 

However, since the ohmic polarization and diffusion polarization are not considered, the Rint 

model has a low precision and it is rarely used in electric vehicles and other fields [10-12]. 
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Thevinin model is also called the first-order model. Considering both the ohmic polarization 

and electrochemical polarization, the structure of the model is relatively simple and the 

calculation time is small. Hence, it has a good practical value. Under the condition that the 

SOH does not change significantly, the charging and discharging behavior of the lithium ion 

battery under the constant current and constant temperature condition can be simulated 

accurately. However, as the battery ages or the temperature changes greatly, the accuracy of 

the model will decrease [13].  

The second-order RC model is based on the Thevenin model, which adds an additional RC 

parallel model in series to a traditional Thevenin model. Since it takes into account ohmic 

polarization, electrochemical polarization and concentration polarization, the simulation 

results of the model is more accurate, but the structure is relatively complex and the 

computational time is longer [14-15]. The PNGV model is also a derivative model from the 

Thevenin model. A capacitor is connected in series on the main circuit of Thevenin model to 

describe the change of the open circuit voltage of the lithium ion battery [16-17]. GNL 

integrates the advantages of the above four models, with wider applicability and higher 

accuracy, while the structure is the most complex and the calculation time consumption is the 

largest [18]. 

From the above literature review it can be seen that the simple low-order models face the 

challenge of accurate characterization of the battery states, while complex high-order models 

will greatly increase the difficulty of calculation and identification of model parameters. It is 

noteworthy that so far temperature has not been taken into account in the aforementioned 

models.  
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 In [19], a novel model is proposed to predict the battery thermal runaway behaviors from 

kinetics analysis of cell components. The oven tests indicate that the model can credibly 

predict battery safety performance without assembling a real battery. In [20], a 3D electro-

thermal model is developed within the frame of open source computational fluid dynamics 

code OpenFOAM by coupling electric conduction with heat transfer and energy balance for a 

single lithium-ion cell. The model has reproduced well the evolution process of a cell from 

normal to abnormal cycling until thermal runaway. In [21], a system model of a stationary 

lithium-ion battery system is created for a use-case specific analysis of the system energy 

efficiency. The model offers a holistic approach by calculating conversion losses and auxiliary 

power consumption. 

The above studies show thermal runaway models of lithium-ion batteries can improve their 

reliability when used in the EVs. Hence, in this paper, a new battery model considering 

temperature effects is proposed. The proposed battery model considers the influence of 

temperature and SOC on the Open-Circuit Voltage (OCV) without increasing the order of the 

model, and it is based on Thevenin model to improve the calculation accuracy of the battery 

terminal voltage. 

 The paper is organized as follows. Firstly, a novel model is proposed based on Thevenin 

model and the relationship between OCV and SOC. Then, the parameters of OCV model and 

RC are identified based on OCV tests and Hybrid Power Pulse Characteristic (HPPC) tests 

under different temperature conditions, respectively. Finally, the accuracy of the model and 

parameters are verified by experiments. 

2. Lithium-ion power battery modeling 
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Based on the application characteristics of power battery management systems, the lumped 

parameter equivalent circuit models with circuit elements such as resistance and capacitance 

as the core have unique advantages in structure and precision. The typical equivalent circuit 

model consists of a voltage source, a resistor and n times RC network structures, which is 

referred to as an n-RC model, as shown in Fig. 1. The voltage source presents the OCV of the 

power battery, and the single resistance represents the ohmic internal resistance R0 of the 

battery, which accounts for the contact resistance among the parts such as the electrode 

material, the diaphragm resistance, the electrolyte. Meanwhile, the RC network is using 

polarization internal resistance RPi and capacitance CPi to reflect the dynamic characteristics 

such as the diffusion effect and the polarization effect of the battery. 

By changing the number n in the model, that is, changing the number of RC networks, a 

battery equivalent circuit model of different orders can be constructed. Fig. 2 shows the 

Thevenin model, which can be regarded as a kind of n-RC model when n=1, while Rint model 

mentioned above is a special case when n=0. 

The Thevenin equivalent circuit model of the battery is a model based on the Thevenin's 

theorem. The model describes the internal polarization Rp1 and Cp1 of the battery and has strong 

dynamic adaptability. It can better reflect the dynamic performance of the battery, and the 

circuit structure is relatively simple as shown in Fig. 2. Besides, compared with the high-order 

RC model shown in Fig.1, it is easier to calculate. The advantage of computation efficiency 

can be reflected in the shorter time of simulation and faster SOC equalization of battery. 

However, the Thevenin model does not consider the case where the battery OCV varies with 

SOC and temperature T. It can only represent the transient response of battery voltage 
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precisely under a certain SOC value. Therefore, it is necessary to additionally consider using 

equation (1) to characterize the steady-state change of battery voltage as:  

OC (SOC, )U f T=  (1) 

Equation (1) needs to model the OCV-SOC relationship through the OCV test of the battery, 

and the relationship is to be obtained by curve fitting. Then, the above model is combined with 

the first-order RC model, namely Thevenin model, to create the new battery model as shown 

in Fig.3. 

In Fig.3, UOC is the open circuit voltage of the battery model, namely OCV, which is 

obtained by fitting the variable in f(SOC, T) and its parameters. R0 is the equivalent ohmic 

internal resistance of the power battery. RP is the polarization internal resistance. UP is the 

resulting voltage drop on the polarization resistance RP. CP is the battery polarization 

capacitance. IL is the operation current. Normally, the sign of the battery current is negative 

when the battery is discharging, and positive when the battery is charging. Ut is the battery 

terminal voltage. 

 A specific calculation and analysis of the determined model is required, which can be 

derived from Kirchhoff's law as: 

t OC p L 0

p

L p p

p

OC ( , )

U U U I R

U
I C U

R

U f SOC T

= − −

 = +

 =

 (2) 

The mathematical relationship between the output voltage and the input current of the 

battery model can be deduced through the Laplace transform, and the result is shown in 

equation (3): 
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p

t OC L 0

p p

( ) ( ) ( )( )
1

R
U s U s I s R

R C s
= − +

+ ⋅
 (3) 

Then the transfer function of the model is: 

p 0 p p pt OC
0

L p p p p

( ) ( )
( ) ( )

( ) 1 1

R R R R C sU s U s
G s R

I s R C s R C s

+ + ⋅−
= = − + = −

+ ⋅ + ⋅
 (4) 

The transfer function needs to be discretized. The simple replacement method, also known 

as the Euler method, is often used to map the system from the s-plane to the Z-plane. Euler 

method, as shown in equation (5), is used to map the equation based on the s-plane to the Z-

plane for z transformation as: 

1

1

1 z
s

t z

−

−

−
=
∆ ⋅

 (5) 

where, Δt is the sampling interval of the system, and z-1 can be understood as the unit delay 

factor. Substituting equation (5) into equation (4) can deduce the equation based on the Z-

plane as: 

0 p 1

0 0

p p1

1

p p

( )

( )

1 ( 1)

R R
R t R z

R C
G z

t
z

R C

−

−

−

+
+ ∆ −

=
∆

+ −
 (6) 

Order 

1

p p

2 0

0 p

3 0

p p

1
t

a
R C

a R

R R
a R t

R C

 ∆
= −


 = −
 + = − ∆


，then 0 2R a= − ，thus： 

( ) ( ) ( )
( )

1 1 1
t OC1 2 3

11
1L

1

U z U z a a z
G z

a zI z

− − −
−

−−

− +
= =

−
 (7) 

Then the corresponding difference equation is: 
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( )t,k OC,k 1 t,k-1 OC,k-1 2 L,k 3 L,k-1U U a U U a I a I− − − = +  (8) 

In order to simplify the calculation, considering the reasonable assumption that the actual 

sampling time interval is less than 1s, the change of the SOC value and the temperature of the 

power battery in the unit sampling time interval Δt is approximately zero, hence, it can be 

considered that within the unit sampling interval Δt the change of open circuit voltage is zero, 

that is: 

OC OC,k OC,k-1 0U U U∆ = − ≈  (9) 

By substituting into equation (9), equation (8) can be simplified as follows: 

( )t,k 1 OC,k 1 t,k-1 2 L,k 3 L,k-11U a U a U a I a I= − + + +  (10) 

Equation (10) will be used for parameter identification of the battery model. 

3. Model and parameter identification 

3.1  OCV model identification 

     In order to analyze the open circuit voltage characteristics of the tested battery and get 

the relationship (1) between the OCV and the temperature T, it is necessary to identify the 

model based on the battery test results. Therefore, the OCV test of the battery is carried out 

first. This paper selects a model of ternary lithium battery with a capacity of 2Ah, and 

experiments are undertaken with a battery test system. Considering the effect of temperature 

on the open circuit voltage, and OCV test needed to be done under different temperature 

conditions, it is necessary to use the thermostat to set the temperature condition, which can 

guarantee the temperature error within ±1℃. The battery pack is installed in the fixture and 

put it into the thermostat, and the TX77845 battery test system from Arbin Instrument is used 
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to conduct the experiments. The experimental platform diagram is shown in Fig.4. 

     The test process is discharging the battery to the cut-off voltage (3V) first. After standing, 

it will charge 10% of the battery at a constant current rate of 0.5C, it then stands for one hour 

each time. After the cut-off voltage (4.1V) is reached, the battery is charged at a constant 

voltage until the current drops to 0.02C and then charging is stopped. After standing two 

hours without any charging or discharging action, it will then discharge 10% of the battery 

with a constant current (0.5C) and stand for one hour each time. When the battery is 

discharged to cut-off voltage, then the battery will stand for two hours. According to the 

battery product test specifications, the above steps are performed under the conditions of 

10 °C, 25 °C and 40 °C, respectively. The test results are shown in Fig. 5. 

    The OCV test results are processed. Specifically, the average value of the voltage 

measured in the charging process and discharging process is taken as the OCV of the battery, 

and the three-dimensional relationship scatter diagram of the OCV with respect to the SOC 

and the temperature T can be obtained, as shown in Fig. 6. The data points in the figure can 

be fitted to obtain the fitted surface of OCV with respect to SOC and T. And the results 

obtained by different fitting methods are also different. In order to obtain the model 

expression conveniently, the data is fitted by the polynomial method. In the fitting process, 

different orders are selected for the two variables T and SOC respectively, and the fitting 

results are shown in Tab. 1. 

Tab. 1 Polynomial fitting results 

Determination coefficient R-Square 
SOC Order 

1 2 3 4 5 

T Order 

1 0.7960 0.8357 0.9410 0.9856 0.9959 

2 0.7970 0.8357 0.9410 0.9856 0.9960 
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According to Tab. 1, the higher the order of SOC, the better the degree of fitting. When the 

order of SOC is 5, the coefficient of determination is greater than 0.99, which satisfies the 

fitting requirement, while the order of T has little influence on the degree of fitting, and the 

difference is very small. Therefore, the model with the order of T being 1 and the order of SOC 

being 5 is selected, and the detailed fitting results are shown in Fig. 7.   

Then, the fitting results are substituted into equation (1) to obtain equation (11), which is 

the OCV model as follows: 

2

2 3 3

4 4 5

OCV 3.276 0.0022 5.727 SOC 0.0178 SOC 24.7 SOC

0.0581 SOC 48.9 SOC 0.0774 SOC

43.99 SOC 0.0349 SOC 14.88 SOC

T T

T T

T

= − ⋅ + ⋅ + ⋅ ⋅ − ⋅

− ⋅ ⋅ + ⋅ + ⋅ ⋅

− ⋅ − ⋅ ⋅ + ⋅

 (11) 

3.2 HPPC test and RC parameter identification 

HPPC test is used to measure the pulse capability of batteries under different Depths of 

Discharge (DOD) in different time durations. It can be used for parameter identification of the 

battery model. HPPC tests at different temperatures are conducted to characterize the effects 

of temperature on battery characteristics. According to the battery product test specifications, 

the HPPC test process was carried out at 10℃, 25℃ and 40℃ respectively. And the power 

characteristics of SOC at 10 points from 100% to 10% were measured. The test results are 

shown in Fig. 8. 

According to the obtained SOC curve and combined with the formula (11), the 

corresponding OCV value under different SOC and temperature can be calculated by the OCV 

model for parameter identification. In both engineering and scientific research fields, Genetic 

Algorithm (GA) is an effective method for parameter identification and optimization, which 

achieves the purpose of searching the optimal solution of the problem by simulating the natural 
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evolution process. The flow chart of GA identification is shown as Fig.9. 

The most important part of GA is to establish an appropriate fitness function through the 

objective function. Considering that the objective function is the minimum value, the dynamic 

linear calibration method is selected, as shown in equation (12): 

( ) ( )max

k k

i i
GA x ga ga x b= − +  (12) 

where, 

( )i
GA x : Individual i

x  fitness; 

max

k
ga : The maximum objective function value of the generation k; 

( )i
ga x : The objective function value of individual i

x ; 

k
b : The selection offset value of individuals in generation k. 

The addition of k
b makes the worst individuals still have the possibility of breeding, which 

causes the diversity of the population to be maintained within the wide-area search range at 

the beginning, while the selection pressure can be gradually increased in the iteration process. 

Hence, the convergence of the population can be maintained in the local search area. The offset 

value k
b can be given according to equation (13). It is noted that M and c are given constant 

values, and the range of general c is [0.9, 1]. 

0

1k k

b M

b c b
+

 =


= ⋅
 (13) 

The data matrix of the system is defined as: 

k OC t,k-1 L,k L,k-1    I   IU Uϕ  =    (14) 

The parameter matrix of the system is defined as: 



15 

[ ]1 1 2 31       a a a aθ = −  (15) 

Formula (10) is converted to the standard form of least squares method: 

t,k kU ϕ θ=  (16) 

For data with sampling number N: 

[ ]N 1 2 k N

N t,1 t,2 t,k t,N

   ...  ... 

  U  ... U  ... U

T

T

U U

φ ϕ ϕ ϕ ϕ=

 =  
 

Select the objective function ( )J θ  as: 

( ) ( ) ( ) ( )2N

t,i i N N N N1

T

i
J U U Uθ ϕθ φ θ φ θ

=
= − = − −∑  (17) 

In the Genetic Algorithm Toolbox based on MATLAB, the m file of fitness function is 

written with ( )=0J θ  as the objective function, the data is imported in the way of global 

variables, and various parameters in the Genetic Algorithm are selected for iterative operation. 

According to the formula (17), the fitting precision of the terminal voltage, namely, the sum 

of the squares of the residuals is selected as the fitness function. Meanwhile, the numerical 

range can be deduced according to the definition of three parameters and added into the 

algorithm as a constraint condition to increase the speed of search convergence and shorten 

the algorithm time. In the process of operation, the population number of the genetic algorithm 

is set as 50, the maximum number of iterations is set as 100, the crossover probability is set as 

0.8, and the mutation probability is set as 0.2. The determination range of the parameter values 

can be obtained gradually after repeated operations for different data segments, and then the 

constraint condition of parameter range can be narrowed down gradually to realize the accurate 

search from global to local. After that, the data simulation results when temperature is 25℃ 

can be obtained as shown in Fig. 10. Therefore, the optimal individual calculated by the inverse 
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is: 

1

p p

2 0

0 p

3 0

p p

1 0.988

0.042

0.041

t
a

R C

a R

R R
a R t

R C

 ∆
= − =


 = − = −
 + = − ∆ =


 (18) 

Tab. 2 The RC parameter identification results of battery model 

Parameter Value 

0R /Ω 0.042 

pR /Ω 0.041 

pC /F 2016.129 

The data of HPPC test at 10℃ and 40℃ are used for identification, and the results are 

basically the same. Since the sampling interval in the genetic algorithm means the generation 

interval, the sampling interval Δt is 1s. Hence, it can be calculated that the parameters of the 

battery model are shown in Tab. 2. 

4. Model verification 

The established battery model and the parameters identified were used to measure the 

battery SOC and temperature T under the Dynamic Stress Test (DST) condition and the Urban 

Dynamometer Driving Schedule (UDDS), and all data points were calculated one by one using 

the model obtained from the identification results. The identification results of the battery 

terminal voltage Ut were obtained and compare with the Ut measured data under the DST-

UDDS condition to verify the accuracy of the model and parameters. The experimental 

platform is shown in Fig.4. The battery fixture is placed in the thermostat, and the current data 

of the battery pack under UDDS operating conditions is used to charge and discharge the 
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battery by the TX77845 battery test system to check the accuracy of the model.  

From the verification results, as shown in Fig.11, the calculated results of Ut model of 

battery terminal voltage under DST-UDDS condition are very close to the measured results. 

The maximum error is 0.026V, the relative error is 0.7%, the average error is 0.00052V, and 

the average relative error is 0.014%. Compared with the traditional Thevenin model, the 

estimation accuracy of the proposed model is much improved. 

The above analysis shows that the method of fitting the open circuit voltage based on the 

binomial method and the parameter identification method based on genetic algorithm can 

ensure that the model achieve high-precision simulation of the dynamic characteristics and the 

terminal voltage of the battery. Hence, the model provide a good condition for improving the 

prediction accuracy of the equilibrium variables in the battery management system. 

5. Conclusions 

In this paper, a new accuracy battery model is proposed, which combines Thevenin 

equivalent model and an empirical formula of Open-Circuit Voltage test. And the model 

considers the steady state and transient characteristics of the battery. The parameters of the 

model were identified by experimental tests and mathematical algorithm, respectively. 

Furthermore, the model was tested and verified by experiments under the Dynamic Stress Test 

and the Urban Dynamometer Driving Schedule conditions. It is found that the accuracy of the 

proposed model is high and the parameter identification error is less than 1%.  
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Figure Captions 
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Fig. 2 Thevenin model 
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Fig. 3 The proposed battery model 
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Fig.4. OCV test platform 
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(c) 

Fig. 5 Voltage and current curve under the OCV test with different temperatures: (a) 10℃;(b) 25℃; (c) 

40℃. 
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Fig. 6 Scatter plot of relationship between OCV and SOC, T 
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Fig. 7 OCV and SOC, T relationship fit surface map 
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(c) 

Fig. 8 HPPC test results under different temperatures: (a) 10℃;(b) 25℃; (c) 40℃. 
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Fig.9 The flow chart of GA identification 
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Fig. 10 Genetic algorithm search results 
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Fig. 11 Comparison of model verification results under DST-UDDS: (a) Full test; (b) Partial enlargement. 
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