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Abstract The need to provide accurate estimates of precipitation over catchments in the Hindu Kush,

Karakoram, and Himalaya mountain ranges for hydrological and water resource systems assessments is

widely recognized, as is identifying precipitation extremes for assessing hydro‐meteorological hazards. Here,

we investigate the ability of bias‐corrected Weather Research and Forecasting model output at 5‐km grid

spacing to reproduce the spatiotemporal variability of precipitation for the Beas and Sutlej river basins in the

Himalaya, measured by 44 stations spread over the period 1980 to 2012. For the Sutlej basin, we find that

the raw (uncorrected) model output generally underestimated annual, monthly, and (particularly

low‐intensity) daily precipitation amounts. For the Beas basin, the model performance was better, although

biases still existed. It is speculated that the cause of the dry bias over the Sutlej basin is a failure of the model

to represent an early‐morning maximum in precipitation during the monsoon period, which is related to

excessive precipitation falling upwind. However, applying a nonlinear bias‐correction method to the model

output resulted in much better results, which were superior to precipitation estimates from reanalysis and

two gridded datasets. These findings highlight the difficulty in using current gridded datasets as input for

hydrological modeling in Himalayan catchments, suggesting that bias‐corrected high‐resolution regional

climate model output is in fact necessary. Moreover, precipitation extremes over the Beas and Sutlej basins

were considerably underrepresented in the gridded datasets, suggesting that bias‐corrected regional climate

model output is also necessary for hydro‐meteorological risk assessments in Himalayan catchments.

1. Introduction

The Hindu Kush, Karakoram, and Himalaya (HKKH) mountain ranges are the source of many of the major

rivers of the Indian subcontinent, including the Indus, the Ganga, and the Brahmaputra, which support the

lives of over a billion people by providing water resources for domestic consumption, industry, irrigation,

hydro‐electric power, etc (Eriksson et al., 2009). The rivers are mainly fed by precipitation resulting from

the mountains lifting the larger‐scale background flow patterns (Bookhagen & Burbank, 2010; Medina

et al., 2010; Norris et al., 2015, 2017; Palazzi et al., 2013; Wulf et al., 2010; Yadav et al., 2012). For example,

eastern HKKH drainage basins receive approximately 70% of their annual precipitation in summer from the

Indian monsoon impinging on the mountains, which falls predominantly as rain that quickly enters the

river systems (Burbank et al., 2012). By contrast, catchments in the Western HKKH region receive approxi-

mately half their annual precipitation from extratropical storms in the winter months, which falls predomi-

nantly as snow, so that most of the ensuing discharge into the river systems comes from snow and glacier

melt runoff from the spring onward (Jain et al., 2010; Norris et al., 2015; Singh & Jain, 2003). In addition,

localized dynamical and physical processes, such as the modification of flow by small‐scale topographic fea-

tures and thermally induced valley circulations, can result in sharp increases in the spatial and temporal

variability of precipitation rates (Das et al., 2006; Dimri et al., 2017; Norris et al., 2017; Orr et al., 2017;

Potter et al., 2018). Such interactions also make the foothills of the HKKH particularly susceptible to preci-

pitation extremes (Karki et al., 2017; Sigdel & Ma, 2017), which in turn can trigger hydro‐meteorological

hazards (such as floods, landslides, and droughts) that can cause large losses of life and property and hamper

socio‐economic development of vulnerable communities (Eriksson et al., 2009).
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The development of effective strategies to mitigate water stress problems requires good knowledge of

water resources originating in the HKKH region, which are commonly investigated using hydrological

(Jain et al., 2010; Singh & Jain, 2003) and water resource systems (Chinnasamy et al., 2015;

Momblanch et al., 2019; Sharma & De Condappa, 2013) models. In mountainous regions, hydrological

models are highly sensitive to errors in precipitation data, which is one of the key inputs used to force

them (Andermann et al., 2011; Li et al., 2017; Meng et al., 2014; Remesan & Holman, 2015; Wulf

et al., 2016). Important factors include knowing the precipitation frequency, intensity, timing, spatial dis-

tribution, and number of rainy days. Additionally, assessing the vulnerability to hydro‐meteorological

hazards in the HKKH region requires a good understanding of precipitation extremes (Karki et al.,

2017; Panday et al., 2014; Roy, 2008; Sanjay et al., 2017; Sigdel & Ma, 2017). However, establishing this

information from in situ measurements in the HKKH region is highly challenging as their scarcity, ques-

tionable reliability, and uneven distribution make the delineation of sharp precipitation gradients that

characterize this region difficult (Anders et al., 2006; Immerzeel et al., 2015; Norris et al., 2017; Roy,

2008; Winiger et al., 2005).

Moreover, establishing precipitation information from the long‐term daily gridded dataset APHRODITE

(Asian Precipitation Highly Resolved Observational Data Integration Towards Evaluation of Water

Resources; Yatagai et al., 2012) is therefore also fraught with difficulties. Since it is based on the interpolation

of in situ precipitation measurements, the accuracy of APHRODITE is severely compromised in the HKKH

region due to both data‐scarcity as well as inadequacies in interpolation methods (Bhardwaj et al., 2017;

Hussain et al., 2017). The reliability of the gridded precipitation dataset based on TRMM (Tropical

Rainfall MeasuringMission; Huffman et al., 2007) satellite estimates over the HKKH region is similarly com-

promised, as TRMM has deficiencies in detecting local orographically induced precipitation (particularly

over glaciated areas), which requires adjustment using in situ measurements (Andermann et al., 2011;

Yin et al., 2008). Additionally, given their rather coarse spatial resolution and dependence on the assimila-

tion of meteorological observations, precipitation estimates over the HKKH region from global atmospheric

reanalysis datasets such as ERA‐Interim (Dee et al., 2011) are also unsuitable for forcing hydrological models

(Ma et al., 2009).

Using a regional climate model to dynamically downscale coarse‐resolution reanalysis or global climate

model data to high spatial resolution (<10 km) over data‐sparse mountainous regions is one method for pro-

viding sufficiently detailed precipitation information for driving hydrological and water resources models

and estimating precipitation extremes for impact assessments (e.g., Akhtar et al., 2008; Ali et al., 2015;

Ghosh & Dutta, 2012; Narula & Gosain, 2013; Li et al., 2016; Nepal, 2016; ul‐Hasson, 2016; Sanjay et al.,

2017]. Subsequent biases in the downscaled precipitation output can be reduced using postprocessing tech-

niques that correct important statistical properties of the simulated precipitation distribution so that they

match the available observations, resulting in realistic forcing data for hydrological streamflow simulations

(Teutschbein & Seibert, 2012). However, despite the fine spatiotemporal resolution and improved represen-

tation of key dynamical and physical processes of a regional climate model, their representation of precipita-

tion (and the subsequent impact of bias correction) over the HKKH remains uncertain. For example,

previous studies examining the performance of the Weather Research and Forecasting (WRF) model at high

resolution in the HKKH region have typically focused on either one small river catchment or over larger

regions that considered only a limited number of in situ measurements for relatively short periods of time

of 1 year or less (Bonekamp et al., 2018; Collier & Immerzeel, 2015; Li et al., 2017; Maussion et al., 2011;

Norris et al., 2017; Orr et al., 2017), therefore failing to fully assess the model's ability to reproduce the actual

detailed patterns of precipitation. Furthermore, though multiple studies have shown the importance of bias

correction of precipitation over topographically complex regions (e.g., Bordoy & Burlando, 2013; Lafon et al.,

2013; Teutschbein & Seibert, 2012), the usefulness of such methods over the HKKH has yet to be conclu-

sively proven (Shrestha et al., 2017).

To address these deficiencies, the objectives of this study are the following:

1. Undertake a comprehensive comparison of raw (uncorrected) and bias‐corrected precipitation output

from a 33‐year high‐resolution regional climate model hindcast using the WRF model of two

contrasting Himalayan river basins, the Beas, and the Sutlej, against an extensive network of in situ

measurements.
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2. Compare the accuracy of precipitation estimates from three gridded datasets (TRMM, APHRODITE, and

ERA‐Interim) against the bias‐corrected WRF model output over the same two river basins.

3. Investigate precipitation extremes in the two basins based on both the bias‐corrected WRF model output

and the three gridded datasets.

Located in northeast India (Figure 1a), the Beas and the Sutlej river basins are both major tributaries to the

Indus River. With a catchment area of 63,803 km2 (above the Bhakra dam), the Sutlej River basin is the lar-

gest tributary of the Indus and has its source in Western China. The Beas River basin is substantially smaller

with a catchment area of 12,286 km2 (above the Pong dam), and its headwaters exist wholly within India.

Both basins reach elevations of approximately 4,000 m above sea level (asl) and straddle the western

Hindu‐Kush Karakoram and eastern Himalaya regions (Figure 1b). As such, precipitation across these

basins is influenced by both westerly midlatitude perturbations during winter and early spring, as well as

the summer monsoon. Understanding the performance of the TRMM, APHRODITE, and ERA‐Interim in

the HKKH region is important as they have been used for water budget studies, validation of regional cli-

mate model output, and extreme precipitation analysis without any attempt to assess the quality of

their data.

Figure 1. (a) Map showing the three nested domains used by the Weather Research and Forecasting (WRF) model (black

solid lines) at spatial resolutions of 45 km (D1), 15 km (D2), and 5 km (D3). The innermost 5‐km domain contains the

Beas and Sutlej river basins. (b) Map of the innermost 5‐km domain showing the catchment boundaries (black), water

course (bold blue), elevation of the WRF model terrain (shading; at 5 km resolution), locations of the 44 in situ precipi-

tationmeasurements used in the bias correction (white circles, each consisting of at least six continuous years of data), and

the seven used for the independent validation of the bias‐correctedWRF output (yellow circles, each consisting of less than

six continuous years of data), and the main tributaries (thin blue) of the Beas (down to the Pong Dam) and the Sutlej

(down to the Bhakra Dam) river basins. Locations referred to in the main text are indicated with red circles.
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2. Data and Methods

2.1. Datasets

Daily total precipitation measurements for at least six continuous years between 1980 and 2012 (i.e., long

enough for a reasonable representation of the precipitation climatology) were collected from 44 sites across

the Sutlej (27 stations) and Beas (17 stations) catchments, ranging in elevation from 284‐ to 3,639‐m asl. The

data were supplied by the Bhakra Beas Management Board and the Indian Meteorological Department (via

Wulf et al., 2016). Data from a further 56 sites were excluded from this study as they either failed conven-

tional quality control checks (such as double mass curve analysis andmetadata checks) or because theymea-

sured snowfall only. Additionally, data from seven sites were collected that passed the above checks but

consisted of less than 6 years of continuous observations. See Figure 1b for the location of the sites.

For TRMM, we used algorithm 3B42 (version 7), which merges satellite and in situ data to produce a

monthly bias corrected gridded precipitation dataset covering the study region from 1998 to the present at

0.25° spatial resolution (Huffman et al., 2007). For APHRODITE, we used the Monsoon Asian Region pre-

cipitation V1101 dataset (available from 1951 to 2007) at 0.25° spatial resolution (Yatagai et al., 2012).

ERA‐Interim reanalysis is a gridded dataset at approximately 0.7° spatial resolution, available from 1979

to present (Dee et al., 2011).

2.2. The WRF Model

We used version 3.8.1 of the Advanced Research WRF model, which uses a fully compressible, nonhydro-

static dynamical core, with a terrain‐following pressure coordinate in the vertical (Skamarock et al., 2008).

The model was run on a series of three nested domains (Figure 1a). The innermost domain had 157 × 100

grid points with a 5‐km spatial resolution and included the Beas and Sutlej river basins. This was nested

within a domain covering the whole of the HKKH region with 124 × 100 grid points and a 15‐km spatial reso-

lution and an outermost domain covering the whole of the Indian subcontinent with 100 × 100 grid points

and a 45‐km spatial resolution. All domains had 30 vertical levels between the surface and the model top at

50 hPa. The model was forced with atmospheric initial and boundary conditions derived from ERA‐Interim.

See Table 1 for a summary.

To determine the optimum model setup for the study area, a preliminary evaluation of the sensitivity to the

choice of parameterizations schemes was conducted by running the model for two 1‐month periods (during

a winter and a summer season), and comparing the model output against the Moderate Resolution Imaging

Spectroradiometer (MODIS)/Terra snow cover dataset (Hall et al., 2002; Shukla et al., 2016) and the avail-

able in situ precipitation observations (not shown). Based on these tests, the physics options selected

included the longwave Rapid Radiative Transfer Model (RRTM) scheme (Mlawer et al., 1997) in conjunction

with the shortwave Dudhia scheme (Dudhia, 1989), the Mellor‐Yamada Nakanishi and Niino (MYNN) pla-

netary boundary layer scheme (Nakanishi & Niino, 2006), the Morrison double‐moment microphysics

scheme (Morrison et al., 2009), the Kain‐Fritsch cumulus scheme (Kain, 2004) on the 15 and 45 km domains

only, and the Noah land‐surface model (Chen & Dudhia, 2001). See Table 1 for a summary.

Following the approach of Collier and Immerzeel (2015) to improve the simulation of precipitation in topo-

graphically complex environments where the model vertical levels are significantly sloped, horizontal diffu-

sion was computed in physical space rather than along model levels. In addition, spectral nudging was

applied to horizontal winds, temperature, geopotential temperature, and humidity in the outermost WRF

domain only, on vertical levels above mountain crest height. To correctly account for slope effects and asym-

metric irradiation effects, such as self‐shadowing and varying incident solar radiation, the radiation parame-

terization (Garnier & Ohmura, 1968) was used in the innermost (5 km) domain.

Comparison of digital outlines of glaciers from the Randolph Glacier Inventory version 5.0 (RGI V5; Pfeffer

et al., 2014) with the default land use/glacier mask used by WRF (based on the USGS (U.S. Geological

Survey) dataset) showed that the area of glaciers in the HKKH region is greatly underestimated in the

WRF USGS dataset (not shown). Therefore, the glacier mask used in all three model domains was updated

using RGI V5, similar to Collier and Immerzeel (2015) and Orr et al. (2017). The soil categories and vegeta-

tion parameters were also updated to be consistent with the revised glacier mask. To evaluate the possible

impact of nonstationary land type during the period examined, sensitivity tests were also conducted by run-

ning the model for two 1‐month periods with MODIS land cover data (Friedl & Sulla‐Menashe, 2015)
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representative of 2001 and 2013, which showed negligible differences in terms of precipitation and snow

cover (not shown). To deal with the complex terrain, the topography was derived from the 90‐m Shuttle

Radar Topography Mission (SRTM) dataset (Jarvis et al., 2008).

The optimized model was run continuously for one calendar year beginning on 15 December, reinitializing

every year between 1980 and 2012 (i.e., a total of 33 years), with boundary conditions updated every 6 hr.

This included a 16‐day spin‐up period for each initialization so that the subsurface soil moisture fields sta-

bilized (Collier & Immerzeel, 2015). Forcing between domains was one way.

Only model output from the innermost (5 km) domain are examined, which was archived every hour. Where

comparisons are performed against individual sites and the WRF output, the output for the model cell that

contains the measurement site is taken as representative for that site, that is, a nearest‐neighbor approach,

involving no interpolation.

2.3. Bias Correction Method

In order to correct the mean and variance statistics of theWRF precipitation output to match the daily in situ

observations, we used a power transformation first proposed by Leander and Buishand (2007). The corrected

modeled daily precipitation P* was calculated from the raw (uncorrected) model daily precipitation amount

P (taken from the nearest grid point to each station) using

P* ¼ aPb (1)

where a and b are scaling parameters. Only observations from the 44 sites with data available for at least six

continuous years were used in the bias correction, with data from the remaining seven sites used to perform

an independent validation of the corrected output. Because we want to apply the bias correction to gridded

model output in the entire inner domain, we extended the methodology of Terink et al. (2010; who also used

this method to bias correct regional climate model output in the topographically complex Rhine basin) by (i)

determining values of a and b for each of the 44 sites for every 5‐day period of the year; (ii) demonstrating

that the values of these parameters were dependent on elevation, enabling use of a least squares method

to fit a power‐law function to the a and b parameters for each five‐day period as a function of model eleva-

tion; and (iii) using these derived regression relationships to apply a correction to the value of P for all model

grid cells within the Beas and the Sutlej catchments based on elevation.

For step one, we determined values of a and b for each of the 44 sites for every 5‐day period of the year based

on averages of all the available data between 1980 and 2012 (note that this assumes that the values of a and b

Table 1

Summary of WRF Configuration

Domain configuration Settings References

Projection Lambert conformal conic, with latitude of true scale at 30°N,

central longitude at 80°E

Centre of outer domain 23°N, 81°E

No. vertical levels 30

Model top 50 hPa

Nesting One‐way nesting

Forcing ERA‐Interim (0.7 × 0.7°, updated 6 hourly) Dee et al. (2011)

Topography 90‐m Shuttle Radar Topography Mission (SRTM) Jarvis et al. (2008)

Land surface type USGS 24‐category land use, Randolph Glacier Inventory (version 5) Pfeffer et al. (2014)

Physics

Radiation Rapid Radiative Transfer Model (RRTM), Dudhia Mlawer et al. (1997), Dudhia (1989)

Microphysics Morrison Morrison et al. (2009)

Planetary boundary layer Mellor‐Yamada Nakanishi and Niino (MYNN 2.5) Nakanishi and Niino (2006)

Land surface Unified Noah Model Chen and Dudhia (2001)

Cumulus Kain‐Fritsch Kain (2004)

Dynamics

Top boundary condition Rayleigh damping

Diffusion Calculated in physical space

Abbreviations: USGS: U.S. Geological Survey; WRF: Weather Research and Forecasting.
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for each 5‐day block are the same for any year). The effect of sampling variability was reduced by employing

a window that included 30 days before and after each 5‐day period, that is, using a window length of 65 days

to calculate statistics, and subdividing the year into 73 blocks of 5 days. Note that a number of window

lengths from 105 to 15 days were considered, including 65 days (not shown). In each case the values of a

and b were computed, and the mean biases compared. This showed that a 65‐day window gave the lowest

biases. See Terink et al. (2010) for further details. The value of b was first determined iteratively for each

of the 5‐day periods, such that the coefficient of variation of P* matches that of the observed daily precipita-

tion. As a is a linear scaling factor, it affects both the mean and the standard deviation equally, which allows

this method to determine b independently of a. The values of a for each of the 5‐day periods was subse-

quently determined by matching the mean of P* to the observed mean. For the two highest sites, due to their

very low precipitation frequencies, the iterative method used to derive a value for the b parameter failed. For

this reason, these two sites were excluded from the derivation of the elevation‐dependence bias correction

parameters below. Note that the observations at these sites were nonetheless included in the comparisons

between the observed and the modeled and bias‐corrected precipitation described in section 3 below.

For step two, as well as the values of a and b being dependent on elevation, they also showed distinct differ-

ences between the two basins. Therefore, in order to apply a correction to the value of P for all model grid

cells within the Beas and the Sutlej catchments, the least squares method was used to fit a power‐law func-

tion to the a and b parameters for each 5‐day period as a function of model elevation, with each of the two

basins treated separately. For each basin, the least squares fitting and subsequent regression equation give a

“multiplier” (ca and cb) and “power” (da and db) terms for each of the 5‐day periods, which was then used to

calculate values of the a and b parameters for each of the model grid cells within the basin using

a ¼ caH
da and b ¼ cbH

db (2)

whereH is the model elevation for the model grid cell, thus enabling P* to be computed throughout the Beas

and Sutlej catchments. The results of the fitting are shown in Figures S1 to S4 in the supporting information,

demonstrating that the power‐law function gives a largely reasonable (statistically robust) fit for the eleva-

tion dependence of the a parameter (b parameter) for the sites in the Beas basin for June to October, as well

as April (May to October, as well as January and February), while for the Sutlej basin the fit is statistically

robust for the a parameter (b parameter) from April to December, as well as January (June to October).

For periods when the elevation dependence is not statistically significant, this is because the regression line

is close to flat (and hence that the parameter a or b does not show significant elevation dependence). This

also means that for these periods, the parameters generated by applying the power‐law function are similar

(at all elevations) to the means of the parameters already determined to give the best fit for the mean and

variance of the precipitation distribution at the observational sites. We therefore used the power‐law func-

tion to derive parameters a and b for all periods, not just those for which the elevation dependence was

deemed to be significant. Note that above around 3,000 m, the value of the a parameter generally tends

toward zero, while the b parameter generally tends toward one. As a result, the bias correction method

has little influence at high (>3,000 m) altitudes. Figure S5 shows the annual time series of the multiplier

and power terms determined for both the a and b parameters for both basins, which are statistically robust

for the same periods identified in Figures S1 to S4, that is, in particular June to October, which includes the

monsoon period from June to September.

As previously mentioned, using a precautionary approach, observations of precipitation from an additional

seven stations were not included in the bias correction due to their short and/or fragmented nature. This was

done in order to reduce any statistical discontinuities in the elevation‐dependent regressions, since the data

from these sites are not homogenous samples of precipitation variability in this region. Also as previously

mentioned, the derivation of the b bias‐correction parameter failed for 2 of the 44 remaining sites.

Therefore, having used the observations from 42 of the 44 remaining sites in order to build up the most sta-

tistically robust elevation‐dependent regression, the data from the remaining seven sites were used to per-

form an independent validation of the corrected output. Table S6 in the supporting information compares

how well the raw WRF model precipitation output at a spatial resolution of 5 km (hereafter simply referred

to as WRF output) and bias‐corrected WRF output at a spatial resolution of 5 km (hereafter simply referred

to as bias‐corrected WRF output) reproduce the in situ observations from the seven independent sites delib-

erately withheld from the bias correction. For annual as well as seasonal amounts, Table S6 demonstrates

10.1029/2019JD030804Journal of Geophysical Research: Atmospheres

BANNISTER ET AL. 14,225



that the bias based on the bias‐corrected WRF output is (often considerably) smaller than the WRF model

output for five of the seven sites.

2.4. Precipitation Indices

The occurrence of moderate to heavy daily precipitation events are identified using three indices: (i) the

maximum precipitation amount in five consecutive days (Rx5day), (ii) the number of days with daily preci-

pitation ≥20 mm (R20), and (iii) the precipitation total when daily precipitation is ≥95th percentile (R95T).

In addition, the persistence of precipitation is identified using two indices: (i) the maximum number of con-

secutive dry days (CDDs; days receiving <0.2 mm of precipitation) and (ii) the maximum number of conse-

cutive wet days (CWDs; days receiving ≥0.2 mm of precipitation).

3. Results

3.1. Assessment of WRF Model and Bias‐Corrected Precipitation

Figures 2–5 evaluate how well the WRF output and bias‐corrected WRF output reproduce the 44 in situ

observations of precipitation over the Beas and Sutlej basins on annual, monthly, and daily timescales.

Figure 2 compares the basin‐averaged total annual precipitation amounts. For the Beas basin there is gen-

erally good overall agreement between the observations and WRF output, with the model particularly cap-

turing total annual amounts and variance along with interannual variability between 1980 and 1995. This is

also apparent from the model statistics, listed in Table 2. However, WRF is systematically too dry in the

Sutlej basin (Figure 2b); for example, the bias in annual precipitation is −470.7 mm, giving a relative error

of around −40% (Table 2). Figure 3 demonstrates that this dry bias is most evident at stations at lower eleva-

tions (particularly below 1,000 m asl), with the model performance at lower elevations also characterized by

a relatively high root‐mean‐square error (RMSE) and relative error, and low correlation. To explore the

Figure 2. Comparison of (a) Beas and (b) Sutlej basin‐averaged annual precipitation from the in situ observations (black), Weather Research and Forecasting

(WRF) output at a spatial resolution of 5 km (red), and bias‐corrected WRF output (green) for the time period 1980 to 2012. The (respective) shading indicates

±1 standard deviation away from the annual mean.
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elevation dependence of the model performance further, a linear least squares fit of the annual mean bias

and model elevation was calculated. A significant regression was found, with an r2 value of 0.50, which is

statistically significant at the 99% confidence level (p < 0.01). Individually, the Beas and Sutlej stations

were found to have an r2 value of 0.67 and 0.61, respectively (p < 0.01). The dry bias for the Sutlej basin is

markedly reduced by bias correcting the WRF output (Figure 2), resulting in a considerable reduction in

the annual precipitation bias (from −470.7 to −74.4 mm), as well as a reduction in the RMSE (from 547.7

to 259.4 mm; Table 2). For the Beas basin, the impact of bias correcting is much smaller but still an

improvement increasing the correlation value from 0.33 to 0.48.

Figure 4 compares the basin‐averaged annual seasonal cycle of precipitation. For each of the basins, the in

situ observations show a pronounced peak reaching 250 mm per month during the monsoon (June‐July‐

August‐September), compared to values between 50 and 100 mm per month during winter (January‐

February‐March) and premonsoon (April‐May), and less than 50 mm per month during post‐monsoon

(October‐November‐December). As such, the monsoon season is the main contributor to the annual preci-

pitation totals in both catchments. The WRF model reproduces the seasonal contrasts of the relatively dry

premonsoon and postmonsoon seasons compared to the much wetter monsoon months. However,

Figure 4b shows a pronounced dry bias during the monsoon in the Sutlej basin (which is predominately

responsible for the dry bias on annual timescales apparent in Figure 2b), as well a smaller dry bias during

winter and premonsoon. By contrast, the WRF output has a relatively small wet bias in the Beas basin

Figure 3. Error statistics for annual precipitation at each of the 44 sites in the Beas and Sutlej river basins based on output

from the Weather Research and Forecasting (WRF) model at a spatial resolution of 5 km for the time period 1980 to 2012.

Filled circles show the (a) bias, (b) root‐mean‐square error, (c) relative error, and (d) correlation coefficient. Also

shown is the elevation of the WRF model terrain at a spatial resolution of 5 km (shading) and the catchment boundaries

for the Beas and Sutlej basins (black). Note that the panels only show the portion of the innermost domain that includes

the measurement sites.
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during themonsoon, in combination with a dry bias during the premonsoon (Figure 4a). For both basins, the

WRF output shows an excellent agreement with the observations when bias‐corrected. Table 2 shows that by

bias‐correcting the WRF output, the mean precipitation bias for the Sutlej basin during the monsoon period

has reduced from−87.5 to −17 mm, while the dry bias during the premonsoon period for the Beas basin has

reduced from −32.1 to 5.1 mm.

Figure 5 presents a comparison of daily precipitation percentiles. For all seasons, the WRF model output is

characterized by a systematic underestimation of low‐intensity daily precipitation amounts of less than 10

mm per day, which is particularly apparent for the Sutlej basin during the premonsoon and monsoon.

Although the representation of moderate to high daily precipitation amounts in the range of 10 to 100

mm per day is generally improved, the model also underestimates daily precipitation amounts in this range

in the Sutlej basin during both the premonsoon and monsoon. Overall, the WRFmodel shows a greater skill

in reproducing daily precipitation for the Beas basin compared to the Sutlej during the monsoon. The sys-

tematic underestimate in daily precipitation is largely removed by bias correcting the WRF output, although

this does also result in an overestimation of low‐intensity precipitation events for some seasons. Although

the bias correction does not change the total number of wet/dry days in a year, applying an independent‐

sample t test showed that there was no statistically significant difference between the modeled and observed

annual mean total number of wet days in either basin for the period 1980 to 2012.

In order to explore the cause of the dry bias in the Sutlej basin, Figure 6 shows the diurnal variation of WRF

modeled precipitation for each basin and season. For both basins and all seasons with the exception of post-

monsoon, there is an afternoon peak in precipitation. However, the model also shows an early morning pre-

cipitation peak at around 0600 LT in the Beas basin during the monsoon (Figure 6c), which is not apparent

in the Sutlej basin. Note that as subdaily in situ observations are not available, it is not possible to say

whether such peaks actually occur. However, additional analysis of the WRF output also showed a

Figure 4. Comparison of (a) Beas and (b) Sutlej basin‐averaged monthly precipitation from the in situ observations (black), Weather Research and Forecasting

(WRF) output at a spatial resolution of 5 km (red), and bias‐corrected WRF output (green) for the time period 1980 to 2012. (c and d) As (a) and (b) but

comparing the in situ observations (black), bias‐correctedWRF output (green), ERA‐Interim (blue), TRMM (brown), and APHRODITE (yellow) for the time period

1998 to 2007.
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bimodal cycle of precipitation in the adjacent Ravi and Yamuna river basins during the monsoon (not

shown). This suggests that a failure to simulate this morning peak in precipitation is the explanation for

the dry bias in the Sutlej basin during the monsoon. Enhanced precipitation in the morning would be

expected in theory due to enhanced near‐surface convergence of katabatic flow, resulting in upward

Figure 5. (top row) Comparison of seasonally and basin‐averaged daily precipitation percentiles (1st, 5th, 10th 20th, 30th, 40th, 50th, 60th, 70th, 80th, 90th, 95th,

and 99th) from the in situ observations and Weather Research and Forecasting (WRF) output at a spatial resolution of 5 km for the Beas basin for the time

period 1980 to 2012. (second row) As top row but for the Sutlej basin. Seasons are defined as winter (January‐February‐March, far left column), premonsoon (April‐

May, column second to the left), monsoon (June‐July‐August‐September, column second to the right), and postmonsoon (October‐November‐December, far right

column). The lower two rows are analogous to the upper two rows, but comparing daily precipitation percentiles for bias‐corrected WRF output, ERA‐Interim,

TRMM, and APHRODITE for the time period 1998 to 2007. Results are calculated for all nonzero precipitation days, defined as amounts ≥0.2mm per day.

Table 2

Summary of the Basin‐Averaged Error Statistics (Bias, Correlation Coefficient, and RMSE) for Annual and Seasonal Precipitation for the Beas and Sutlej Basins

Based on Output From the WRF Model at a Spatial Resolution of 5 km and Bias‐Corrected WRF Output (Shown in Brackets) for the Time Period 1980 to 2012

Annual Winter Premonsoon Monsoon Postmonsoon

Beas Bias (mm) −15.3 (−2.4) 1.7 (−0.4) −32.1 (5.1) 15.2 (0.3) −5.7 (−4.3)

Correlation coefficient 0.33* (0.48*) 0.75* (0.74*) 0.66* (0.53*) 0.76* (0.63*) 0.68* (0.76*)

RMSE (mm) 275.4 (226.7) 41.2 (31.2) 47.6 (41.5) 106.5 (84.7) 26.7 (25.1)

Sutlej Bias (mm) −470.7 (−74.4) −17.8 (−3.1) −19.0 (7.3) −87.5 (−17.0) −9.7 (−4.0)

Correlation coefficient 0.16 (0.41*) 0.80* (0.83*) 0.64* (0.59*) 0.60* (0.64*) 0.82* (0.89*)

RMSE (mm) 547.4 (259.4) 30.0 (25.2) 31.3 (30.5) 135.0 (100.2) 22.8 (18.9)

Note. Asterisks indicate that the correlation coefficient is statistically significant at the 95% confidence level.
Abbreviation: RMSE: root‐mean‐square error; WRF: Weather Research and Forecasting.
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motion that can cause convection, as has been reported over other locations focused on south‐facing slopes

of the Himalaya [see, e.g., Bhatt & Nakamura, 2005; Orr et al., 2017; Prasad, 1974).

Further examination of the WRF output for the monsoon period (Figure 7) shows that moisture is initially

transported over the lower elevation/western section of the Beas basin during the early morning, before it is

subsequently deflected to the right (looking downwind) so that it passes over the lower elevation/western

section of the Sutlej basin. Most of the moisture is transformed into precipitation over the Beas basin, result-

ing in considerably less moisture reaching the Sutlej and consequently much less precipitation. This suggests

that the dry bias over the Sutlej basin could be partly due to excessive precipitation over the Beas. Figure 7

also shows analogous results for the afternoon period, which is characterized by a relatively uniform wes-

terly transport of moisture from over the lower elevation regions of both basins, resulting in

subsequent precipitation.

3.2. Assessment of Other Gridded Precipitation Datasets

In this section we assess how well ERA‐Interim, TRMM, APHRODITE, and bias‐corrected WRF output

reproduce the in situ observations for the period 1998 to 2007 (for which they all overlap). Here, the selected

ERA‐Interim, TRMM, and APHRODITE data, and the bias‐corrected WRF output, are based on the nearest‐

neighbor approach to the observations.

The error statistics shown in Table 3 for annual precipitation demonstrates that the performance of TRMM

and bias‐corrected WRF output are largely comparable for the Beas basin, and superior to APHRODITE; for

example, they both have a wet bias of around 5 to 7 mm, and a RMSE of around 16 to 19 mm. However,

although ERA‐Interim has a smaller wet bias of 1.3 mm, it has a much larger RMSE of 39.2 mm and lower

correlation coefficient of 0.94 (suggesting that its low overall bias is a result of cancelation of errors). By com-

parison, for annual precipitation in the Sutlej basin, the bias‐corrected WRF output is superior to TRMM (as

well as APHRODITE and ERA‐Interim); for example, bias‐corrected WRF output has a bias (RMSE) of 3.0

mm (13.2 mm) compared to 13.3 mm (21.9 mm) for TRMM. For monthly precipitation, Figures 4c and 4d

demonstrate that the three gridded datasets agree better with the observations for the premonsoon,

Figure 6. Seasonally and basin‐averaged diurnal cycle of hourly precipitation based on output from the Weather Research and Forecasting (WRF) model at a spa-

tial resolution of 5 km for the period 1980 to 2012 in the Beas (blue) and Sutlej (red) basins for (a) winter, (b) premonsoon, (c) monsoon, and (d) postmonsoon.
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postmonsoon, and winter periods (and therefore largely with the bias‐corrected WRF output) compared to

the monsoon. For the monsoon, APHRODITE considerably underestimates the peak precipitation for

both basins, while ERA‐Interim tends to overestimate it. For the Beas basin, TRMM does a reasonable job

of representing the peak in monsoon precipitation but overestimates it for the Sutlej basin. However,

none of the gridded datasets perform as well as the bias‐corrected WRF output for the monsoon period.

Figure 4c also shows that ERA‐Interim is characterized by periods of both wet and dry biases, explaining

its low overall value for annual bias. Similarly, Figure 5 shows that TRMM, APHRODITE, and ERA‐

Interim all present a dry bias in both basins for low‐ and medium‐intensity daily precipitation amounts

for all seasons and that the bias‐corrected WRF output agrees best with the observations (despite

overestimating drizzle during the premonsoon season). Here, ERA‐Interim is the least accurate, showing

Figure 7. Mean column‐integrated horizontal moisture flux (vectors, kg · m
−1

· s
−1

) and precipitation (shading, mm/hr)

over the Beas and Sutlej basins at (a) 0600 LT and (b) 1500 LT, based on output from the Weather Research and

Forecasting (WRF) model at a spatial resolution of 5 km during the monsoon season for the time period 1980 to 2012.

Table 3

Summary of the Basin‐Averaged Error Statistics (Bias, Correlation Coefficient, and RMSE) for Annual Precipitation for the Beas and Sutlej Basins Based on

Bias‐Corrected WRF Output at a Spatial Resolution of 5 km, ERA‐Interim, TRMM, and APHRODITE for the Time Period 1998 to 2007

Dataset

Beas basin Sutlej basin

Bias (mm) RMSE (mm) Correlation Coefficient Bias (mm) RMSE (mm) Correlation Coefficient

Bias‐corrected WRF −7.4 15.8 0.99 3.0 13.2 0.99

ERA‐Interim −1.3 39.2 0.94 7.6 33.0 0.95

TRMM −5.0 18.7 0.99 13.3 21.9 0.99

APHRODITE −21.3 34.7 1.00 −11.4 19.3 1.00

Note. All correlation coefficients reported are statistically significant at the 95% confidence level. The WRF, ERA‐Interim, TRMM, and APHRODITE results are
derived from the nearest grid point to the in situ observations.
Abbreviations: APHRODITE: Asian Precipitation Highly Resolved Observational Data Integration Towards Evaluation of Water Resources; TRMM: Tropical
Rainfall Measuring Mission; WRF: Weather Research and Forecasting.
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a strong dry bias for all precipitation intensities during all seasons. Note that the gridded datasets tend to

agree better with the observations for high‐intensity precipitation events.

Table 4 compares the mean annual number of wet days (defined as days receiving more than 0.2 mm of pre-

cipitation) estimated by the gridded datasets and the bias‐corrected WRF model output with observations.

The total number of wet days is overestimated by all three gridded datasets for both basins (despite

Figure 5 showing that these datasets have a dry bias at daily timescales), especially by ERA‐Interim and

APHRODITE, which show respectively 77% and 67% more wet days than observed. An independent‐sample

t test showed that the differences between the datasets and observations are statistically significant (at the

99% confidence level). However, by far the best agreement with the observations is for the bias‐corrected

WRF output, which is not statistically different compared to observations.

Figure 8 focuses on the spatial pattern of annual precipitation over the entire Beas and Sutlej catchments, as

well as the contribution made by each season to the annual total. Given the good performance of the bias‐

corrected WRF output (albeit based on comparison against stations located at relatively low altitudes [see

Figure 1b], ranging in elevation from 284 to 3,639 m asl), we assume that it also gives the best insight into

the precipitation characteristics over the high‐altitude interior of the catchments, that is, that the relation-

ship between elevation and the a and b parameters that are used to compute P* throughout the Beas and

Sutlej catchments (see section 2.3) also holds in these regions. On annual timescales, the bias‐corrected

WRF output shows a maximum in precipitation over the lower elevation regions located over the western

side of the catchments, with the majority (~80%) falling during the monsoon (consistent with precipitation

produced by orographic lifting of moist south‐easterly winds associated with the monsoon). Section 2.3

showed that the elevation dependence was statistically robust during the period June to October (as well

as other months), inferring higher confidence in the bias‐correctedWRF output during the monsoon period.

The bias‐corrected WRF output also shows the dry region of the Zanda Valley in the upper reaches of the

Sutlej basin, as well as a local peak in precipitation located around the source of the Sutlej (near lakes

Manasarovar and Rakshastal) that occurs mainly during the monsoon. The bias‐corrected WRF output also

shows that negligible precipitation falls during the postmonsoon season and that whatever small amount of

precipitation that falls during the premonsoon is concentrated within the high‐altitude interior. Figure 8 also

includes a column showing raw/uncorrected WRF output, which shows that the greatest differences are

below around 3,000 m in both the Beas and the Sutlej basins; that is, the impact of the bias correction is

to redistribute precipitation below this altitude (particularly by moving excess precipitation at higher eleva-

tions down to lower elevations), while largely preserving the raw values at elevations greater than 3,000 m.

The most striking feature of the three gridded datasets is their similarity and the considerable differences

compared to the bias‐corrected WRF output. For example, all three gridded datasets clearly underestimate

(overestimate) precipitation over the wet (dry) regions of the catchments, particularly during the monsoon,

that is, underrepresenting the heterogeneity, which is attributable to factors such as grid spacing and the

lack of in situ stations at high elevations.

3.3. Precipitation Extremes and Persistence

Figure 9 presents spatial patterns of the precipitation indices used in this study, expressed as annual means

for the period 1998 to 2007. As with the patterns of precipitation (Figure 8), the indices based on ERA‐

Interim, TRMM, and APHRODITE data differ considerably from those based on bias‐correctedWRF output.

For precipitation extremes, the Rx5day index based on bias‐corrected WRF output exhibits comparatively

Table 4

Mean and Standard Deviation (Shown in Brackets) of the Annual Number of Wet Days for the Beas and Sutlej Basins From In Situ Observations, Bias‐Corrected WRF

Output at a Spatial Resolution of 5 km, ERA‐Interim, TRMM, and APHRODITE for the time period 1997 to 2008

Basin Observations Bias‐corrected WRF ERA‐Interim TRMM APHRODITE

Beas 85 (9) 96 (11) 189* (11) 123* (11) 155* (8)

Sutlej 69 (6) 75 (8) 158* (5) 114* (10) 147* (6)

Note. Asterisks mark differences that are statistically significant at the 99% confidence level. Wet days are defined as daily accumulated precipitation ≥0.2 mm.
Abbreviations: APHRODITE: Asian Precipitation Highly Resolved Observational Data Integration Towards Evaluation of Water Resources; TRMM: Tropical
Rainfall Measuring Mission; WRF: Weather Research and Forecasting.
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Figure 8. (top row) Comparison of the spatial distribution of annual precipitation (mm) over the Beas and Sutlej basins from bias‐correctedWeather Research and

Forecasting (WRF) output at a spatial resolution of 5 km, WRF output at a spatial resolution of 5 km, ERA‐Interim, Tropical Rainfall Measuring Mission

(TRMM), and Asian Precipitation Highly Resolved Observational Data Integration Towards Evaluation of Water Resources (APHRODITE) for the time period 1998

to 2007. (other rows) As top row but showing the subsequent contribution from winter, premonsoon, monsoon, and postmonsoon seasons to the annual total (%).
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Figure 9. Comparison of the annually averaged spatial distribution of the Rx5day (mm), R20 (days), R95T (mm), consecutive dry day (CDD; days), and consecutive

wet day (CWD; days) precipitation indices (aligned top to bottom) over the Beas and Sutlej basins from bias‐corrected Weather Research and Forecasting (WRF)

output at a spatial resolution of 5 km, WRF output at a spatial resolution of 5 km, ERA‐Interim, Tropical Rainfall Measuring Mission (TRMM), and Asian

Precipitation Highly Resolved Observational Data Integration Towards Evaluation ofWater Resources ((APHRODITE; from left to right) for the time period 1998 to

2007. See section 2.4 for definition of the indices.
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large values of around 800 mm over the western side of the catchments (in the narrow Sutlej river valley,

near the Baspa‐Sutlej confluence, located downstream of Kalpa and upstream of Sarhan) and near the source

of the Sutlej on its eastern side, andminimum values of less than 100mm over the Zanda Valley (see Figure 1

b for locations). This spatial pattern is broadly matched in the R20 index based on the bias‐corrected WRF

output, which shows that the wettest location is near the Baspa‐Sutlej confluence with around 70 days per

year exceeding a daily precipitation total of 20 mm. The three gridded datasets again fail to capture these

localized maxima and minima, resulting in much smoother/broader fields. The R95T index based on the

bias‐corrected WRF output also shows a maximum of around 1,000 mm near the Baspa‐Sutlej confluence

of the Sutlej basin. High values of R95T index based on bias‐corrected WRF output are also found in the

northern part of the Beas basin and at the source of the Sutlej River. By comparison, R95T is particularly

poorly captured by the gridded datasets, which is not surprising given the underrepresentation of daily

high‐intensity precipitation events (Figure 5). Figure 9 also includes values based on the raw/uncorrected

WRF output, which although demonstrate broadly similar patterns of localized maxima and minima com-

pared to the bias‐corrected WRF output (like Figure 8) also show considerable differences in amplitude

below around 3,000 m, while largely preserving the raw values at elevations greater than 3,000 m. For per-

sistence, the CDD index based on bias‐corrected WRF output indicates that the Zanda Valley and the wes-

tern region are also the location of themaximum number of CDDs (reaching over 80 days), while dry periods

are less persistent at the source of the Sutlej. The CWD index shows a maximum number of CWDs over the

narrow Sutlej valley (around 50 days) and the source of the Sutlej, and a minimum in the Zanda Valley. All

three gridded datasets overestimate (underestimate) the persistence of wet (dry) days across the two catch-

ments. As expected, the patterns and amplitude of localizedmaxima andminima based on the rawWRF out-

put and bias‐corrected WRF output were broadly similar for both the indices representing persistence.

4. Discussion and Conclusions

The need to provide accurate estimates of precipitation over catchments in the HKKH for assessing its

hydrology and water resource systems, as well as hydro‐meteorological hazards, is widely recognized.

While dynamically downscaled reanalysis or global climate model data (using regional climate models)

are being increasingly used to provide precipitation estimates over specific regions in the HKKH (e.g.,

Akhtar et al., 2008; Ali et al., 2015; Li et al., 2016; Narula &Gosain, 2013; Nepal, 2016; ul‐Hasson, 2016), their

accuracy has yet to be conclusively proven as studies comparing model output and measurements, and the

impact of bias correction on the model output, are still limited in both number and scope. Therefore, in this

study, we focused on comprehensively assessing the ability of bias‐correcting regional climate model to

reproduce the observed detailed patterns of precipitation in the HKKH region by examining the perfor-

mance of a high‐resolution WRFmodel hindcast simulation generated for a long period of time, over a large

region (encompassing two catchments, the Beas and the Sutlej), and assessed against a large number of in

situ precipitation measurements. For the Sutlej basin, we find that the raw (uncorrected) model output

exhibited a considerable dry bias in annual, monthly, and (particularly low‐intensity) daily precipitation

amounts. For the Beas basin, the simulation of precipitation was more accurate, although biases still existed.

Applying the nonlinear bias‐correction method (proposed by Leander & Buishand, 2007) to the model out-

put resulted in much better estimates of precipitation (over both basins and at all temporal scales examined)

in comparison to the available in situ observations. However, the largest impact of the bias‐correction

method was to redistribute precipitation below altitudes of around 3,000 m, while largely preserving the

raw values at elevations greater than 3,000 m. A significant number of in situ observations could not be

included in this study for a range of reasons, for example, failing standard quality control checks. While

we believe that the remaining data set is the best available, further improvements in precipitation estimation

could undoubtedly be achieved if higher quality station data with more spatiotemporal coverage were avail-

able, particularly above 3,000 m in the Sutlej basin.

We further showed that precipitation output from ERA‐Interim reanalysis and two gridded precipitation

datasets (TRMM and APHRODITE) that are available for this region are also characterized by considerable

biases, which are broadly comparable in magnitude to those in the raw WRF model output. Moreover, the

gridded datasets were markedly poorer at estimating the frequency of wet days compared to the model out-

put. The poor performance of the gridded datasets over regions characterized by sharp gradients in precipi-

tation (caused by the interaction between complex topographic features and regional scale atmospheric

10.1029/2019JD030804Journal of Geophysical Research: Atmospheres

BANNISTER ET AL. 14,235



circulation systems) is to be expected given that the spatial resolution of these datasets is larger than the spa-

tial variability of precipitation. Consequently, it was shown that the bias‐correctedWRF precipitation output

was more accurate than the gridded datasets, suggesting that it is more suitable for use in impact studies for

forcing hydrological and water system models and has further implications on the potential of regional cli-

mate modeling approaches to predict future changes in water resources in the HKKH region. Note that the

basin‐wide precipitation patterns estimated by the bias‐corrected WRF output are broadly consistent with

suggestions from Singh and Jain (2003) and Jain et al. (2010) that approximately 40–60% of the annual accu-

mulation of these basins falls in the winter at high‐elevations (in the form of frozen precipitation).

It is speculated that the cause of the dry bias over the Sutlej basin in the rawWRFmodel output is related to a

failure to represent an early‐morning maximum in precipitation during the monsoon period. Such a peak is

apparent in the simulated output for the Beas basin and also reported over other locations focused on south

facing slopes of the HKKH (e.g., Bhatt & Nakamura, 2005; Orr et al., 2017; Prasad, 1974). However, confir-

mation of its existence was hampered by the unavailability of subdaily station data. It was further speculated

that this is related to excessive precipitation falling upstream (over the Beas), resulting in a moisture‐deficit

as the air passes over the Sutlej. It is also likely that the bias is related to the representation of localized diur-

nal mountain‐valley winds, which play a key role in inducing convection. Adequate representation of these

winds in regional climatemodels is a long‐standing issue, with a number of previous studies highlighting the

difficulty of representing them in the HKKH region (e.g., Bhatt & Nakamura, 2006; Norris et al., 2017; Orr

et al., 2017; Sato, 2013; Shrestha & Deshar, 2014).

The bias‐corrected WRF precipitation output is especially valuable to understand vulnerable regions, which

are susceptible to precipitation extremes. By exploring various precipitation indices, we identified three

broad regions within the Beas and Sutlej catchments that are particularly susceptible to such extremes: (1)

the narrow Sutlej river valley (i.e., the Baspa‐Sutlej confluence, which is the wettest region in the model),

(2) the Manali and Dhauladhar mountain range (which is the wettest region in the Beas basin), and (3)

the source of the Sutlej river (including Mount Kailash and lakes Manasarovar and Rakshastal, due to the

occurrence of extreme daily precipitation amounts). The identification of these regions as being currently

susceptible to precipitation extremes has implications for their future state, suggesting that they may be par-

ticularly vulnerable to continued increases in precipitation extremes under future climate scenarios.

Projections based on outputs from coarse‐resolution CMIP5 (Coupled Model Intercomparison Project phase

5) global climate model projections suggest that precipitation extremes are generally expected to intensify

over the HKKH region in the future (Panday et al., 2014; Wu et al., 2017). However, our results also suggest

that downscaling coarse‐resolution climate model projections is critical to understand the regional detail of

precipitation extremes over specific regions of the HKKH.

To conclude, we have demonstrated the benefits of bias‐corrected high‐resolution regional climate model

output over two Himalayan catchments and shown that it provides better estimates of mean and extreme

precipitation compared to reanalyses and gridded precipitation products. The modeling methodology

employed here is equally applicable to similar river basins across the HKKH region, where it could be uti-

lized to make much needed improvements to hydro‐climatic services (Widmann et al., 2017). Further work

will focus on using our high‐resolution regional climatemodel to downscale outputs fromCMIP5model pro-

jections over the Beas and Sutlej basins to evaluate the impacts on precipitation of climate change from the

middle to late 21st century, which will be used for subsequent hydrological impact studies (e.g., Lutz et al.,

2014) as well as an improved understanding of precipitation extremes.
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