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Abstract—Power electronics are increasingly important in new
generation vehicles as critical safety mechanical subsystems are
being replaced with more electronic components. Hence, it is vital
that the health of these power electronic components is monitored
for safety and reliability on a platform. The aim of this paper is to
develop a prognostic approach for predicting the remaining use-
ful life of power electronic components. The developed algorithms
must also be embeddable and computationally efficient to sup-
port on-board real-time decision making. Current state-of-the-art
prognostic algorithms, notably those based on Markov models, are
computationally intensive and not applicable to real-time embed-
ded applications. In this paper, an isolated-gate bipolar transistor
(IGBT) is used as a case study for prognostic development. The pro-
posed approach is developed by analyzing failure mechanisms and
statistics of IGBT degradation data obtained from an accelerated
aging experiment. The approach explores various probability dis-
tributions for modeling discrete degradation profiles of the IGBT
component. This allows the stochastic degradation model to be ef-
ficiently simulated, in this particular example ∼1000 times more
efficiently than Markov approaches.

Index Terms—Isolated-gate bipolar transistor (IGBT), Monte-
Carlo simulation (MCS), power electronics, prognostics, remaining
useful life (RUL).

I. INTRODUCTION

O
VER the last 20 years, electric vehicle (EV) technologies

have taken a significant leap forward, primarily aided by

advances in electrical motor drives, power converters, batter-

ies, and system configurations [1]. Power electronic converters

are widely used in electric traction drive applications, while

multichip insulated-gate bipolar transistor (IGBT) power mod-

ules are the most commonly used power switches for EVs’

on-board power converters [2]. However, IGBTs are known to

be prone to failure, and the situation only worsens when oper-

ating in harsh environments, such as beneath the bonnet of an

EV [3]. Table I represents typical environmental conditions and

operational requirements for automotive applications. Clearly,

the performance and reliability of IGBT modules are con-

strained by these stringent conditions, such as exposure to high
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TABLE I
AUTOMOTIVE ENVIRONMENTAL CONDITION [3]

Cabin Engine Engine Transmission

Compartment

Temperature Range −40 to 85 °C −40 to 105 °C −40 to 125 °C −40 to 150 °C

Vibration <5g 5 to 30 g −30 g −30 g
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temperatures, high levels of humidity, extreme thermal loading

load cycling, and mechanical stress [3]. Among these condi-

tions, thermomechanical stress is an overriding factor that causes

IGBT packaging connector fatigue (such as bond wire and sol-

der connection failures). Nevertheless, despite improvements in

solder technologies, wire bonds are still generally observed as

the major cause for packaging failures, which reduce the life-

time of IGBTs. Therefore, we have chosen wire bonds to be the

focus of this paper.

At present, wire bonding is the dominant technology used to

connect terminals (or leads) to semiconductor chips because it

is still regarded as a straightforward, flexible, and cost-effective

solution [4]. Recent advances in new composition wire mate-

rials and new bonding technologies (e.g., special coating and

strain buffer bonding) have received a great deal of attention by

industry. Nonetheless, when bonding using these new technolo-

gies fails, the entire device will be damaged with catastrophic

consequences.

Undoubtedly, the detection of an IGBT fault prior to progno-

sis or even after diagnosis is of critical importance for a healthy

converter operation system. Conventional vehicles are equipped

with an on-board diagnostic system, which is capable of detect-

ing a “happened” fault and flag it up to the driver of the vehicle

[5], [6]. In the event of an IGBT failure, the detection must be

quick enough (ideally, less than 10 μs) to prevent a fault from

propagating, which places a limitation on the hardware setup [7].

Essentially, there is an increasing need for failure detection

technologies to provide a state-of-health or early warning in-

formation. It is worth noting that in general, power electronic

components fail quite frequently. Hence, there is no real need

to have prognostics in place but if we can detect abnormality at

an earlier stage, it is possible to increase the time to failure or

the duration of the potential of failure (POF) (see Fig. 1). On

the other hand, prognostics results can be used for optimization

of system control, rather than predictive maintenance to extend

the overall remaining useful life (RUL). In order to justify the
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Fig. 1. Potential of Failure.

usefulness of prognostics, the duration of POF must be quite

long. Therefore, it is important to know which feature must be

monitored to detect malfunction at an early stage. If the moni-

tored parameters persistently deviate by more than 3δ (Std) as a

detection error over the flat region, this implies that there is an

abnormality at this time.

Commercial reliability prediction programmes for electrical

and electromechanical stress still use traditional reliability

prediction methods, including Mil-HDBK-217, 217-PLUS,

PRISM, Telcordia, and FIDES [6], [8]. These are empirical

methods based on statistical data and average performance of

a large number of identical products. In essence, these methods

account little for the mechanisms of complex in-service failures.

It is therefore not surprising that the results obtained from these

methods do not always correlate well with actual failures in

the field. Recently, some advanced prognostic techniques have

been proposed to predict semiconductor devices’ impending

failures [9].

First, a range of detecting elements may be embedded within

the host device and their failures provide an early warning sig-

nal. This is called the Canary method. The second method is the

analytical lifetime prediction based on Coffin–Manson mod-

els, Norris–Landzberg models, or Bayerer’s models [10]. The

lifetime expectancy (in numbers of cycles) of an IGBT is ex-

perimentally obtained from the given environmental and load

conditions [11]. The cumulative fatigue (or damage) of an IGBT

is calculated based on actual operational conditions and its RUL

which is then expressed as the number of cycles to failures.

The third method is the failure precursor method. This is real-

ized by observing changes in either fault-related parameters or

by adding purpose-built embedded sensors. All these methods

have advantages and drawbacks. The first method is technically

effective but provides limited information of the device’s life

consumption. It is irreversible and also affects the system ar-

chitecture of the chip [12]. The second can offer quantitative

information of the RUL from exhaustive tests. However, these

parameters are often associated with different stress conditions

and are not fully considered. For instance, humidity and me-

chanical stress are key parameters but are not accounted for [6].

While the third method is indirect and easy to implement, the

complex relationship between failures and precursors is over-

simplified.

Overall, failure mechanisms have not been fully understood

and these methods cannot be applied in service conditions [13].

TABLE II
IGBT DEGRADATION PHASE DURATION

Duration of Each Degradation Phase

IGBT No 1 2 3 4

1st Phase 1 2 2 2

2nd Phase 109 132 61 117

3rd Phase 1245 955 1069 1561

4th Phase 1440 1429 1940 1296

5th Phase 656 866 317 341

6th Phase 88 164 645 480

7th Phase 521 879 266 394

8th Phase 282 94 145 331

9th Phase 45 78 209 85

10th Phase 111 6 17 91

IGBT Life 4498 4605 4671 4698

This paper proposes a new data-driven approach for power elec-

tronic components (e.g., IGBT), which addresses issues in previ-

ous IGBT prognostics. In [14], Celaya et al. proposed an empiri-

cal degradation model for the ∆R_[DS(ON)] as the degradation

process for six aged devices. The exponential model is formed

as a first-order linear discrete model for using Bayesian tracking

algorithms like the extended Kalman filter. In [15], Patil et al.

introduced a prognostics framework for nonpunch through and

field stop IGBTs (NPT IGBTs), which includes the Mahalob

distance anomaly parameter detection as the diagnostic param-

eter. The particle-filter is performed for future health prediction

of the component using the V_[CE(ON)] as a precursor param-

eter. The first step in this approach is to propagate a number

of particles through the empirical model to estimate the initial

state. The second step is to estimate the next state based on the

first updated particle weights.

The defect is dependent on the propagation by time steps

(in all the above approaches). It is computationally unfeasible

to perform several Monte-Carlo Simulations (MCS) at each

time step. In the proposed novel prognostic algorithm, the

dependency of the RUL efficiency on the time step is elim-

inated and MCS are carried out for the various degradation

phase durations (see Table II). As a result, the RUL time con-

sumption is significantly reduced and a considerably improved

prognostic feasibility model is embeddable. The aim of this pa-

per is to develop a computationally efficient and an embedded

real-time prognostic approach. In this regard, we propose a novel

probabilistic prognostic model for each degradation phase of the

system for estimation of the health state of the IGBT component.

RUL simulation is performed using the Monte–Carlo technique

(multiple runs) of the degradation model up to the predefined

end-of-life threshold. In this approach, the RUL calculation is

carried out using the probabilistic model as a function of the

component’s life duration. This modeling technique uses the

historical degradation data to construct the probability of failure

during operating conditions. The dataset is discretized in various

states which have different durations. Therefore, the probabilis-

tic model is formed utilizing the duration of the failure phase in



order to aid the model propagation, which effectively reduces

the total computing processing.

This paper is organized as follows. In Section II, the phenom-

ena of intrinsic and extrinsic failure mechanisms are described

in brief and some of the failure modes applicable to power elec-

tronic components are discussed. The power cycling test rig and

effects of power cycling are described in Section III. The data

collection, data preprocessing, and classifications are then pre-

sented. Section IV discusses degradation models, problem for-

mulation, and the model’s degradation optimization. Section V

discusses the prognostics approach using a statistical model.

It also discusses the MCS method and the IGBT degradation

model for RUL estimation. Section VI discusses the prognos-

tics results using root mean square error (RMSE). Concluding

remarks and future work are discussed in Section VII.

II. FAILURE MECHANISM OVERVIEW

In order to model the reliability of power electronic com-

ponents, it is necessary to understand the failure mechanisms

and identify the precursors of failure, as well as of aging un-

der various operating conditions and environmental stress to

predict the malfunctioning of the component. The two major

failure mechanisms of IGBTs are intrinsic and extrinsic faults

that are related to IGBTs’ physics and packaging, respectively.

The phenomenon of intrinsic failure mechanism in power elec-

tronics includes hot carrier injection (HCI), latch up mechanism

(i.e., sudden collapse of the collector to emitter voltage), dielec-

tric breakdown, and electromigration. Extrinsic faults consist

of wire lift off, die solder delamination, and substrate solder

degradation [16], [17]. On the other hand, the aging of power

electronic systems resulting from harsh operating conditions and

environmental stress are two potential failure modes of stress

and cause of catastrophic failure in IGBTs. As this paper intends

to develop a prognostic model based on the precursor’s param-

eters such as vce , vge , and ice [18]–[22], it would be useful to

understand the physics behind the failure mechanisms that can

be monitored by such parameters (mainly vce in this paper).

One of the most important defects relevant to electric stress

is related to dielectric breakdown. This defect mechanism oc-

curs in between the channels of the gate oxide, the emitter,

and collector. It is noted that the gate oxide degrades when

the dielectric layer wears out due to a strong electric field of

10 MV/CM or above and electrostatic discharge [23]. The gate

structure includes a thin oxide layer, which is used to isolate

the gate from the MOS transistor, which due to a large voltage

spike, emits an avalanche of electrons which causes an imme-

diate breakdown [24].

HCI, an intrinsic failure mechanism, is considered as either

being the primary cause of time-dependent dielectric breakdown

or wearing out of chips under harsh operating conditions [25].

In a high electric field, the carriers (electron/hols) have suffi-

cient energy to break through the Si/SiO2 barrier, which causes

leakage current through the oxide, whereas high temperature

causes gate oxide breakdown. As a result of hot electron in-

jection which leads to excessive leakage current, the IGBT’s

turning off time is effectively increased, which leads to a loss

of both gate voltage and control of the collector current (ic ).

Hence, HCI has a major effect on the long-term reliability of

power electronic components [18]. Another intrinsic failure phe-

nomenon is electromigration failure, which might occur when

the current is unevenly distributed among wire bonds. The rea-

son is that the current density being much higher in the vicinity

around some bonding wires together with an increase in tem-

perature will cause an adjustment in the interconnection of the

wire bonding eventually resulting in a break in the cross section

of the wires. As a result, the conductor resistance and overall

temperature of the devices are increased [26], [27].

III. AGING EXPERIMENT

In order to create a prognostic model, it is important to col-

lect reliability information in the form of a degradation profile

that covers failure data under various types of operating con-

ditions. It takes a long time for failures to progress in actual

operating conditions. It is thus necessary to employ a number

of different techniques to accelerate failure mechanisms. These

techniques, known as accelerated aging tests, are divided into

three main categories: thermal cycling [11], [28]–[30], power

cycling [31], [32], and electrical overstress [33]. It is noteworthy

that due to the nature of failures, different failures are induced

under different aging experiments. Hence, it is necessary to col-

lect degradation information, which is accelerated by different

types of accelerated aging tests. For example, wire bond failure

is the dominant failure for IGBTs in relatively highly acceler-

ated thermal and power cycling aging tests [34]. However, other

mechanical failures, such as solder joints and metallization, can

dominate the failure mode in lower temperature condition stress

testing. The accelerated aging test is useful in identifying these

dominant failures and concentrating our attention on these fail-

ures in power cycle testing. In this paper, the power cycling ac-

celerated aging test rig was run by the Power Electronic Group

at Nottingham University. As the test rig was run with a highly

accelerated degradation process, the failure mode corresponds

to the wire bond failure and eventually turns to latch up failure

condition. Hence, the proposed prognostic model can predict

these sorts of failures. The rest of this paper describes the test

bench used by the Power Electronics Group and the data-mining

steps, which are needed to prepare reliability data for the cre-

ation of the prognostic model.

A. Power Cycling Aging Bench

The Power Electronics Group at Nottingham University has

carried out a power cycling aging test for IGBT power elec-

tronic devices under high thermal stress values up to 60 °C for

the baseplate temperature and 120 °C for the die. The failure

mode involves wire bond lifting off and progressively ending

before reaching the open circuit. The device is assembled using

Dynex technology of the alumina–copper using direct bonded

copper for heat conduction and relatively low conductivity of

alumina, and aluminium wire bonds (see Fig. 2).

The test bench is equipped with a switched current supply and

a constant current power supply to heat and cool a die sample.

Each IGBT die is soldered and wire bonded onto a substrate tile.



Fig. 2. Proposed Sample.

Fig. 3. Actual Heat Sink Assembly, IR Sensor Support, and IR Sensors.

A coupon is used to hold the die and to constantly dissipate heat

through the heat sink and water coolant loop. This also allows

the temperature to be measured using an infrared (IR) sensor.

The custom test bed provides a coolant at a constant 20 °C

using a chiller unit (Thermo FisherScientific A200-A25) and

the coolant flows in a U-shape circuit through the heat sink. The

four coupons sit in recessed areas on the upper surface of the

heat sink. The supported IR sensors used above the coupons

are Micro-Epsilon CS-SF15-C1 miniature pyrometers. These

can be configured to output an analogue voltage, proportional

to temperature, in the 0–5 V range using a USB programming

kit (TM-USBK-CS USB Kit) (see Fig. 3).

The voltage signal from the IR sensors can also be used to

visualize the temperature cycling in real time using Labview

or similar software. Each coupon is allowed to heat up within

the range of operating junction temperatures (60 ◦C to 120 ◦C.

Once the reading from the IR sensors indicates the temperature

has reached the upper bound, then the bypass switch (designed

to keep the temperature within a hysteresis bound) diverts heat

away until the temperature drops to the lower limit. On the other

hand, if the IR sensor indicates the temperature has fallen to the

lower temperature bound, the bypass switch will be disabled

and the cycle repeats until the safety temperature bound which

is set to prevent the device from open-circuit failure. Such a test

bench is needed to age the component under various operating

conditions subjected to various mission profiles, which charac-

terize the operational environment. It is expected to work under

ambient conditions, and high-temperature cyclic, and intermit-

tent loading conditions (i.e., power cycling), which ultimately

induces more stress on the weak parts of the device [20].

Fig. 4. Four IGBT run-to-failure dataset samples.

Power cycling aging tests enable monitoring and measure-

ment of temperature and electrical parameters. The junc-

tion temperature and the collector–emitter are measured and

recorded constantly until the IGBT fails in accelerated aging

experiments. The dataset is formatted in a data array fashion,

which can be read by MATLAB to employ reliability analysis

on the raw data for conducting data preprocessing, as described

in the following section.

B. Data Preprocessing and Discretization

Following the transfer of data to MATLAB, it is necessary to

conduct preprocessing which makes the reliability information

suitable for developing a prognostic model (i.e., data mining).

Data mining comprises preprocessing (filtering), classification

(discretizing), formulating a degradation model, and propaga-

tion (RUL simulation) [35], [36]. The vce (on-state) parame-

ter indicates increases in nonmonotone discrete steps including

noise until the IGBT fails and before an open circuit occurs for

all four samples (see Fig. 4). The vce measurement enables the

detection of wire bond lift off or emitter metallization damage

[6], [9], [15]. The vce variation due to the degradation process

is very small and requires a very high degree of accuracy for

this measurement. As shown in Fig. 4, the vce (on-state) voltage

precursor indicates a sudden fall at the end of the aging process

when the IGBT fails after more than 4500 time units.

IGBT raw datasets have inherent noises which obscure the

trend underlying the samples. Initially, the raw dataset is pro-

cessed using a low-pass filter, which attempts to reduce internal

noise as a dispersion sensitivity to reveal the true value of the

aging data of raw vce . The drawback of this filter is that it im-

poses delays on the dataset. In Fig. 5, the green plot represents

a low-pass filter with RC delay of 1000 time units; the magenta

plot depicts a symmetrical low-pass filter; and the blue plot

represents the raw data.

The symmetrical low-pass filter (i.e., moving averages filter)

is proposed to overcome the lagging. The advantages of the

moving average filter, as in (1), is that it results in more weight-

ing of the population of data and less delay in filtering, and while

minimizing noise, it effectively smooth’s the dataset and can be

a better use for data pattern recognition or classification as an



Fig. 5. First vce sample after filtering.

Fig. 6. Four IGBT run-to-failure datasets after filtering.

essential step for developing stringent prognostic modeling [37]

MAj =
∑n

i=j

xi

n − j

n = 1000

j = 1, 2, 2, . . . , n − 1. (1)

The parameter j denotes the reading points of both filtered

and nonfiltered test data. Xi is nonfiltered test data at reading

point i. n shows the length of the first relaxing point, which is

varied from test data to test data. n is set to 1000 for the data

test shown in Fig. 5.

The rate of filtering windows increases when it reaches close

to the relaxing point, whereas the length of the defined win-

dow becomes increasingly smaller. After noise elimination (see

Fig. 6), the dataset is clean enough and suitable to be separated

into different health states. Therefore, classification, an impor-

tant part of the data-mining approach, is performed for accurate

and efficient RUL computation.

It is noted in Fig. 6 that the aging process started at almost

2 V and degradation is progressed for more than 4500 cycles,

whereas the failure has occurred at about 2.4 V. The degradation

Fig. 7. Discretization of aging data.

process is discretized using a uniform quantization process [38]

and each degradation state increases about 0.054 V in a discrete

manner, which corresponds to one wire bond lift off. Fig. 7

depicts ten health states and each state lasts for a period of time

before it reaches the subsequent state.

Fig. 8 depicts the overall process of the data-mining algorithm

development for the IGBT vce dataset collected from power

cycling experiments. Initially, the aging data of raw vce as a

precursor parameter is processed by low-pass filtering. Then,

the state of degradation is discretized in the form of the hid-

den health condition. The estimation model as a failure model

(degradation model) is then structured from the training dataset

using conventional statistical models (Gamma, Poisson, etc.).

Subsequently, the trained model is used with the test data to

estimate the current health of the component up until a pre-

defined threshold state, where it fails gradually in a discrete

manner. This information is then used with a MCS to predict

the RUL of the IGBT. The outline of the algorithm is described

in Fig. 8.

IV. DEVELOPING THE DEGRADATION MODEL

A. Problem Formulation

As mentioned in the previous section, the noise-free aging

data was discretized into different steps (phases). The phase du-

rations of the run-to-failure of four IGBT samples are recorded

after using a quantized cluster validity index and are displayed

in Table II. The highest number of the failure progression occurs

at the tenth health state [39].

A stochastic model is used in this paper because the occur-

rence of the IGBT degradation is assumed to have followed a

nonhomogeneous probability distribution process, which ren-

ders the occurrence of a random event. As a result, the failure

pattern follows the statistical approach in which the mean and

standard deviation are the main parameters for tuning the prob-

ability functions (see Table III). Hence, the prognostics model

can be formulated with statistical distribution models.



Fig. 8. Algorithm process.

In this paper, the histogram of the limited (four) run-to-failure

samples will not provide the precise distribution. As such, two

distributions have been selected: the Gamma and Poisson distri-

butions. Two major types of distributions have been identified:

1) distributions which have mean (λ) and standard deviation (δ),

i.e., Gaussian, exponential, Weibull distributions, etc.; 2) distri-

butions with solely δ = l, i.e., Poisson, binomial distributions,

etc. All the listed distributions in Type 1 will work in a similar

manner and the same is true of Type 2 distributions. Therefore,

TABLE III
PROBABILITY DISTRIBUTION FUNCTION

Models Density Functions Parameters

Gamma f (T i = x) = xk −1
(

e −x
θ

/

Γ(k)θk

)

κ , θ

Poisson f (T i = x) − e −λ
λ
k

k ! λ

each distribution has been peaked up from both types randomly.

The Gamma distribution has been chosen as it is associated with

mean and standard deviation parameters, whereas the Poisson

distribution involves only a mean parameter. Hence, this paper

aims to present the feasibility of Gamma and Poisson models in

problem formulation of prognostics. Their validity is evaluated

in Section VI.

Both can be modeled into each individual degradation phase.

The duration time (∆T) of the degradation is considered to be

a random variable, which can be a random parameter for the

probability distribution function. The duration of each degrada-

tion process is used as a parameter λ for the Poisson probability

distribution function and κ, θ for the Gamma probability distri-

bution function [39].

B. Degradation Model Optimization

Maximum likelihood estimation (MLE) is used as an ob-

jective function to maximize the density probability function

(i.e., the Poisson distribution function). The Poisson distribu-

tion
(

P (xi |λ) =
[

λ
x i .e−λ

x i !

]

, xi ≥ 0
)

is the probability distri-

bution of IGBT data (xi) given Poisson parameter λ. The MLE

method is used to estimate the underlying rate parameter (λ)

for the Poisson process in order to generate the probability of

occurrence for each λ. The first step is to write the joint proba-

bility mass function in this case because xi is a discrete random

variable of positive integers. As all discrete random variables

are independent, the product of individual density functions can

be obtained

P [x1 , x2 , . . . , xn |λ] =
N
∏

n=1

λ
xn e−eλ

xn !
= c.e−λN .λ

N
∑

n = 1
xn

. (2)

The next step would be to calculate the maximum of this

probability mass function with respect to λ. This can be done by

taking a logarithm, which simplifies the product of exponents.

This is equivalent to finding Max λ [40]

log

(

c.e−λN .λ

N
∑

n = 1
xn

)

= −Nλ +

(

N
∑

n=1

xn

)

. ln λ. (3)

Then, taking the derivative from (4) and setting it to zero
(

∂
∂λ

= 0
)

produces λ̂MLE [24]

λ̂MLE =
1

n

N
∑

n=1

xn.



TABLE IV
MLE FOR THE POISSON PROBABILITY DISTRIBUTION

MLE Model Parameters

λ

Model 1 2

Model 2 98

Model 3 1210

Model 4 1531

Model 5 520

Model 6 330

Model 7 520

Model 8 211

Model 9 126

Model 10 70

TABLE V
MLE FOR GAMMA PROBABILITY DISTRIBUTION

Parameters

MLE Model κ θ

Model 1 0.6646 694.9

Model 2 0.6020 766.9

Model 3 0.4284 1053.3

Model 4 0.3378 978.3

Model 5 0.3086 576.5

Model 6 0.2692 458.4

Model 7 0.2389 372.9

Model 8 0.2456 153.0

Model 9 0.2578 63.3

Model 10 0.2964 20.0

For the Gamma distribution, there are two modeling param-

eters, κ and θ, to be estimated. MLE generically is formulated as

θ̂ =
1

κN

N
∑

i=1

xi . (4)

The maximum likelihood criterion is a fairly general one, and

also, fairly powerful to show the true value (the maxima) in close

form algebraically. The true maximum likelihood estimator
⌢

θ

and λ̂MLE parameters converge to the true parameter value λ.

Using the analyticalMLE method, estimation of the best fit of

the modeling parameter λ for tuning the Poisson distribution is

performed [41] (see the estimated values in Table III). Tables IV

and V summarize the parameters for ten uncorrelated degrada-

tion phases obtained from MLE of the Poisson and Gamma

distributions, respectively.

In Fig. 9, the black discrete plot is the optimized parameters

of all four IGBT samples, using the MLE function, which has

shown the tracking of the trend of the first IGBT sample as an

example.

V. PROGNOSTIC APPROACH

In this section, an overview of the prognostic model learning

is provided. This is followed by details of RUL estimation in

the following sections.

Fig. 9. Estimated parameter tracks the trend of the IGBT dataset.

A. Model Learning

In this section, the prognostics algorithm is described in de-

tail and is shown in Fig. 10. Feature extraction (i.e., duration),

clustering, and duration optimization using MLE functions are

obtained before model estimation. The threshold value must

therefore be defined for the propagation stage. In this regard,

the ninth state which almost indicates the end of the compo-

nent’s life is defined as a threshold state. This is an essential

step for the data-mining process, which the degradation model

propagates up until the predefined threshold state.

A cross validation technique is used to assess the accuracy of

the predictive degradation model (Poisson and Gamma models).

Therefore, in this paper, the first three IGBT samples are chosen

as the training dataset and the fourth as the test data. In the next

iteration, the first training dataset is shifted to the second train-

ing dataset and the second training dataset is shifted to the third

and so on, until the first one reaches the last dataset. The test

data will then be rotated one by one for all four IGBT datasets.

The probability distribution function (e.g., Poisson function) is

used to estimate the expected value using mean parameter λ

value. Nine stochastic models are built based on nine degrada-

tion phases, which look similar to a Markov model structure as

shown in the following equation:

1

N

∑4

i=1

∑9

j=1
∆T

(j )
(S j ) = E(∆T S j ). (5)

After the states are parameterized by mean duration E(∆T S j )
for all degradation phases (see Fig. 11), the degradation model

based on stochastic probability density functions (Poisson prob-

ability distribution) are constructed in the form of a Markov

model structure. Subsequently, the next step is to calculate the

end of life of the component [42].

B. RUL Estimation

In this paper, the feasibility of RUL estimation presents as

the useful life left on an IGBT component at a particular time

of measurement. The approach depends on past observed IGBT



Fig. 10. Prognostic approach algorithm.

Fig. 11. Degradation model’s structure for prognostics.

degradation data, which is processed to construct an estimated

model based on the duration parameter of the failure data using

the Poisson and Gamma distribution functions. Both Poisson

and Gamma models are conducted with the same RUL estima-

tion format. Due to this similarity, only the RUL estimation for

the Poisson process is described. However, while both are con-

ducted with the same process, the results for both emphasized

differences in RUL calculations which will be explained in the

next section.

The degradation model is constructed using the Markov ap-

proach and MCS are used to estimate the value up to a predefined

threshold state [43]. Then, the RUL (i.e., mean, median, and con-

fidence bounds) is calculated using the distribution of simulated

RULs based on the duration of the degradation phase. First, the

particle is peaked up from the selected dataset and propagated

Fig. 12. Constructed Markov model and MCS for RUL calculation.

through the degradation model up until the predefined threshold

state 9. The propagation is iterated five times according to the

algorithm (see Fig. 10).

Before incrementing at a particle number, the mean of the

expected value is calculated using MATLAB command Pois-

stat, and subsequently, using Poissfit to return a 90 percentile

confidence level of the optimized parameter. The ten percentile

bounds of the expected value are also calculated using Poissinv.

To successfully estimate the RUL of the IGBT component, this

process will continue up until the last particle of the selected

test dataset is greater than the length of the test data and if not,

the particle is incremented by one, the same process is repeated

for all data points. Subsequently, the process moves to calcu-

late the prognostic evaluation metric using the RMSE method.

Cross validation is performed to evaluate the prognostic results

by changing the test sample one by one after the RMSE value is

calculated for each individual test sample. The RUL of the com-

ponent life is calculated using the operation time (opt) measured

at t0 , using (6), e.g., IGBT1 shown in Fig. 12 and [44]

RUL (IGBT1)= component life (igbt1)−operation time (t0)

(6)

Component life (igbt1) = t0 + ∆ts3
rem + ∆ts4

4 + ∆ts5
5

+ ∆ts6
6 + ∆ts7

7 + ∆ts8
8 + ∆ts9

9 (7)

where ∆T is generated by MCS, which presents the duration

of the relevant degradation phase. It follows the model distri-

bution based on the duration of the degradation phase, and it

is optimized using the MLE function. As noted from Fig. 12,

t1 is the time of the last degeneration phase and it will move

to the next degeneration phase. If the random value∆ts3
rem is

equal to (E[∆ts3 ] = ∆T ) for duration ∆T ≤ t1 , then the ran-

dom value (∆ts3
rem ) would be equal to 0. In case of ∆T ≥ t1 ,

∆ts3
rem is equal to ∆T−. This means the component’s health

state is still in this degradation phase and it also continues in the

same degradation phase.



Fig. 13. RUL prediction results using the Poisson distribution.

VI. RESULTS

For both estimation models, the prognostic methods have

tested all four IGBT datasets and the results are depicted by

a series of polylines. In this process of calculation of the real

RUL of the IGBT, at the beginning, the convergence of the RUL

estimation is high and it will decrease toward the end of the

real RUL. At each measurement point, the degradation phase of

the IGBT is predicted and the end of the degradation process is

forecasted.

A. Results From RUL Estimation Using Poisson Process

Fig. 13 shows the IGBT life prediction results, which are vali-

dated with test samples using the cross validation technique. For

the prognostic calculation using a Poisson distribution model,

the straight red line represents the real RUL. The scattered red

and green plots are used as ±10% confidences levels, respec-

tively. The scattered blue line is the mean value of the RUL

prediction. They are used as baselines to show the MCS results

during the degradation process.

It can be noted that the 90 and 10 percentiles confidence width

bonds are very narrow and unrealistically close to the mean

during the whole prediction and do not provide meaningful

information for decision makers due the fact that the Poisson

distribution does not have a standard deviation parameter. At the

beginning of the execution, the mean is quite divergent and linear

with sudden changes reflecting the number of discrete changes

in the degradation phase, but slowly becomes convergent with

the real value once the vce measurement is updated and reaches

the end of the component’s life.

B. Results From RUL Estimation Using Gamma Process

In contrast to the Poisson process, initial results for the

Gamma process were populated with uncertainity which pro-

vides meaningless information for the decision maker. The rea-

son for this controversy is the Poisson distribution’s mean value

(λ) is equal to the standard deviation (δ), which causes con-

fidence intervals to overlap with the mean value. As a result,

Fig. 14. Implementing FIFO buffer for prognostics approach.

uncertainty is trapped in between the narrow confidence bonds

and does not appear in simulation results. The advantage of the

Gamma-based estimation model is to have such a large confi-

dence bound, which provides meaningful information for deci-

sionmakers in comparison with the Poisson process. To resolve

the problem of uncertainty, and to make the Gamma-based RUL

estimation more appropriate for the decision maker, we propose

FIFO (i.e., first-in first-out) buffering.

C. FIFO Buffering for Gamma Approach

A FIFO buffer (i.e., fist-in first out basis) is a useful way to

store and smooth the estimated values using averaging FIFO

buffer sizes. This will reduce uncertainty for accurate RUL esti-

mation and improved confidence bounds. Conventional estima-

tion models are relatively inefficient in that they reserve a large

amount of uncertain data and unwanted information and this will

propagate for the whole RUL calculation and become stale. This

leads to ineffective prefetching when the Monte-Carlo method

simulates the RUL estimation. We propose an alternative struc-

ture to store an estimation value in a predefined FIFO buffer

size (e.g., 550 buffer size). All estimated data are placed at the

bottom of the buffer and removed from the top. The mean buffer

is maintained in direct correlation with the FIFO buffer. Thus,

this method reduces stale uncertainty data, and allows a more

accurate reconstruction of Monte–Carlo RUL simulation.

The MLE estimation value of the probability distribu-

tion function (e.g., Gamma, Weibull distributions, etc.) is

returned in a vector (i.e., phat), which contains elements

{a1 , a2 , a3 , . . . , an} and fetches into a FIFO buffer where the

size of the buffer is optional. However, if the buffer size extends

to the length of the component life, then the excess buffering

of estimated RUL causes high latency, where the RUL estima-

tion simulation deviates from the real RUL at the beginning

(see Fig. 15). It can be noted in Fig. 14 that the first element

fetches into the FIFO buffer frame and has shifted the next part

when the second element arrives, and will continue until all



 

Fig. 15. RUL prediction results using Gamma distribution.

buffer sizes (550) are occupied with estimation elements. Si-

multaneously, the mean buffer keeps recording the average of

the FIFO buffer elements as it increases (see (8) and (9)). Once

it becomes bigger than the size of the buffer, the first element

fetches out. Additionally, averaging of the FIFO buffer creates

a single number at the end of the buffering that represents the

typical distance, where the buffer sample is from the average.

This phenomenon is essentially equivalent to the dc offset (i.e.,

mean value). This may affect the estimated RUL. Hence, the dc

offset must be eliminated to reduce the convergence time. The

elimination of the dc value is can be represented by μ-min (μ),

where μ is mean value

If buffer size = S ≤ 550 ⇒ {b1 , b2 , b3 , . . . , bs}

=

∑n=s
n=1 an

s
(8)

If buffer size = S > 550 ⇒ {b1 , b2 , b3 , . . . , bs}

=

∑n=s
n=(s−550) an

s
. (9)

Fig. 15 shows four IGBT samples of RUL prognostics re-

sults. The results are computed based on a Gamma distribution

model with implementation of the FIFO buffer. As can be seen

in Fig. 15, the results are promising for early failure findings

and improve decision making based on ±10% confidence lev-

els. The straight red dash lines are used as the real RUL values.

This is used as the baseline to indicate how well the prognostic

algorithm performs during the test. In Fig. 15, the blue scatter

plots are the mean value of the RUL prediction. The green and

red plots are the 90 and 10 percentiles of the MCS degradation

paths. At the beginning of the rendering test, the RUL predic-

tion is slightly higher than the real RUL value. However, the

predicted RUL slowly converges to the real RUL values as the

operating time reaches the end of the component’s life.

TABLE VI
PROGNOSTIC PERFORMANCE METRIC OF POISSON DISTRIBUTION

RUL estimation IGBT 1 IGBT 2 IGBT 3 IGBT 4

metric

RMSE% 0.286 0.200 0.258 0.272

TABLE VII
PROGNOSTIC PERFORMANCE METRIC OF GAMMA DISTRIBUTION

RUL estimation IGBT 1 IGBT 2 IGBT 3 IGBT 4

metric

RMSE% 0.3317 0.3397 0.3485 0.3319

D. Prognostic Evaluation Metric

The difference between the estimated value and the real RUL

is considered as an error and the standard deviation of the er-

ror is recognized as the RMSE value. This prediction metric

renders the accuracy and precision for all prognostic methods.

Therefore, in this paper, the RMSE is used to evaluate the prog-

nostic results of the Poisson and Gamma distribution models

[45]. A smaller value for RMSE means a more accurate result

is produced by the prognostic model. If the xî is the estimated

and xi is the real value, then RMSE can be calculated using the

following equation:

RMSE =

√

1

n

∑n

i=1
(xî − xi)2 . (10)

Tables VI and VII summarize the mean-based RMSEs of the

Poisson and Gamma distribution models of the four IGBT sam-

ples, respectively. The Poisson model has lower RMSE values in

comparison to the Gamma model. Comparing the RMSE of the

predicted RULs, the IGBT test sample number 2 has the small-

est RMSE value for the Poisson model, whereas the IGBT test

sample number 1 has the smallest RMSE value for the Gamma

model. The rest of the other IGBT test samples have similar

prognostics results.

VII. CONCLUSION

In this paper, the prognostic algorithm represents a Monte–

Carlo RUL simulation and is based on a Markov stochastic dura-

tion model using the Poisson and Gamma distribution functions.

The vce(on) is chosen as the best degradation indicator and pre-

cursor parameter. A degradation profile is obtained using the

duration of the degradation process and the degradation phase

is parameterized for the probability distribution function to be

integrated in the prognostics algorithm for RUL estimation. It

can be seen that the algorithm is capable of recalculating the

RUL based on the measurement updates and merging it with the

real RUL profile. The RMSE result indicates a good prognostic

performance using the cross validation technique. In contrast to

the Poisson process, the Gamma process needs FIFO buffering

for the improvement of the prognostics results as uncertainty

was an issue with the Gamma process. In contrast to current



state-of-the-art prognostics, this paper represents a light-weight

simulation-based prognostic approach because the RUL calcu-

lation takes less time, about 0.3 ms for each measurement point.

Therefore, it could be implemented efficiently in a real-time

prognostic calculation and is capable of providing an advanced

failure warning and preventing costly power electronic system

downtimes and failures.
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