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Abstract

A comparative study of four well established surrogate models used to predict the non-linear entrainment performance of 

a dual-phase fluid driving jet pump (JP) apparatus is performed. A JP design flow configuration comprising a dual-phase 

(air and water) flow driving a secondary gas-air flow, for which no one has ever provided a unique set of design solutions, is 

described. For the construction of the global approximations (GA), the response surface methodology (RSM), Kriging and 

the radial basis function artificial neural network (RBFANN), were primarily used. The stacked/ensemble models method-

ology was integrated in this study, to improve the predictive model results, thus providing accurate GA that facilitate the 

multi-variable non-linear response design optimisation. An error analysis of all four models along with a multiple model 

accuracy analysis of each case study were performed. The RSM, Kriging, RBFANN and stacked models formed part of 

the surrogate-based optimisation, having the entrainment ratio as the main objective function. Optimisation problems were 

solved by the interior-point algorithm and the genetic algorithm and incurred a hybrid formulation of both algorithms. A 

total of 60 optimisation problems were formulated and solved with all three approximation models. Results showed that the 

hybrid formulation having the level-2 ensemble Kriging model performed best, predicting the experimental performance 

results for all JP models within an error margin of less than 10 % in 90 % of the cases.

Keywords Dual-phase jet pump · Surrogate modelling · Global approximations · Global optimisation · Ensemble 

modelling · Genetic algorithm · Gaussian process · Radial basis function

1 Introduction

Methodologies applied to build adequate learning-mod-

els are crucial in performing a model-based optimisation 

(MBO). With the quick advances in computer science, 

MBO is becoming more and more applicable for model-

ling, simulations, experimental and optimisation processes. 

It has proved to be one of the most efficient techniques for 

expensive and time demanding real-world optimisation 

problems [1]. Several studies which considered MBO in 

the context of global optimisation (GO), were performed to 

solve close-related design problems such as the one consid-

ered in this study.

Here, MBO is used for predicting the non-linear entrain-

ment performance of a dual-phase fluid driving jet pump 

(JP) apparatus, a technology well-known as an artificial, oil 

and gas lifting method.

Among all pumping equipment one of the most simplistic 

and effective way to retrieve low-pressure oil and gas wells 

or boost production from such wells is via the use of JPs. 

A JP, also known as ejector, eductor, thermo-compressor 

or injector, is a revolutionised piece of equipment read-

ily known for the pumping and mixing of fluids within a 

wide range of applications in various engineering industrial 

segments such as: water, nuclear and aviation technolo-

gies [2]. In contrast to other Improved Oil Recovery (IOR) 

and Enhanced Oil Recovery (EOR) solutions, the surface 

jet pump (SJP) technology is classified as the cheaper and 

most effective solution, thus highlights its importance in 

the current oil and gas situation [3–5]. Besides, among all 

SJP technological advancements, to date, no unique design 
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solution has been established to design a JP which operates 

effectively under motive multiphase fluid sources. Given 

the fact that the commercialised variety of single-phase 

and multiphase JPs/ejectors are particularly relevant, it was 

found that multiphase JPs (for applications in the oil and gas 

industry, where the motive fluid contains more than a sin-

gle-phase, such as liquid and gas mixtures), undergo several 

drawbacks. Such drawbacks are mainly attributed to the deg-

radation of entrainment and boost performance, and there-

fore provides a reduction in the overall operating efficiency. 

This causes limitations on their applicability due to the lack 

of flexibility, rangeability and versatility. These drawbacks, 

either individually or collectively, precinct onshore, remote 

offshore and totally limit the possibility of subsea JP appli-

cations. A feasible and practical means to deal with a typi-

cal complex (non-linear) multi-variable design problem is 

presented here, and a surrogate-based design optimisation 

is considered.

Relevant work in the literature can be categorised into 

two types. The first type includes studies which consider 

one surrogate model, while the second type involves multi-

ple learning algorithms (either comparison or stack models 

to conduct ensemble modelling techniques), thus involves 

more than one surrogate model to perform surrogate-based 

optimisation. Several studies comprising the build-up of 

models based on one surrogate methodology, include the 

work of Kajero et al. [6], who used the Kriging meta-model 

approach. These authors coupled the Kriging to the expected 

improvement (EI) to assist in the calibration of computa-

tional fluid dynamics (CFD) models. They successfully cal-

ibrated a single-model CFD parameter with experimental 

data and considered a case of single-phase flow in straight-

pipe and convergent-divergent-type annular JP. This study 

involved fixed design parameters based on the experimen-

tal data of Shimizu et al. [7], and considered HP and LP 

static pressures to compute the pressure coefficient. Yang 

et al. [8] made use of the RSM and desirability approach to 

investigate and optimise a JP in a thermoacoustic Stirling 

heat engine (TASHE). This study considered four designing 

parameters: position, length, diameter and tapered angle of 

the nozzle. Also, slightly different than global optimisation 

(GO), Lyu et al. [9] worked on the design of experiments 

(DOE) methodology in combination with CFD, to structur-

ally optimise the design of annular liquid-liquid JPs. This 

work considered the volumetric flow ratio, angle of suction 

chamber, throat length and the diffuser diverging angle as 

the input design parameters. For another different engineer-

ing design optimisation problem, Di Piazza et al. [10] used 

the Kriging estimation method to investigate partial shad-

ing in photovoltaic fields. It was showed that this learning 

method provided cheaper and simpler characterisation of 

the photo voltaic plant output power, and as a result allowed 

energy forecast.

It is difficult to establish if one of these surrogate model-

ling methods is superior to others. A comprehensive com-

parison analysis of multiple surrogate models (built with 

different methods) has therefore been conducted here to 

try to answer this question. Simpson et al. [11] compared a 

maximum of 3 models. He compared the polynomial based 

response surface with kriging surrogates for the aerodynamic 

design optimisation of hypersonic spiked blunt bodies. Simi-

larly, Shyy et al. [12] compared the relative performance 

between polynomials and neural network surrogate models 

for aerodynamics and rocket propulsion problems. Other 

methodological related studies include the work of Simp-

son et al. [13], who emphasised the robustness of Kriging 

over the RSM surrogate model. The authors used Kriging for 

global approximation in simulation-based multidisciplinary 

(multiple input and multiple response) design optimisation 

problems. In this study Kriging was used for a real aerospace 

engineering application, a problem related with the design 

of an aerospike nozzle. The most comprehensive work found 

in the literature includes the work of Luo and Lu [14]. The 

authors performed a comparison between the RSM, Krig-

ing and RBFANN surrogate models for building surrogate 

models of a dual-phase flow simulation model in a simplified 

nitrobenzene contaminated aquifer remediation problem. 

The surrogate-based optimisation methodology identified 

the most cost-effective remediation strategy.

However, among all the referred work related to ejectors/

jet pumps, none considered studying a dual-phase driving 

fluid JP configuration. In addition, to the best knowledge of 

the authors, none of the referenced work considered apply-

ing ensemble modelling, which is a modelling approach 

which in many cases, has proved to improve global approxi-

mations (GA) (relative to GA based on single methodology 

approaches) when applied to non-linear systems. Consider-

ing the potential of using a unique experimental data-set 

(an unpublished data-set which forms part of an ongoing 

investigatory work related to the performance of JPs under 

dual-phase driving fluids), motivated the authors to use this 

data to build surrogate models to perform surrogate-based 

optimisation. Thus the objective entails the following tasks:

• Develop surrogate models using the RSM, Kriging, 

RBFANN and ensemble methodologies for constructing 

global approximations (GA) for use in a real dual-phase 

JP design application, is particular, the design of the 

injection body and parts of the ejection portions of a JP 

apparatus.

• Estimate the accuracy of the different surrogate models.

• Perform a comparison between level-1 and level-2 

(ensemble models) and select the surrogate models 

showing acceptable accuracy in the non-linear optimi-

sation model (consider multiple optimisation algorithms) 

to identify the best design parameters which optimise 
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entraintment performance under various motive fluid gas 

volume fractions (GVFs).

This research shows novelty as (1) different surrogate mod-

elling methodologies were applied and compared in the 

design of a dual-phase (water and air) driving gas jet pump 

apparatus, and (2) it is shown that the ensemble surrogate 

modelling approach/stacked-generalisation approach having 

Kriging as a level-2 learning model, is suitable for predict-

ing the optimised design parameters of a highly non-linear 

design problem attributed to the complex design of a dual-

phase JP apparatus.

2  Background: Surrogate Models

2.1  Response Surface Models

The response surface methodology is the simplest and most 

common method applied for analysing the results of physical 

experiments and to generate empirically based models for 

response values [15, 16].

The RSM is defined by:

where y(x) is the unknown function of interest, f (x) is the 

polynomial approximation of (x) , and �
i
 entails the normal 

distributed error (having mean of 0 and variance of �2 ). The 

error �
i
 is independent and identically distributed.

The polynomial function f (x) , typically comprises a low-

order degree polynomial, which in most cases is assumed 

to be either linear or quadratic. A quadratic polynomial is 

expressed as follows:

where ŷ is the quadratic polynomial, �
0
 , �

i
 , �ii, �ij , are the 

polynomial regression coefficients determined through the 

least-squares regression (LSM), k is the number of variables, 

while x
i
 and xj are the input variables.

The coefficients of Eq. (2) can be found using the follow-

ing equation:

where � is the design matrix of sample data points, �T is the 

transpose, while � denotes a column vector that includes the 

response values for each corresponding sample point. Fur-

ther details about response surface modelling can be found 

in: Myers et al. [17], Myers et al. [18], Lin and Tu [19], 

Myers [20] and Myers et al. [21].

(1)y(x) = f (x) + �
i
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2.2  Kriging Models

The Kriging method is a probabilistic approach that involves 

a statistical estimation technique for spatial interpolation of 

random quantities. The very initial mathematical formula-

tion of the Kriging method was developed on the basis of 

experiments performed by Daniel Krige in 1963, who estab-

lished the distribution of minerals in the subsoil by perform-

ing punctual surveys. Later, Sacks et al. [22] developed the 

model into a surrogate model, thus shaped in the form which 

is mostly known nowadays. This model is also known as the 

design and analysis of computer experiment (DACE) [23, 

24]. The ooDACE toolbox, developed by Couckuyt et al. 

[25], is a versatile Matlab toolbox which incorporates the 

popular Gaussian Process based Kriging surrogate models.

Unlike RSM, Kriging models were purposely developed 

for mining and geostatistical, and spatial applications, which 

induce spatially and temporally correlated data [26, 27]. 

More recently, this model gained in popularity and started 

to be used for other engineering applications, such as real 

aerospace design engineering applications and for the build-

up of a meta-model to assist calibration of computational 

fluid dynamics models [6, 13].

The Kriging model includes the combination of two main 

components. Thereby a deterministic function/global model 

and localised departures as given in Eq. (4) [28, 29]. 

where 
�

∑k

i=1
fi(x)�i

�

 comprises the deterministic function, �
i
 

denotes the coefficients of the deterministic function, fi(x) 

are k known regression functions (typically polynomial func-

tions) providing a “global” model of the design space, and 

Z(x) is the realization of a stochastic stationary process with 

mean zero, process variance �2 and covariance given by the 

covariance matrix in Eq. (5). Controversially to fi(x) , Z(x) 

considers “localised” deviations of the interpolation of the 

data points n
s
.

where �
(

xixj

)

 is the spatial correlation function (SCF) 

between any two of the sampled data points xixj . This func-

tion controls the smoothness, the influence on nearby points 

and differentiability of the response surface model.

Equation (4) amalgamates a first part which models the 

drift of the process mean over the domain, and a second 

part which models the systematic deviations from the lin-

ear model that pulls the response surface along the data via 

weighing the correlation of the nearby points. Moreover, 

the spatial correlation matrix function (SCF) �
(

xixj

)

 is an 

( n
s
x n

s
 ) symmetric matrix, having unity along its diagonal 

(4)y(x) =

k
∑
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fi(x)�i + Z(x)

(5)Cov
[
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(

xi

)

, z
(

xj
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2
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(

xixj

)
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where n
s
 is the number of sampled points. This correlation 

function is selected by the user and a variety of functions 

exists. The most applicable correlation functions are: (a) the 

Gaussian, (b) exponential, (c) linear and (d) spline functions 

[22, 30]. In this study the Gaussian correlation function, 

given by Eq. (6) was used.

where �
k
 are the unknown correlation parameters, and 

|
|
|
Xki − Xkj

|
|
|
 are the kth components of the sample points x

i
 and 

xj , and n
dv

 is the number of design variables. In many cases, 

such as in McKay et al. [31], Sacks et al. [22], and Osio and 

Amon [32], a single value of � provided good results, 

though, in this study a different value of � is used for each 

design variable.

Eventually, the predicted estimates ŷ of the response sur-

face y(x) at untried values of x for a universal Kriging model, 

are found by Eq. (7).

where � , is a column vector of length n which contains the 

sample values of the response, and � comprises a column 

vector of length n
s
 , where in the case of ordinary Kriging 

(not universal Kriging) �
(

x
∗

)

= 1 , thus, reduces to a scalar 

function fixed with values of unity. The literature comprises 

the work of: Deutsch and Journel [33], Cassie [27], Simpson 

et al. [13], Emery [34] and Bayraktar and Turalioglu [35], 

which involve Ordinary Kriging models, while for the work 

of Zimmerman et al. [36], Brus and Heuvelink [37] and 

Sampson et al. [38], universal kriging models are applied.

If a first order polynomial is involved, then 

f
(

x
∗

)

=

[

1, x
∗1, x2, … , x

∗n

]T
 and so on. In this study the 0th, 

1st and 2nd order polynomial were considered, � is a matrix 

of the form � =

[

f
(

x1

)

, f
(

x2

)

, … , f
(

xm

)

,
]T

 containing all 

matrix functions calculated for all m training data points.

The term �T  denotes the correlation vector of length 

n between an untried x and the sampled data points 
{

x1, … , x
ns

}

 . Such rT is expressed by:

Three parameters are included in the Kriging model: 

(a) � , which is included in the correlation function 

( (� =
[

�1, �2, … , �
n

]T

) , (b) the process variance �2 and 

(c) the regression coefficients �.

First, �̂  is estimated by the maximum likelihood method 

(MLE) as given in Eq. (9) [39].
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The process variance �2 between the global model �̂  and y 

is estimated by Eq. (10):

The fact that �(⋅) is sometimes parameterised by 

� = (�1, �2, … , �
d
) the partial derivative of the likelihood 

function does not always yield to provide an analytical solu-

tion for � when assigned to zero. However, a constrained 

iterative search is used, where an optimisation algorithm is 

applied to evaluate the optimal parameters values. Lastly, the 

correlation parameter � is estimated by solving an optimisa-

tion problem as given in Eq. (11):

All estimated parameters are firstly used as inputs in Eq. (7) 

to obtain the prediction mean. Secondly the corresponding 

prediction variance �2 is obtained as the estimated mean 

square error (MSE) of the predictor.

2.3  Radial Basis Function Neural Network (RBFANN)

The radial basis function neural network, initially developed 

by Broomhead and Lowe [40], comprises an artificial neural 

network having a 3-layer feed forward network and makes 

use of the radial basis functions as activation functions. As 

illustrated in Fig. 1, the network comprises input, hidden 

and output layers. The network hidden layer involves a non-

linear RBF activation function, while the network output 

layer contains a linear combination of radial basis functions 

of both inputs and neuron parameters.
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Fig. 1  Architecture of a decomposed RBFANN with hidden neurons
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Considering the input vector X, being X∈ℝn , then the 

output of the neurons in the RBFANN hidden layer is given 

by:

where c
i
 is the centre vector for the ith neuron in the RBF 

hidden layer, i = 1, 2, … , N  ; where N is the number of 

neurons in the hidden layer, ‖‖X − c
i
‖
‖ is the norm of X − c

i
 , 

which is either the Euclidean distance or the Mahalanobis 

distance, while � (⋅) is the radial basis function, commonly 

taken to be Gaussian, as given in (14), or either the ‘Cauchy’ 

function or the ‘Multiquadratic’ function is used instead 

[41].

The Gaussian basis functions are local to the centre vector 

in the sense that:

Ultimately, the output of the network, being a scalar function 

of the input vector is given by Eq. (16):

where w
ki
 is the connecting weights from the ith hidden layer 

neuron to the kth output layer and �
k
 is the threshold value 

of the kth output layer neuron.

This model is widely applicable for approximation, clas-

sification, prediction and system control. Park and Sandberg 

[42] added that the RBF network model performs highly 

well as universal approximates for compact subsets of ℝn ; 

implying a RBF network having enough hidden neurons, 

(13)qi = �
(
‖‖X − ci

‖
‖
)

(14)qi = �
(‖
‖X − ci

‖‖
)
=

[
−�‖‖X − ci

‖‖
2
]

(15)lim‖X‖→∞
�
���X − c

i
��
�
= 0

(16)yk =

N
∑

i=1

wki(qi − θk) (k = 1, 2, … , M)

will approximate a continuous function on a closed, bounded 

set with arbitrary precision.

2.4  Model Ensembling

Ensemble methods are algorithms which amalgamate several 

machine learning methodologies into one predictive model, 

to either decrease the variance, or improve predictions. This 

model methodology is illustrated in Fig. 2, and includes a 

mechanism which is divided into level-1 and level-2 pro-

cesses. Typical ensemble models are used to provide global 

approximations to solve optimisation problems of highly 

nonlinear situations. Typical applications include diverse 

topics, such as: weather forecasting [43], climate change 

[44], ecological models [45], wind speed [46] and chemical 

flooding process for an oil and gas application [47].

Four of the most common types of ensemble methods 

are: (a) model averaging, (b) bagging, (c) stacking, and (d) 

boosting [48, 49].

2.4.1  Model Averaging

Model averaging is the most commonly used of all listed 

methods. It involves the averaging of N predictions via Eq. 

(17). Each prediction is the output from N trained models, 

used to perform the scalar ensemble predictions.

where yk is the averaging scalar ensemble output for a sample 

K, and ŷ
n
 is the predictive output from each learning-model.

(17)yk =
1

N

N
∑

i=1

ŷn (n = 1, 2, … , N)

Fig. 2  Concept diagram of 

ensemble modelling
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2.4.2  Bagging Model/Bootstrap Aggregating

Bagging is considered very similar to model averaging, but 

it comprises a slightly modified training procedure. Bagging 

uses a subset of samples to train each model to train the base 

learners. This is also known as bootstrap sampling. Thus, if 

the RBFANN method is used, multiple models are generated 

to include all subsets of sample data. However, when done, 

the corresponding responses from different models are then 

averaged to obtain a scalar ensemble output.

2.4.3  Stacking Model

Stacking, better known as meta-ensembling, is a model 

ensemble technique which combines response data from 

a plurality of predictive models, to generate a new and 

improved model. This model is therefore an extension (or a 

second procedure), after responses have been generated by 

each single predictive model [50].

Stacking requires a modified training procedure relative 

to other described methods. In this case, N trained models 

are used to predict output of the new sample. Thus, the out-

puts from the 1st level (separated-models) learning are used 

as inputs for another model that is ‘stacked’ upon the other 

models. This will lead to a layer-chain of models. Thereby, 

the 2nd level model is used to predict the actual output for 

the new samples. In most cases, it is expected that the model 

will outperform each of the individual models, due to its 

smoothing nature, and the capability of selectivity between 

each case model at regions where it performs best, and 

avoids other regions where it performs poorly. Eventually, 

this will make stacking the most effective when base model 

predictions are significantly different.

2.4.4  Boosting Mode

Boosting involves a family of algorithms which transform 

weak learners into effective learners. This method deals with 

weak learner’s models such as decision trees. It functions 

by combining the predictions via a weighted majority vote 

(classification) or a weighted sum (regression), to generate 

the final prediction. It differs from bagging as the base learn-

ers are trained in a sequenced manner and on a weighted 

version of the data.

3  Applied Methodology: JP Device 
Apparatus

As described in the introduction section, a JP is a passive 

apparatus, thus reluctant to change in operating conditions. 

Investigative work from Mifsud et al. [51], clearly demon-

strates that the performance of a JP apparatus is dictated by 

its internal geometric features, mainly the injection, entrain-

ing and mixing bodies.

These three bodies include unique geometrical features, 

which vary in both shape and clearance under different flow 

conditions; namely, type of fluid and more specifically the 

fluid properties such as fluid density, viscosity, compress-

ibility and diffusivity, mutually dictating the hydrodynamic 

behaviour. Thus, a gas-driving-gas JP varies in design from 

a liquid-driving-liquid JP or a liquid-driving-gas JP. How-

ever, this work focuses specifically on a JP application hav-

ing a dual-phase (water and air) HP fluid driving a relative 

low-pressure air. An analysis of experimental results from 

unpublished work showed that under dual-phase operating 

conditions, there exists no linear behaviour which correlates 

the design parameters against entrainment performance.

A total of five different nozzle bodies were used in this 

study. A brief description of each injection bodyis pro-

vided in Table 1 and accompanied by the schematics of four 

Table 1  Details about the considered test-setup models

*Model not illustrated in Fig. 3 to protect the proprietary nature of the design

Model Injection body description Flow

M-01 Standard converging-nozzle (single-orifice) No swirl-induced flow

M-02 Converging-diverging nozzle (single-orifice) No swirl-induced flow

M-03 Converging-diverging nozzle (multiple-orifice) horizontally drilled No swirl-induced flow

M-04 Converging-diverging nozzle (multiple-orifice) drilled at an inclination angle of 5◦ No swirl-induced flow

M-05* A bi-nozzle design configuration (multiple-orifices) No swirl-induced flow

M-06 Standard converging-nozzle (single-orifice) Swirl-induced flow

M-07 Converging-diverging nozzle (single-orifice) Swirl-induced flow

M-08 Converging-diverging nozzle (multiple-orifice) horizontally drilled Swirl-induced flow

M-09 Converging-diverging nozzle (multiple-orifice) drilled at an inclination angle of 5◦ Swirl-induced flow

M-10* A bi-nozzle design configuration (multiple-orifices) Swirl-induced flow
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injection bodies (M-01 to M-04) shown in Fig. 3, while the 

design of model M-05 and M-10 cannot be shown to protect 

the proprietary nature of the design. Figure 3 highlights the 

differences attributed to the number of orifice holes and their 

positioning.

Table 1 includes models M-01 to M-05 which describe 

the JP injection bodies without the use of any swirl-body 

mechanism, while M-06 to M-10 involves the use of a 

swirl-body mechanism. Such swirl-body mechanism (illus-

trated in Fig. 3a–d) is fixed within the motive fluid conduit, 

closely to the converging portion of the respective nozzles. 

Note that for cases with no swirl-body mechanism, a void 

cylindrical transition piece is used instead.

A total of five design variables were considered, see 

Fig. 4. These are: (1) nozzle-to-throat clearance X, (2) 

throat-inlet angle At, (3) two-phase mixture composition in 

Fig. 3  Schematics of the swirl-

body mechanism and injection 

body for: a M-01 and M-06, b 

M-02 and M-07, c M-03 and 

M-08 and d M-04 and M-09

Fig. 4  Schematic of a typical JP 

device configuration denoting 

the selected design variables
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terms of gas-volume fraction GVF, (4) nozzle body design 

N, and (5) spinning body mechanism S.

3.1  JP Device Design Analysis

The selected variables are classified into: (a) discrete design 

variables, including: X, At, and GVF, and (b) non-discrete 

variables, N and S. Figure 5 shows a data flow diagram, 

having a black box that bridges the inputs and outputs with 

a learning algorithm.

As the non-discrete variables N and S are neither con-

tinuous nor discrete, all learning models (both level-1 and 

level-2) were distinctively developed for each model. This 

led to the reduction of the number of input response vari-

ables, from five to three, as illustrated in Fig. 6.

Also, for further simplification, the bi-response method-

ology included in Fig. 5, was reduced to a single output. 

This step was justified on the basis that entrainment ratio 

will always tend to increase while the magnitude of pres-

sure vibration decreases. The entrainment ratio was prefer-

ably selected over magnitude of pressure vibration for the 

main reason that the focus of this study considers the design 

parameters which have a significance on the performance of 

the LP pressure and/or LP/secondary flowrate.

3.1.1  Approximations for the JP Device Design Problem

The sample data for all learning models was obtained from 

a unique experimental data-set comprising tests performed 

on a dual-phase (water and air) facility located in the Process 

Systems Engineering Lab at Cranfield University, UK. Such 

experimental data-set includes a total of 1440 tests-setups 

combinations, which comprised both 100 % liquid-water and 

dual-phase ( 0 ≤ GVF ≤ 50 ) motive fluid flows driving a 

secondary gas-air flow. All experiments were performed at 

high-pressures below 8 bara.

The whole data-set was divided into 10 data sub-sets. 

The sets of data were discretised according to the type of 

injector body, for the JP configurations equipped with or 

without spin body mechanism. This categorised the data into 

10 unique models (M-01...M-10), as listed in Table 2. Note 

that the range of the nozzle-to-throat clearance X comprised 

eight divisions, (0.1, 0.25, 0.6, 0.9, 1.4, 1.8, 2.8 and 4), 3 

throat-inlet angle At were considred for ( 13
◦ , 30

◦ and 50◦ ), 

and the motive fluid GVFs included the values 0, 10, 20, 

30, 40 and 50.

Furthermore, each of the 10 data sub-sets was further 

divided into another two mutually exclusive subsets called 

the training and the validation sets. The first set (training set) 

included three quarters of the whole sub-set samples which 

Fig. 5  Problem formulation for 

a multi-variable input and mul-

tiple non-linear response global 

approximations for the dual-

phase driving fluid JP device

Fig. 6  Simplified global 

approximations problem for 

the dual-phase driving fluid JP 

device
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was used to build and train the level-1 models: RSM, Krig-

ing, RBFANN, while the other set (validation set) included 

the remaining quarter of samples, which were used for model 

validation and verification of the same level-1 models.

Specific details on the bisection of sample and response 

data in each learning model are provided and discussed 

discussed in Sections 3.1.2 to 3.1.5. In each case study, 

including a single JP model M, a sub-set comprising an 

array of 144 samples and responses was used for processing 

each learning model. The 144 samples and responses were 

selected according to the combinations illustrated in Fig. 7.

The arrangement shows that each At is linked to every 

value of X first, then the joint combination is further linked 

to every value of GVF, and ultimately the full joint combi-

nations (comprising a value of GVF, X and At) are linked 

with every JP model.

The respective ranges of each discrete design variables 

were set according to specific justifications. The range of the 

secondary-nozzle/throat inlet angle At, includes an upper-

bound limit of 50◦ , being an optimal design angle for liquid-

driving liquid JP applications. Thus, a lower bound (low as 

reasonable possible) and intermediate angles of 13
◦ and 30

◦ , 

were then considered.

The range of the nozzle-to-throat clearance X varied 

between a ratio of 0.1 and 4. This cophered the well known 

design ratios (as applicable for gas-gas, liquid-liquid and 

liquid-gas JP applications) and beyond. Also, the fact that 

a swirl induced flow was included in half the tests setups, 

lower values of X were considered than used for gas-gas 

applications. In the latter cases, optimal values of X can even 

go down below 0.4. Besides, more frequent values of X were 

considered to avoid black spots due to high sensitivity, even 

for small increment of X.

Lastly, the range denoting the values of GVF, cophered 

a range of HP fluid compositions, including 100 % liquid 

motive flow and a combination of liquid dominant two-

phase (water-air) motive fluid compositions. Particularly, 

one should consider that some practical intuition was also 

applied based on practical real field applications (mainly for 

selection the range of GVF), and limitations were considered 

due to difficulties to manufacturing the designed components 

(mainly for selecting the range of At).

Table 2  Applicable test matrix 

for this work unique data set
Non-discrete variables Discrete design variables

Injection body Swirl flow Nozzle to throat-

inlet ratio

Throat-inlet converg-

ing angle [ ◦]

HP fluid gas 

volume fraction 

[%]

No Yes [X] [At] [GVF]

M-01
√

0.1–4 1330 & 50 0–50

M-02
√

0.1–4 1330 & 50 0–50

M-03
√

0.1–4 1330 & 50 0–50

M-04
√

0.1–4 1330 & 50 0–50

M-05
√

0.1–4 1330 & 50 0–50

M-06
√

0.1–4 1330 & 50 0–50

M-07
√

0.1–4 1330 & 50 0–50

M-08
√

0.1–4 1330 & 50 0–50

M-09
√

0.1–4 1330 & 50 0–50

M-10
√

0.1–4 1330 & 50 0–50

Fig. 7  Schematic illustration the 

build-up of this study orthogo-

nal array
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3.1.2  RSM for the JP Device Study

Having three variables denoting a performance parameter, 

makes it extremely difficult to illustrate the responses on 

3-D surface plots. It appeared complex enough to illustrate 

the non-linear behaviour between the gas volume fraction 

GVF and the nozzle-to-throat clearance X. A clear example 

which demonstrates the complex correlation between the JP 

design variables when under dual-phase flow conditions, is 

given in Fig. 8. The three sub-figures present three sets of 

surface plots of the same model (M-01), but having a differ-

ent throat-inlet angle [At]. Thus Fig. 8a–c denote cases hav-

ing throat angle At of 13
◦ , 30

◦ and 55◦ respectively. Each set 

comprises two plots, one for the case without swirl-induced 

flow and the other with swirl-induced flow. However, plot-

ting the 3rd variable resulted in an obscure surface plot. It 

was concluded that such complex behaviour could only be 

exemplified via polynomial equations.

Such complex relationships led to the development of a 

series of third-order response surface models for entrainment 

ratio ER. Such models, fitted the 118 sample points by using 

the ordinary least-squares regression. The quadratic expres-

sions of the developed response surface models are given in 

Eqs. (27) to (36), in “Appendix 1”.

A pair of polynomial expressions are generated for each 

JP model design, a first expression including a device body 

without the swirl-body mechanism, and a second device 

body, having the same injection body as the first one, but 

amalgamated with the swirl-body mechanism. Eventually a 

total of 10 expressions covers all 5 JP models.

A reference to the resulting R2 , R2
adjusted

 , and root mean 

square error for each response surface model given in 

Fig. 8  3D-surface plots, for models M-01 and M-06, having: a At = 13
◦ , b At = 30

◦ and c At = 50
◦
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Table 6 of “Appendix 2”, results high (ideal close to 1) R2 , 

R
2
adjusted

 and low (ideal close to 0) RMSE values. Thus, the 

response surface models appear to capture a large portion of 

the observed variance, resulting in an acceptable good fit.

3.1.3  Kriging Models for the Jet Pump Device Study

For the Kriging models, a Gaussian correlation of either 

0th, 1st or 2nd order regression function was applied, while 

Eq. (10) was used for the local deviations. It was also noted 

that a single � parameter was insufficient to model the data 

accurately, thus a simulated annealing algorithm was used to 

determine the maximum likelihood estimates (MLEs) for the 

three � parameters needed (one for each variable) to generate 

the best Kriging model.

The optimal � parameters values for each case study 

are given in Table 3. This was accomplished via Eq. (11), 

and simulations were performed and executed via a dedi-

cated generated script written in MATLAB. Eventually, 

the Kriging models were identified once all parameters for 

the Gaussian correlation function and the 118 sample data 

points were obtained.

For each Kriging model, the testing of models included a 

total of 26 data points; thereby including the samples which 

were not considered for training purposes during the build-

up of the models. The regression R values for the Kriging 

models are given in Table 6 of “Appendix 2”.

3.1.4  Neural Network Models for the Jet Pump Device 

Study

For the Neural Network models, a script was generated by 

the Neural Fitting application provided in MATLAB 2018. 

The input and response samples data sets were randomly 

selected by the syntax ‘dividerand’ and divided into three 

main categories: training, validation and testing. Each cat-

egory was specifically assigned a portion out of the whole 

dataset, allowing 118 samples for training, 7 samples for 

validation, and 19 samples for testing. The training samples 

are presented to the network during training, while the net-

work adjusts in correspondence to its error. The validation 

samples are used to measure network generalisation and to 

stop training when generalisation stops improving, while 

testing offers an autonomous measure of network perfor-

mance during and after training.

The Bayesian Regularisation backpropagation training 

function was used via the syntax ‘trainbr’. This type of algo-

rithm typically requires more time than the Levenberg-Mar-

quardt algorithm and the Scaled Conjugate-Gradient algo-

rithm. Though, such algorithms have the potential to result 

in good generalisation for difficult, small or noisy datasets. 

Using the Bayesian Regularization algorithm, training stops 

according to adaptive weight minimisation (regularization).

Furthermore, this function performs backpropagation to 

calculate the Jacobian jX, of the performance syntax ‘perf’ 

with respect to the weight and the bias variables X. Each 

variable is adjusted according to Levenberg-Marquardt. 

Further details about the Bayesian regularisation can be 

found in MacKay [52] and Foresee and Hagan [53]. The 

mean squared error performance function syntax ‘mse’ 

was applied to the model performance function. The mean 

squared error is the average squared difference between 

outputs and targets. Lower values are better. Additionally, 

the number of hidden layers as denoted by the letter ‘N’ 

in Fig. 9, varied according to the results illustrated in the 

model accuracy analysis section. The first trial consisted of 

N = 15. Regression R values are presented and discussed in 

section 4.2.

3.1.5  Model Averaging and Stacking for the Jet Pump 

Device Study

For the ensemble-stacking model, a more advanced com-

mand script (more complex than for the single- model build-

up) was formulated and executed in MATLAB 2018.

The ensemble-modelling approach denotes a 2nd level 

algorithm, which ultimately led to the final scalar pre-

dictions. In brief, the applied methodology followed the 

Table 3  Theta parameters for 

Kriging models for all case 

studies

� * The optimal � parameters values for each case study

Models 01-10 for case studies 01-10

�* M-01 M-02 M-03 M-04 M-05 M-06 M-07 M-08 M-09 M-10

�
X

8.75 3.53 20 2.77 3.42 11.49 10 20 20 6.59

�
GVF

4.35 2.33 3.24 1.13 1.39 1.44 1.34 3.99 2.18 1.65

�
At

1.25 1.44 2.10 0.29 0.31 0.24 1.25 1.71 0.95 1.09

Fig. 9  This problem neural network diagram
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build-up path presented in Fig. 10. The original training 

data X was used for training each of the level-1 models, 

leading to generate respective predicted outputs which were 

then used as inputs for training the stacking model. In this 

work, the corresponding outputs of all three algorithms, say 

�
1
 , �

2
 and �

3
 , were first stacked and then averaged, gener-

ating an average scalar output matrix �̂l2 . The �̂l2 matrix, 

now considered as the training sample, was then used for 

cross-validation (CV), i.e., in each fold, a new training and 

validation data set was generated. Such data was then used 

for training and testing the level-2 Kriging model.

The applied method for the segregation of sample data, 

involved a different procedure than applied in the other three 

former discussed models. To formulate the out-of-sample 

predictions, data were divided similarly as done for the well-

known ‘K-fold’ cross-validation method.

The out-of-sample method involved the division of the 

training sample into a number of folds N. In each N th fold, 

some of the sample data were held out for validation and/or 

testing (holdout fold), while the remaining number of folds 

were used to obtain predictions for all 26 samples. This brief 

explanation is demonstrated in Fig. 11a, b. Each sub-figure 

represents a Nth fold and the highlighted cells include the 

holdout sample.

Opting to select the cross-validation method was based on 

the fact that the out-of-sample predictions sustain a higher 

chance of capturing distinct regions where each model per-

forms the best.

4  Results and Discussions for Global 
Approximations

4.1  Learning Model’s Accuracy Analysis

In this study, the absolute error (AE) was selected as the 

main loss function to estimate the accuracy of the learning 

models. Figures 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 

34, 35, 36, and 37 in “Appendix 3” illustrate the boxplots of 

absolute error for the RSM, Kriging and RBFANN models, 

as applicable for the JP models; for both with and without 

swirl-body mechanism. Table 4 details the varied parameters 

in each learning model.

Table 5 includes the optimal parameter values, result-

ing from the presented box-plots for each JP models 

(M-01–M-10).

The results demonstrated that for the RSM models, 

the approximation accuracy for the 3rd order polynomial 

is higher than that of the 1st and 2nd order in all cases. 

The Kriging models showed that the 2nd order polynomial 

function (as a regression function) obtained the highest 

approximation accuracy, except for models M-02, M-04 

Fig. 10  This work ensemble 

predictive model

Fig. 11  An illustration of the out-of-sample/‘k-fold’ cross-validation method
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and M-06, which resulted in 1st, 0th and 1st order showing 

the highest accuracy respectively. For the RBFANN models, 

the RBFANN with 45 hidden neurons obtained the high-

est approximation accuracy, with the exception of M-03, 

M-07 and M-10 which obtained values of 60, 30 and 30 

respectively.

4.2  Error Analysis of the RSM, Kriging and RBFANN 
Models

Towards the end, an error comparison was performed to 

determine the capability of producing accurate global 

approximations for a dual-phase fluid-driving SJP. The error 

is defined between the actual response samples y (26 sam-

ples used in each model) and the predicted values ŷ from 

either the RSM, Kriging, RBFANN or ensemble models. 

The accuracy of the 26 validation points for all models was 

estimated via numerical error analysis equations, given from 

Eqs. (18) to (22).

1. MaxAPE—Maximum Absolute Percent Error 

 Lower values of MaxAPE indicate lower difference, 

thus variance tends to decrease as 

[

MaxAPE
yields
⟶0

]

.

2. MAPE—Mean Absolute Percentage Error 

(18)MaxAPE = 100
|
|
|
|

yi − ŷi

yi

|
|
|
|

(19)MAPE =

100

n

n∑

i=1

||
|
|

yi − ŷi

yi

||
|
|

 The absolute value in this calculation is summed up for 

every predicted value and divided by the number of test-

ing points. Note that in this work, the mean absolute 

error was calculated, thus Eq. (19) was divided by 100. 

Also, similarly to MaxAPE, MAPE indicates lower dif-

ference, thus variance reduces as 

[

MAPE
yields
⟶0

]

.

3. RMSE—Root Mean Square Error

  The RMSE signifies the variances, better known as 

residuals or prediction errors between predicted and 

observed values. This error estimator method as given 

in Eq. (20), is capable to aggregate the individual error 

magnitude into a single measure of prediction power. 

 Lower values of RMSE indicate lower variance. Vari-

ance tends to decrease as 

[

RMSE
yields
⟶0

]

.

4. R Squared ( R2)

  This is known as the coefficient of determination or 

multiple determination in this case since models involve 

multiple regression. This measures the correlation 

between outputs and targets via: 

 where e
i
 denotes the residuals for each yi , while y is the 

mean of the observed data.

5. Adjusted R Squared ( R2

adj
)

  Adjusted R2 developed by Henri Theil (1961) includes 

a modification that accounts for the adjustment of the 

number of explanatory terms in a model relative to the 

number of data points. 

(20)RMSE =

�

∑n

i=1

�

ŷi − yi

�2

n

(21)

R2
=

�

1 −

Sum of Squares of Residuals

Total Sum of Squares

�

=

∑

i e2

i

∑

i

�

yi − y
�2

Table 4  Varied model settings to estimate the accuracy of the surro-

gate models

Model Varied setting Model varied 

settings

Response surface Degree of polynomial 1st 2nd 3rd –

Kriging Degree of regression function 0th 1st 2nd –

Neural network Number of hidden neurons/

layers

15 30 50 80

Table 5  Optimal model settings 

based on absolute error (AE) as 

a loss function, to estimate the 

accuracy of each model

RSM (optimal order of polynomial).

Kriging (optimal order of polynomial as regression function).

RBFANN (optimal number of hidden neurons)

Model type Optimal model settings for models M-01–M-10

M-01 M-02 M-03 M-04 M-05 M-06 M-07 M-08 M-09 M-10

RSM 3rd 3rd 3rd 3rd 3rd 3rd 3rd 3rd 3rd 3rd

Kriging 2nd 1st 2nd 0th 2nd 1st 2nd 2nd 2nd 2nd

RBFANN 45 45 60 45 45 45 30 45 45 30
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 where p is the total number of variables, and n denotes 

the sample size.

  For both regression R values, close relationships are 

determined if results are close to 1. In the case of the 

R2

adj
 , the result would always be less or equal to that of 

R
2.

The results of all performed quality criterion methods and 

for all considered JP models (M-01 to M-10) are presented 

in Table 6, of “Appendix 2”.

Figure 12 shows a collective set of three plots, where 

Fig. 12a includes R2 errors, Fig. 12b includes RMSE errors, 

(22)R2

adj
=

(

1 −

(

1 − R2
)) n − 1

n − p − 1

and Fig. 12c includes MaxAPE errors. The comparison 

of errors exhibit a consistent behaviour in all three error 

methodologies.

In general, it can be concluded that the stacked-ensemble 

model performed best, followed by the RBFANN, then the 

Kriging and lastly the RSM. It is reassuring to note, that 

besides finding the optimal values of the parameters for the 

Gaussian correlation function used by the Kriging model, in 

most cases, it is only slightly less accurate than the 3rd order 

RSM. The low RMSE values (for the RBFANN model) 

proved to perform slightly better than the ensemble model, 

for predicting the response in several JP models. As shown 

in the three subfigures, it appears that all models predicted 

values within reasonable prediction errors.

Fig. 12  A comparison of the error analysis: a R2 , b RMSE [%] and c MaxAPE [%], for the RSM, Kriging, RBFANN and Ensemble models and 

for each JP model
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4.3  Results Comparison of Actual Against Predicted 
via Scatter Plots for RSM, Kriging, RBFANN 
and Ensemble Models

This section aims at illustrating a comparison analysis of the 

behaviour between actual and predicted entrainment ratio 

results. The scatter plots shown in Figs. 13, 14, 15, 16, and 

17 provide a more comprehensive way to illustrate and ana-

lyse the behavioural fit between all four learning-models. 

Each figure comprises two sub-figures, which include com-

parison results between models without swirl and with swirl 

induced flow.

Generally, it can be noted that in most cases, the points 

are scattered symmetrically around the 45◦ diagonal line 

and fitted within the (± 10 %) error band margin. However, 

the scattering tends to increase in cases involving a swirl 

induced flow. As expected this could be reasoned by the 

complex nature of the hydrodynamic behaviour of dual-

phase flow inside the JP. This emphasises further the non-

linearity behaviour which exists between design parameters 

and the JP performance when operated under dual-phase 

flow conditions. Once again, all cases showed that the 

RSM registered the highest scattering while the RBFANN 

and ensemble models resulted in minimal scattering and 

shared high similarity between one another. Another point 

of interest which is well demonstrated involves the plotting 

behaviour of the ensemble model. The overall results for 

such model, minimised drastically the scattering effect and 

smoothened prediction in areas where other models failed to 

perform within the (± 10 % error) bandwidth.

Fig. 13  Actual versus predicted values for: a M-01 (no swirl) and b M-06 (swirl)

Fig. 14  Actual versus predicted values for: a M-02 (no swirl) and b M-07 (swirl)
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Fig. 15  Actual versus predicted values for: a M-03 (no swirl) and b M-08 (swirl)

Fig. 16  Actual versus predicted values for: a M-04 (no swirl) and b M-09 (swirl)

Fig. 17  Actual versus predicted values for: a M-05 (no swirl) and b M-10 (swirl)
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4.4  Optimisation Heuristics

Several types of optimisation algorithms exist. However, 

such methods can be used for constrained and unconstrained 

optimisation or are able to perform only one of the latter 

types.

In this work, constrained optimisation was applied. This 

method comprised the process of optimising an objective 

function with respect to some variables in the presence of 

constraints on those variables. The objective function (hard-

type), is to be maximised, so, the negative part of the process 

function f (x) is taken in the constrained minimisation prob-

lems. The hard-type involved constraints which set condi-

tions for the variable required to be satisfied [54].

Three optimisation algorithms which are well applicable 

in engineering-related problems include: (1) the multiple 

response desirability approach, (2) the interior-point algo-

rithm (IPA), and (3) the augmented Langrangian genetic 

algorithm (ALGA). Also, a combination of the latter two 

types of optimisation algorithms can form a hybrid function, 

which in most cases turns to be more robust and accurate 

than single-optimisation algorithms. A brief overview of 

the methodology of the interior-point and the Augmented 

Langrangan genetic algorithms (both optimisation methods 

applied in this study) are given hereunder.

4.4.1  Interior‑Point Algorithm

The interior-point algorithm comprises a variety of solvers 

capable of solving both linear and nonlinear convex optimi-

sation problems which have constraint inequalities.

The types of interior-point algorithms which are found in 

the MATLAB Optimisation Toolbox
TM , include the ‘fmin-

con’, ‘quadprog’, ‘lsqlin’, and ‘linprog’ solvers. All have 

good characteristics, such as low memory usage and the 

ability to solve large problems quickly. However, besides 

their simplicity, they are considered as slightly less accu-

rate than other algorithms. Such inaccuracy may result from 

the calculation process, in which the internally calculated 

barrier function tends to keep iterating away from the set 

inequality constraint boundaries. The constrained minimisa-

tion involves finding a vector x, which is the local minimum 

of a scalar function f (x) , subject to the set constraints on 

the allowable x.

such that one or more of the following equality con-

straints hold: c(x) ≤ 0 , ceq(x) = 0 , A⋅x ≤ b , Aeq⋅x = beq , 

lb ≤ x ≤ ub.

Moreover, the ‘fmincon’ as referred in the MATLAB 

Optimisation Toolbox
TM solvers (being the algorithm used 

in this work) is based on a trust-region method for nonlinear 

(23)minx f (x)

minimisation. The trust-region method involves the approxi-

mation of a function f with a simpler function q⋅ This is done 

to increase the resolution, thus for understanding better the 

behaviour of the function f in a neighborhood around the point 

x. Thereby the neighborhood is referred to as the trust region 

[55, 56]. As provided in Eq. (24), this is computed in the form 

of a sub-problem in parallel to the main minimisation problem.

4.4.2  ALGA: Augmented Langrangian Genetic Algorithm

The genetic algorithm (GA), is a method able to solve both 

constrained and unconstrained problems and involves a 

natural selection process that imitates the biological evo-

lution. It solves problems that differ from other ‘standard’ 

optimisation algorithms; namely: stochastic, nonlinear and 

discontinuous.

The solving procedure comprises a continual process 

which first modifies the population of individual solutions, 

and then the algorithm picks random individuals (via random 

number generators) to form the modified population and use 

such individuals, referred to as ‘parents’, to produce the ‘chil-

dren’ for the next generation. This procedure is repeated until 

the population evolves and yields the optimal prediction [57].

By default, the genetic algorithm uses the Augmented 

Lagrangian Genetic Algorithm (ALGA) to solve nonlinear 

problems without integer constraints.

The optimisation problem solved by the ALGA algorithm 

is given by Eq. (25):

having c
i
(x) ≤ 0, i = 1…m , ceqi(x) = 0 , i = m + 1…mt , 

A⋅x ≤ b , Aeq⋅x = beq , lb ≤ x ≤ ub ; c(x) and ceq(x) denote the 

nonlinear inequality and equality constraints respectively, 

while m and mt describe the number of nonlinear inequality 

and total number of nonlinear constraints respectively.

However, in this study, bounded constraints optimisation 

problems were solved. Bounds and linear constraints were 

handled separately from nonlinear constraints. Thereby the 

sub-problem formulation for the ALGA as given in Eq. (26), 

included only the fitness function, and excluded the nonlin-

ear constraint function.

(24)mins{q(s), s ∈ N}

(25)minx f (x)

(26)

Θ(x, �, s, p) =f (x) −

m
∑

i=1

�isilog
(

si − ci(x)
)

+

ml
∑

i=m+1

�iceqi(x)

+
�

2

ml
∑

i=m+1

ceqi(x)
2



70 D. Mifsud, P. G. Verdin 

1 3

where the components �
i
 of the vector � are non-negative 

(Lagrange multiplier estimates). The elements s
i
 of the vec-

tor s are non-negative shifts, while � is a positive penalty 

parameter.

4.4.3  Hybrid (Fmincon and Genetic Algorithm)

The hybrid optimisation method comprises a combination 

of 2 or more single-optimisation algorithms. Whenever a 

hybrid optimisation problem is to be solved, a hybrid func-

tion needs to be first formulated. A typical function will 

contain the order of execution of each algorithm. When the 

ALGA stops, the hybrid function will then start from the 

final point as returned by the same generic algorithm.

In this work, the ‘fminunc’ (the hybrid function), was 

set to be automatically called and initiates the execution 

with the optimised point found by the former method. Since 

‘fminunc’ has its own options structure an additional argu-

ment has to be provided when specifying the hybrid func-

tion. The hybrid function can improve the accuracy of the 

solution.

4.5  Optimisation Results using the RSM, Kriging 
and RBFANN Models

As a final comparison of the accuracy of both individual and 

ensemble learning models, 6 pairs of optimisation problems 

were first formulated and then solved for each JP model. 

However, the term ‘pair’ exemplifies that a total of 12 opti-

misation problems were both formulated and solved for each 

JP model. In all the optimisation problems, the entrainment 

ratio was set to be maximised, at specific GVFs. This led to 

a total of 60 optimisation problems.

As provided in Tables 7, 8, 9, 10, and 11 in “Appen-

dix 4”, the set objective functions denote traditional, single-

objective/discipline optimisation problems. Also note that 

each one of the six boxes, namely ‘Prob. #1M-X & M-X’, 

includes a common objective function of (a) swirl and (b) 

no swirl flow respectively. In each optimisation problem, 

constraints are placed on the maximum and minimum allow-

able values of responses (not part of the objective function). 

Each optimisation is formulated and solved using a plural-

ity of optimisation algorithms which were all adopted to 

solve the developed nonlinear optimisation models within 

the MATLAB platform. The three optimisation algorithms 

used included: (1) the ‘interior-point’ algorithm, (2) the 

Augmented Lagrangian genetic algorithm (ALGA) and (3) 

a hybrid formulation. The latter algorithm combines the for-

mer two optimisation algorithms.

Each optimisation is solved 4 times, firstly for RSM, 

secondly for Kriging, thirdly for RBFANN and finally for 

the ensemble models. In each case, three different starting 

points (the lower, middle and upper bounds) are used for 

each objective function to assess the number of analysis and 

gradient calls necessary to obtain the optimum design. To 

proceed with the three types of optimisation algorithms, four 

separate predictive functions (one for each learning model) 

were created. In the case of RSM, a dedicated script was 

generated to formulate a predictive function, which was later 

called in the respective optimisation algorithms. In the case 

of Kriging, the predictor function (the function which is 

based on the developed model, referred to as ‘dmodel’, was 

generated by the ooDACE toolbox), while for the RBFANN, 

a dedicated function called ‘MyNeuralNetworkFunction’, 

was purposely set to be automatically generated during 

the execution of the neural network model when using the 

MATLAB neural network toolbox application. Also, for the 

ensemble model, the same procedure as applied for Kriging 

was followed, but this time a new, namely ‘dmodel2’ was 

generated, thereby containing samples which were derived 

from the combination of model-averaging and stacking 

procedures.

During the applied procedures for solving all optimisa-

tion problems, a negative predictive response function was 

taken to maximise the objective function. This approach was 

adopted as the MATLAB toolbox software always tries to 

find the minimum of the fitness function.

The results of all 60 optimisation problems using all dis-

cussed learning models are summarised in Tables 12, 13, 14, 

15, and 16 of “Appendix 4”. Note, that each table includes 

results for two JP bodies, thus a single nozzle body with and 

without swirl.

From the numerical results (Tables 8, 9, 10, 11, and 12), 

it can be noticed that in general, the optimisation requires 

fewer iterations and/or generations for the RSM than for the 

Kriging and RBFANN models. Note that iterations for the 

ensemble level-2 model are not included in the table, but 

results were identical to level-1 Kriging model. The vari-

ance in computational time, and iterations is attributed to the 

complicity of the respective model. Thus, fewer iterations 

were needed for the RSM simple 3rd order polynomial equa-

tions, while more iterations and generations were required 

for the Kriging models [comprising non-linear equations as 

given in Eqs. (4) to (12)] and the RBFANN models. Besides, 

the computational expense for all sets of approximations 

still lies in the order of seconds per evaluation. The opti-

mum designs obtained from the RSM, Kriging, RBFANN 

and ensemble models are in their majority identical for 

each objective function. However, it is noted that there are 

some drastic variances in both X and At when maximising 

the entrainment ratio Er, using the interior-point algorithm 

based on predicted results from the RSM.

Furthermore, to check the accuracy of the predicted 

optima and prediction errors, the optimum design values X, 

GVF and At, for the level-1 Kriging model and the level-2 

ensemble-Kriging model were again used as inputs to the 



71Surrogate-Based Design Optimisation Tool for Dual-Phase Fluid Driving Jet Pump Apparatus  

1 3

predictor function of their respective model. Thus, the pre-

dicted responses of each model were then used to calculate 

the percentage difference between the actual and the pre-

dicted values. Note that the actual values were taken from 

the corresponding experimental results. Ultimately, to illus-

trate the benefits of the ensemble model, error residual plots 

were generated for each of the 10 JP models. Each respective 

pair of plots as exemplified from Figs. 18, 19, 20, 21, and 

22, includes the same type of nozzle body, but have a dif-

ferent setup configuration. All labelled ‘a’ figures describe 

the results for JP bodies with no swirl-body mechanism, 

whereas those labelled ‘b’ involve the use of the swirl-body 

mechanism.

A comparison performed (between the level-1 kriging 

models and the level-2 ensemble-kriging models) in each 

error residual plots, demonstrated that the ensemble-Kriging 

models predicted optima values with error less than 10 % for 

all cases, and less than 4 % in 90 % of the results.

4.6  Conclusions

This study has demonstrated the use of four learning-models 

for constructing global approximations to facilitate single-

discipline nonlinear design optimisation.

The accuracies of each set of approximations were com-

pared via numerical error analysis, graphical analysis and 

tested ability in the generation of accurate solutions for 

Fig. 18  Error residual plots for: a M-01 (no Swirl) and b M-06 (swirl flow)

Fig. 19  Error residual plots for: a M-02 (no Swirl) and b M-07 (swirl flow)
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60 different optimisation problems. It was found that the 

response surfaces registered the highest model fit error 

among all other models. It was clear that neither 1st nor 

2nd order polynomial models proved capable to model the 

dual-phase-fluid driving JP nonlinear performance behav-

iour. Eventually, it was found that the 3rd order response 

surface models could be used to approximate the nonlinear 

design space within a reasonable margin of error. However, 

instabilities arose when considering higher order polynomi-

als. This may have resulted from a lack of sample points to 

estimate all coefficients of the polynomial equation.

Kriging models in conjunction with a Gaussian corre-

lation function (comprising of either 0th, 1st or 2nd order 

regression function), yield global approximations which 

were slightly more accurate than RSM.

The RBFANN models (including varied optima number 

of hidden neurons), showed a drastic decrease in predic-

tion error. However, this improvement was not registered 

throughout all prediction ranges respective to all JP model 

cases.

Ultimately, the ensemble models (including a combina-

tion of model averaging and stacking methodologies) gave 

the best overall performance results throughout all pre-

diction ranges. Such results illustrated the benefits of the 

stacked generalisation approach; thereby the combination 

of model information, including information from level-1 

models with poor approximations capabilities. However, the 

performance increase attributed to the ensemble approach is 

not computationally cheap. The complexity and additional 

evaluations slowed down the modelling process.

Fig. 20  Error residual plots for: a M-03 (no Swirl) and b M-08 (swirl flow)

Fig. 21  Error residual plots for: a M-04 (no Swirl) and b M-09 (swirl flow)
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Furthermore, a comparison between the three optimisa-

tion algorithms has been performed for solving a total of 

60 optimisation problems. It was noted that the three algo-

rithms, including: (a) the ‘interior-point’ algorithm, (b) the 

Augmented Lagrangian genetic algorithm (ALGA) and (c) 

a hybrid formulation, produced similar results for the same 

optimisation algorithms, but varied for the four types of 

applied global approximation methods.

As expected, higher accuracy and consistency were 

obtained for the optimisation algorithms based on the pre-

dicted data from both RBFANN and ensemble models.

The ensemble model (having Kriging as the level-2 learn-

ing model) estimated the optimised design parameters, 

which closely matched the actual data, thereby proved that 

such model-based optimiser was a powerful optimiser. Thus, 

in situations where the dual-phase driving-fluid JP is consid-

ered, where the data or the structure of the fitness function 

are highly nonlinear, the stacked generalisation approach 

might be an adequate first approach.

This comprehensive study should serve as a model-based 

optimiser tool to assist in the design of dual-phase surface 

JPs and in particular to cases involving dual-phase fluid 

composition as driving fluids. Also, due to the nature of 

the input model variables, mainly the nozzle-to-throat clear-

ance X (considered as an adjustable parameter), such model-

based optimisation tool has the potential to be implemented 

for on-line control purposes.

Open Access This article is distributed under the terms of the Crea-

tive Commons Attribution 4.0 International License (http://creat iveco 

mmons .org/licen ses/by/4.0/), which permits unrestricted use, distribu-

tion, and reproduction in any medium, provided you give appropriate 

credit to the original author(s) and the source, provide a link to the 

Creative Commons license, and indicate if changes were made.

Appendix 1. Response Surface Models 
Expressions

(27)

ER
M−01NS

= (0.0321)X3 − (0.2804)X2

+ (0.5755)X − (0.0012)GVF
2

+ (0.027)GVF − (0.0004)At
2

+ (0.0211)At + (0.0001) ⋅ X ⋅ GVF
2

+ (0.0017) ⋅ GVF ⋅ X
2

− (0.0093) ⋅ GVF ⋅ X

− (0.0004) ⋅ GVF ⋅ At

+ (0.0006) ⋅ At ⋅ X)

(28)

ER
M−01S

= (0.0602)X3 − (0.4708)X2

+ (0.8239)X − (0.0001)GVF
2

+ (0.0122)GVF − (0.0016)At
2

+ (0.0533)At + (0.0027) ⋅ GVF ⋅ X
2

− (0.0004) ⋅ At ⋅ X
2

− (0.0086) ⋅ GVF ⋅ X

− (0.0004) ⋅ GVF ⋅ At

+ (0.003) ⋅ At ⋅ X

Fig. 22  Error residual plots for: a M-05 (no Swirl) and b M-10 (swirl flow)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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(29)

ER
M−02NS

= (0.001)X3 − (0.0538)X2

+ (0.2082)X − (0.0013)GVF
2

+ (0.0172)GVF − (0.0019)At
2

+ (0.0557) ⋅ At + (0.0001) ⋅ X ⋅ GVF
2

− (0.0001) ⋅ At ⋅ X
2

− (0.0093) ⋅ GVF ⋅ X

− (0.0001) ⋅ GVF ⋅ At

− (0.0004) ⋅ At ⋅ X

(30)

ER
M−02S

= (0.0596)X3 − (0.3219)X2

+ (0.1556)X + (0.0004)GVF
2

− (0.0247)GVF − (0.0046)At
2

+ (0.1192)At + (0.0009) ⋅ GVF ⋅ X
2

+ (0.0001) ⋅ X ⋅ At
2 − (0.0022) ⋅ At ⋅ X

2

− (0.0004) ⋅ GVF ⋅ X

+ (0.0054) ⋅ At ⋅ X

(31)

ER
M−03NS

= (0.0106)X3 − (0.1227)X2

+ (0.3973)X + (0.0001)GVF
2

− (0.0057)GVF − (0.0013)At
2

+ (0.0451)At + (0.0004) ⋅ GVF ⋅ X
2

+ (0.0008) ⋅ At ⋅ X
2 − (0.0036) ⋅ GVF ⋅ X

− (0.0001) ⋅ GVF ⋅ At

− (0.0071) ⋅ At ⋅ X

(32)

ER
M−03S

= (0.011)X3 − (0.1351)X2

+ (0.4289)X − (0.0003)GVF
2

− (0.0135)GVF − (0.0026)At
2

+ (0.0664) ⋅ At + (0.0009) ⋅ GVF ⋅ X
2

+ (0.0008) ⋅ At ⋅ X
2 − (0.0051) ⋅ GVF ⋅ X

+ (0.0002) ⋅ GVF ⋅ At

− (0.0071) ⋅ At ⋅ X

(33)

ER
M−04NS

= (0.0196)X3 − (0.2028)X2

+ (0.4061)X + (0.0007)GVF
2

− (0.0327)GVF − (0.003)At
2

+ (0.0949)At + (0.0015) ⋅ GVF ⋅ X
2

+ (0.0005) ⋅ At ⋅ X
2

− (0.0038) ⋅ GVF ⋅ X − (0.001) ⋅ At ⋅ X

Appendix 2. Error Analysis of RSM, Kriging 
RBFANN and Ensemble Models

See Table 6.

(34)

ER
M−04S

= (0.0247)X3 − (0.1774)X2

+ (0.1967)X − (0.0008)GVF
2

− (0.0499)GVF + (0.0001)At
3

− (0.007)At
2 + (0.1816)At

+ (0.0003) ⋅ GVF ⋅ X
2

− (0.0007) ⋅ At ⋅ X
2

+ (0.00024) ⋅ GVF ⋅ X

+ (0.0006) ⋅ GVF ⋅ At

+ (0.0038) ⋅ At ⋅ X

(35)

ER
M−05NS

= (0.0093)X3 − (0.1223)X2

+ (0.2623)X + (0.0006)GVF
2

− (0.0253)GVF − (0.0030)At
2

+ (0.0878)At + (0.0013) ⋅ GVF ⋅ X
2

+ (0.0001) ⋅ At ⋅ X
2

− (0.0042) ⋅ GVF ⋅ X

− (0.0002) ⋅ GVF ⋅ At

+ (0.0002) ⋅ At ⋅ X

(36)

ER
M−05S

= (0.05)X3 − (0.406)X2

+ (0.909)X + (0.0003)GVF
2

− (0.0132)GVF − (0.0147)At

+ (0.0033) ⋅ GVF ⋅ X
2

− (0.0025) ⋅ At ⋅ X
2

− (0.0179) ⋅ GVF ⋅ X

+ (0.0004) ⋅ GVF ⋅ At

+ (0.0125) ⋅ At ⋅ X
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Appendix 3. Box Plots of Absolute Errors 
for Learning Models

See Figs. 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 

36, and 37.

Table 6  Error analysis of 

RSM, Kriging RBFANN and 

ensemble models

Error analysis method Response—(entrainment ratio [Er] for models M-01–M-10)

M-01 M-02 M-03 M-04 M-05 M-06 M-07 M-08 M-09 M-10

Response surface [RSM] (3rd order polynomial)

   Max error 0.239 0.189 0.162 0.298 0.248 0.283 0.399 0.127 0.182 0.236

   Avg error 0.064 0.041 0.033 0.044 0.035 0.067 0.091 0.044 0.044 0.065

   RMSE 0.083 0.059 0.044 0.064 0.047 0.087 0.125 0.054 0.056 0.085

   R2 0.869 0.949 0.931 0.961 0.969 0.923 0.826 0.908 0.978 0.953

   Adjusted R2 0.868 0.949 0.93 0.064 0.969 0.923 0.825 0.907 0.978 0.952

Kriging (with constant term)

   Max error 0.1407 0.143 0.116 0.087 0.108 0.219 0.181 0.089 0.099 0.198

   Avg error 0.0102 0.002 0.006 0.004 0.019 0.018 0.044 0.001 0.002 0.038

   RMSE 0.0566 0.056 0.045 0.045 0.05 0.069 0.123 0.049 0.046 0.106

   R2 0.945 0.955 0.932 0.984 0.977 0.962 0.826 0.94 0.988 0.941

   Adjusted R2 0.943 0.954 0.929 0.983 0.976 0.961 0.819 0.938 0.987 0.939

Neural network [RBFANN]

   Max error 0.1151 0.109 0.048 0.106 0.158 0.113 0.1 0.048 0.142 0.19

   Avg error 0.0032 0.004 0.003 0.003 0.01 0.007 0.024 0.005 0.008 0.015

   RMSE 0.0492 0.048 0.031 0.033 0.044 0.044 0.079 0.035 0.061 0.054

   R2 0.959 0.969 0.966 0.992 0.979 0.984 0.931 0.967 0.978 0.984

   Adjusted R2 0.958 0.968 0.964 0.991 0.978 0.984 0.929 0.966 0.977 0..984

Model stacking—ensemble methodology (Kriging as level-2 predictor)

   Max error 0.085 0.093 0.089 0.114 0.092 0.129 0.101 0.072 0.091 0.211

   Avg error 0.0004 0.001 0.002 0.005 0.012 0.002 0.029 0.008 0.009 0.214

   RMSE 0.034 0.045 0.035 0.039 0.038 0.045 0.106 0.045 0.035 0.077

   R2 0.98 0.971 0.959 0.988 0.984 0.983 0.872 0.95 0.993 0.967

   Adjusted R2 0.979 0.97 0.957 0.988 0.984 0.983 0.867 0.948 0.993 0.966

Fig. 23  Boxplots of absolute errors for Kriging models for: a M-01 (no swirl) and b M-06 (swirl flow)
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Fig. 24  Boxplots of absolute errors for RSM models for: a M-01 (no swirl) and b M-06 (swirl flow)

Fig. 25  Boxplots of absolute errors for RBFANN models for: a M-01 (no swirl) and b M-06 (swirl flow)

Fig. 26  Boxplots of absolute errors for Kriging models for: a M-02 (no swirl) and b M-07 (swirl flow)
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Fig. 27  Boxplots of absolute errors for RSM models for: a M-02 (no swirl) and b M-07 (swirl flow)

Fig. 28  Boxplots of absolute errors for RBFANN models for: a M-02 (no swirl) and b M-07 (swirl flow)

Fig. 29  Boxplots of absolute errors for Kriging models for: a M-03 (no swirl) and b M-08 (swirl flow)
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Fig. 30  Boxplots of absolute errors for RSM models for: a M-03 (no swirl) and b M-08 (swirl flow)

Fig. 31  Boxplots of absolute errors for RBFANN modelsfor a M-03 (no swirl) and b M-08 (swirl flow)

Fig. 32  Boxplots of absolute errors for Kriging models for: a M-04 (no swirl) and b M-09 (swirl flow)
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Fig. 33  Boxplots of absolute errors for RSM models for: a M-04 (no swirl) and b M-09 (swirl flow)

Fig. 34  Boxplots of absolute errors for RBFANN models for: a M-04 (no swirl) and b M-09 (swirl flow)

Fig. 35  Boxplots of absolute errors for Kriging models for: a M-05 (no swirl) and b M-10 (swirl flow)
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Appendix 4. Solved Optimisation Problems

See Tables 7, 8, 9, 10, 11, 12, 13, 14, 15, and 16.

Fig. 36  Boxplots of absolute errors for RSM models for: a M-05 (no swirl) and b M-10 (swirl flow)

Fig. 37  Boxplots of absolute errors for RBFANN models for: a M-05 (no swirl) and b M-10 (swirl flow)
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Table 7  Optimisation problem for the JP design models: M-01 and M-06

Prob. #1 M-01 & M-06: Max [Er] at 0 % GVF Prob. #2 M-01 & M-06: Max [Er] at 10 % 

GVF

Prob. #3 M-01 & M-06: Max [Er] at 20 % GVF

Find: Find: Find:

   0.1 ≤ X ≤ 4    0.1 ≤ X ≤ 4    0.1 ≤ X ≤ 4

   13 ≤ At ≤ 50    13 ≤ At ≤ 50    13 ≤ At ≤ 50

Condition:GVF=0% Model = M-01 & M-06 Condition: GVF=10% Model = M-01 & M-06 Condition:GVF=20% Model = M-01 & M-06

Maximise: Maximise: Maximise:

[Er]=f(X, GVF, At) [Er]=f(X, GVF, At) [Er]=f(X, GVF, At)

Prob. #4 M-01 & M-06: Max [Er] at 30% 

GVF

Prob. #5 M-01 & M-06: Max [Er] at 40% GVF Prob. #6 M-01 & M-06: Max [Er] at 50% GVF

Find: Find: Find:

   0.1 ≤ X ≤ 4    0.1 ≤ X ≤ 4    0.1 ≤ X ≤ 4

   13 ≤ At ≤ 50    13 ≤ At ≤ 50    13 ≤ At ≤ 50

Condition:GVF=30% Model = M-01 & M-06 Condition: GVF=40% Model = M-01 & M-06 Condition:GVF=50% Model = M-01 & M-06

Maximise: Maximise: Maximise:

[Er]=f(X, GVF, At) [Er]=f(X, GVF, At) [Er]=f(X, GVF, At)

Table 8  Optimisation problem for the JP design models: M-02 and M-07

Prob. #1 M-02 & M-07: Max [Er] at 0 % GVF Prob. #2 M-02 & M-07: Max [Er] at 10 % 

GVF

Prob. #3 M-02 & M-07: Max [Er] at 20 % GVF

Find: Find: Find:

   0.1 ≤ X ≤ 4    0.1 ≤ X ≤ 4    0.1 ≤ X ≤ 4

   13 ≤ At ≤ 50    13 ≤ At ≤ 50    13 ≤ At ≤ 50

Condition:GVF=0% Model = M-02 & M-07 Condition: GVF=10% Model = M-02 & M-07 Condition:GVF=20% Model = M-02 & M-07

Maximise: Maximise: Maximise:

[Er]=f(X, GVF, At) [Er]=f(X, GVF, At) [Er]=f(X, GVF, At)

Prob. #4 M-02 & M-07: Max [Er] at 30% 

GVF

Prob. #5 M-02 & M-07: Max [Er] at 40% GVF Prob. #6 M-02 & M-07: Max [Er] at 50% GVF

Find: Find: Find:

   0.1 ≤ X ≤ 4    0.1 ≤ X ≤ 4    0.1 ≤ X ≤ 4

   13 ≤ At ≤ 50    13 ≤ At ≤ 50    13 ≤ At ≤ 50

Condition:GVF=30% Model = M-02 & M-07 Condition: GVF=40% Model = M-02 & M-07 Condition:GVF=50% Model = M-02 & M-07

Maximise: Maximise: Maximise:

[Er]=f(X, GVF, At) [Er]=f(X, GVF, At) [Er]=f(X, GVF, At)
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Table 9  Optimisation problem for the JP design models: M-03 and M-08

Prob. #1 M-03 & M-08: Max [Er] at 0 % GVF Prob. #2 M-03 & M-08: Max [Er] at 10 % GVF Prob. #3 M-03 & M-08: Max [Er] at 20 % GVF

Find: Find: Find:

   0.1 ≤ X ≤ 4    0.1 ≤ X ≤ 4    0.1 ≤ X ≤ 4

   13 ≤ At ≤ 50    13 ≤ At ≤ 50    13 ≤ At ≤ 50

Condition:GVF=0% Model = M-03 & M-08 Condition: GVF=10% Model = M-03 & M-08 Condition:GVF=20% Model = M-03 & M-08

Maximise: Maximise: Maximise:

[Er]=f(X, GVF, At) [Er]=f(X, GVF, At) [Er]=f(X, GVF, At)

Prob. #4 M-03 & M-08: Max [Er] at 30% GVF Prob. #5 M-03 & M-08: Max [Er] at 40% GVF Prob. #6 M-03 & M-08: Max [Er] at 50% GVF

Find: Find: Find:

   0.1 ≤ X ≤ 4    0.1 ≤ X ≤ 4    0.1 ≤ X ≤ 4

   13 ≤ At ≤ 50    13 ≤ At ≤ 50    13 ≤ At ≤ 50

Condition:GVF=30% Model = M-03 & M-08 Condition: GVF=40% Model = M-03 & M-08 Condition:GVF=50% Model = M-03 & M-08

Maximise: Maximise: Maximise:

[Er]=f(X, GVF, At) [Er]=f(X, GVF, At) [Er]=f(X, GVF, At)

Table 10  Optimisation problem for the JP design models: M-04 and M-09

Prob. #1 M-04 & M-09: Max [Er] at 0 % GVF Prob. #2 M-04 & M-09: Max [Er] at 10 % GVF Prob. #3 M-04 & M-09: Max [Er] at 20 % GVF

Find: Find: Find:

   0.1 ≤ X ≤ 4    0.1 ≤ X ≤ 4    0.1 ≤ X ≤ 4

   13 ≤ At ≤ 50    13 ≤ At ≤ 50    13 ≤ At ≤ 50

Condition:GVF=0% Model = M-04 & M-09 Condition: GVF=10% Model = M-04 & M-09 Condition:GVF=20% Model = M-04 & M-09

Maximise: Maximise: Maximise:

[Er]=f(X, GVF, At) [Er]=f(X, GVF, At) [Er]=f(X, GVF, At)

Prob. #4 M-04 & M-09: Max [Er] at 30% GVF Prob. #5 M-04 & M-09: Max [Er] at 40% GVF Prob. #6 M-04 & M-09: Max [Er] at 50% GVF

Find: Find: Find:

   0.1 ≤ X ≤ 4    0.1 ≤ X ≤ 4    0.1 ≤ X ≤ 4

   13 ≤ At ≤ 50    13 ≤ At ≤ 50    13 ≤ At ≤ 50

Condition:GVF=30% Model = M-04 & M-09 Condition: GVF=40% Model = M-04 & M-09 Condition:GVF=50% Model = M-04 & M-09

Maximise: Maximise: Maximise:

[Er]=f(X, GVF, At) [Er]=f(X, GVF, At) [Er]=f(X, GVF, At)

Table 11  Optimisation problem for the JP design models: M-05 and M-10

Prob. #1 M-05 & M-10: Max [Er] at 0 % GVF Prob. #2 M-05 & M-10: Max [Er] at 10 % GVF Prob. #3 M-05 & M-10: Max [Er] at 20 % GVF

Find: Find: Find:

   0.1 ≤ X ≤ 4    0.1 ≤ X ≤ 4    0.1 ≤ X ≤ 4

   13 ≤ At ≤ 50    13 ≤ At ≤ 50    13 ≤ At ≤ 50

Condition:GVF=0% Model = M-05 & M-10 Condition: GVF=10% Model = M-05 & M-10 Condition:GVF=20% Model = M-05 & M-10

Maximise: Maximise: Maximise:

[Er]=f(X, GVF, At) [Er]=f(X, GVF, At) [Er]=f(X, GVF, At)

Prob. #4 M-05 & M-10: Max [Er] at 30% GVF Prob. #5 M-05 & M-10: Max [Er] at 40% GVF Prob. #6 M-05 & M-10: Max [Er] at 50% GVF

Find: Find: Find:

   0.1 ≤ X ≤ 4    0.1 ≤ X ≤ 4    0.1 ≤ X ≤ 4

   13 ≤ At ≤ 50    13 ≤ At ≤ 50    13 ≤ At ≤ 50

Condition:GVF=30% Model = M-05 & M-10 Condition: GVF=40% Model = M-05 & M-10 Condition:GVF=50% Model = M-05 & M-10

Maximise: Maximise: Maximise:

[Er]=f(X, GVF, At) [Er]=f(X, GVF, At) [Er]=f(X, GVF, At)
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Table 12  Optimisation results 

using RSM, Kriging and 

RBFANN for JP models M-01 

and M-06

Model Iterations Optimise model Predicted optimum design

No swirl—(NS) for M-01 Swirl flow—(S) for M-06

NS S Algorithm X
sole

X
stack

GVF At
sole

At
stack

X
sole

X
stack

GVF At
sole

At
stack

Problem 1: maximise [Er] at 0 % GVF for M-01 & M-06

 RSM 22 20 Interior-pt. 1.27 – 0 50 – 1.20 – 0 50 –

81 101 (ga) 1.27 – 0 50 – 1.20 – 0 50 –

81 101 Hybrid 1.27 – 0 50 – 1.20 – 0 50 –

 Krig 15 20 Interior-pt. 1.12 1.56 0 31 50 1.18 1.65 0 48 50

67 67 (ga) 1.12 1.56 0 31 50 1.18 1.65 0 48 50

68 70 Hybrid 1.13 1.56 0 32 50 1.17 1.65 0 48 50

 RBF 26 18 Interior-pt. 1.67 – 0 50 – 0.9 – 0 36 –

Problem 2: maximise [Er] at 10 % GVF for M-01 & M-06

 RSM 24 15 Interior-pt. 1.13 – 10 50 – 1.15 – 10 31 –

103 95 (ga) 1.13 – 10 50 – 1.16 – 10 50 –

103 95 Hybrid 1.13 – 10 50 – 1.16 – 10 50 –

 Krig 24 17 Interior-pt. 1.42 0.89 10 30 49 0.45 0.92 10 47 50

64 169 (ga) 0.79 0.89 10 50 50 0.45 0.92 10 47 50

71 73 Hybrid 0.77 0.89 10 49 50 0.44 0.92 10 46 50

 RBF 27 26 Interior-pt. 1.15 – 10 50 – 0.9 – 10 50 –

Problem 3: maximise [Er] at 20 % GVF for M-01 & M-06

 RSM 30 15 Interior-pt. 1.0 – 20 50 – 1.08 – 20 27 –

107 72 (ga) 1.0 – 20 50 – 1.10 – 20 50 –

110 72 Hybrid 1.01 – 20 50 – 1.10 – 20 50 –

 Krig 17 17 Interior-pt. 0.63 0.92 20 32 50 1.04 1.52 20 44 50

76 65 (ga) 0.95 0.92 20 50 50 1.04 1.52 20 45 50

69 71 Hybrid 0.95 0.92 20 50 50 1.04 1.52 20 44 50

 RBF 16 21 Interior-pt. 1.02 – 20 26 – 0.89 – 20 50 –

Problem 4: maximise [Er] at 30 % GVF for M-01 & M-06

 RSM 16 15 Interior-pt. 0.98 – 30 25 – 1.0 – 30 23 –

51 53 (ga) 0.98 – 30 24 – 1.0 – 30 23 –

55 53 Hybrid 0.99 – 30 25 – 1.0 – 30 23 –

 Krig 15 19 Interior-pt. 0.73 0.75 30 31 32 1.02 0.71 30 25 29

55 82 (ga) 0.74 0.75 30 30 32 1.01 0.71 30 50 29

69 83 Hybrid 0.72 0.75 30 31 32 1.01 0.71 30 50 29

 RBF 16 18 Interior-pt. 1.09 – 30 15 – 0.75 – 30 40 –

Problem 5: maximise [Er] at 40 % GVF for M-01 & M-06

 RSM 20 14 Interior-pt. 0.93 – 40 19 – 0.91 – 40 21 –

70 56 (ga) 0.93 – 40 19 – 0.92 – 40 21 –

70 56 Hybrid 0.93 – 40 19 – 0.91 – 40 20 –

 Krig 15 28 Interior-pt. 0.54 1.27 40 26 30 0.39 0.88 40 14 26

56 70 (ga) 0.53 1.26 40 30 30 0.38 0.88 40 14 26

63 66 Hybrid 0.54 0.94 40 13 14 0.39 0.88 40 14 26

 RBF 23 17 Interior-pt. 1.02 – 40 13 – 0.6 – 40 38 –

Problem 6: maximise [Er] at 50 % GVF for M-01 & M-06

 RSM 21 20 Interior-pt. 0.91 – 50 14 – 0.8 – 50 18 –

54 55 (ga) 0.92 – 50 14 – 0.8 – 50 19 –

58 56 Hybrid 0.91 – 50 14 – 0.79 – 50 18 –

 Krig 20 18 Interior-pt. 0.49 0.63 50 13 14 0.41 0.84 50 17 13

71 82 (ga) 0.49 0.63 50 14 14 0.41 0.84 50 19 13

68 76 Hybrid 0.49 0.63 50 14 14 0.41 0..84 50 19 13

 RBF 17 17 Interior-pt. 0.76 – 50 13 – 0.65 – 50 37 –
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Table 13  Optimisation results 

using RSM, Kriging and 

RBFANN for JP models M-02 

and M-07

Model Itera-

tions

Optimise model Predicted optimum design

No swirl—(NS) for M-02 Swirl flow—(S) for M-07

NS S Algorithm X
sole

X
stack

GVF At
sole

At
stack

X
sole

X
stack

GVF At
sole

At
stack

Problem 1: maximise [Er] at 0 % GVF for M-02 & M-07

 RSM 18 17 Interior-pt. 1.98 – 0 23 – 0.45 – 0 19 –

96 60 (ga) 2.13 – 0 50 – 0.45 – 0 16 –

96 60 Hybrid 2.13 – 0 50 – 0.45 – 0 19 –

 Krig 18 16 Interior-pt. 0.8 1.85 0 33 50 1.24 0.74 0 15 13

83 69 (ga) 2.74 1.85 0 50 50 1.24 0.74 0 16 13

70 77 Hybrid 2.75 1.85 0 50 50 1.24 0.74 0 15 13

 RBF 24 16 Interior-pt. 2.64 – 0 50 – 0.32 – 0 22 –

Problem 2: maximise [Er] at 10 % GVF for M-02 & M-07

 RSM 16 17 Interior-pt. 1.48 – 10 22 – 0.47 – 10 19 –

73 61 (ga) 1.69 – 10 50 – 0.47 – 10 19 –

73 61 Hybrid 1.69 – 10 50 – 0.47 – 10 19 –

 Krig 21 19 Interior-pt. 0.66 0.93 10 20 50 1.19 0.82 10 13 18

71 83 (ga) 1.79 0.93 10 50 49 1.2 0.82 10 13 18

66 75 Hybrid 1.79 0.93 10 50 49 1.19 0.82 10 13 18

 RBF 25 19 Interior-pt. 1.99 – 10 50 – 0.54 – 10 24 –

Problem 3: maximise [Er] at 20 % GVF for M-02 & M-07

 RSM 12 17 Interior-pt. 0.97 – 20 21 – 0.49 – 20 19 –

68 73 (ga) 0.97 – 20 21 – 0.49 – 20 19 –

68 73 Hybrid 0.97 – 20 21 – 0.49 – 20 19 –

 Krig 17 15 Interior-pt. 1.31 1.12 20 47 35 0.67 0.84 20 14 22

69 69 (ga) 1.31 1.77 20 49 50 0.67 0.84 20 15 22

77 61 Hybrid 1.31 1.77 20 50 50 0.67 0.84 20 15 21

 RBF 16 26 Interior-pt. 1.20 – 20 18 – 0.98 – 20 46 –

Problem 4: maximise [Er] at 30 % GVF for M-02 & M-07

 RSM 13 17 Interior-pt. 0.44 – 30 20 – 0.53 – 30 19 –

51 76 (ga) 0.44 – 30 20 – 0.53 – 30 19 –

51 76 Hybrid 0.44 – 30 20 – 0.53 – 30 19 –

 Krig 17 18 Interior-pt. 0.38 0.85 30 44 44 0.48 0.67 30 13 13

72 59 (ga) 0.52 0.14 30 50 14 0.49 0.48 30 13 13

73 63 Hybrid 0.52 0.14 30 50 14 0.49 0.67 30 13 13

Problem 5: maximise [Er] at 40 % GVF for M-02 & M-07

 RSM 16 17 Interior-pt. 0.1 – 40 20 – 0.57 – 40 19 –

67 67 (ga) 0.1 – 40 19 – 0.57 – 40 19 –

68 67 Hybrid 0.1 – 40 20 – 0.57 – 40 19 –

 Krig 22 18 Interior-pt. 0.57 1.02 40 13 15 0.44 0.5 40 27 13

64 120 (ga) 0.57 1.03 40 15 15 0.44 0.5 40 27 13

71 148 Hybrid 0.57 1.02 40 13 15 0.44 0.5 40 27 13

 RBF 19 78 Interior-pt. 0.32 – 40 38 – 0.32 – 40 13 –

Problem 6: maximise [Er] at 50 % GVF for M-02 & M-07

 RSM 25 16 Interior-pt. 4.0 – 50 20 – 0.63 – 50 19 –

76 52 (ga) 4.0 – 50 20 – 0.63 – 50 19 –

77 52 Hybrid 4.0 – 50 19 – 0.63 – 50 19 –

 Krig 16 20 Interior-pt. 0.61 0.54 50 19 14 0.30 0.41 50 13 13

59 61 (ga) 0.61 0.54 50 19 14 0.30 0.41 50 13 13

54 69 Hybrid 0.60 0.54 50 19 14 0.30 0..41 50 13 13

 RBF 19 20 Interior-pt. 0.1 – 50 22 – 0.35 – 50 13 –
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Table 14  Optimisation results 

using RSM, Kriging and 

RBFANN for JP models M-03 

and M-08

Model Itera-

tions

Optimise model Predicted optimum design

No swirl-(NS) for M-03 Swirl flow—(S) for M-08

NS S Algorithm X
sole

X
stack

GVF At
sole

At
stack

X
sole

X
stack

GVF At
sole

At
stack

Problem 1: maximise [Er] at 0 % GVF for M-03 & M-08

 RSM 80 72 Interior-pt. 1.65 – 0 24 – 1.78 – 0 16 –

77 68 (ga) 1.43 – 0 50 – 1.78 – 0 16 –

77 68 Hybrid 1.43 – 0 50 – 1.78 – 0 16 –

 Krig 23 17 Interior-pt. 1.41 1.74 0 13 24 1.39 1.78 0 13 13

63 67 (ga) 1.29 1.69 0 50 50 1.39 1.78 0 13 13

54 58 Hybrid 1.41 1.69 0 14 50 1.39 1.78 0 13 13

 RBF 23 21 Interior-pt. 1.98 – 0 43 – 1.40 – 0 13 –

Problem 2: maximise [Er] at 10 % GVF for M-03 & M-08

 RSM 16 17 Interior-pt. 1.48 – 10 23 – 1.61 – 10 17 –

73 61 (ga) 1.48 – 10 22 – 1.61 – 10 17 –

73 61 Hybrid 1.48 – 10 23 – 1.61 – 10 17 –

 Krig 21 19 Interior-pt. 1.61 1.0 10 14 50 1.72 1.71 10 13 18

71 83 (ga) 1.33 1.0 10 50 50 1.72 1.71 10 13 18

66 75 Hybrid 1.33 1.0 10 50 49 1.72 1.71 10 13 18

 RBF 25 19 Interior-pt. 1.02 – 10 42 – 1.49 – 10 13 –

Problem 3: maximise [Er] at 20 % GVF for M-03 & M-08

 RSM 19 76 Interior-pt. 1.33 – 20 22 – 1.43 – 20 17 –

53 61 (ga) 1.33 – 20 22 – 1.43 – 20 17 –

60 61 Hybrid 1.33 – 20 22 – 1.43 – 20 17 –

 Krig 22 23 Interior-pt. 1.41 1.07 20 16 50 1.48 1.5 20 13 22

74 75 (ga) 1.35 1.07 20 50 50 1.48 1.5 20 13 22

72 57 Hybrid 1.35 1.07 20 50 50 1.48 1.5 20 13 21

 RBF 17 20 Interior-pt. 0.95 – 20 42 – 1.49 – 20 13 –

Problem 4: maximise [Er] at 30 % GVF for M-03 & M-08

 RSM 13 17 Interior-pt. 1.19 – 30 21 – 1.22 – 30 18 –

51 76 (ga) 1.19 – 30 21 – 1.22 – 30 18 –

51 76 Hybrid 1.19 – 30 21 – 1.22 – 30 18 –

 Krig 17 18 Interior-pt. 0.89 0.66 30 30 30 0.3 1.09 30 32 13

72 59 (ga) 0.43 0.88 30 50 50 0.36 1.09 30 49 13

73 63 Hybrid 0.43 0.66 30 50 30 0.36 1.09 30 49 13

 RBF 13 23 Interior-pt. 0.71 – 30 42 – 0.12 – 30 40 –

Problem 5: maximise [Er] at 40 % GVF for M-03 & M-08

 RSM 18 72 Interior-pt. 1.06 – 40 21 – 1.0 – 40 18 –

67 76 (ga) 1.06 – 40 21 – 0.14 – 40 50 –

67 76 Hybrid 1.06 – 40 21 – 0.14 – 40 50 –

 Krig 22 30 Interior-pt. 0.58 0.67 40 15 30 0.74 0.5 40 13 13

65 69 (ga) 0.58 0.67 40 15 30 0.74 0.5 40 13 13

64 65 Hybrid 0.58 0.67 40 15 30 0.74 0.5 40 13 13

 RBF 26 19 Interior-pt. 0.83 – 40 13 – 0.89 – 40 13 –

Problem 6: maximise [Er] at 50 % GVF for M-03 & M-08

 RSM 17 16 Interior-pt. 0.94 – 50 22 – 0.76 – 50 19 –

56 93 (ga) 0.94 – 50 22 – 0.1 – 50 50 –

56 93 Hybrid 0.94 – 50 21 – 0.1 – 50 50 –

 Krig 18 20 Interior-pt. 0.4 0.79 50 13 13 1.35 0.74 50 13 13

65 64 (ga) 0.4 0.79 50 16 13 0.38 1.78 50 14 50

69 71 Hybrid 0.4 0.79 50 16 13 0.37 1.78 50 14 50

 RBF 68 24 Interior-pt. 0.84 – 50 21 – 0.73 – 50 13 –
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Table 15  Optimisation results 

using RSM, Kriging and 

RBFANN for JP models M-04 

and M-09

Model Itera-

tions

Optimise model Predicted optimum design

No swirl—(NS) for M-04 Swirl flow—(S) for M-09

NS S Algorithm X
sole

X
stack

GVF At
sole

At
stack

X
sole

X
stack

GVF At
sole

At
stack

Problem 1: maximise [Er] at 0 % GVF for M-04 & M-09

 RSM 18 17 Interior-pt. 1.22 – 0 26 – 0.87 – 0 20 –

91 55 (ga) 1.20 – 0 50 – 0.87 – 0 19 –

91 55 Hybrid 1.20 – 0 50 – 0.87 – 0 20 –

 Krig 18 23 Interior-pt. 1.32 1.56 0 50 50 0.82 1.44 0 49 46

95 79 (ga) 1.32 1.56 0 50 50 0.82 1.68 0 49 50

54 51 Hybrid 1.32 1.56 0 50 50 0.82 1.68 0 49 50

 RBF 21 16 Interior-pt. 1.41 – 0 42 – 1.42 – 0 50 –

Problem 2: maximise [Er] at 10 % GVF for M-04 & M-09

 RSM 18 16 Interior-pt. 1.20 – 10 26 – 0.97 – 10 20 –

73 56 (ga) 1.18 – 10 50 – 0.97 – 10 20 –

73 58 Hybrid 1.18 – 10 50 – 0.97 – 10 21 –

 Krig 93 20 Interior-pt. 1.17 1.34 10 50 50 0.43 1.35 10 13 42

56 61 (ga) 2.06 1.34 10 50 49 1.68 1.76 10 50 50

95 85 Hybrid 1.17 1.34 10 50 49 1.68 1.76 10 50 50

 RBF 22 19 Interior-pt. 1.11 – 10 42 – 1.54 – 10 50 –

Problem 3: maximise [Er] at 20 % GVF for M-04 & M-09

 RSM 14 16 Interior-pt. 1.15 – 20 25 – 1.05 – 20 21 –

70 66 (ga) 1.12 – 20 50 – 1.05 – 20 20 –

70 66 Hybrid 1.12 – 20 50 – 1.05 – 20 21 –

 Krig 28 16 Interior-pt. 1.06 1.29 20 50 50 0.91 1.38 20 29 46

70 64 (ga) 1.06 1.29 20 50 50 0.91 1.75 20 29 50

65 57 Hybrid 1.05 1.29 20 50 50 0.91 1.75 20 30 50

RBF 13 23 Interior-pt. 1.42 – 20 26 – 1.57 – 20 50 –

Problem 4: maximise [Er] at 30 % GVF for M-04 & M-09

 RSM 18 16 Interior-pt. 1.06 – 30 24 – 1.09 – 30 21 –

53 56 (ga) 1.07 – 30 23 – 1.09 – 30 21 –

53 55 Hybrid 1.07 – 30 24 – 1.09 – 30 21 –

 Krig 15 15 Interior-pt. 0.82 0.91 30 14 20 0.43 0.77 30 30 29

67 80 (ga) 0.82 1.93 30 13 50 0.43 0.77 30 29 30

61 70 Hybrid 0.82 1.93 30 14 50 0.43 0.77 30 30 30

 RBF 15 23 Interior-pt. 1.17 – 30 22 – 1.57 – 30 50 –

Problem 5: maximise [Er] at 40 % GVF for M-04 & M-09

 RSM 18 15 Interior-pt. 0.92 – 40 22 – 1.08 – 40 21 –

65 64 (ga) 0.92 – 40 22 – 1.08 – 40 21 –

65 65 Hybrid 0.92 – 40 22 – 1.08 – 40 21 –

 Krig 15 17 Interior-pt. 0.67 0.83 40 17 18 0.82 0.83 40 30 30

70 70 (ga) 0.67 0.83 40 17 18 0.82 0.83 40 30 30

73 80 Hybrid 0.67 0.83 40 18 18 0.82 0.83 40 30 30

 RBF 15 82 Interior-pt. 1.01 – 40 21 – 1.01 – 40 13 –

Problem 6: maximise [Er] at 50 % GVF for M-04 & M-09

 RSM 15 15 Interior-pt. 0.71 – 50 20 – 1.02 – 50 21 –

57 62 (ga) 0.71 – 50 19 – 1.02 – 50 21 –

59 62 Hybrid 0.70 – 50 20 – 1.02 – 50 21 –

 Krig 16 16 Interior-pt. 0.41 0.82 50 29 15 0.69 1.04 50 29 28

73 65 (ga) 0.42 0.83 50 29 15 0.69 1.04 50 29 28

88 70 Hybrid 0.41 0.95 50 29 20 0.69 1.04 50 29 28

 RBF 16 23 Interior-pt. 0.91 – 50 21 – 1.07 – 50 13 –
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Table 16  Optimisation results 

using RSM, Kriging and 

RBFANN for JP models M-05 

and M-10

Model Itera-

tions

Optimise model Predicted optimum design

No swirl—(NS) for M-05 Swirl flow—(S) for M-10

NS S Algorithm X
sole

X
stack

GVF At
sole

At
stack

X
sole

X
stack

GVF At
sole

At
stack

Problem 1: maximise [Er] at 0 % GVF for M-05 & M-10

 RSM 18 18 Interior-pt. 1.31 – 0 23 – 2.05 – 0 50 –

77 67 (ga) 1.35 – 0 50 – 2.05 – 0 50 –

77 67 Hybrid 1.35 – 0 50 – 2.05 – 0 50 –

 Krig 18 20 Interior-pt. 2.73 1.71 0 31 50 1.22 3.10 0 41 50

86 157 (ga) 1.21 1.72 0 50 50 1.22 3.10 0 40 50

67 78 Hybrid 1.21 1.71 0 50 50 1.22 3.10 0 41 50

 RBF 17 14 Interior-pt. 2.18 – 0 26 – 1.32 – 0 38 –

Problem 2: maximise [Er] at 10 % GVF for M-05 & M-10

 RSM 18 19 Interior-pt. 1.25 – 10 22 – 1.95 – 10 50 –

62 66 (ga) 1.25 – 10 22 – 1.95 – 10 50 –

62 66 Hybrid 1.25 – 10 22 – 1.95 – 10 50 –

 Krig 18 21 Interior-pt. 0.51 1.51 10 13 50 1.55 2.88 10 42 50

70 79 (ga) 1.21 1.51 10 50 49 1.28 2.88 10 38 50

66 98 Hybrid 1.21 1.51 10 50 49 1.28 2.88 10 38 50

 RBF 15 14 Interior-pt. 1.09 – 10 20 – 1.22 – 10 39 –

Problem 3: maximise [Er] at 20 % GVF for M-05 & M-10

 RSM 18 14 Interior-pt. 1.15 – 20 21 – 1.82 – 20 48 –

74 53 (ga) 1.21 – 20 50 – 1.82 – 20 48 –

74 53 Hybrid 1.21 – 20 50 – 1.82 – 20 48 –

 Krig 20 18 Interior-pt. 1.06 1.15 20 50 41 1.45 2.64 20 50 50

68 73 (ga) 1.06 1.12 20 50 45 1.45 2.65 20 50 50

64 77 Hybrid 1.06 1.15 20 50 46 1.45 2.65 20 50 50

 RBF 13 18 Interior-pt. 0.68 – 20 21 – 1.44 – 20 50 –

Problem 4: maximise [Er] at 30 % GVF for M-05 & M-10

 RSM 16 17 Interior-pt. 0.99 – 30 20 – 1.65 – 30 44 –

68 62 (ga) 0.99 – 30 20 – 1.65 – 30 44 –

68 62 Hybrid 0.99 – 30 20 – 1.65 – 30 44 –

 Krig 13 19 Interior-pt. 0.73 0.75 30 30 22 1.64 2.53 30 44 50

67 69 (ga) 0.73 0.75 30 30 23 1.65 2.53 30 45 50

67 70 Hybrid 0.73 0.75 30 30 22 1.64 2.53 30 44 50

 RBF 15 16 Interior-pt. 0.62 – 30 26 – 1.24 – 30 39 –

Problem 5: maximise [Er] at 40 % GVF for M-05 & M-10

 RSM 15 17 Interior-pt. 0.75 – 40 20 – 1.43 – 40 39 –

52 62 (ga) 0.75 – 40 20 – 1.43 – 40 40 –

52 62 Hybrid 0.75 – 40 20 – 1.43 – 40 39 –

 Krig 21 19 Interior-pt. 0.84 0.72 40 14 13 0.77 2.32 40 35 50

79 75 (ga) 0.84 0.72 40 14 13 0.77 2.27 40 35 48

59 64 Hybrid 0.84 0.72 40 14 13 1.62 2.32 40 34 50

 RBF 17 16 Interior-pt. 0.75 – 40 13 – 1.17 – 40 36 –

Problem 6: maximise [Er] at 50 % GVF for M-05 & M-10

 RSM 16 17 Interior-pt. 0.38 – 50 19 – 1.14 – 50 34 –

55 68 (ga) 0.38 – 50 19 – 1.14 – 50 34 –

55 68 Hybrid 0.37 – 50 19 – 1.14 – 50 34 –

 Krig 19 16 Interior-pt. 0.78 0.62 50 14 13 0.403 1.86 50 30 44

67 74 (ga) 0.78 0.62 50 14 13 1.61 1.86 50 31 44

58 68 Hybrid 0.76 0.63 50 14 14 1.61 1.86 50 31 44

 RBF 14 18 Interior-pt. 0.77 – 50 19 – 1.07 – 50 30 –
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