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This paper describes the development and testing of the first prototype closed-loop, 

model-based, real-time system for the integrated control of pig growth and pollutant 

emissions. In each of two trials, growing pigs were reared from 30–50 kg to 65–125 kg 

in groups of 12 in 12 separate pens under controlled environment conditions at ADAS 

Terrington (Norfolk, England). They were fed ad libitum diets in which the protein 

content was controlled for each pen. Weight, estimated by visual image analysis, and 

feed intake were recorded daily for each pig. The control system was based on a 

mechanistic growth model. Each week, two model parameters were optimised using the 

data to improve the prediction, then the diet for each pen was optimised  by adjusting 

the crude protein content between 140 and 190 g/kg [dry matter] to minimise the model 

error from a target for weight or fat depth. Part of the trial set weight gain targets of 50 

kg and 60 kg over 70 days using two pens for each target. In three of the four pens the 

final mean weight of the pigs was within 2 kg of the target; in the fourth, growth was on 

target until it was interrupted close to the end of the trial. This trial has demonstrated the 
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potential of the system to control the growth rate of pigs and has given encouraging but 

not conclusive results for the control of back fat depth. 

 

1. Introduction  

 

Today, livestock production systems have multiple objectives imposed on them. As 

well as profit, they must maintain standards of animal welfare and reduce environmental 

impact (Frost et al., 1997). They have become complex interconnected processes: 

growth, health, welfare, and environmental emissions all depend on the animal's supply 

of nutrients. Managing growth by controlling nutrition will therefore affect these other 

factors. 

 

Livestock management decisions are based almost entirely on the judgement and 

experience of the stockman, who must estimate or guess the likely effects of any control 

action, with each of the individual processed involved controlled separately. The farm 

manager will usually apply a prescriptive nutritional regime designed in the expectation 

that it will produce the required result. In a well-managed enterprise, the nutritional 

regime will be based on a growth model. 

 

An integrated management system (IMS) is the combination of livestock models, 

monitoring equipment and feed control systems into an automatic system where control 

of these subsystems is delegated to an automatic controller (Frost et al., 1997, 

Whittemore et al., 2001d). This allows closed-loop control decisions to be made in real 

time as and when data are collected. The improved economic efficiency and 

environmental gains offered by the IMS approach are becoming increasingly apparent 

to industry leaders. Integrated management systems can be used to improve welfare, by 

enhancing the ability to provide an ideal diet at all times, will allow better control of 

growth to obtain uniformity in the desired composition and quality, and by not 

providing nutrients to excess, reduce environmental pollution (e.g. nitrogen). This will 

reduce the time that farm staff must spend on decision making about feed provision, 

enabling them to concentrate on important issues such as health and welfare. 
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Integrated management systems have already been developed for poultry (Frost et 

al., 2003; Stacey et al., 2004; Aerts et al., 2003a; Aerts et al., 2003b). This paper 

describes the development of the first prototype closed-loop, model-based, real-time 

system for the integrated control of pig growth and pollutant emissions. It demonstrates 

the performance of a novel growth controller to achieve set growth rate and fat 

deposition targets. 

 

2.  Materials and methods 

 

2.1. Experimental facilities and data collection 

 

Experiments were carried out at ADAS Terrington, Norfolk, England. Two sets of 

trials, each with 144 pigs of a commercial breed (JSR white 12 boar-line) were 

performed in controlled environment facilities in six rooms each containing two pens 

capable of holding 12 pigs up to 100 kg. The temperature was maintained at 

approximately 19 C (which was adjusted if the pigs showed adverse behavioural 

responses) and lighting was on a 12/12 hour light/dark cycle. 

 

Trial 1 contained equal numbers of male and female pigs; trial 2 contained males 

only. In each trial, half of the pigs were delivered at a nominal weight of 30 kg, the 

remainder at 50 kg; pigs of different weights were allocated to different rooms. There 

was considerable variation about the nominal weights, especially in trial 2: the range for 

the 30 kg pigs was 28–40 kg, and for the 50 kg pigs, 39–57 kg. Tables 1 and 2 show the 

allocation of pens and trial targets or treatments. The targets and treatments are 

described in more detail in section 2.5. 

 

Each pen contained a feeder, which measured the weight of feed delivered to each 

pig at each visit, identified by radio frequency transponders embedded in the pigs’ ear 

tags. The pigs were fed ad libitum diets that varied in crude protein (CP) content 

between pens, produced by manually blending two source diets with CP contents of 140 

and 190 g/kg  [dry matter]. At any time, all the pigs in a pen received the same diet. 
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Water was available ad libitum via nipple drinkers, and the total water use per pen was 

recorded weekly. 

 

The pens had slatted floors and the slurry from each pen was collected in a separate 

pit. The total volume collected in each trial was recorded, and the slurry was sampled 

and analysed for total (Kjeldahl) nitrogen  concentration. The ventilation rate for each 

room was logged at 1 minute intervals. The ammonia losses were measured continually 

using the acid trap technique (0.02 M orthophosphoric acid solution); the acid traps 

were changed twice weekly. It was thus possible to calculate the total mass of nitrogen 

emitted by the pigs in each pen and the combined weekly emissions of ammonia for 

each room. 

 

A camera was mounted above each feeder, supplying images to a visual image 

analysis (VIA) system. This system measures areas and linear dimensions and estimates 

volumes quickly, frequently, and accurately, giving objective assessment of the size, 

shape, and hence growth of individual pigs. It has been shown to estimate the weights of 

individual growing pigs with average errors under 3.5% (Marchant et al., 1999; 

Schofield et al., 1999, 2002; White et al., 2004). The measured dimensions also enable 

assessment of lean meat and fatness (Doeschl et al., 2004; Doeschl-Wilson et al., 2005). 

The software was a version of Vista (Osborne (Europe) Ltd., North Shields, England) 

adapted to use the same identification transponders as the feeder and provide the data 

needed for the model and control program. It recorded the daily median values for 

weight and 12 physical dimensions for each pig in the herd. 

 

Pigs were also weighed manually weekly, and backfat depth measurements were 

taken at the P2 position (65 mm from the midline at the last rib) using an ultrasound 

scanner fitted with a 3.5 MHz veterinary external probe (Concept MLV, Dynamic 

Imaging Ltd., Livingston, Scotland). Initial collation and processing of the collected 

data was carried out automatically by the computer on-farm. The processed data was 

then transferred to Silsoe Research Institute at least once a week for further processing. 
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In the initial stages of trial 1, faults in the feed delivery and monitoring equipment 

meant that there were periods for which the data were unreliable until repairs could be 

made. The worst affected pens were 1 and 5, but several others had shorter 

interruptions. These were resolved, so there were few problems in trial 2. 

 

2.2. Growth model 

 

The system was based on a mechanistic model of pig growth, as described by Green 

and Whittemore (2003, 2005), using algorithms described by Whittemore et al. (2001a, 

2001b, 2001c). This model predicts the growth of an individual pig through change in 

composition given a description of the current status, growth potential, feed intake, and 

environment of the pig. 

 

The pigs were allowed to become acclimatised to the feeding system for five days, 

during which both the intake and VIA data were discarded. Following this period, the 

median of the VIA-derived weights for the next three days was taken as the initial value 

for the model. Using the median guarded against occasional false readings. The initial 

fatness (lipid weight/body weight) of the pigs F0 was unknown, so it was set according 

to the initial weight W0 (kg) based on typical values observed in trials conducted during 

the development of the system: 
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Once initialised, the model was run using the recorded feed intakes for individuals 

and the blends supplied to pens as inputs, after filtering the data to remove occasional 

errors in the recording system. The mean squared error of prediction (MSEP) compared 

with the VIA estimated weight was calculated for each pig and the sum of these was 

used as a measure of how well the model fitted the data for a given pen. 

 

In general, the unfitted model performed well (see the results below), but tended to 

underpredict the growth rate slightly. The agreement varied between pigs and between 
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pens, due to slight variations in genotype, environment, health status and behaviour. 

This was expected and the system included a mechanism to adjust the model parameters 

in response to observations. 

 

2.3. Model adaptation mechanism 

 

The system was designed to allow selected model parameters to be optimised within 

defined ranges to minimise the MSEP. The optimisation used the nonlinear revised 

simplex method of Nelder and Mead (1965) in a modified form that allowed constraints 

to be imposed (see Appendix 1). Experiments were conducted with other data sets using 

single parameters or up to three optimised jointly; good adaptation, without biologically 

unrealistic values, was obtained by optimising two parameters simultaneously. One of 

these, referred to as the ‘illness factor’ Fdisease (dimensionless), controlled the efficiency 

of use of dietary supplied nutrients (Green & Whittemore, 2005). This was allowed to 

vary over a range of 0.1–1.9 times its nominal value (3.0), where a low value represents 

high efficiency (good health). The other parameter B (d-1) controlled the maximum 

protein retention rate (Green & Whittemore, 2005), and was better determined, so was 

given a range of 0.7–1.3 times its nominal value. 

  

2.4. Controller 

 

When the system was required to make a control decision the model was first 

adapted for each individual in the pen using the data up to that time, as described in 

section 2.3 above, in order to improve its prediction of future growth. The individual 

models were then used predictively to model growth up to the end of the trial. In order 

to do so, a forecast of feed intake was required for each pig. Modelling voluntary intake 

is difficult and unreliable, and may best be obtained by observation (Schinkel & de 

Lange, 1996), so intake profiles were derived from results recorded in earlier trials 

(Green et al., 2003). In trial 1, it was assumed that the pigs would follow these profiles. 

In trial 2, they were adjusted by the control system to account for variations between 

pigs, as follows. The mean ratio between the actual intake and the intake profile for the 

previous 14 days was calculated for each pig. It was then assumed that it would 
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continue to consume the same proportion of the intake profile for the next 14 days, then 

return to the profile over the next 14. This damped out daily fluctuations, while allowing 

substantial changes in intake to be accommodated, but remained conservative about 

long-term intake patterns. 

 

The controller then optimised the dietary blend, and hence the crude protein content, 

to minimise the MSEP from the target for the remaining period. As the blend could only 

be controlled at the pen level, the objective function used was the sum of the MSEPs of 

all the pigs in the pen. There were separate sub-trials attempting to control weight and 

fat depth; joint control of both may be required in practice, so the objective function 

used a weighted sum of the errors in both variables. Furthermore, the objectives could 

be set either as a trajectory, that is a value for each day, or as up to four discrete points. 

Trial 1 used trajectories and trial 2 set target values for the end of the trial (day 70) only. 

 

There was a single control variable, the dietary blend, but this could in principle be 

varied each day, giving up to 70 dimensions. This was reduced by having a control 

variable trajectory, in the form of a piecewise linear function, whose slope changed at 

discrete, equally-spaced nodes. Tests showed that the MSEP between target and 

prediction reduced as the number of nodes was increased from one to four, but showed 

insignificant improvement beyond four nodes. The optimisation problem was thus 

reduced to four dimensions. The slope was constrained to restrict the rate of change of 

the protein content. If the slope took the blend for any day outside the range [0,1], it was 

simply assumed to take the limiting value. A small penalty was added to the objective 

function when this happened, because it improved the efficiency of the optimisation by 

reducing the time spent exploring irrelevant regions of the control space. 

 

Several optimisation algorithms were tested, including genetic algorithms, quasi-

Newton methods and the nonlinear revised simplex method. The genetic algorithms 

were robust, that is, not prone to instability and consistent in finding the optimum, but 

they were slow. The quasi-Newton methods were capable of high precision, which was 

not required in practice, and became slow, or even unstable, in the presence of the full 

set of constraints. The constraints that represented simple bounds on the variables were 
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eliminated by transforming the state space using a sine function to transform an 

unbounded variable to a bounded one, but this did not improve the performance 

significantly. The mean speed of the revised simplex method was greater than the other 

methods, it remained stable, and the precision was acceptable, considering the precision 

that could practically be achieved in blending the feeds. This combination of features 

made it most the suitable method, and it was therefore used in all the trials. 

  

2.5. Targets and treatments 

 

The targets and treatments used in the two trials are shown in Tables 1 and 2. In 

each trial, the pigs in pens 1–4 were used for a sub-trial in which the targets were set as 

final P2 back fat depths. The pigs in pens 5–8 were used for a sub-trial with final weight 

targets. However, due to the large variation in initial weight within each pen in trial 2, 

the targets for this trial were set in terms of weight gain rather than target weight. The 

targets weight gains were 5 kg higher than those for trial 1, because the health of the 

pigs in the early stages of the trial was better, which enabled them to grow more 

quickly. 

 

No targets were set for the pigs in pens 9–12. These were given fixed diets 

throughout using the high (190 g/kg) and low (140 g/kg) protein feeds without blending 

in order to promote the development of contrasting body conformation as part of the 

analysis of the visual imaging system results. These pigs, therefore, were not used in the 

controller trial, but were included in the model and adaptation testing. 

 

3.  Results and discussion 

 

3.1. Growth model and model adaptation 

 

In assessing the system performance, it is the ability to predict and control the 

liveweight of the pigs that is most important, rather than the prediction by the model of 

the VIA estimate of weight.  All of the trial results were therefore compared with the 

results of manual weighings and P2 back fat assessments made shortly before slaughter.  
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Tables 3 and 4 summarise the ability of the model to predict the final weight and fat 

depth for trials 1 and 2, respectively. The results are shown for the initial values of the 

two parameters used for adaptation and after optimising them at the end of the trial. 

 

It can be seen that the overall agreement between the model and the observed final 

weights was slightly better in trial 2 than trial 1. In both trials, optimising the model 

parameters at the end of the run using the VIA weight estimates reduced the root mean 

squared error of prediction (RMSEP) of the model compared with manual weights for 

the herd by about half.  In each trial there were a few cases where the optimisation 

increased the RMSEP slightly for a pen; generally when the agreement was already 

good.  The largest increase was in trial 1 pen 5, which was due intermittent substantial 

VIA overestimates of the weights of some of the pigs, which caused the optimisation to 

increase the prediction above the true weights, which were used in the calculation of the 

RMSEP.  Better filtering of these outlying values would remove the problem.  In 

general, the error in the prediction of fat depth was slightly increased by optimisation. 

This was not unexpected, because there was no feedback mechanism for fat depth, and 

therefore no reason why the prediction should improve.  It should also be noted that the 

measurement of fat depth using ultrasound is itself prone to errors. 

 

In addition to the incorrect VIA estimates noted above, it should be noted that some 

of the adaptation may have been to systematic errors in the feed intake data. In trial 2, 

the total mass of feed supplied to each pen was compared with the mass recorded by the 

feeding system. In 8 of the 12 pens, the feeding system record was within +/- 11% of 

the manual record. The worst cases were pen 1, in which the automatic system recorded 

122% of the total supplied, and pen 5, which recorded 83%. Pen 1 was the only one 

where the adaptation mechanism did not consistently reduce the illness factor for the 

pigs (i.e. increase the efficiency), which would be consistent with achieving similar pig 

performance to the other pens, but recording a higher level of feeding than was actually 

the case. 

 

To illustrate the results, it is useful to focus on a single pen and an individual pig. 

An example of the results for one pig up to the end of the trial is shown in  Fig. 1 (trial 2 
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pen 1 pig 249). It shows a close agreement between the model, VIA estimated weight 

and manual weight, with a small deviation at the end. The MSEP for this pig compared 

with the VIA weights over the whole run was 9 kg2; for the pen (12 pigs) the total was 

266 kg2, and the highest in the pen was 66 kg2. The predicted final weight for pig 249 

was 96.7 kg compared with a measured weight of 94 kg; an error of 2.7 kg, which is 

consistent with the MSEP of 9 kg2.  The RMSEP of the model compared with the 

measured final weights, where the mean was taken over all the pigs in the pen, was 8.5 

kg.  After optimising the model parameters to minimise the errors from the VIA 

estimated weights, the RMSEP for the pen compared with the measured final weights 

was reduced to 2.5 kg. 

 

As was the case for the whole herd, the prediction of back fat depth was generally 

less reliable. For pig 249, the measured depth was 10 mm and the predicted depth was 

12.4 mm.  The RMSEP for the pen was 1.9 mm.  The optimisation procedure, based 

only on weight, increased the prediction for pig 249 to 12.9 mm and increased the 

RMSEP for the pen to 2.5 mm. 

 

These results confirmed that the model gave generally good performance, and that 

optimising the chosen parameters using the VIA weight estimates could improve the 

prediction of weight.  However, they used optimisation at the end of the run.  In the 

trials, the optimisations were performed at each decision point using the data available 

at that time.  A similar analysis to the above was performed by truncating the VIA 

record at day 39 and predicting the final weight based on actual intakes until the end of 

the trial.  The results are shown in Tables 5 and 6.  The results again show that 

optimisation reduced the RMSEP of weight, although by a smaller amount, as would be 

expected.  The effects on the prediction of fat depth are also slightly less than when 

optimisation is performed using the full data set.  These results confirm that the desired 

effect was obtained by this method of model adaptation. 
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3.2. Operation as an offline growth and nutrition control system 

 

Table 7 shows the final result of the pens used for the controlled growth sub-trial in 

trial 1.  Both weight and fat depth show only limited control.  For both variables the 

lower target is exceeded and the higher one is not achieved.  The maximum growth rate 

of the pigs may have been restricted by the health problems noted above, and the 

difficulties with the feed recording system, particularly in the earlier stages reduced the 

precision of the control system. 

 

Table 8 shows the corresponding result for trial 2.  Other than pen 7, which will be 

discussed below, the mean weight gain was within 2.5 kg of the target in each pen, and 

the back fat depth was within 1 mm of the lower target.  The higher target for the pigs in 

pens 3 and 4 proved to be beyond the capability of the system given the range of 

possible diets and ad libitum feeding, but the pigs in these pens achieved greater back 

fat depth than those fed on the lower protein diet throughout. 

 

The pigs in pen 7 grew at a rate very close to the target for about 8 weeks, then 

suffered an interruption in their growth, for reasons that cannot be determined, as shown 

in Fig. 2.  Although they then started to recover, there was insufficient time for the 

controller to return them to the target.  Their mean deviation from the target on day 54 

was -2.3 kg. 

 

3.3. Other potential benefits 

 

In the course of the trials, it became clear that the combination of continuous 

monitoring of intake and the visual image of the pigs provided the potential for 

sophisticated problem detection. When a pig became lame, the change in posture often 

produced a sudden change in the area (shape) recorded by the VIA system, well before 

any effect on weight was detectable. If the feed intake of a pig dropped this was often 

not immediately obvious from the intake records, because intake was quite variable 

from day to day. The weight estimate from the VIA system usually required several 

days before the decline in growth rate, or weight loss, was obvious. The weight gain 
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predicted by the model often responded more quickly because some of the time 

constants in the model were shorter than in the metabolism of the animals. However, the 

magnitude of the change was usually comparable. On the other hand, a reduction in 

weight gain, or actual weight loss estimated by the VIA system when the model 

predicted continued growth, showed that intake was unaffected, but conversion 

efficiency was dropping, probably as a result of disease or other problems, such as 

scouring. By adding software to monitor the intake, VIA records, model predictions and 

possibly the corrections made by the adaptation algorithm over several days, the 

herdsman could be automatically alerted to health and welfare problems. 

 

It was suggested in the introduction that IMS could offer environmental benefits, 

particularly by making more efficient use of protein in feeds to reduce nitrogen 

emissions. In the trials, the total nitrogen emitted in slurry (aggregated by pen) and 

ammonia (aggregated by pair of pens) were recorded. The ammonia emissions were 

allocated to pens in the same ratio as the recorded slurry nitrogen; since the ammonia 

typically accounted for about 3% of the nitrogen emitted, the errors this could introduce 

were small. Using these data for trial 2, the mean emission of nitrogen from the pigs in 

the controlled weight gain sub-trial (pens 5–8) was 35 g/kg weight gained. Those in 

pens 5, 6, and 8 emitted only 30–31 g/kg, but those in pen 7, where growth problems 

were observed in week 8, emitted 49 g/kg. The mean emission from the pigs on fixed 

feeding (pens 9–12) was 45 g/kg and from those in the fat gain sub-trial (pens 1–4) 51 

g/kg. There were insufficient data to estimate the variances of the emission estimates, 

but the tentative conclusion from these data is that successful controlled weight gain 

could reduce nitrogen emissions substantially. Although the data were inadequate for 

proper validation, the trend in the prediction of nitrogen emissions by the model was 

correct within each trial. In theory, it would be possible to add a total nitrogen emission 

objective or constraint to the control system, to reduce the environmental burdens 

produced; the results obtained so far show that this merits further study. Controlling 

ammonia emission would be more complex, because it depends on environmental and 

behavioural factors. 
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5. Conclusions 

 

The present study has shown that pig growth model optimisation can be performed 

in real time using visual image analysis (VIA) data, and that weight gain in pigs can be 

controlled through an integrated management system using ad libitum feeding and a 

range of diet crude protein (CP) content.   

 

The results also indicate that some control of fat depth may also be possible, 

although the range of diets available to the trial meant that it was not possible to test this 

fully. Ideally, some form of feedback of fat content would be required, possibly by 

deriving a conformation measure from the VIA variables. 

 

Successful feeding for controlled weight gain appears to reduce the total emissions 

of nitrogen. In principle, the system could be extended to include this as an objective or 

a constraint. 

 

If VIA monitoring and intake recording were in operation, advanced detection of 

some health and welfare problems would become possible with little additional cost. 
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Appendix 1. Constraining the revised simplex method 

 

Since its publication, the revised simplex method (RSM) (Nelder & Mead, 1965) 

has proved popular in many nonlinear optimisation applications where function 

derivatives are not available, despite its poor performance in higher dimensions, for the 

same reasons that it was used in this research: simplicity and robustness. The RSM was 

based on the earlier simplex method of Spendley et al. (1962); the key difference being 

that the RSM allowed the simplex to change shape to adapt to the topography of the 

search space. A limitation of both methods was the absence of an inbuilt method of 

handling constraints. Box (1965) found that introducing constraints into the original 

simplex method in the form of barrier functions often led to the simplex collapsing to a 

false optimum at a barrier. The method proposed by Box, the complex method, allowed 

the number of points used to increase. However, this was in part a response to the 

limitations already addressed by Nelder and Mead. More recently Subrahmanyam 

(1989) proposed another constrained version by introducing a new delayed reflection 

operation to prevent the simplex collapsing (the delayed reflection method, DRM). 

However, this was comparatively complex to implement, negating one of the attractions 

of the method. 

 

The method used in this study was based on unpublished work by Parsons (1992) 

that tested several simple methods of applying constraints to the RSM for a range of test 

problems. The method chosen was referred to as the new maximum method (NMM). 

When a new point is generated for possible inclusion in the simplex, it is first tested for 

violation of any of the constraints. If a constraint is violated (referred to as an infeasible 

point), the new point is assigned a value mid way between the current maximum (i.e. 

the worst point) and the next highest point in the simplex. This allows it to be included 

in the simplex, reducing the likelihood of it collapsing, but ensures that no more than 

one point is infeasible at any time, subject to the constraint that all of the points in the 

initial simplex were feasible. The only overhead is thus the need to keep track of one 

point in addition to the maximum and minimum. 
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A modification of the RSM proposed by Parkinson and Hutchinson (1972) was also 

included. They noted that the RSM was inefficient where progress could be made by 

descent in a single direction on a scale substantially larger than the simplex (visualise a 

long downhill run), because this required several complete iterations, and could lead to 

elongation of the simplex. By introducing an operation that they called unlimited 

expansion and translation they reduced multiple iterations in the same direction to one. 

 

The NMM was tested against fixed penalty (barrier) methods and others that 

allowed more infeasible points to enter the simplex, using a set of test problems with a 

sets of constraints that placed the minimum in a ‘corner’ of the feasible region in 5 

dimensions, or set very tight bounds  on one of the variables. The NMM gave the best 

performance on these problems and was the only one that consistently gave the correct 

result for the second type. It succeeded by adapting better to the geometry of the search 

space. The inclusion of unlimited expansion and translation was beneficial where the 

constraints forced a reduction in the scale of the simplex. 

 

The NMM with unlimited expansion and translation was then compared with the 

results published by Subrahmanyam for the DRM using four test problems with non-

linear constraints that were designed to be challenging. In two of these the NMM gave 

better results than the DRM, finding the optimum with equivalent or higher precision in 

many fewer iterations. In the third, which included an equality constraint, the DRM 

required 10 times as many iterations as the NMM, but achieved higher precision. 

Restarting the NMM allowed it to achieve similar precision to the DRM, but with more 

iterations. Whenever possible, equality constraints should be eliminated by 

reformulating the problem to reduce the dimension. In this case, it resulted in a problem 

with linear constraints, for which the NMM performed well. The fourth problem used a 

seven dimensional objective function with four constraints in five variables each. The 

NMM achieved significantly lower precision than the DRM. 

 

It was concluded that the NMM was the best of the methods tested, except for high 

dimensional problems with complex nonlinear constraints. It was therefore well suited 

to the application described in this paper. 
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Table 1 

Allocation of pigs and targets to pens in trial 1 

 

Pen Sex Initial weight 
(nominal), kg 

Target weight, 
kg 

Target fat depth, 
mm 

Treatment 
(protein level) 

1 F 50  16  
2 M 50  16  
3 F 50  12  
4 M 50  12  
5 F 30 85   
6 M 30 85   
7 F 30 75   
8 M 30 75   
9 F 30   High (190 g/kg) 
10 M 30   High (190 g/kg) 
11 F 50   Low (140 g/kg) 
12 M 50   Low (140 g/kg) 
 

Table 2 

Allocation of pigs and targets to pens in trial 2 

 

Pen Sex Initial weight 
(nominal), kg 

Target weight 
gain, kg 

Target fat depth, 
mm 

Treatment 
(protein level) 

1 M 50  12  
2 M 50  12  
3 M 50  16  
4 M 50  16  
5 M 30 50   
6 M 30 50   
7 M 30 60   
8 M 30 60   
9 M 30   Low (140 g/kg) 
10 M 30   High (190 g/kg) 
11 M 50   Low (140 g/kg) 
12 M 50   High (190 g/kg) 
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Table 3 

Results of optimising the model at the end of run in trial 1 

Pen Final 
number 
of pigs 

RMSEP of 
weight before 
optimisation, kg 

RMSEP of 
weight after 
optimisation, kg 

RMSEP of fat 
depth before 
optimisation, mm 

RMSEP of fat 
depth after 
optimisation, mm

1 9 3.81 5.82 3.20 3.28 
2 10 21.43 9.01 3.37 4.02 
3 6 9.91 7.11 2.81 3.61 
4 7 16.98 8.79 3.65 4.35 
5 12 5.40 6.55 2.35 3.09 
6 11 5.29 3.80 1.33 1.84 
7 11 7.54 3.46 2.62 3.07 
8 11 8.43 3.72 1.94 2.17 
9 8 2.91 3.33 1.93 2.13 
10 7 5.45 6.16 1.94 2.15 
11 8 13.74 5.73 2.92 2.79 
12 10 10.97 3.94 3.47 3.75 
Herd 110 10.61 5.79 2.69 3.05 
 

RMSEP, residual mean squared error or prediction 

Table 4 

Results of optimising the model at the end of run in trial 2 

Pen Final 
number 
of pigs 

RMSEP of 
weight before 
optimisation, kg 

RMSEP of 
weight after 
optimisation, kg 

RMSEP of fat 
depth before 
optimisation, mm 

RMSEP of fat 
depth after 
optimisation, mm

1 12 5.80 6.35 3.47 3.66 
2 12 8.48 2.52 1.89 2.47 
3 12 10.24 4.81 3.32 3.48 
4 12 5.71 3.66 3.52 3.40 
5 11 13.69 8.45 3.59 3.76 
6 11 9.59 3.52 1.77 1.82 
7 12 7.08 6.15 2.55 2.34 
8 6 8.54 2.48 2.43 2.67 
9 12 7.23 3.97 2.02 2.02 
10 12 7.28 3.67 1.64 1.77 
11 8 9.10 2.92 2.88 2.85 
12 12 5.60 5.80 2.52 2.26 
Herd 132 8.41 4.95 2.73 2.80 
 

RMSEP, residual mean squared error or prediction 
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Table 5 

Results of the model at the end of run after optimising at day 39 in trial 1 

Pen Final 
number 
of pigs 

RMSEP of 
weight before 
optimisation, kg 

RMSEP of 
weight after 
optimisation, kg 

RMSEP of fat 
depth before 
optimisation, mm 

RMSEP of fat 
depth after 
optimisation, mm

1 9 3.81 7.54 3.20 3.45 
2 10 21.43 11.67 3.37 3.97 
3 6 9.91 9.39 2.81 3.13 
4 7 16.98 9.75 3.65 4.39 
5 12 5.40 7.45 2.35 3.05 
6 11 5.29 5.73 1.33 1.99 
7 11 7.54 4.41 2.62 3.08 
8 11 8.43 5.22 1.94 2.25 
9 8 2.91 5.01 1.93 2.09 
10 7 5.45 8.59 1.94 1.77 
11 8 13.74 7.59 2.92 2.81 
12 10 10.97 3.95 3.47 3.75 
Herd 110 10.61 7.43 2.69 3.05 
 

RMSEP, residual mean squared error or prediction 

Table 6 

Results of the model at the end of run after optimising at day 39 in trial 2 

Pen Final 
number 
of pigs 

RMSEP of 
weight before 
optimisation, kg 

RMSEP of 
weight after 
optimisation, kg 

RMSEP of fat 
depth before 
optimisation, mm 

RMSEP of fat 
depth after 
optimisation, mm

1 12 5.80 10.75 3.47 3.06 
2 12 8.48 2.95 1.89 2.35 
3 12 10.24 4.77 3.32 3.48 
4 12 5.71 3.69 3.52 3.44 
5 11 13.69 8.45 3.59 3.76 
6 11 9.59 3.55 1.77 1.82 
7 12 7.08 9.06 2.55 2.17 
8 6 8.54 2.18 2.43 2.66 
9 12 7.23 4.15 2.02 2.02 
10 12 7.28 3.90 1.64 1.84 
11 8 9.10 8.15 2.88 2.94 
12 12 5.60 6.47 2.52 2.29 
Herd 132 8.41 6.33 2.73 2.72 

 

RMSEP, residual mean squared error or prediction 
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Table 7 

Results of trial 1: mean deviation from target (standard error) 

Pen Target weight, kg Target fat depth, 
mm 

Mean deviation of 
weight from 
target, kg 

Mean deviation 
of fat depth from 
target, mm 

1  16  -2.5 (2.9) 
2  16  -0.4 (0.7) 
3  12  2.3 (2.4) 
4  12  1.9 (2.8) 
5 85  -4.0 (2.2)  
6 85  -2.3 (2.3)  
7 75  0.9 (2.0)  
8 75  1.5 (3.2)  
 

Table 8 

Results of trial 2: mean deviation from target (standard error) 

 

Pen Target weight 
gain, kg 

Target fat depth, 
mm 

Mean deviation of 
weight gain from 
target, kg 

Mean deviation 
of fat depth from 
target, mm 

1  12  -0.9 (0.53) 
2  12  0.2 (0.60) 
3  16  -2.1 (0.72) 
4  16  -2.4 (0.68) 
5 50  2.1 (2.4)  
6 50  2.3 (0.9)  
7 60  -5.8 (1.5)*  
8 60  2.0 (2.4)  
* -2.3 kg on day 54 
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Fig. 1. Example of growth model performance for trial 2 pen 1 pig 249: x, visual image 

analysis estimate; o, manual weight; —, model prediction 
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Fig. 2. Growth of one pig in trial 2, pen 7, showing the interruption in growth around 

days 54–64: x, visual image analysis estimate; o, manual weight; —, model prediction 

 


