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Abstract—The detection of stress at early stages is beneficial to both individuals and communities. However, traditional stress

detection methods that use physiological signals are contact-based and require sensors to be in contact with test subjects for

measurement. In this paper, we present a method to detect psychological stress in a non-contact manner using a human physiological

response. In particular, we utilize a hyperspectral imaging (HSI) technique to extract the tissue oxygen saturation (StO2) value as a

physiological feature for stress detection. Our experimental results indicate that this new feature may be independent from perspiration

and ambient temperature. Trier Social Stress Tests (TSSTs) on 21 volunteers demonstrated a significant difference (p < 0:005) and a

large practical discrimination (d ¼ 1.37) between normalized baseline and stress StO2 levels. The accuracy for stress recognition from

baseline using a binary classifier was 76.19 and 88.1 percent for the automatic and manual selections of the classifier threshold,

respectively. These results suggest that the StO2 level could serve as a new modality to recognize stress at standoff distances.

Index Terms—Stress detection, hyperspectral imaging, remote sensing, tissue oxygen saturation

Ç

1 INTRODUCTION

HUMAN stress represents an imbalanced state [1] of
an individual and is triggered when environmental

demands exceed the regulatory capacity of the individual
[2]. Because of its unhealthy effects [3], stress detection is an
ongoing research topic among both psychologists and engi-
neers and has been applied to lie detection tests [4], emer-
gency call identification [5], and the development of better
human computer interfaces [6].

Various features associated with stress, including hor-
mone responses, physical appearance, speech, and physio-
logical responses, have been utilized for stress detection.
Among these stress features, physiological responses are
attracting an increasing amount of attention [7]. However,
traditional physiological-based detection methods are
contact methods, i.e., sensors must be attached to individu-
als during feature measurement, which is not convenient
for operation.

In this paper, we propose a non-contact detection
method that uses a physiological signal. This method ena-
bles measurement of a physiological feature at standoff
distances, which offers more comfort for test subjects and
more covertness for testers.

Specifically, our method uses a hyperspectral imaging
(HSI) camera to obtain tissue oxygen saturation (StO2) data

as a feature for detecting human stress. In our previous
work [8], [9], we discussed a preliminary StO2-generating
algorithm that lacked details and exhibited StO2 elevation
in only one stressed participant, without statistical results.
This pilot study reported, for the first time, that HSI could
be a promising technique for remotely sensing human
stress. In this paper, we describe the optimized algorithm,
elaborate on the experiment design, explain why StO2 was
chosen as a stress indicator, present statistical test results,
and develop a stress index (SI) to detect psychological stress
that is independent of baseline information.

2 STRESS DETECTION: A REVIEW

Various modalities have been employed for the detection of
stress, and measuring changes in hormone levels (salivary
cortisol) is the approach favored by biologists and psycholo-
gists [10], [11], [12]. Kirschbaum et al. [10] observed changes
in the cortisol levels of 20 males at the onset of psychological
stressors and demonstrated that the cortisol levels of all par-
ticipants were significantly increased over five day-long
experiments. Burke et al. [11] investigated cortisol elevation
in response to a stressor under the effects of depressive
symptoms and concluded that the stressor triggered a surge
in cortisol when individuals were highly depressed.
Although the use of cortisol as a biomarker of stress is
widely accepted, sample collection requires contact, and the
hormone levels must be measured after sample collection.
Thus, cortisol-based stress detection is a contact-based and
non-real-time detection method.

Inspired by the idea that distinctive human expressions
are associated with specific affective states [13], [14], [15],
physical appearance (e.g., facial expressions [16], body lan-
guage [17], eye gaze [18], and blink rate [19]) is commonly
utilized as a modality for stress detection. Metaxas et al. [20]
presented a model-based system to monitor the deforma-
tion of different parts of the face (eyebrows, lips, and
mouth) to detect human stress and achieved a true positive
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rate of 92 percent or higher. Dinges et al. [16] developed an
optical computer recognition algorithm for stress detection
by tracking 3D facial expressions (eyebrow movement and
mouth asymmetries) that could discriminate high-stress
from low-stress performance bouts in 75-88 percent of sub-
jects. Liao et al. [18] employed nine visual features (e.g.,
blinking frequency, average eye closure speed, percentage
of saccadic eye movement) to monitor stress in real-time,
and the correlation coefficients between inferred stress and
ground-truth stress were between 0.79 and 0.92.

Speech features have also been employed as modalities
for stress recognition. Changes in speech characteristics that
have been utilized include intensity, duration, pitch, and
vocal tract spectrum. In [5], prosodic and spectral features
were used to detect the stress level of a caller to distinguish
and prioritize urgent calls to an emergency call center. It
was reported that the equal error rate of the detection sys-
tem could reach 4.2 percent.

Physiological features are widely used in stress detection.
Human physiological responses to the onset of stressors
include increases in heart rate (HR), respiration rate, blood
pressure, and body temperature, as well as perspiration,
muscle contraction, and pupil dilation. These changes result
from the activation of the sympathetic nervous system and
cannot be easily suppressed at will [21]. Healey and Picard
[22] presented a system called SmartCar to assess a driver’s
stress level via the analysis of physiological signals, specifi-
cally respiration rate, HR, skin conductance, andmuscle con-
traction. The accuracy of the detection was in the range of
62.2-88.6 percent, depending on the combination of features.
In [6], blood volume pulse, galvanic skin response, and pupil
diameter were used to detect computer users’ stress levels,
with the goal of providing an improved human-computer
interface. The accuracy of stress prediction was from 78.65 to
90.10 percent, depending on the types of classifier used. HR,
skin temperature variation, and electrodermal activity were
utilized in [23] to assess the affective states related to activa-
tion of the sympathetic nervous system. The stress could be
differentiated from anger, sadness, and surprise with an
accuracy of 61.76-78.43 percent. In general, stress detection
based on the measurement of physiological signals using
custom or medical meters can provide more accurate results
compared with informed guessing. However, this approach
for stress detection is impractical in remote sensing applica-
tions because sensors must be attached to the test subjects to
obtain the physiological signals.

Recently, imaging techniques, such as broadband (web-
cam) [24] and thermal imaging (TI) [25], have been used for
noncontact measurements of physiological signals, includ-
ing HR [26], [27], respiration rate [24], [28], and HR variabil-
ity [24]. The noncontact measurement of these physiological
signals could be promising for the remote sensing of human
stress. However, to the best of our knowledge, no research
has evaluated stress detection using this technique. With
the exception of HSI, TI is the only method that can
remotely probe human stress using physiological features.
Distinctive heat patterns in the facial region are assumed to
be associated with a specific affective state. Thermal signa-
tures of stress were first observed in 2000 by Pavlidis et al.
[29], [30], who reported that an individual’s anxiety, alert-
ness, and fear when he/she experienced a sudden startle

(physical stressor) were associated with an elevation in tem-
perature around the periorbital region. Following this initial
remarkable discovery, Pavlidis [31], [4] confirmed through
mock-crime experiments that the detection accuracy of TI
was comparable with a traditional polygraph. In TI, skin
temperature is presumably modulated by the blood flow in
the skin tissue [4], i.e., the increased temperature of the peri-
orbital region is a result of increased blood flow around the
area during a stressed state. However, this hypothesis
becomes invalid when the ambient temperature changes
suddenly. Apart from skin temperature, Shastri et al. [32]
proposed that transient perspiration measured by TI could
represent a good stress indicator to quantify stress levels.
Transient perspiration is a human physiological response
and functions well as a stress indicator in most cases.
However, we argue that in extreme scenarios where sus-
tained perspiration prevails (e.g., when an individual expe-
riences heavy sweating because of rushing in the airport
and must be checked quickly by Future Attribute Screening
Technology [33]), transient perspiration cannot be mea-
sured. Alternative techniques, such as HSI directly sensing
blood oxygenation, can serve as a complementary method
for stress detection using physiological responses in a remo-
te sensing manner.

3 HSI

HSI enables the imaging of a scene in hundreds of contigu-
ous, narrow wavebands, with a bandwidth of approxi-
mately 10 nm and in the visible and infrared regions of the
electro-magnetic spectrum, to form image cubes with both
spatial and spectral dimensions [34], [35] as shown in
Fig. 1a. Every pixel within the image cube is associated with
three coordinates: namely, two spatial coordinates (x,y),
which represent the location of pixels in 2D space, and one
spectral coordinate (�), which represents the wavelength.
Each pixel in the image cube represents the extent of light
reflected by the object in the scene within a narrow slice of
wavebands across the whole spectrum, up to the sensitivity
limits of the camera. If the intensity of the reflected light is
normalized to the incident light intensity for each image
pixel, a characteristic reflectance spectrum of the object in
the scene can be obtained (Fig. 1b). This technique is very
different compared with conventional photography, in
which three broad color channels (R,G,B) with wavebands
on the order of 100 nm are probed. The integration of spec-
tral characteristics over broad wavebands tends to reduce
the color discrimination ability in conventional photogra-
phy. For this reason, HSI uses a narrow bandwidth for spec-
tral sensing and has been one of the fastest growing
technologies in electro-optics in the 20th century. The classi-
fication of objects in a scene can be performed using textural
features (e.g., shape, orientation, and intensity variation)
from a slice of a spectral image (Fig. 1c) or in combination
with features selected from a subset of spectral images
across different wavebands. Its power of material discrimi-
nation [36] is the reason why HSI is used as the primary
technique in this research. One requirement of this work is
to sense and distinguish blood chromophores from body tis-
sues; the amount of oxygenation within the blood is subse-
quently quantified using an optical absorption model.



4 STRESS AND STO2

4.1 StO2

When air is inhaled into the lungs, oxygen binds to
hemoglobin through an unstable and reversible bond that
forms oxy-hemoglobin (HbO2). HbO2 complexes appear
bright red in color and are transported to every part of
the body through arterial blood vessels and capillaries.
After the oxygen has been consumed by cells and tissues,
the HbO2 complexes are decomposed into deoxy-hemo-
globin (Hb) complexes, which exhibit a purple-blue color,
and are returned to the heart through the venous blood
vessels and, subsequently, to the lungs. The next cycle of
Hb binding to oxygen to form new HbO2 complexes sub-
sequently begins. Each hemoglobin molecule is capable
of binding up to four oxygen molecules. If all four bind-
ing sites of each hemoglobin molecule are occupied with
oxygen molecules, the oxygen saturation of hemoglobin
is 100 percent. However, blood leaving the lung normally
has a hemoglobin oxygen saturation range of 90-100 per-
cent, depending on the individual and the situation.

Hemoglobin oxygen saturation (SO2) is defined as
the ratio of the amount of HbO2 to the total amount of
hemoglobin:

SO2 ¼ HbO2

HbþHbO2
: (1)

Arterial blood exhibits a relatively strong HR pulsation,
and its SO2, which is called the arterial oxygen saturation, is
most often measured using the pulse oxymetry technique
[37]. Arterial oxygen saturation is fairly constant and varies
from 90-99 percent in healthy individuals. StO2 is the SO2
of the microcirculation in tissue and ranges from approxi-
mately 60 percent for venous SO2 to 98 percent for arterial
SO2 [38], [39].

4.2 Signature of Stress: Arousal
of Tissue Oxygenation

Adrenaline is secreted through the hypothalamic-pituitary-
adrenal axis in response to a stressor. It binds to the

Fig. 1. (a) An HSI image that contains hundreds to thousands of narrow wavebands to form a 3D image cube. (b) The spectral response of the reflec-
tance of palm tissue for all wavebands within a 400-900 nm range. This optical signature is uniquely specific to the chemical composition of palm tis-
sue or the object in question. (c) 2D images of the same object in three different wavebands (palm).



adrenergic receptors of peripheral tissues, which prepare
the body for the fight-or-flight response [40], [41]:

� Acceleration of heart and lung actions.
� Liberation of nutrients, such as glucose and oxygen,

for muscular action.
� Increase in blood pressure and stickiness.
� The spleen discharges red and white blood cells,

which enables the blood to transport more oxygen
throughout the body. Blood flow can increase by up
to 300-400 percent, which primes the muscles, lungs,
and brain for added demands.

� Redirection of blood to provide the highest perfusion
and fuel to the aroused brain, heart and muscles.

These responses substantially increase the StO2 and tissue
oxygen content. An experiment that involves the controlled
infusion of adrenaline into human forearms [42] with
variable doses demonstrated that the SO2 of venous blood
draining from the forearm muscle experiences a significant
transient increase that is independent of the dose, which indi-
cates a transient increase in the muscle StO2 or tissue oxygen
content [43]. The response after the transient increase is dose-
dependent. A smaller dose (0.05mg=min, 0.1mg=min intra-
arterial infusion) induces a sustained increase in the venous
SO2, whereas a larger dose (0.2mg=min, 0.5mg=min intra-arte-
rial infusion) tends to decrease the oxygen saturation of the
superficial skin of the forearm (in capillary vessels).

A high amount of adrenaline infusion, 2mg=kg per
minute, was employed in [44] to investigate the oxygen
usage of the heart muscle in dogs. The oxygen extraction
of the muscle decreases, whereas the oxygen consump-
tion slightly increases, during the infusion. These effects
result in an increase in the muscle StO2 throughout the
period of infusion.

A transient increase in blood flow, which indicates a
transient increase in oxygen saturation, in the rat masseter
muscle after intravenous infusion was observed in a recent
experiment [45]. The response of blood flow after the initial
rise was also dose-dependent (i.e., a larger dose decreased
the blood flow more). This experiment also suggests that
adrenaline secreted from the adrenal gland has a similar
effect on the masseter oxygen saturation.

The effects of increased superficial blood flow (1-2 mm
[46] below the skin surface) on the human facial region
upon the onset of a psychological stressor was recently
reported. The mean blood flow (measured by laser Doppler
flowmetry or photoplethysmography) of the forehead [46],
[47], [48] and cheek [47], [48] during the stressed state
increases, which reveals that the StO2 of these regions is
affected by the stress or the hormones secreted along with
the stress.

From these previous publications, it is clear that the
stress hormone adrenaline or stress itself can trigger higher
oxygen saturation (content) in certain tissues (including
facial tissues), although the increase can be transient or sus-
tained. In the case of very short-term increases, the post-
transient response may be influenced by the amount of
adrenaline and the severity of the stressor. Very large
amounts of adrenaline or sustained stimulation of the adre-
nal medulla may lead to the maintenance of higher tissue
oxygenation levels.

5 METHODOLOGY FOR STO2 ASSESSMENT

USING HSI

HSI is an emerging technique used to remotely sense StO2
in vitro, and the results can be presented in a spatial 2D
StO2 map. Substantial efforts [49], [50], [51] in the field of
HSI StO2 assessment have been based on the Beer-Lambert
Law, which relates the absorption of light to the properties
of the material through which the light is traveling:

A ¼ "lc; (2)

where A is the absorbance, " defines the molar extinction

coefficient cm�1ðmol
L Þ�1

(or molar absorptivity) of the mate-

rial, c represents the molar concentration (mol=L) of the
absorber, and l denotes the distance (cm) traveled by
the light through the material. In an HSI reflectance model,
the path length l is difficult to measure. The product lc in
equation (2) is thus reduced to Ceff , the effective concentra-

tion (10�3mol=cm2), which represents the molar concentra-
tion of absorbers per unit area.

The absorbance in this work is deduced from the diffuse
reflections of body tissue using the equation

A� ¼ ln
1

R� Total �R� Specular
; (3)

where A�, R� Total, and R� Specular are the absorbance, total
reflectance, and specular reflectance values of skin tissue,
respectively. The wavelength-dependent R� Total is obtained
through the empirical line method (ELM) as follows:

Rðx; y; �Þ ¼ a�Iðx; y; �Þ þ b�; (4)

where Iðx; y; �Þ is the intensity of pixel ðx; yÞ at wavelength
�, and a� (from 0.003 to 0.04 ) and b� (from -1 to -0.02) are
calibration coefficients extracted from standard reflection
material (spectralon)

RWhite � ¼ a�IWhite � þ b�; (5)

RBlack � ¼ a�IBlack � þ b�; (6)

where IWhite � and IBlack � are the mean pixel intensities of
the white and black spectralons, respectively, at wavelength
�, and RWhite � and IBlack � denote the reflectance values of
the white and black spectralons, which are 0.98 and 0.02,
respectively, over spectral region of 250-2500 nm.

The specular reflectance R� Specular is the ratio of specular
reflected light intensity from the skin surface to the total inci-
dent light intensity. This value is determined by subtracting
the tissue body reflectance [52] from the total reflectance. The
tissue body reflectance is calculated using the same method
used to obtain the total reflectance, with the exception that
two cross-polarized polarizers are required to be placed in
front of the illumination source and the HSI sensor during
measurement recording [49]. The specular reflectance of skin
tissue used in this research is shown in Fig. 2.

The chromophores considered in this research are Hb,
HbO2, and melanin. Thus equation (2) becomes

A ¼ "HbO2CeffHbO2 þ "HbCeffHb

þ "melaninCeffmelanin þG;
(7)



where "HbO2, "Hb, and "melanin, and CeffHbO2, CeffHb, and
Ceffmelanin are the molar absorptivities and the effective con-
centrations of HbO2, Hb, and melanin, respectively. The
term G represents a collection of photons that have been
scattered out of the sensor’s view angle. In this research, the
values of "HbO2, "Hb, and "melanin were adopted from litera-
ture [53], [54].

The estimated effective concentrations of CeffHbO2 and
CeffHb from equation (7) are strong indicators of real molar
concentrations of HbO2 and Hb. the deduced CeffHbO2 and
CeffHb values were previously identified, by solving equa-
tion (7), to be linearly proportional to the real concentrations
of HbO2 and Hb, with correlation coefficients of 0.86 and
0.88, respectively [49]. This correlation makes CeffHbO2 and
CeffHb increasingly useful in diagnostic and clinic applica-
tions, such as predicting the risk of diabetic foot ulcer for-
mation [49], visualizing kidney StO2 during open partial
nephrectomies [55], and distinguishing superficial burn
wounds from deep wounds [56].

In theory, sets of values of A, "HbO2, "Hb, and "melanin at
three or more wavelengths can determine the CeffHbO2 and
CeffHb. Thus, various groups of wavelengths equally distrib-
uted over the visible and near infrared range have been
employed for StO2 assessment by different researchers [49],
[50], [51]. In this paper, wavelengths from 518 to 580 nm
with a step size of 2 nm were selected to deduce StO2
because we have demonstrated that this spectral region can
provide more robust StO2 results in terms of illumination
independence and accuracy [57].

Because each StO2 map pixel is affected by the surround-
ing tissue, the final StO2 map is generated after the raw
StO2 map is averaged.

6 COMPARISON OF HSI AND TI FOR THE

ASSESSMENT OF STO2

6.1 Research Motivation

Both HSI and TI techniques can assess StO2, either directly
or by measuring skin blood perfusion [58], which enables
the monitoring of StO2 at standoff distances without
requiring contact with the target tissue. In this section, we

examine how these two technologies perform in the assess-
ment of StO2 under normal conditions, where the ambient
temperature is constant and the body temperature scheme
is not dominant, as well as in extreme conditions, where the
ambient temperature experiences a 15�C change or perspi-
ration prevails. The ambient temperature (see Section 6.4)
and perspiration (see Section 6.5) effect tests were per-
formed on four test subjects (three males, one female; N ¼ 2
or 3), and the results were consistent.

6.2 Instrumentation and Experimental Setup

The HSI system utilized in this research consisted of a
Headwall VNIR spectrograph (HeadWall VNIR, USA) com-
bined with a PCO PixelFly camera (PCO PixelFly, Germany)
and a home-designed mirror scanning system. The slit of
the spectrograph was 30 mm wide, which provided a maxi-
mum spectral resolution of �5 nm. The spectral sensitivity
limit of the PCO camera ranged from 400 to 1,000 nm, with
a maximum quantum efficiency yield of �65 percent at
�650 nm. The opening angle of the PCO camera was 30
degree. The dimensions of the entire HSI system were
approximately 40� 40� 15 cm. The TI system consisted of
a FLIR SC7600 mid-wave infrared camera for skin tempera-
ture measurements, with a temperature resolution of 0.02�C
and a working range of �20 to þ100 �C. Broad-band halo-
gen lamps were used throughout the imaging process as
illumination sources. The two imaging systems, i.e., HSI
and TI, were placed 2-3 m away from the objects. A chest-
strap heart monitor (Garmin, USA) was used to monitor the
HR of each subject during the experiment.

The HSI system took pictures using a fixed number of
wavelengths, which ranged from 400 to 1,000 nm in 2 nm
steps (300 wavelengths). This system required 10 s (integra-
tion time 40 ms, 250 scanning lines) to record one image
cube. The StO2 measurements result from the still images of
the objects.

The HSI system used in this research cannot operate in
real-time. However, by using a more-sensitive HSI system
(integration time can be 5 ms) with the ability to image a
flexible number of wavelengths, such as an acoustic-optic
tunable filter-based [59] HSI system with scientific CMOS
or electron multiplying CCD sensors, the image cube could
be obtained in approximately real-time (8 fps, if 30 wave-
lengths within 520-580 nm were used).

6.3 Consistency of HSI StO2 and TI Temperature

Skin temperature is modulated by StO2, and it was assumed
that the ambient temperature and metabolic rate were stable
and that no body temperature regulation methods, such as
perspiration, were dominant. To verify that the change in
HSI StO2 was consistent with the change in TI temperature,
and vice versa, an ischemia experiment was performed.
Ischemia assessments that use HSI have been reported to
demonstrate the effectiveness of the technique for detecting
HbO2 [60], [61]. In this work, we compared the StO2 assess-
ment from the HSI data with the skin temperature, mea-
sured with TI, of ischemic tissues. An ischemic state was
introduced to the forefinger and middle finger of the palm
of a healthy volunteer by wrapping the two fingers with
a tight rubber band for three minutes. After the ischemic

Fig. 2. Interface (specular) reflectance of skin over the wavelength range
of 450-950 nm.



finger images had been captured via TI and HSI, the rubber
band was removed, which caused fresh blood to flush into
the two fingers and induce immediate hyperperfusion.

As shown in Fig. 3, the changes in the StO2 and tempera-
ture of the two fingers were consistent with each other.
The skin temperature and StO2 of the ischemic fingers
decreased by approximately 4�C and 55 percent, respec-
tively, compared with the undisturbed fingers of the other
palm. The fingers that experienced hyperperfusion exhib-
ited increases of 1�C and 20 percent in skin temperature
and StO2, respectively, compared with the normal palm.
Notably, as shown in Fig. 3, the skin temperature correlated
very well with the StO2 over the entire palm.

6.4 Ambient Temperature Effect

Two different ambient temperatures were introduced in a
controlled experiment to examine how StO2 and skin
temperature are modulated by the temperature of the
environment. In this experiment, the subjects were
requested to comfortably and calmly sit on a chair in a
laboratory environment with a room temperature of 20�C
for 1 hour. TI and HSI data were recorded when their
HR reached a stable state during this time period (a TI
frame was obtained during the HSI exposure). The sub-
jects were then asked to walk outside for 10 minutes,
where the temperature was approximately 5�C. TI and
HSI data were recorded again, as soon as the subjects
returned from the outside environment.

Fig. 4 illustrates the facial temperature and StO2 maps
of a subject. The top panel of the figure represents tem-
perature, and the bottom corresponds to StO2. The left
column displays the maps obtained in an indoor environ-
ment, and the right column shows the maps obtained
immediately after returning from an outdoor environ-
ment. The HR of the subject at the time when the TI
and HSI data were recorded is shown at the bottom left
corner of each map.

The HR of the subject was stable throughout the experi-
ment, which indicates the body blood circulation was nearly
constant. However, the large temperature difference
between the indoor and outdoor environments caused an
abrupt decrease in the facial skin temperature and, more
notably, in the nose region, with a reduction of 8�C
observed after the subject returned from outside (Fig. 4b).
The skin temperature in the face recovered after 10 minutes
of rest in an indoor environment (20�C) after the event. In
contrast to the skin temperature measurements, the StO2
levels remained fairly stable after the subject returned from
outside (Fig. 4d). The StO2 in the forehead region decreased
by a negligible 0.2 percent of the indoor value, presumably
due to the constriction of blood vessels after being in a cold
outdoor environment for 10 minutes.

Twenty-five small facial regions were selected for
analyses, as shown in Fig. 5. The average HSI StO2 and
TI temperature values of the regions were calculated. An
analysis using Student’s t-test revealed a significant dif-
ference (p < 0:005) between the TI facial temperatures
for the indoor (mean ¼ 33.67, stdev ¼ 0.37) and outdoor
(mean ¼ 32.00, stdev ¼ 1.26) measurements, and Cohen’s
d indicated a large practical difference (d ¼ 1.24). How-
ever, no significant difference was identified between the
HSI StO2 levels (p > 0:05) for the indoor (mean ¼ 65.22,
stdev ¼ 8.71) and outdoor (mean ¼ 64.79, stdev ¼ 7.88)
situations.

6.5 Perspiration Effect

To induce a state of perspiration, the subjects were asked to
conduct exercises in a warm indoor environment until they
began to sweat. The baseline (calm state before exercise)

Fig. 3. TI temperature and HSI StO2 maps of a palm with two fingers in
ischemic and hyperperfusion states. (a) A TI temperature map that
measures a palm with two fingers in an ischemic state; (b) a TI tempera-
ture map that measures a palm with two fingers in a hyperperfusion
sate; (c) an HSI StO2 map that measures a palm with two fingers in an
ischemic state; and (d) an HSI StO2 map that measures a palm with two
fingers in a hyperperfusion state.

Fig. 4. TI temperature and HSI StO2 maps of the same human face in
warm and cool environments. (a) A facial temperature map in an indoor
environment. The heart rate of the subject was 90 bpm at the moment
that the TI data were recorded; (b) a facial temperature map obtained
immediately after returning from an outdoor environment (HR was 87
bpm); (c) a facial StO2 map in an indoor environment (HR was 90 bpm);
and (d) a facial StO2 map obtained immediately after returning from an
outdoor environment (HR was 87 bpm).



and sweat conditions of TI and HSI data were recorded. In
general, blood perfusion in the facial region increases after
moderate physical exercise [8], [62], [9].

Fig. 6 shows the StO2 and temperature maps in the bot-
tom and top panels, respectively. The maps for a test

subject that demonstrated the baseline state, the perspira-
tion condition after exercise, and the condition 8 minutes
after perspiration are shown in the left, middle, and right
columns, respectively. The HR of the subject is shown in
the bottom left corner of each map.

Perspiration reduced the skin temperature by 5�C, which
corresponded to an �11 percent decrease with respect to
the baseline state in particularly sweaty regions (Fig. 6). In
contrast to the skin temperature measurements, the StO2 in
the forehead increased by�3.2 percent from baseline, which
typically occurs because of increased physical activity,
increased HR, and perhaps adrenaline in the blood stream
[8], [62], [9].

The heavy sweat observed in the forehead regions (Fig. 6)
does not appear to decrease the StO2 measured from the
HSI data, which is in contrast to the effect observed on the
skin temperature measurements. The central forehead
region of the subject in Fig. 6 (i.e., from the end of the left
eyebrow to the end of the right eyebrow and from the top of
the eyebrows to 2/3 the distance from the top to the bottom
of the head), which contained 3000 � 500 pixels, was
selected to produce the average and standard deviation
values of StO2 and temperature. These values are shown in
Fig. 7. The data demonstrated the average forehead StO2
continuously increased. However, because of sweat, the
forehead temperature after exercise was substantially lower
compared with the baseline temperature and did not
recover to the baseline value, even 8 minutes after the
cessation of exercise.

Fig. 5. Twenty-five small regions selected on a subject’s face for
comparison.

Fig. 6. TI temperature and HSI StO2 maps of the face of a healthy subject under baseline and sweating conditions.(a) A baseline facial temperature
map (HR was 78 bpm); (b) a sweat condition facial temperature map (HR was 110 bpm); (c) a facial temperature map obtained 8 minutes after
obtaining (b) (HR was 110 bpm); (d) a baseline facial StO2 map (HR was 78 bpm); (e) a sweat condition facial StO2 map (HR was 110 bpm); and (f)
a face StO2 map obtained 8 minutes after obtaining (e) (HR was 110 bpm).



7 DETECTION OF STRESS WITH HSI STO2

7.1 Psychological Stressors

A slightly modified Trier Social Stress Test (TSST) [63] was
used in this study to trigger acute psychological stress. The
stressors (e.g., public speaking and mental arithmetic) in a
standard TSST share characteristics of exposing participants
to a social-evaluative threat and a state of expecting an
uncontrollable performance outcome. These characteristics
are the most important elements for triggering strong stress
responses with respect to cortisol release [64]. In addition to
public speaking and mental arithmetic, we used an addi-
tional stressor in this study. Considering that some partici-
pants may be good at presentations and mental arithmetic,
their stress responses may not be triggered. Thus, recogni-
tion-memory tasks were used as a complementary stressor,
and the uncontrollable and social-evaluative characteristics
of these tasks were carefully designed.

In the mental arithmetic test, each participant was asked
to perform mental calculations for 25-30 simple arithmetic
problems and was required to provide the answers within a
tight time scale of 4-5 seconds. The participants were first
informed of the expected score prior to administering the
test to impose a psychological pressure. The test was
designed in such a way that a gradual increase in question
difficulty was initiated during the middle of the session,
thereby gradually increasing the psychological pressure.

In the public speaking test, each participant was asked to
deliver a presentation in front of a panel of referees and
interviewers. The presentation could be in the form of a job
interview or a project description. Prior to the test, the par-
ticipant was told that the presentation would be videoed
and subsequently analyzed to evaluate the presentation
style and nonverbal signals. A detailed description of the
stressors of public speaking and mental arithmetic has pre-
viously been provided [63].

In the memory test, each participant was asked to
remember a set of two images that appeared together in the
same PowerPoint slide. In the learning session, a series of
image pairs flashed up and then remained on the screen for
2 seconds. After flashing approximately 6-10 slides of
images, the participants were asked to identify which two
of the five images that appeared on a given test slide were
in a previously shown pair. The participants were required

to respond to each test slide within a time limit of 5 seconds.
Furthermore, they were told prior to the test that their hit
rate (number of correct answers) would be recorded for
comparison with the average hit rate derived from the
responses of all the participants.

7.2 Saliva Cortisol and HR as Indicators
of Stress Response

Cortisol is a reliable biomarker for acute psychological
stress [65]. Therefore, saliva cortisol served as an accurate
basis to judge whether the stress response was activated in
this study. The participants’ cortisol levels at baseline and
after each stress testing cycle were compared. Only when
a participant’s stress cortisol level increased to at least
125 percent of his/her baseline cortisol level could he/she
be regarded as a successfully stressed participant, and his/
her HSI data at the end of the stress test were used for sub-
sequent analyses.

A small cotton swab of a salivette [65] was provided to
each participant prior to conducting the stress test (baseline)
and retrieved after the test. The participants were advised to
chew the swab gently during the test so that the swab could
sample sufficient saliva, which was subsequently sent to a
hospital for cortisol level assessment.

We did not continuously record HSI data; therefore, we
had to be informed of when a participant began to feel
stressed to initiate the HSI data recording. However, during
the stress test, we could not judge whether the participants
were experiencing the stress response by analyzing their
cortisol level; this analysis was performed after testing. For-
tunately, the TSST elevates not only cortisol levels but also
HR [66]. Therefore, HR elevation served as an indicator for
recording and monitoring HSI data throughout testing. A
rise in HR was presumed to indicate that a participant was
stressed, and his/her HSI data recording was initiated
when a continuous rise in HR was observed from the previ-
ous time point and when his/her HR was at least 6 beats
per minute (bpm) higher compared with the HR at the
beginning of the test (Fig. 8).

7.3 Experimental Procedures and Protocols

The three psychological stressors for inducing stress in this
work were mental mathematics, public speaking, and recog-
nition-memory tasks. One or all of these mental stimula-
tions were applied to each participant until an increase in
HR (continuous rise and at least a 6 bpm increase compared
with the initial HR) was observed. The stressors applied to
the participants were sequential: the mental arithmetic test,
the memory test, and then public speaking.

Twenty-one healthy volunteers (subjects A-U, mean age
of 25) exhibited a positive stress response according to the
saliva cortisol analyses. The participants were students and
staff of Cranfield University, from various origins and
career backgrounds, and were recruited for the stress sens-
ing experiment. Nineteen volunteers were male and two
volunteers were female. The large percentage of male par-
ticipants in this study was a result of the constraints of sam-
pling from a predominantly male institute, which is typical
of a national defense college.However, the effect of gender
on the StO2 response to a psychological stressor is not cur-
rently known. The experimental procedure for this research

Fig. 7. Average StO2 and temperature of the central forehead region
in Fig. 6.



was approved by the UK National Health Service Research
Ethics Committee (REC reference: 09/H0107/2), and con-
sent from the participants was obtained prior to the experi-
ment. Halogen lamps were used as the sole illumination
source of the scene, with an intensity of approximately 500
lux at the target. The room was air conditioned according to
the REC procedure. A typical testing sequence is illustrated
in Fig. 8 and described as follows:

The participants were invited to participate in the experi-
ment, and an explanation of the general experimental proce-
dures was provided.

At 0 min, the facial HSI data of the participant were
recorded, and the participant was then required to sit calmly
and comfortably for 5-10 minutes. The participant’s affective
state varied at the beginning of the experiment (0 min: the
time at which the participant entered the laboratory). Thus,
we named this affective state the Initial Affective State, and
theHSI data recorded at the time of 0minwere termed initial
data. At the end of the adjustment period and when the par-
ticipant’s HR reached a stable reading, the facial HSI data
were again recorded, which served as the baseline (calm)
information. A cotton swab was chewed by each participant
throughout the adjustment period and was retrieved at the
end of testing for cortisol level analysis.

Each participant was given another 5 minutes to prepare
for stressor 1, i.e., they were informed of the specific proce-
dure and the requirements of stressor 1.

Stressor 1, one of the psychological stressors described in
Section 7.1, was then administered to the participant. If no
obvious HR elevation was observed, the HSI data were not
recorded during testing. The saliva sample was obtained in
a manner similar to the adjustment period.

Another five minutes was given to the participant to pre-
pare for stressor 2.

Stressor 2 was then administered to the participant. If
he/she experienced a continuous rise in HR, the HSI data
were recorded, starting when the HR was at least 6 bpm

higher compared with the HR at the beginning of testing.
The HSI data were continuously recorded at 30-60s inter-
vals. At the end of stressor 2, the HSI data were recorded
for the last time. A saliva sample was again obtained. The
last set of HSI data served as the potential stress data, con-
sidering that the saliva sample was obtained immediately
after HSI recording.

The participant was told that his/her presentation style
and nonverbal signs would not be analyzed, that their
expected score/hit rate was much higher than average, and
that he/she performed well in the arithmetic and memory
tests. A rest period of approximately 10-20 minutes was
then allowed.

As previously shown [67], [63], cortisol levels rise to�125
percent of baseline cortisol levels after 5 minutes of stress
testing. Therefore, in this study, if the cortisol level (CL3 in
Fig. 3) measured at the end of the stressor 2 test was at least
1.25 times as high as the baseline cortisol level(CL1 in Fig. 3),
the HSI data recorded at the end of the stressor 2 test were
regarded as the stress information data for the participant.

If the HR elevation during the stressor 1 test triggered
HSI data recording, the stressor 2 test was not administered
to the participant. If the HR elevation was not observed dur-
ing either stress test, a stressor 3 test was administered.

During the stress test, the participant was not required to
remain still. However, the participant was asked to sit still
when his/her initial data, baseline, and last stress test data
were recorded (Fig. 8). These HSI data were subsequently
used for stress detection.

7.4 Facial StO2 and Stress Detection

The StO2 results indicated that all 21 participants exhibited
an increase in StO2 level in the facial region, particularly in
the forehead region, when subjected to a psychological
stressor. Figs. 9a and 9b show the facial StO2 maps of
participant A at baseline and when a psychological stressor
was experienced, respectively. The average HR of the

Fig. 8. Experimental procedure.



participant at the moment of HSI recording is shown in the
bottom right corner of each image.

Participant A exhibited an increase in tissue oxygenation
in the facial region, particularly in the forehead and eye
socket regions, when a psychological stressor was experi-
enced. This facial StO2 elevation was observed in all 21 par-
ticipants when stress was experienced.

To investigate how the StO2 levels change due to psycho-
logical stressors, the average StO2 levels of 11 regions of
interest (ROIs) in the face were studied. However, only the
StO2 forehead values of the 21 participants are highlighted
here because the other results are not allowed to be released
at this time. The forehead ROI used to calculate the average
StO2 levels was the forehead center region (i.e., from the
end of the left eyebrow to the end of the right eyebrow and
from the top of the eyebrows to 2/3 the distance from the
top to the bottom of the head), which is highlighted in
Fig. 10 with a black rectangle. Because of individual differ-
ences, the ROI contains 3000 � 500 pixels. Each pixel has an
StO2 value, and one ROI can therefore produce an average
StO2 and a standard deviation value.

The average ROI StO2 values as well as the standard
deviations, rates of StO2 increases, HR increases, cortisol
increases as a result of the stressors, and stressors used for
triggering the stress response (i.e., a rise in cortisol) for each
participant are summarized in Table 1. Due to the different
physiques of each individual, the average baseline forehead
StO2 values of the participants span from as low as 50 per-
cent (participant M) to as high as 84 percent (participant O).
All HRs and cortisol levels of the participants increased,
which ranged from a minimum elevation rate of 3.41 per-
cent for HR (participant H) and 16.49 percent for cortisol
(participant B) to a maximum of 33.33 percent for HR
(participant T and L) and 196.13 percent for cortisol (partici-
pant A); these findings indicate positive responses to the
stimulations from all participants. As shown in Table 1, all
participants experienced StO2 elevation during psychologi-
cal stress, from a minimum elevation rate of 1.5 percent
(participant L) to a maximum of 28 percent (participant I).

A boxplot of the average ROI StO2 under baseline and
stress states is shown in Fig. 11. The difference in StO2

Fig. 9. StO2 maps of participant A (a) at baseline and (b) when psycho-
logical stress was experienced. Fig. 10. Region of interest on the forehead for generating the average

and standard deviation StO2 values.

TABLE 1
Average(Avg) StO2 Values and Standard Deviations (Std) from Forehead ROIs for 21 Participants

Participant Baseline(B) Stress(S) StO2 HR Cortisol Stressor

Avg StO2 (%) Std StO2 (%) Avg StO2 (%) Std StO2 (%) Increase
Rate (%)

Increase
Rate (%)

Increase
Rate (%)

Used

A 64.14 5.43 72.01 3.24 12.27 12.36 196.13 Math
B 65.77 4.18 77.04 2.94 17.14 12.35 16.49 Math
C 61.64 5.45 67.63 3.02 9.72 19.57 39.31 Speech
D 72.52 6.00 80.23 5.26 10.63 30.43 62.83 Memory
E 73.24 4.14 78.60 5.60 7.32 10.13 45.37 Math
F 70.81 4.04 73.33 3.51 3.56 20.00 25.62 Memory
G 66.69 3.63 70.03 3.88 5.01 7.04 52.38 Math
H 68.79 3.26 75.46 2.69 9.70 3.41 91.77 Memory
I 56.07 5.66 71.97 4.01 28.36 9.23 42.29 Memory
J 60.16 6.36 72.96 4.58 21.28 5.62 61.34 Memory
K 77.01 3.83 80.96 3.83 5.13 13.33 30.24 Memory
L 78.05 4.09 79.22 3.28 1.50 33.33 155.78 Memory
M 50.10 5.07 59.11 5.23 17.98 6.67 271.10 Math
N 75.05 6.96 76.54 6.41 1.99 8.96 68.47 Memory
O 84.12 4.80 90.70 3.12 7.82 4.17 114.66 Math
P 78.29 4.71 80.83 4.55 3.24 12.50 32.64 Math
Q 67.25 4.76 71.70 4.09 6.62 15.38 28.41 Memory
R 68.48 3.26 76.72 4.09 12.03 19.05 44.96 Memory
S 63.29 3.26 71.20 4.37 12.50 7.14 27.44 Memory
T 75.96 6.37 82.85 4.86 9.07 33.33 57.19 Math
U 68.92 4.93 74.98 4.01 8.79 26.23 43.70 Math



between these two states is intuitive from the boxplot. A
one-tailed paired Student’s t-test identified a significant dif-
ference (p < 0:005) between the average forehead StO2 val-
ues for the baseline (mean ¼ 68.87, stdev ¼ 8.10) and stress
(mean ¼ 78.43, stdev ¼ 6.41) conditions, and Cohen’s d
indicated a large practical difference (d ¼ 0.83). This signifi-
cance suggests that forehead StO2 values are good stress
indicators.

However, using forehead StO2 directly as a parameter to
discriminate stress from baseline states is not practical. The
stress and baseline StO2 values of the different participants
are not directly comparable because of the physiological dif-
ferences between the individuals. As shown in Table 1,
although the stress StO2 of each participant was always
higher compared with his/her baseline StO2, it was lower
compared with the baseline StO2of other participants in
some cases. For example, the stress StO2 of participant C
was lower compared with the baseline StO2 of participant
D, and the stress StO2 of participant M was lower compared
with the baseline StO2 of most other participants.

To eliminate the effects of individual differences and
make StO2 a useful stress indicator, the StO2 values must
be normalized from a statistical point of view (i.e., the raw
StO2 values from different individuals must be normalized
to standard values so that the StO2 values from different
individuals are comparable). In this study, we employed
the average forehead initial state StO2 values as a reference
for transformation. Fig. 12 shows a scatter plot of the affec-
tive state StO2/initial StO2 values. The affective states here
include stressed and baseline states, which can be discrimi-
nated from each other. In Fig. 12, the stress and baseline val-
ues are grouped into two distinct clusters.

Based on the previously described observations, we calcu-
lated the ratios of the StO2 for each participant with respect to
his/her initial StO2 to obtain a SI. For the 21 participants, 42
SIs were generated, which included 21 SIs for the stress state
(mean ¼ 1.10, stdev ¼ 0.06) and 21 SIs for the baseline state
(mean ¼ 1.00, stdev ¼ 0.05). A one-tailed paired Student’s
t-test identified a significant difference (p < 0:005) between
the stress and baseline SIs, and Cohen’s d indicated a large
practical difference (d¼ 1.37).

We then employed a binary classifier to identify the
stress state. By selecting different thresholds, a classifier

receiver operating characteristic (ROC) curve for the classi-
fier can be generated, as illustrated in Fig. 13. The most con-
servative classification with the best performance was
identified at the point (0, 0.619) in Fig. 13. The classification
accuracy at (0, 0.619) was 80.95 percent, and the highest clas-
sification accuracy of 88.1 percent was observed at the point
(0.1905, 0.9524),where the true positive and false positive
rates were 95.24 and 19.05 percent, respectively. The thresh-
old automatically obtained from Otsu’s algorithm [68] was
0.9216. In this case, the true positive rate, false positive
rate (circle in Fig. 13), and accuracy were 95.42, 42.86, and
76.19 percent, respectively.

Because of the limited number of participants, the classi-
fication results presented are participant-dependent and
vary between the participant groups. However, the classifi-
cation threshold should approach a stable constant if large
groups of data are used.

To investigate how the StO2 reactivity correlates with
the HR and cortisol reactivity, we created scatter plots of
the StO2 increase rate versus the HR increase rate
(Fig. 14a) and the StO2 increase rate versus the cortisol
increase rate (Fig. 14b) for all participants. No obvious
correlations between the HR and cortisol with StO2
were observed. Furthermore, no correlation between the

Fig. 11. Box plots of the average ROI StO2 under baseline and stress
states.

Fig. 12. Scatter plot of Stress StO2 vs. Initial StO2 and Baseline StO2
vs. Initial StO2 for 21 participants.

Fig. 13. ROC curve of a binary classifier that used SI as the input.



forehead StO2 with the HR, which was recorded every
30-60 s during the stress test (Section 7.3), was observed.
This result may be a result of the different time scales of
the StO2, cortisol, and HR responses.

8 DISCUSSION AND CONCLUSION

We have presented an HSI-based method for the detection
of psychological stress. The strong material-discriminating
ability of HSI was utilized in this study to differentiate and
quantify the amount of blood chromophores (Hb and
HbO2) using the Beer-Lambert Law. The manner in which
HSI signals are obtained (captured image) characterizes this
method as a contact-free stress detection technique.

Facial StO2 is proposed as a feature for stress detection.
The elevation of StO2 around specific areas is a physiologi-
cal response to a stressor. Many researchers have observed
this type of elevation, which could be the result of adrena-
line secretion in response to stress [42]. Thus, the strategy
presented in this paper is a physiological-based stress detec-
tion method.

We have demonstrated that HSI StO2 and TI tempera-
ture are consistent with each other when measuring
blood perfusion. However, HSI StO2 is independent of
perspiration and sudden changes in ambient tempera-
ture. These characteristics of HSI StO2 make it a robust
feature for stress assessment in the case of abrupt ambi-
ent temperature alterations. However, transient perspira-
tion can also serve as a stress indicator [32]. In most
scenarios, where intense perspiration does not prevail,
perspiration is a good stress indicator. In extreme perspi-
ration conditions, HSI StO2 may serve as a complemen-
tary feature for stress assessment (e.g., if an individual
who experiences heavy sweating must be quickly
assessed to determine his/her stress state, and he/she
will not recover from intense perspiration until approxi-
mately 10 minutes).

We have observed that StO2 is elevated not only around
the eye socket area but also around the forehead when indi-
viduals respond positively to a psychological stressor. This
observation increases the number of ROIs that can be ana-
lyzed for stress detection. By normalizing the average

forehead StO2, we have developed a SI for detection pur-
poses. The baseline index and SI exhibited a significant dif-
ference (p < 0:005) and a large practical difference (d=1.37).
These results suggest that the HSI StO2 can serve as a new
modality to recognize stress at standoff distances.

The HSI StO2 values in this study were obtained from an
HSI image cube acquired with still poses. However, by
using a more sensitive HSI system (the integration time can
be 5 ms) with the ability to image an object at a flexible
number of wavelengths, such as an acousto-optic tunable
filter based HSI system with scientific CMOS or electron
multiplying CCD sensors, an image cube can be obtained
in approximately real-time (8 fps if 30 wavelengths are
used).The raw HSI data processed to produce an StO2 map
included 31 gray images, each of which had the same size
as the StO2 map. Thus, the real-time processing substan-
tially depends on a high performance computing system.
To facilitate practical application, an effort has been made
to reduce the number of gray images required for StO2
map production.

The wavelengths employed to produce StO2 in this study
ranged from 518-580 nm. Thus, an illumination source that
contains electromagnetic radiation in this specific wave-
length range is required.

The detection results presented in this paper are based on
stress data from 19 males and two females. The effect of
gender on HSI classification results is not currently known,
and the results may vary if stress data from more female
participants are included.

The method presented in this paper for stress detection
could be dependent on a well-defined context. For example,
other affective states, such as excitement, may trigger the
elevation of forehead StO2. Out of context, the detection
may not provide accurate results. Other features must be
combined with StO2 to differentiate affective states with
similar StO2 responses.

HR was used as an indicator to record HSI data in this
research. Without an HR reference, the HSI data would have
been continuously recorded, thereby increasing the comput-
ing load. A system capable of non-contact HR monitoring
combined with the HSI system would be better-suited for
stress detection comparedwith theHSI system alone.

Fig. 14. Scatter plots of (a) StO2 Increase Rate vs. HR Increase Rate; (b)StO2 Increase Rate vs. Cortisol Increase Rate.



The experiment conducted in this research involved a
TSST, and only participants with a 125 percent higher cortisol
level and a 6 bpmhigherHRwere regarded as stressed candi-
dates. Therefore, the stress detected in this research is a strong
affective state and may be stronger compared with the stress
induced during lie detection. The validity of the method pro-
posed in this research has not been tested in lie detection.
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