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Abstract

For most atmospheric or exo-atmospheric spacecraft flight scenarios, a well-

designed trajectory is usually a key for stable flight and for improved guidance

and control of the vehicle. Although extensive research work has been carried

out on the design of spacecraft trajectories for different mission profiles and

many effective tools were successfully developed for optimizing the flight path,

it is only in the recent five years that there has been a growing interest in plan-

ning the flight trajectories with the consideration of multiple mission objectives

and various model errors/uncertainties. It is worth noting that in many practi-

cal spacecraft guidance, navigation and control systems, multiple performance

indices and different types of uncertainties must frequently be considered during

the path planning phase. As a result, these requirements bring the development

of multi-objective spacecraft trajectory optimization methods as well as stochas-

tic spacecraft trajectory optimization algorithms. This paper aims to broadly

review the state-of-the-art development in numerical multi-objective trajectory

optimization algorithms and stochastic trajectory planning techniques for space-

craft flight operations. A brief description of the mathematical formulation of

the problem is firstly introduced. Following that, various optimization meth-

ods that can be effective for solving spacecraft trajectory planning problems

are reviewed, including the gradient-based methods, the convexification-based

methods, and the evolutionary/metaheuristic methods. The multi-objective
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spacecraft trajectory optimization formulation, together with different class of

multi-objective optimization algorithms, is then overviewed. The key features

such as the advantages and disadvantages of these recently-developed multi-

objective techniques are summarised. Moreover, attentions are given to extend

the original deterministic problem to a stochastic version. Some robust op-

timization strategies are also outlined to deal with the stochastic trajectory

planning formulation. In addition, a special focus will be given on the recent

applications of the optimized trajectory. Finally, some conclusions are drawn

and future research on the development of multi-objective and stochastic tra-

jectory optimization techniques is discussed.

Keywords: Flight trajectories, Multi-objective spacecraft trajectory

optimization, Stochastic spacecraft trajectory optimization, Robust

optimization strategies.

Nomenclature

NLP = nonlinear programming

FONC = first order necessary condition

SQP = sequential quadratic programming

IP = interior point

IPSQP = interior point sequential quadratic programming

LP = linear programming

SOCP = second order cone programming

SDP = semidefinite programming

DP = dynamic programming

DDP = differential dynamic programming

SDDP = stochastic differential dynamic programming

GA = genetic algorithm

DE = differential evolution

VLDE = violation learning differential evolution

PSO = particle swarm optimization

PPPIO = predator-prey pigeon-inspired optimization

AC = ant colony

ABC = artificial bee colony

SA = simulate annealing
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TS = tabu search

MOTO = multi-objective trajectory optimization

NSGA-II = nondominated sorting genetic algorithm II

I-NSGA-II = improved nondominated sorting genetic algorithm II

NSGA-III = nondominated sorting genetic algorithm III

MOEA/D = multi-objective evolutionary algorithm Based on decomposition

MOPSO = multi-objective particle swarm optimization

MOAPSO = multi-objective adaptive particle swarm optimization

MOAGPSO = multi-objective adaptive gradient particle swarm optimization

MOABC = multi-objective artificial bee colony

NPGA = niched pareto genetic algorithm

SPPSO = strength pareto particle swarm optimization

ADEMGT = adaptive differential evolution and modified game theory

WS = weighted-sum

PP = physical programming

FPP = fuzzy physical programming

IFPP = interactive fuzzy physical programming

GP = goal programming

FGP = fuzzy goal programming

FSGP = fuzzy satisfactory goal programming

ASM = adaptive surrogate model

EMO = evolutionary multi-objective optimization

MOEA = multi-objective evolutionary algorithm

MOT = multi-objective transcription

SOP = single-objective problem

CC = chance constraint

RO = robust optimization

CCO = chance-constrained optimization

SDE = stochastic differential equation

SQF = stochastic quadrature formula

PDF = probability density function

gPC = generalized polynomial chaos

MCMC = Markov chain Monto Carlo

x = state variable

u = control variable
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t = time

b = boundary function

g = path function

J = objective function

Φ = Mayer cost

L = process cost

E = number of equality constraints

I = number of inequality constraints

M = number of objective functions

ξ = uncertain parameter

ǫ = acceptable probability of occurrence

wk = weighted parameter
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1. Introduction

In the last couple of decades, numerous achievements and massive efforts

have been witnessed in order to move human beings into space. Nowadays,

aerospace science and technology has brought various changes in not only the10

military field but also scientific and engineering applications. Among them,

the development of spacecraft technology has attracted significant attention

[1, 2]. So far, several generations of spacecraft have been designed, manufac-

tured, launched, and successfully implemented in different mission profiles such

as communications [3], interplanetary travel [4], regional reconnaissance [5], en-15

vironmental monitoring [6], and so on. Because of the long development cycle,

high operating cost, and limited resources, it is usually desired by aerospace

engineers that the space vehicle can fulfill the mission with some performance

metrics to be optimized, or in other words, in an optimal or near-optimal way.

To achieve this goal, a proper treatment of the flight trajectory for the space20

vehicle is often required, and this stimulates the development of trajectory op-

timization techniques.

It has been shown in many published works that the trajectory design

component plays a key role with regard to stable flight and improved control

of the space vehicle [7, 8]. A comprehensive overview of the motivation for25

the use of trajectory optimization in different space missions, together with

various related trajectory optimization approaches, was made by Conway in

4



2011 [2]. In this review article and the references therein, several important

practical examples were highlighted such as the orbital transfer problems [9,

10], the spacecraft rendezvous and docking [11, 12], and the planetary entry30

[13–17]. These problems were summarised in a general form and treated as

optimal control problems [18]. It is worth noting that according to Betts [1],

an interchanged designation between the term “optimal control problems” and

“trajectory optimization problems” can always be found in the literature. A

rigours analysis of the differences between these two statements is beyond the35

scope of this survey. Readers are referred to [19] and [20] for a more complete

description and analysis of these differences.

From the current development of optimal control theory on the whole, the

development/application of numerical trajectory optimization methods for at-

mospheric or exo-atmospheric spacecraft flight scenarios leads to two different40

trends. The first one is that system discretization tends to become more re-

liable and adaptive such that it can maximally capture the characteristics of

the dynamical system [18, 21]. The other is that optimization becomes more

accurate and computationally friendly so that the solution optimality, together

with the real-time capability, can be improved. Depending on the order of dis-45

cretization and optimization, numerical trajectory optimization methods can be

classified into two main categories. That is, the so-called indirect methods (“op-

timization then discretization”) and the direct methods (“discretization then

optimization”) [21]. The former type of method aims to solve the first-order

necessary conditions for optimality with respect to the spacecraft trajectory op-50

timization problems. Successful examples have been reported in the literature

for addressing problems without considering inequality constraints [22, 23]. In

these works, the first-order necessary conditions were formulated as two-point

boundary value differential-algebraic equations. However, in terms of problems

in the presence of inequality constraints, this type of approach might not be55

effective. This is because it is difficult to determine the switch points where the

inequality constraints become active, thus limiting the practical application of

this type of method. As for the direct method, the first step is to discretize

the control or the state and control variables so as to transform the original

formulation to a static nonlinear programming problem (NLP). Following that,60

different well-developed optimization techniques are available to address the

optimal solution of the resulting static problem. Compared with the indirect
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strategy, it is much easier to apply the direct method to handle the spacecraft

trajectory design problem. Moreover, the way of formulating constraints tends

to be more straightforward. Therefore, applying the “discretization then opti-65

mization” mode has attracted more attention in engineering practice.

The primary goal of this review article is to present the latest progress

that has been achieved in the development of spacecraft trajectory optimization

techniques. Specifically, the main focus will be on the recently-proposed opti-

mization methods that have been utilized in constrained trajectory optimiza-70

tion problems, multi-objective trajectory optimization problems, and stochastic

trajectory optimization problems. Therefore, compared with the optimization

process, the discretization process is less important and will only be briefly

mentioned in the following sections. A detailed and serious attempt to clas-

sify discretization techniques for spacecraft trajectory design can be found in75

[10, 20].

One individual objective of this work is to summarise the main advan-

tages and disadvantages of applying different optimization methods in space-

craft trajectory optimization problems based on the results reported in the

newly-published works. It should be noted that significant differences might80

be found when applying one optimization strategy, which can achieve promising

results for a specific mission, to a different task. This phenomenon becomes

even apparent when the problem is extended to the multi-objective version and

the stochastic version. However, thanks to the pioneering works carried out by

many aerospace researchers, a large number of competitive results of various85

benchmark problems are now available. Consequently, it is possible to gain a

better understanding about how these different optimization algorithms behave

in dealing with complex mission scenarios.

The rest of this survey will be organized as follows: Section 2 provides a

brief description of the mathematical formulation of the spacecraft trajectory90

optimization problem. Subsequently, different types of optimization methods

that can be effective for addressing the problem are summarised in Section 3.

These algorithms include the gradient-based methods, the evolutionary-based

(i.e., heurestic/metaheuristic) methods, the convexification-based methods, and

the dynamic programming-based methods. The multi-objective spacecraft tra-95

jectory optimization formulation, along with various classes of multi-objective

optimization algorithms, will then be reviewed in Section 4. The key features
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such as the advantages and disadvantages of applying these newly-developed

multi-objective trajectory planning techniques are also discussed. Section 5

extends the deterministic problem formulation to a stochastic version. Some100

robust optimization strategies are summarised and analysed in order to deal

with this stochastic version of the problem. Furthermore, Section 6 surveys the

recent applications of the optimal flight trajectories from a high-level perspec-

tive. Some conclusions as well as the future research on the development of

multi-objective and stochastic trajectory optimization techniques are discussed105

in Section 7.

2. Mathematical Formulation of the Problem

Generally speaking, the trajectory optimization process for most spacecraft

flight mission profiles contains the mathematical modelling of the problem, the

selection of effective approaches, and the implementation of heuristics in order110

to recognize the best solution among a finite or even an infinite set of feasible

alternatives. The core aim of spacecraft trajectory optimization can usually

be understood as determining a feasible path or trajectory, for a given vehicle

at a certain initial point, to achieve a pre-specified target point and optimize

a predefined performance index. As mentioned by Conway [2] and Betts [21],115

the most convenient and general way to construct the trajectory optimization

formulation is by applying the knowledge of optimal control. That is, a vector

of time-dependent variable x(t) ∈ R
nx is introduced in order to represent the

state of the spacecraft. Meanwhile, a vector of time-dependent control variable

u(t) ∈ R
nu is also defined to steer the vehicle states. Before presenting in120

detail the overall formulation of the trajectory optimization problem studied

in this investigation, the following subsections outline some basic knowledge

regarding the continuous dynamical systems, the variable/path constraints, and

the performance index.

2.1. Continuous Dynamical Systems125

Currently, numerous dynamical systems exist in the literature that are ap-

plied to describe the movement of space vehicles for different missions. Although

differences can be found in terms of the mission profiles and the type of vehi-

cle, many of the examples are able to be summarised into a general form. For
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instance, a set of differential equations is usually applied to describe the move-130

ment of the Nx-dimensional state variable x ∈ R
Nx , which can be written as

[24]:

ẋ(t) = f(x(t), u(t), t) (1)

where f is a function with respect to time t ∈ R, the state x ∈ R
Nx and control

u ∈ R
Nu variables. f : RNx × R

Nu × R 7→ R
nx is usually nonlinear. Usually,

the state trajectory x(t) begins at a given point x0 at a given time instant t0,

and some state variables are required to terminate at a pre-specified final point

xf at the final time instant tf . This boundary condition can be summarised to

an inequality, which has the form of:

bL ≤ b(x0, t0, xf , tf ) ≤ bU

where bL, bU ∈ R
Nb are the lower and upper bounds of b(·, ·, ·, ·), respectively.

b : RNx × R× R
Nx × R 7→ R

Nb .

2.2. Variable/Path Constraints135

Apart from the consideration of the vehicle dynamical system, various vari-

able/path constraints should be also taken into account so as to fulfill the

mission-dependent requirements or to protect the structural integrity of the

vehicle. These requirements are usually named path constraints and they can

be modeled in a general form (i.e., a general inequality with lower and upper140

bounds):

gL ≤ g(x(t), u(t), t) ≤ gU (2)

where gL, gU ∈ R
Ng are the lower and upper bounds of the path function g(·, ·, ·),

respectively. g : RNx × R
Nu × R 7→ R

Ng .

It should be noted that for different spacecraft flight mission profiles, there

exist various path constraints. For instance, in [25], a reusable launch vehicle145

trajectory optimization model was constructed. In this problem, three flight

path constraints including the aerodynamic heating, dynamic pressure and load

factor were required to be satisfied during the optimization process. Similarly,

considering the no-fly zone constraints that limit the lateral and longitudinal

positions of the vehicle, a three-degree-of-freedom spacecraft reentry model was150

established and solved in [26]. In addition, in [27] a spacecraft rendezvous and

docking problem was considered. In this work, in order to achieve the thrust

direction limitations, a path constraint was imposed on the control variables.
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Nevertheless, all these constraints can be classified into the above two types

as indicated by Eq.(2). It is obvious from Eq.(2) that the path constraints are155

required to be satisfied during the entire time domain (e.g. for ∀t ∈ [t0, tf ]), and

they can be pure control path constraints (i.e., functions of control variables)

[28], mixed path constraints (i.e., functions of state and control variables) [29],

or pure state constraints (i.e., functions of state variables) [30].

2.3. Mission Objectives160

A solution to the space vehicle dynamical system (1) which satisfies all the

path constraints can only be recognized as a feasible flight trajectory. Usually,

for a given mission profile, a large amount of feasible flight trajectories can

be found. The selection of the particular one among the feasible set is based

on a suitably defined performance index that quantifies the magnitude of goal165

attainment specified by the designers. Commonly, the mission objective (cost

function) to be optimized can be defined in the following Bolza form:

J = Φ(x0, t0, xf , tf ) +

∫ tf

t0

L(x(t), u(t), t)dt (3)

From Eq.(3), the cost function is composed of two parts. The term Φ :

R
Nx × R× R

Nx × R 7→ R denotes the Mayer cost, whereas L : RNx × R
Nu ×R 7→

R stands for the process cost. Similarly with the path constraint case, the def-170

initions of performance index may vary from mission to mission but most of

them can be written as the general form given by Eq.(3). For instance, for the

spacecraft reentry mission considered in [31], the primary task is to maximize

the final latitude, thus leading to a larger cross range value. Other potential ob-

jectives for this mission are minimizing the total amount of aerodynamic heating175

[16], maximizing the final kinetic energy [32], minimizing the smoothness of the

obtained flight path and so on [33]. Furthermore, a low-thrust interplanetary

mission was studied in [34], wherein maximizing the delivered mass was chosen

as the main objective. Besides, in [10] the authors considered a multiple-pass

orbital transfer problem for the aeroassisted spacecraft. As the mission might180

contain several subsegments, minimizing the fuel consumption during the trans-

fer (mass fraction) was selected as the main objective.

It should be noted that in Eq.(3), not only the final time cost but also the

initial time cost is included in the Mayer cost term Φ. Actually, this is critical

for some missions such as the launch vehicle applications or orbital transfer185
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problems where the initial values of the state and time must be optimized [35,

36].

2.4. Overall Formulation

Based on the introduction of the vehicle dynamics, different types of con-

straints, and the mission performance index, a typical spacecraft trajectory190

optimization or optimal control model can be summarised as: search the con-

trol variable u(t) and the corresponding state x(t) that can steer the spacecraft

from its initial pose to a pre-specified target pose and optimize the mission-

dependent objective function subject to the dynamic and path constraints. The

overall formulation can be written as [24]:195

minimize J = Φ(x0, t0, xf , tf ) +

∫ tf

t0

L(x(t), u(t), t)dt

subject to ∀t ∈ [t0, tf ]

ẋ(t) = f(x(t), u(t), t) (dynamic constraints)

bL ≤ b(x0, t0, xf , tf ) ≤ bU (boundary conditions)

gL ≤ g(x(t), u(t), t) ≤ gU (path constraints)

(4)

2.5. Numerical Solution Approach

As discussed in the introduction section of this article, there are two com-

monly used strategies, named indirect methods and direct methods, for address-

ing the spacecraft trajectory optimization problems. Specifically, in the former

class, it is required to derive the first order necessary conditions (FONCs) for200

optimality via the calculus of variations. Subsequently, the original optimal

control formulation is transformed to a Hamiltonian boundary-value problem,

thereby resulting in an “optimization + discretization” solution-finding struc-

ture. In the later class, a “discretization + optimization” strategy is adopted.

That is, certain parametrization methods are firstly applied to transform the205

continuous-time system to a static version. Following that, the original problem

formulation is rewritten as a static nonlinear programming problem and well-

developed optimization algorithms can be used to produce the optimal solution.

A graphical illustration of numerical solution approaches that were developed

in the past two decades for the solution of spacecraft trajectory optimization210

problems is displayed in Fig.1.
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Figure 1: Numerical solution approaches

It is worth noting that in an indirect method, the construction of the

FONCs usually becomes costly due to the complexity of the vehicle dynam-

ics and various constraints. In addition, the number of the resulting decision

variables associated with this method is large. Therefore, from an implementa-215

tion point of view, the second class of strategy (i.e., direct methods) may attract

more attention. In this paper, we are interested in reviewing the latest devel-

opments of optimization techniques that are effective and reliable to generate

the optimal spacecraft flight trajectories. Detailed introduction and analysis of

different discretization techniques is beyond the scope of this research. We refer220

to [20] for such a broad review.

It is worth noting that there are also some other geometric-based trajec-

tory planning approaches that have been reported in the literature [37–39].

These geometric-based algorithms can have acceptable performance for produc-

ing feasible trajectories and they are mainly used as the motion planners for the225
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aircraft, UAVs, or autonomous ground vehicles. However, since the main focus

of this work is to review trajectory optimization approaches related to the space

vehicle literature, the geometric-based algorithm is removed from the algorithm

tree shown in Fig.1.

3. Optimization Algorithms230

As indicated in the previous section, to solve the spacecraft trajectory de-

sign problem, an important procedure is to apply optimization methods to solve

the static nonlinear programming problem (NLP). A standard NLP problem can

be written as [40]:

Find decision variables x = [x1, x2, ..., xn]

Minimize objective function J(x)

subject to xmin ≤ x ≤ xmax

Hi(x) = 0

Gj(x) ≤ 0

(i = 1, 2, ..., E)

(j = 1, 2, ..., I)

(5)

where E and I are the dimensionality of the equality and inequality constraints,235

respectively. Currently, there are many effective optimization techniques that

can be applied to solve the NLPs.

The main objective of this section is to review the state-of-the-art optimiza-

tion strategies reported in the literature for calculating the optimal spacecraft

flight trajectories. Based on the reported results, one may be able to gain a240

better understanding in terms of the performance and behaviours of different

algorithms for addressing various space vehicle flight missions. Moreover, it

is possible to guide the reader to improve one of these techniques in order to

circumvent the limitations brought by the classic methods.

In the literature, four types of optimization strategies are usually applied to245

solve the spacecraft trajectory optimization problems. Specifically, the gradient-

based, convexification-based, dynamic programming-based, and derivative-free

(heuristic-based) optimization techniques are used to calculate the optimal time

history with respect to the spacecraft state and control variables. These algo-

rithms can be further grouped into the deterministic and the stochastic ap-250

proaches, and the most popular optimization methods among these two groups
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are summarised and tabulated in Table 1 and Table 2. It should be noted that

not all the optimization algorithms under each category are listed in this table.

Alternatively, only some important examples are reviewed and these techniques

are discussed in detail in the following subsections. A large number of numerical255

simulations were carried out in related works. The results indicated that these

newly-proposed optimization strategies are effective and can provide feasible

solutions for solving the constrained space vehicle trajectory design problems.

Table 1: Popular deterministic optimization algorithms available for trajectory optimization

problems

Deterministic Optimization Algorithms

Sequential quadratic programming (SQP) [9]

Interior point method (IP) [41]

Interior point sequential quadratic programming (IPSQP) [42]

Linear programming (LP) [43]

Second order cone programming (SOCP) [44]

Semidefinite programming (SDP) [45]

Dynamic programming (DP) [46]

Differential dynamic programming (DDP) [47]

Stochastic differential dynamic programming (SDDP) [48]

Table 2: Popular stochastic optimization algorithms available for trajectory optimization

problems

Stochastic Optimization Algorithms

Genetic algorithm (GA) [13]

Differential evolution (DE) [49]

Violation learning differential evolution (VLDE) [50]

Particle swarm optimization (PSO) [12]

Predator-prey pigeon-inspired optimization (PPPIO) [51]

Ant colony (AC) [52]

Artificial bee colony (ABC) [53]

Simulate annealing (SA) [54]

Tabu search (TS) [55]
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3.1. Gradient-based Methods

One of the most commonly used optimization algorithms for optimizing260

the spacecraft flight trajectory is the classic gradient-based method. Among

gradient-based methods, the sequential quadratic programming (SQP) method

and the interior point (IP) method are used successfully for the solution of large

scale NLP problems [56]. In [57], a fuel-optimal aeroassisted spacecraft orbital

transfer problem was firstly transformed to a static NLP via a pseudospectral265

discretization method. Then, the static NLP was solved by applying the stan-

dard SQP method to generate the fuel-optimal flight trajectory. Similarly, in

[9] the SQP method was applied as the primary optimizer to search the time-

optimal flight trajectory of a low-thrust orbital transfer problem. Generally, the

aim for the SQP algorithm is to transform the original problem to a sequence270

of quadratic programming subproblems by approximating the augmented La-

grangian quadratically and linearizing the constraints using Taylor expansion.

More precisely, each Newton iteration of the SQP loop requires the solution of

a quadratic programming subproblem containing Jacobian and Hessian matrix.

The solution-finding steps of SQP method can be summarised as the following275

steps:

Step 1 Construct the augmented Lagrangian function.

Step 2 Apply the quadratic model to approximate the augmented Lagrangian.

Step 3 Input the initial guess value xk.

Step 4 Use the Newton method to calculate the step direction gk.280

Step 5 Calculate the step length αk based on the sufficient decrease conditions.

Step 6 Check the stopping optimality tolerance ǫ of the current solution.

Step 7 If the stopping condition cannot be satisfied.

Step 8 Update xk+1 = xk + αkdk.

Step 9 Set k = k + 1 and go back to Step 4.285

Step 10 If the stopping condition can be satisfied.

Step 11 Terminate the algorithm and output the optimal solution.
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Figure 2: General steps of using gradient-based method

A graphical illustration about the general steps of using gradient-based

methods to solve problem (5) is depicted in Fig.2.

It should be noted that when solving the optimization problem, a line search290

algorithm is usually a key for enhanced robustness of the algorithm (as indicated

in Step 4 to Step 9, and Fig.2). Although there exist a variety of line search

strategies (interested readers are referred to Chapter 3 in [40] for more details),

they all share a similar philosophy. That is, at each solution-finding iteration

k, a search direction dk is firstly produced via the Newton, quasi-Newton, or295

gradient directions. Subsequently, the step length αk is determined along the
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pre-specified searching direction. To select a proper αk such that the objective

can have a sufficient improvement, some conditions can then be applied such as

the Armijo condition, the Wolfe condition, and the Goldstein condition [40, 42].

Although SQP methods can be used as an effective algorithm to produce300

the optimal flight trajectory, most of the SQP implementations require the exact

solution of the subproblem. This may increase the computational burden of the

solver significantly [42]. Moreover, since most SOP methods utilize the active

set strategy to handle inequality constraints, the computational burden may be

increased if the active set is initialized in an improper way.305

Apart from the SQP method, an alternative gradient-based method is the

interior point (IP) method developed during the last decade. Investigations of

IP can be found in a large amount of work. To apply this method, the inequality

constraints need to be transcribed to equality constraints by introducing some

slack variables such that the problem can be solved in a simpler form. An310

application of the IP method in space vehicle trajectory design problem can be

found in [41]. In this work, a space shuttle atmospheric reentry problem was

considered and discretized via a shooting method. The resulting static NLP

problem was then addressed by applying the IP method. Simulation results

provided in this work confirmed the effectiveness of applying the IP method.315

However, it is worth noting that for the IP method, a main challenge is to

define the penalty functions and initialize the penalty factor in the augmented

merit function in order to measure the quality of the optimization process.

In [42], combining the advantages of the SQP and IP methods, the authors

proposed a two-nested gradient-based method, named interior point sequential320

quadratic programming (IPSQP), for solving the aeroassisted spacecraft trajec-

tory design problem. One important feature of this approach is that an inner

solution finding loop was embedded in the algorithm framework, thereby al-

lowing the QP subproblem to be solved inexactly. In this way, the design can

have more flexibility to control the optimization process and the algorithm effi-325

ciency can also be improved to some extent. Simulation results and comparative

studies were reported to show the effectiveness as well as the reliability of this

improved gradient-based method.

3.2. Evolutionary-based Methods

In an optimization problem, if it is hard to get the gradient information of330

the objective functions or constraints (i.e., due to the high nonlinearity involved
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in these functions), the classic gradient-based method might no longer be reliable

or available. In this case, the evolutionary-based methods, also known as global

optimization methods, become the only way to produce the optimal solution, as

there is no derivative information required in an evolutionary approach. This335

indicates that it will not suffer from the difficulty of calculating the Jacobian as

well as the Hessian matrix.

Evolutionary algorithms or global optimization methods use the principle

of “survival of the fittest” adopted to a population of elements representing can-

didate solutions [2, 15, 58]. Compared with classic gradient-based algorithms,340

there is no initial guess value required by the algorithms as the population is ini-

tialized randomly. Thanks to the nature of the evolutionary algorithm, it tends

to be more likely than classic gradient methods to locate the global minimum

[12].

There are many types of evolutionary algorithms that are available to pro-345

duce the optimal solution of an engineering optimization problem. For exam-

ple, the generic class of evolutionary algorithms such as the genetic algorithm

(GA) and differential evolution (DE), the agent-based class such as the parti-

cle swarm optimization (PSO) and the pigeon-inspired optimization (PIO), and

the colony-based class of algorithms such as the ant colony optimization (ACO)350

and the artificial bee colony (ABC) algorithm. Relative works on developing or

applying these global optimization methods in spacecraft trajectory design are

widely researched in the literature. In [59], a constrained space capsule reentry

trajectory design problem was addressed by applying a modified GA. Similarly,

Kamesh et al. [60] incorporated a hybrid GA and a collocation method so as to355

address an Earth-Mars orbital transfer task. The authors in [58] produced the

optimal path for a space robotic manipulator by using a standard PSO method.

Conway et al. [2] combined global optimization algorithms with standard

gradient-based method in order to construct a bi-level structural optimal control

method. In their latest work, Pontani and Conway [12] utilized a modified360

particle swarm optimization algorithm to globally optimize the flight path of a

cycling spacecraft.

An enhanced differential evolution approach incorporated with a violation-

degree based constraint handling strategy was constructed in our previous work

to approximate the optimal flight trajectory [50] of a space maneuver vehicle365

entry problem. In this work, a simplex-based direct search mechanism was
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embedded in the algorithm framework in order to improve the diversity of the

current population. Besides, a learning strategy was used to avoid the premature

convergence of the algorithm.

Furthermore, the authors in [61] established an ant colony inspired op-370

timization algorithm so as to plan a multi-phase space vehicle orbital flight

trajectory. An automated approach based on genetic algorithm and monotonic

basin hopping was applied in [62] to address a launch vehicle interplanetary

trajectory problem.

Although the aforementioned works have shown the feasibility of using375

heuristic-based methods for addressing spacecraft trajectory design problems,

the validation of solution optimality becomes difficult. Moreover, the compu-

tational complexity due to the heuristic optimization process tends to be very

high [63]. Therefore, it is still difficult to treat heuristic-based methods as a

“standard” optimization algorithm that can be applied to solve general space-380

craft trajectory planning problems. Much effort is expected to improve the

computational performance of this kind of algorithm.

3.3. Convexification-based Methods

Recently, a growing interest can be found in applying convexification-based

methods for generating the optimal spacecraft flight trajectories [64]. An im-385

portant feature of applying this kind of method is that it can be implemented

with theoretical guarantees with regard to the solution and computational effi-

ciency. Since most of the practical spacecraft trajectory optimization problems

are usually nonconvex, in order to apply convex optimization method, various

convexification techniques are developed to transform the original problem for-390

mulation to a convex version. This can also be understood as using a specific

convex optimization model to approximate the original nonconvex formulation.

Commonly, there are three types of convex optimization existing in the litera-

ture:

1. Linear programming model (LP).395

2. Second-order cone programming model (SOCP)

3. Semi-definite programming model (SDP)

In terms of the LP model, it should be noted that if the considered problem

is relatively complex (i.e., the nonlinearity of the system dynamics, objectives

or constraints is high), then the LP model might not be sufficient and reliable400
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to approximate the original problem formulation. On the other hand, as for

the SDP model, although it has the most accurate approximation ability among

the three models listed above, the transformed convex formulation is often not

well-scaled, thereby resulting in an increase with regards to the computational

complexity. On the contrary, a good balance between the approximation accu-405

racy and the computational complexity can be achieved by applying the SOCP

model. This strategy approximates the problem constraints using the second

order cone such that the transformed problem can be solved with a relatively-

small computing power.

Contributions made to implement convexification-based optimization meth-410

ods to solve space vehicle trajectory design problems can be found in the liter-

ature. For example, in [65, 66], the planetary landing problem was addressed

by using the convex optimization method under the consideration of nonconvex

thrust magnitude constraints. Also, in [67], the SOCP method was applied to

produce the optimal trajectory of the spacecraft entry planning problem. In this415

work, nonconvex collision-avoidance constraints as well as the navigation uncer-

tainties were also taken into account and reformulated into convex constraints

during the optimization phase.

3.4. Dynamic Programming-based Methods

The motivation for the use of dynamic programming-based methods relies420

on their enhanced ability in achieving stable performance and in dealing with

local optimal solution, that naturally exist in nonlinear optimal control prob-

lems. In this subsection, two typical dynamic programming-based algorithms

are reviewed such as the standard dynamic programming (DP) method, and the

differential dynamic programming method (DDP).425

Motivated by the Bellman’s principle of optimality, DP is proposed and

applied to solve engineering optimization problems [46]. The primary idea of

the Bellman’s principle is that the optimal solution will not diverge if other

points on the original optimal solution are chosen as the starting point to re-

trigger the optimization process. Based on this principle, DP calculates the430

optimal solution for every possible decision variable. Hence, it is highly likely

to result in the curse of dimensionality [48].

In order to deal with the main deficiency faced by the standard DP, the

DDP approach has been designed [68]. In this method, the solution-finding
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process is performed locally in a small neighbourhood of a reference trajec-435

tory. Subsequently, this method calculates the local optimal solution by using

a backward and a forward sweep repeatedly until the solution converges. The

DDP method has been successfully applied to calculate the optimal solution of

some space missions. For example, in [69, 70], a comprehensive theoretical de-

velopment of the DDP method, along with some practical implementation and440

numerical evaluation was provided. In [68], a DDP-based optimization strategy

was proposed and applied to calculate the rendezvous trajectory to near Earth

objects.

However, most of the recent DDP work does not take the model uncertain-

ties and noises into account in the process of finding the solution. Consequently,445

the solution finding process might fail to produce a nominal solution which can

guarantee the feasibility all along the trajectory when uncertainties or model

errors perturb the current solution.

According to all the relative works reported, it can be concluded that al-

though the results generated from most existing optimization algorithms can450

be accepted as near-optimal solutions, there is still room for improvement with

respect to applying these optimization strategies in spacecraft trajectory design

problems.

4. Multi-Objective Spacecraft Trajectory Optimization

In the past, early investigations on space vehicle trajectory design prob-455

lems usually focused on one single objective, for example, minimizing the time

duration, minimizing the fuel consumption, maximizing the lading cross range,

etc. However, it is worth noting that it is only in the recent five years that

there has been a growing interest in planning the flight trajectories with the

consideration of multiple mission objectives. In a large number of practical tra-460

jectory design problems, multiple performance measures should be frequently

considered during the decision making phase and this brings the development

of multi-objective trajectory optimization (MOTO)[71–73].

Similar with the definition given by Eq.(5), a standard multi-objective op-
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timization problem can be written as:465

Find decision variables x = [x1, x2, ..., xn]

Minimize objective function J(x) = [J1(x), J2(x), ..., JM (x)]

subject to xmin ≤ x ≤ xmax

Hi(x) = 0

Gj(x) ≤ 0

(i = 1, 2, ..., E)

(j = 1, 2, ..., I)

(6)

where M stands for the number of mission objectives considered in the problem.

The main objective of this section is to report the latest development of

multi-objective optimization strategies for producing the optimal trajectories

of different spacecraft flight missions. Moreover, the key features such as the

advantages and disadvantages of using these recently-developed multi-objective470

optimization techniques are also discussed. Based on these reported results,

readers may gain a more clear understanding with respect to the performance

and behaviours of different multi-objective optimization algorithms for address-

ing various space vehicle flight missions. Moreover, it is possible for the readers

to formulate their own algorithm or improve one of these existing techniques in475

order to address their specific space vehicle trajectory design problems.

We classify different MOTO methods existing in the literature into two

groups. That is, the multi-objective evolutionary algorithm-based techniques

and the multi-objective transcription method-based strategy. The most pop-

ular methods among these two groups are summarised and reported in Table480

3 and Table 4. It is important to highlight that not all the MOTO methods

under each category are listed in this table. Alternatively, only some impor-

tant instances are reviewed and these techniques are discussed in detail in the

following subsections.

4.1. Multi-Objective Evolutionary Algorithms485

There exist many multi-objective algorithms which can be applied to solve

the MOTO problem [91, 92]. One way to solve the MOTO problem is to use

the principle of “pareto-optimal” [93–95]. A pareto-optimal solution is optimal

in the sense that no other solutions are superior (better) to it in the current

searching space when all objectives are considered [96, 97]. Since it is usually490
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Table 3: Popular multi-objective evolutionary algorithms available for trajectory design prob-

lems

Multi-objective evolutionary algorithm-based techniques

Nondominated sorting genetic algorithm II (NSGA-II) [74]

Improved nondominated sorting genetic algorithm II (I-NSGA-II) [75]

Nondominated sorting genetic algorithm III (NSGA-III) [76]

Multi-objective evolutionary algorithm Based on decomposition (MOEA/D) [77]

Multi-objective particle swarm optimization (MOPSO) [78]

Multi-objective adaptive particle swarm optimization (MOAPSO) [79]

Multi-objective adaptive gradient particle swarm optimization (MOAGPSO) [80]

Multi-objective artificial bee colony (MOABC) [81]

Niched pareto genetic algorithm (NPGA) [82]

Strength pareto particle swarm optimization (SPPSO) [83]

Adaptive differential evolution and modified game theory (ADEMGT) [84]

Table 4: Popular multi-objective transcription methods available for trajectory design prob-

lems

Multi-objective transcription-based techniques

Weighted-sum method (WS) [85]

Physical programming method (PP) [86]

Fuzzy physical programming (FPP) [33]

Interactive physical programming (IPP) [87]

Interactive fuzzy physical programming (IFPP) [88]

Goal programming (GP) [89]

Fuzzy goal programming (FGP) [75]

Fuzzy satisfactory goal programming (FSGP) [32]

Adaptive surrogate model (ASM) [90]

hard to find a solution that can optimize all the objectives, it is then interesting

to find all the pareto-optimal solutions and create the pareto-optimal set.

To find the pareto-optimal set, the evolutionary multi-objective optimiza-

tion (EMO) methodology has been analyzed as a promising method to visualize

the relationships between objectives and calculate the pareto-front [77]. The495

general steps of using EMOs to solve MOTO problems can be summarised as

follows:
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1. Initialize the population and other control parameters of the EMO algo-

rithm.

2. For each candidate among the population/swarm, calculate the objective500

function values J and the constraint violation value.

3. Generate offspring population/swarm by using various evolutionary strat-

egy.

4. Combine the offspring population/swarm with the previous population.

5. Calculate the fitness value for each candidate using the information of505

objective function values and constraint violation value.

6. Assign all non-dominated ranks using the pareto dominant rule.

7. According to the selection operator, select the best set of individuals as

the candidates of the new generation.

8. Repeat step 2-7 until the maximum iteration number is reached.510

New EMO techniques and applications have been widely applied in aerospace

engineering during the past decades [98, 99]. For example, in terms of the

theoretical development, the authors in [63] proposed an optimal path control

strategy for addressing general multi-objective optimization problems. Ji et al.

[100] designed a modified NSGA-II algorithm to address a multi-objective allo-515

cation problem. In [101], the authors proposed a decomposition-based sorting

technique for handling benchmark multi-objective problems.

Regarding the practical applications, a constrained multi-objective evolu-

tionary algorithm (MOEA) was applied in [13] in order to solve a bi-objective

reentry trajectory design problem. The authors in [102] considered a low-thrust520

gravity assist trajectory design problem. In their work, two contradicting mis-

sion objectives, minimizing the flight time duration and minimizing the fuel

consumption, were considered and the pareto front was successfully produced

by applying the NSGA-II algorithm. Similarly, an enhanced NSGA-II algorithm

was proposed in [103], wherein a specific migration scheme was embedded in the525

original algorithm framework. This improved method was then applied to solve

an Earth-Jupiter orbital transfer problem with the consideration of different

fly-by sequences.

In [4], the authors extended the standard PSO algorithm to a multi-objective

version, thereby constructing a multi-objective PSO (MOPSO) algorithms. This530

extended algorithm was then applied to address a Earth-Jupiter-Saturn orbital
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transfer problem and the results illustrated the feasibility as well as the relia-

bility of the proposed method.

In [76], the authors proposed an extended NSGA-III algorithm in order to

address the multi-objective spacecraft reentry trajectory design problem with535

the consideration of path constraints and no-fly zone constraints. This method

applied a set of reference points so as to guide the evolutionary direction. By

applying the proposed method, the contradicting relationships between different

mission objectives can be reflected successfully. Moreover, it was found that by

applying the reference point strategy, the obtained pareto front solution can be540

more well-distributed and optimal.

Although the contradicting relationship between objectives could be re-

flected and the pareto set was obtained, the computational burden due to the

optimization process is high. In addition, a main challenge faced by MOEAs is

that it has the restriction of dimensionality in solving problems containing more545

than three objectives. This is because the current domination principle which

is usually used and embedded in the MOEA framework lacks the ability to pro-

vide an adequate selection pressure and emphasize feasible solutions [74, 77].

In other words, the selection pressure can hardly be allocated to each objective

uniformly, thereby resulting in poor diverse representation of the pareto front.550

4.2. Multi-Objective Transcription Methods

Currently, most of the existing studies are focusing on the development or

implementation of MOEAs for general MOPs [77, 99, 104–106]. This type of

technique is effective for analyzing the relations between objectives and generate

the pareto front. However, since all the objectives are involved in the optimiza-555

tion iteration and rank sorting process, the computational complexity can be

high. Moreover, if the different types of preference requirements are required

to be taken into account, the MOEA-based approach might need to rely on the

interactive process, which is still a challenging problem for the decision makers.

Due to these drawbacks and challenges, in this subsection, the multi-objective560

transcription (MOT) strategy is outlined. This type of algorithm aims to solve
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the multi-objective optimization problem in the form of

Find decision variables x = [x1, x2, ..., xn]

Minimize objective function J(x) = [J1(x), J2(x), ..., JM (x)]

subject to xmin ≤ x ≤ xmax

Hi(x) = 0

Gj(x) ≤ 0

J(x) ∈ P

(i = 1, 2, ..., E)

(j = 1, 2, ..., I)

(7)

in which P = {J(x)|P (Ji(x)) > P (Jj(x))}. Here P (·) denotes priority fac-

tors of different performance indices. The inequality P (Ji(x)) > P (Jj(x)) can

be understood as regarding the priority of the ith objective higher than the565

jth objective. It is desired to find a proper algorithm that is effective to han-

dle the mission-dependent preference constraints and reduce the computational

complexity. The general idea of the MOT strategies is to reformulate the origi-

nal multi-objective formulation to a single-objective problem (SOP). Compared

with MOEA strategies studied in the previous subsection, the MOT methods570

have the capability to handle the preference requirement (e.g. the priority con-

straints) and does not rely on the time-consuming rank sorting process.

A typical MOT example that has been widely used in the literature is the

weighted-sum method where weight coefficients are used to transform different

criterions into only one single objective. However, it was investigated in [88] that575

the weight coefficients may fail to represent the true preferences or priorities.

Gao et al. [11] computed the optimal control command with respect to a multi-

objective spacecraft rendezvous task. In their work, the multi-objective optimal

control problem was transcribed into a convex optimization issue subject to

linear matrix inequality constraints. However, this formulation can hardly be580

extended to solve the multi-objective optimal control problems with simultane-

ous consideration of priority requirements.

In 1996, Messac designed a physical programming (PP) approach to con-

vert the objectives [86], which removes the information of priority and weight

coefficients. This method divided the objective value into different preference585

regions as indicated in Fig.3. Subsequently, a physical optimization model was

established to represent the original problem formulation.

In their follow-up research [87], an interactive strategy was proposed and
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Figure 3: Preference region illustration

embedded in the PP framework, thereby constructing an interaction physical

programming scheme (IPP). However, since the formulated optimization model590

is strongly nonlinear, selecting the preference function and formulating the pref-

erence model are still difficult.

To solve this problem, in [33], the authors proposed an enhanced PP method

by applying the definition of fuzzy set. This enhanced technique was then

applied to address a multi-objective space maneuver vehicle trajectory design595

problem and the results confirmed its feasibility. Besides, in [88], an interactive

process was designed and embedded in the algorithm framework as illustrated

in Fig.4. The interactive process is achieved by adjusting the aspiration level

and preference functions, thus allowing more control flexibility to the decision

maker.

Figure 4: Graphical illustration of the interactive decision-making process
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A number of simulation results were carried out to illustrate that the pro-600

posed algorithm is able to drive mission objectives into pre-specified desirable

regions. However, if the decision maker does not have enough physical knowl-

edge of the problem, the IFPP method might fail to drive different mission

objectives into their pre-specified tolerant regions. Besides, if strict preference

requirements such as the priority constraints are required to be considered, this605

method cannot be as efficient as other approaches (i.e., may require several

interactive trials).

In [75] the authors designed a multi-objective transcription method, namely

the fuzzy goal programming (FGP) method, to address the constrained multi-

objective space vehicle trajectory planning problem, where the objective func-610

tions were specified with different priority requirements. As described previ-

ously, the PP-based method and its variances can be applied as an effective

tool to drive different objectives into the preference regions. However, the re-

sulting optimization model largely depends on the designer’s knowledge of the

problem, and it tends to be sensitive with respect to the aspiration levels and615

the preference regions. When priority constraints are taken into account or the

designers have limited knowledge with respect to the problem, the PP-based

method approach is no better than the one developed in [75]. Compared with

the PP-based method, an important feature of the FGP optimization model is

that it has the capability to directly reflect the magnitude of goal attainment620

with respect to different objectives. Moreover, it requires no physical knowledge

and can be easily applied. Although it was shown that this method can have

a good performance in generating the multi-objective optimal flight trajectory

and fulfilling the pre-specified priority requirements, a significant problem is

that this technique will introduce a large amount of design variables, thereby625

resulting in poor convergence ability.

5. Stochastic Spacecraft Trajectory Optimization

Although most previously reported optimization-based techniques have been

shown to be effective and reliable tools for generating optimal flight trajectories

(in particular, optimal spacecraft state and control sequences), they only target630

at deterministic models. It should be noted that in many real-world mission

scenarios, various model or actuator uncertainties must frequently be taken into
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account during the trajectory planning phase. As a result, a proper treatment of

the dynamics and constraints affected by stochastic variables is requested, which

in turn brings the development of stochastic spacecraft trajectory optimization635

[107–114].

This section investigates various computational frameworks existing in the

literature for addressing the problem of space vehicle trajectory optimization

with the consideration of chance constraints (CCs) and stochastic dynamics.

Specifically, the next subsection gives an illustration of chance-constrained space-640

craft trajectory optimization with deterministic dynamic model. The strategies

that are available to deal with stochastic variables involved in the constraints

will be discussed in detail. Following that, in Section 7.2, the problem of chance-

constrained spacecraft trajectory optimization with stochastic dynamics will be

outlined. We hope that by reading this section, readers can gain a better under-645

standing in terms of the definitions, solution approaches, and current challenges

of the stochastic spacecraft trajectory design problems.

5.1. Chance-Constrained Spacecraft Trajectory Optimization

In this subsection, we firstly consider the chance-constrained spacecraft

trajectory optimization problem with deterministic dynamics or equations of650

motion. That is, only the flight path constraints are affected by some uncertain

variables. The formulation of this type of problem can be obtained by intro-

ducing the uncertain variable and probabilistic constraints in Eq.(4), which has

the following form:

minimize J = Φ(x0, t0, xf , tf ) +

∫ tf

t0

L(x(t), u(t), t)dt

subject to ∀t ∈ [t0, tf ]

ẋ(t) = f(x(t), u(t), t) (dynamic constraints)

bL ≤ b(x0, t0, xf , tf ) ≤ bU (boundary conditions)

Pr{bL ≤ b(x0, t0, xf , tf ) ≤ bU} ≥ 1− ǫφ (terminal CCs)

Pr{gL ≤ g(x(t), u(t), t; ξ) ≤ gU} ≥ 1− ǫg (path CCs)

(8)

In Eq.(8), without loss of generality, it is supposed that ξ ∈ Ω ⊂ R
Np is

an uncertain parameter with a known probability density function (PDF). The

noise-perturbed path function is defined by g : R
Nx × R

Nu × R× Ω 7→ R
Ng .

Pr(·) stands for the probability operation, whereas ǫ stands for the acceptable

probability of occurrence. It should be noted that the path chance constraint
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in Eq.(8) is a joint chance constraint. It reveals the fact that in order for the

joint event {gL ≤ g(x(t), u(t), t; ξ) ≤ gU} to be true, each individual component

of the vector function g should probabilistically satisfy giL ≤ gi ≤ giU , i =

1, 2, ..., Ng. A common way to handle the joint chance constraint is to decompose

it into individual scalar chance constraints. This strategy might be conservative

yet computationally more attractive. Specifically, using Boole’s inequality, a

sufficient condition of the original joint chance constraint can be obtained [108]:

Pr{gi(ξ) < giL} ≤ ǫ1,i, P r{gi(ξ) > giU} ≤ ǫ2,i

Then, by imposing

Ng∑
i=1

(ǫ1,i + ǫ2,i) < ǫg, the joint chance constraint can be sat-655

isfied.

Compared with designing a completely new solution approach, it is more

interesting to apply standard optimal control solvers to optimize the state and

control trajectories. However, the formulation shown in Eq.(8) cannot be solved

in its present form. This is because the evaluation of Eq.(11) can hardly be per-660

formed. Therefore, a proper treatment of the constraint influenced by stochastic

parameters is required, and solving the chance-constrained optimization prob-

lem reduces to tackling the non-deterministic chance constraints. A commonly

used strategy is to transcribe the probabilistic constraint (11) into a determin-

istic one, and this brings the development of robust trajectory planning [107]665

and chance-constrained optimal path design [108].

Robust trajectory planning is based on robust optimization (RO) algo-

rithms. The main advantage with the RO method is that it is easy to apply and

simple to understand. In recent years, a large amount of research work has been

reported in this field [112, 115–118]. In particular, Li and Shi [116] designed a670

robust distributed model predictive control scheme for a class of nonlinear multi-

agent system. In their work, the model uncertainty was handled by introducing

a robustness constraint in the optimization model. In [117], authors proposed a

differential evolution-based technique to solve the minimax optimization prob-

lems that naturally arise in practical robust designs. Wang and Pedrycz [118]675

developed an adaptive data-driven RO method in order to solve a class of opti-

mization problem with the consideration of parameter uncertainty. Moreover, a

new robust optimization methodology, named active robust optimization, was

investigated in [112]. It is well known that the RO formulation aims to find

the solution of the worst-case optimization scenario. This indicates that the680
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calculated solution can satisfy all constraints with respect to any realization of

the stochastic parameters. In other words, constraint violations are not allowed

in an RO formulation.

Alternatively, chance-constrained optimal path design relies on chance-

constrained optimization (CCO) algorithms. This type of algorithm allows con-685

straint violations to be less than a user-specified risk parameter. A detailed

review regarding different CCO algorithms can be found in [119] and the ref-

erences therein. In [120], the authors proposed a CCO-based model predictive

control scheme so as to optimize the movement of the ego vehicle. Considering

the uncertainty in the system state as well as the constraint, a hybrid CCO690

method was designed in [121] and applied to solve an autonomous vehicle mo-

tion planning problem. Though applying RO methods can achieve the strongest

solution feasibility, the CCO methods tend to be less conservative.

However, one challenge of the use of CCO methods is that the probabilis-

tic functions and their derivatives cannot be calculated directly. An effective695

strategy to handle this issue is to replace or approximate these constraints by

using deterministic functions or samples [122–124]. The motivation for the use

of approximation-based strategies relies on their ability in dealing with general

probability distributions for the uncertainty as well as preserving feasibility of

approximation solutions. Until now, some approximation techniques have been700

proposed based on the Bernstein method [108, 122], the constraint tightening

approach [125], the scenario approximation [126], etc. The chance-constrained

optimal path design reported in these works usually employed a discretization

technique to parameterize uncertain variables and create the trajectory ensem-

ble. Subsequently, the resulting discretized version of the problem was solved by705

applying standard optimal control solvers. In order to provide reliable gradient

information to the optimization algorithm, different chance constraint approx-

imation methods were proposed to replace the original probability constraints.

The established methodology was then implemented to explore the optimal tra-

jectories for different spacecraft flight trajectory planning scenarios with the710

consideration of probabilistic constraints. Simulation results and comparative

studies demonstrated that these proposed chance constraint handling strategies

can outperform other existing robust optimization-based approaches, and these

computational frameworks can produce reliable and less conservative solutions

for different chance-constrained spacecraft trajectory planning problems.715
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Based on the discussion stated above, a popular solution-finding procedure

for addressing the chance-constrained spacecraft trajectory design problem can

be summarised to the following four steps:

1. Decompose the joint chance constraint.

2. Approximate the chance constraints.720

3. Transcribe the original problem formulation into a deterministic version.

4. Solve the problem using standard trajectory optimization solver.

Although the aforementioned CCO-based strategies can be feasible for re-

placing the probabilistic constraints, there are still some open problems. For

example, an important issue is that the conservatism is usually high and difficult725

to be controlled. Furthermore, the smoothness, differentiability and convergence

properties of the approximation strategy can hardly be preserved.

5.2. Chance-Constrained Spacecraft Trajectory Optimization: Stochastic Dy-

namics

This subsection firstly outlines the problem of chance-constrained space-730

craft trajectory optimization with noise-perturbed system dynamics. Its for-

mulation can be easily obtained by extending Eq.(8) with the introduction of

uncertain variable in the dynamics. Specifically, it can be written in the form

of:

minimize J = J = E[Φ(x0, t0, xf , tf ) +

∫ tf

t0

L(x(t), u(t), t)dt]

subject to ∀t ∈ [t0, tf ]

ẋ(t) = f(x(t), u(t), t) + ξ (noise-perturbed dynamics)

bL ≤ b(x0, t0, xf , tf ) ≤ bU (boundary conditions)

Pr{bL ≤ b(x0, t0, xf , tf ) ≤ bU} ≥ 1− ǫφ (terminal CCs)

Pr{gL ≤ g(x(t), u(t), t) ≤ gU} ≥ 1− ǫg (path CCs)

(9)

Due to the nature of the stochastic dynamics and constraints, the perfor-735

mance index J is formulated in an expectation form. The term Φ denotes the

expected Mayer cost and the term L is the expected process cost. Compared

with the problem formulation given by Eq.(8), an important change of Eq.(9)

is that the system dynamics are noise-perturbed. It should be noted that this

noise-perturbed system model has a rather simple type of motion which can740

be treated as conditionally deterministic. This is because if the uncertain pa-

rameter ξ is known, then the system motion would be known at all future time
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instants, which indicates that the system motion is deterministically conditioned

on the knowledge of the uncertain parameter ξ. Although conditionally deter-

ministic motion tends to be more restrictive than the stochastic motion, it is still745

worthy to be deeply researched as there are many real-world mission scenarios

where the system equations are explicitly related to some uncertain parameters

[127].

Different from Eq.(9), a more general form of the stochastic spacecraft

trajectory optimization model can be defined by considering the uncertain effect750

as a stochastic process. This indicates that the system dynamics is constructed

as a set of stochastic differential equations (SDEs). Then the overall problem

formulation is described in Eq.(10) [128]:

minimize J = J = E[Φ(x0, t0, xf , tf ) +

∫ tf

t0

L(x(t), u(t), t)dt]

subject to ∀t ∈ [t0, tf ]

dx(t) = f(x(t), u(t), t)dt+G(x(t), u(t), t)dξ(t) (SDEs)

bL ≤ b(x0, t0, xf , tf ) ≤ bU (boundary conditions)

Pr{bL ≤ b(x0, t0, xf , tf ) ≤ bU} ≥ 1− ǫφ (terminal CCs)

Pr{gL ≤ g(x(t), u(t), t) ≤ gU} ≥ 1− ǫg (path CCs)

(10)

where ξ(t) stands for the stochastic process, while f and G reflect the drift and

diffusion parts of the random state process. In the problem formulation (10),755

the uncertainty is now considered as a dynamic variable. Therefore, the solution

to this problem is no longer a deterministic control sequence. Although some

works can be found in the literature to explore this problem, they all target at

a simplified linear quadratic version [128]. Practical numerical algorithms for

the solution to a general stochastic spacecraft trajectory optimization problem760

are still at an initial development stage.

To solve the problem (9), an important procedure is to apprximate/discretize

the uncertain variables appearing inside the dynamics. To achieve this, a certain

stochastic quadrature formula (SQF) should be used to achieve the approxima-

tion with a desired error order (raft of convergence). An SQF of degree N can765

be regarded as a set of weighted parameters {wk}, k ∈ {1, 2, ...N} and Np-

dimensional uncertain variables {ξk}, k ∈ {1, 2, ...N} such that the equation∑N

k=1 wkF (ξk) ≈
∫
F (ξ)R(ξ)dξ holds true. Here, R(ξ) is the PDF of ξ. With

the introduction of SQF, an approximation of the stochastic integral can then
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be built such that770

E[F (x, u, ξ)] ≈
N∑

k=1

wkF (x, u, ξk) (11)

where E(·) denotes the expectation operator.

Until now, there are many effective SQF methods and their variances that

have been reported for quantifying the uncertain variables. Among them, gen-

eralized polynomial chaos (gPC) theory-based approaches have attracted great

attention due to their ability in decomposing the stochastic variables into a775

convergent series of polynomials. gPC methods have been widely applied in

various aerospace engineering applications [107, 129]. The general procedure

of this type of strategy is to utilize deterministic orthogonal polynomials and

coefficients for deriving the expression of stochastic systems. It was shown in

[129] that the gPC-based techniques can be efficient for optimal control prob-780

lems containing a relatively small number of stochastic variables. For example,

if the dynamic equations defined in (9) contain a relatively small number of

stochastic variables, the gPC-based algorithms can be used to interpret the un-

certain effects. Most of the chance-constraint handling strategies can still be

applied to handle the probabilistic constraints existing in Eq.(9). However, for785

the uncertain trajectory optimization problem with a relatively large number of

uncertain parameters, this type of method becomes computationally expensive

and they are no longer suitable for representing the uncertainty for the problem

(9).

Another well-developed class of SQF techniques is the sampling-based meth-790

ods. Typical examples include the Markov chain Monto Carlo (MCMC) ap-

proach and quasi-Monto Carlo methods. The motivation for the use of sampling-

based methods relies on their simplicity and the fact that the approximation

error order is independent with respect to the dimension of ξ. Take MCMC as an

example, a stochastic variable ensemble {ξ}Nk=1 can be constructed by randomly795

sampling from the probability distribution (e.g. {ξ}Nk=1 ∼ R(ξ)). Each sample

will be weighted equally (e.g. wk = N−1), thereby producing an O(1/
√
N) con-

vergence rate in terms of the approximation error. Therefore, for most published

works, the MCMC technique was employed to model the uncertain parameters.

However, in order to deal with the noise-perturbed dynamics, a propagation800

process might need to be performed. This process is not easy to be executed

due to the nonlinearity of the system model. Moreover, as the dynamics are
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propagated, all the system states are required to satisfy the probabilistic con-

straints as shown in Eq.(9). This will inevitably increase the computational

complexity and computational time [108]. In addition, the accumulation of con-805

straint violations and conservatism might damage the optimality of the solution

as well as the convergence ability of the optimization algorithm.

Therefore, it is obvious that more efforts should be made in order to tackle

the issues mentioned previously. And there is still a lot of room for improve-

ment with respect to applying or designing new strategies in chance-constrained810

spacecraft trajectory optimization problems under the consideration of noise-

perturbed and stochastic dynamics.

6. Recent Practical Applications of the optimized trajectory

In recent years, a number of new practical application fields have been

expanded due to the development of trajectory optimization techniques. The815

focus of this section is on the recent applications of the optimal flight trajec-

tories from a high-level perspective. Various application scenarios for which

the optimal trajectories have been successfully implemented or are under strong

scientific investigation are surveyed. These scenarios include: the design of in-

tegrated spacecraft guidance and control systems, the design of spacecraft or820

satellites formation control schemes, and the design of a database-based online

guidance strategy.

6.1. Design of Integrated Spacecraft Guidance and Control Systems

One important functionality of the optimal flight trajectory is that it can

contribute to the design of spacecraft online guidance and control systems825

[130–132]. Works on developing this topic can be easily found in the recently-

published articles. In [133], a segmented predictor-corrector guidance approach

was designed for the Mars entry capsule. In this work, an optimal flight path

was pre-planned and several way-points were selected as the segmented targets.

Subsequently, the traditional predictor-corrector approach was applied for these830

segments. It was shown in the simulation that this strategy can reduce the com-

putational time and preserve the advantage of the standard predictor-corrector

approach. Similarly, the work of Dai and Xia [134] implemented an optimal

Mars entry trajectory so as to design a terminal sliding mode control-based

guidance law for the Mars landing problem. In their work, the terminal sliding835
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mode control scheme was designed to remove the deviation between the actual

flight trajectory and the pre-designed optimal reference trajectory. Moreover, an

extended state observer was used to measure the uncertain term in the vehicle

dynamics.

Traditionally, spacecraft guidance and control systems are designed sepa-840

rately as two loops [135]. That is, an inner loop autopilot is established so as to

track the angular command generated by the outer-loop guidance scheme. How-

ever, such a two-loop design usually leads to large design iterations and does not

fully exploit the relationships between different subsystems, thereby resulting

in a suboptimal performance [136]. In recent years, there has been a growing845

interest in the design of integrated guidance law and flight control systems. For

instance, Tian et al. [8] and Liu et al. [137] proposed the integrated trajectory

and attitude coordination control schemes in order to control different types

of spacecraft in near real-time. Basically, there are three main parts in their

designed system: an offline trajectory optimization component, an online opti-850

mal feedback guidance component, and a spacecraft attitude controller. In the

offline trajectory optimization component, a reference flight trajectory is firstly

generated via well-developed trajectory optimization strategies reviewed in the

previous sections. Then, the reference is provided to the online optimal feedback

guidance component, where a reference-tracking algorithm is used to produce855

the control increment which will be applied as the reference control commands

for the inner attitude control system. The core aim for this integrated design is

to steer the vehicle such that it can fly along the pre-specified reference path.

6.2. Design of Spacecraft/Satellite Formation Control Schemes

The formation control of spacecraft/satellites aims to steer a fleet of small-860

scale spacecrafts/satellites to follow a predefined trajectory while preserving a

desired pattern. It is one of the most popular directions that can contribute

to the future development of space technology and exploration of the space

[138–140]. There are many effective formation control methods existing in the

literature. Among them, the leader-follower method has attracted great atten-865

tion due to its ability in dealing with complex tasks. This type of method can

be referred to the fact that some spacecraft among the fleet serve as the leader,

whereas the remaining spacecraft will act as the followers. The general idea is to

force the followers to track the trajectory of the leader in order to keep the for-

mation and fulfill other mission requirements. Therefore, a well-designed flight870

35



trajectory, particularly for the leading vehicle, is a key for stable flight and for

improved control of the system. In the recent year, a large amount of research

has been carried out by incorporating trajectory optimization techniques and

attitude tracking control methods for this kind of problem. For example, in

[141], the authors combined trajectory optimization and configuration control875

to study the problem of orbital maneuver for a formation system. In addi-

tion, considering the communication distance and the ground projection area

as constraints, a constrained trajectory optimization method, together with a

coordinative control strategy was proposed and successfully applied to a mi-

cro space vehicle formation flying problem in [142]. Furthermore, a deep-space880

dual-spacecraft formation flying problem was studied in [143], wherein the opti-

mal obstacle avoidance flying trajectory was produced via a standard trajectory

optimization method.

6.3. Database-based Online Guidance Strategy

Recently, a growing interest can be found in developing the online guidance885

strategy based on a large pre-planned optimal trajectory set. Contributions to

this kind of approach are reported in the literature [144, 145]. For example, in

[145] a database-based online guidance scheme was designed and applied for the

space vehicles reentry problem. In this guidance scheme, a large database of

optimal trajectories was firstly generated. Following that, the optimal command890

solution corresponding to a subset of initial-conditions variations was produced

by the onboard algorithm. The main advantage of using such a design is that the

real-time applicability can be easily achieved and compared with other guidance

schemes based on the control theory, it is more reliable to be applied online.

In addition, this type of method is able to deal with dispersions during the895

flying phase. Therefore, we believe that more success stories in applying the

database-based online guidance strategies are going to appear in the next couple

of decades.

7. Conclusions and Future Development

The trajectory design of spacecraft is usually recognized as an optimal con-900

trol problem and the selection of optimization method has a decisive influence

on the final flight trajectory. A survey of newly-developed optimization strate-

gies that are available for addressing constrained spacecraft trajectory design
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problems has been given in this investigation. Various spacecraft trajectory

optimization approaches and achievements have been reviewed in this paper.905

It is worth noting that the progresses in the field of nonlinear programming

as well as artificial intelligent-based optimization have recently resulted in a

large amount of numerical trajectory design approaches. Applying these new

methods can not only fulfill complex mission requirements but also improve the

quality of the obtained solution even when multiple constraints are required to910

be considered.

Due to the fact that in practice, more than one mission objective and dif-

ferent types of vehicular or environmental uncertainties may exist in the path

planning phase, the original problem formulation should be extended to a multi-

objective trajectory planning version or a stochastic trajectory planning version.915

In this article, we have reviewed the up-to-date theoretical development in terms

of the optimization of the space vehicle flight trajectory with emphasis on mul-

tiple conflicting mission performance indices and stochastic variable/constraints

and handling strategies. Key features such as the advantages and disadvantages

of using these recently-developed techniques were described, and guidelines were920

given with respect to the development of reliable multi-objective and stochas-

tic spacecraft trajectory optimization algorithms. Some recent applications of

the optimized trajectory were also discussed to clearly show that a widespread

implementation of these techniques and results has already begun.

We believe that many more success stories in applying the multi-objective925

trajectory optimization as well as the stochastic trajectory optimization tech-

niques in various domains such as interplanetary travel, rendezvous and dock-

ing, formation flying, and planetary exploration will be reported in the next

few decades. For many of these new spacecraft tasks, novel multi-objective

and stochastic trajectory optimization algorithms are urgently needed for han-930

dling different mission-dependent or vehicle-dependent performance indices and

model errors/uncertainties. Moreover, works on the validation of the effec-

tiveness, reliability and optimality of the trajectory optimization methods are

highly likely to appear. This will give the aerospace engineers a clear view of

the algorithm credibility.935

37



References

[1] J. T. Betts, Survey of numerical methods for trajectory optimization,

Journal of Guidance, Control, and Dynamics 21 (2) (1998) 193–207.

doi:10.2514/2.4231.

[2] B. A. Conway, A survey of methods available for the numerical optimiza-940

tion of continuous dynamic systems, Journal of Optimization Theory and

Applications 152 (2) (2012) 271–306. doi:10.1007/s10957-011-9918-z.

[3] J. Lavaei, A. Momeni, A. G. Aghdam, A model predictive decentralized

control scheme with reduced communication requirement for spacecraft

formation, IEEE Transactions on Control Systems Technology 16 (2)945

(2008) 268–278. doi:10.1109/TCST.2007.903389.

[4] F. Alonso Zotes, M. Santos Penas, Particle swarm optimisation of inter-

planetary trajectories from earth to jupiter and saturn, Engineering Ap-

plications of Artificial Intelligence 25 (1) (2012) 189–199. doi:https:

//doi.org/10.1016/j.engappai.2011.09.005.950

[5] R. Chai, A. Savvaris, A. Tsourdos, S. Chai, Y. Xia, Optimal fuel consump-

tion finite-thrust orbital hopping of aeroassisted spacecraft, Aerospace

Science and Technology 75 (2018) 172–182. doi:https://doi.org/10.

1016/j.ast.2017.12.026.

[6] A. Bogorad, C. Bowman, A. Dennis, J. Beck, D. Lang, R. Herschitz, M.955

Buehler, B. Blaes, D.Martin, Integrated environmental monitoring system

for spacecraft, IEEE Transactions on Nuclear Science 42 (6) (1995) 2051–

2057. doi:10.1109/23.489252.

[7] R. Chai, A. Savvaris, A. Tsourdos, S. Chai, Y. Xia, Optimal tracking guid-

ance for aeroassisted spacecraft reconnaissance mission based on receding960

horizon control, IEEE Transactions on Aerospace and Electronic Systems

54 (4) (2018) 1575–1588.

[8] B. Tian, W. Fan, R. Su, Q. Zong, Real-time trajectory and attitude co-

ordination control for reusable launch vehicle in reentry phase, IEEE

Transactions on Industrial Electronics 62 (3) (2015) 1639–1650. doi:965

10.1109/TIE.2014.2341553.

38



[9] K. F. Graham, A. V. Rao, Minimum-time trajectory optimization of low-

thrust earth-orbit transfers with eclipsing, Journal of Spacecraft and Rock-

ets 53 (2) (2016) 289–303. doi:10.2514/1.A33416.

[10] A. V. Rao, S. Tang, W. P. Hallman, Numerical optimization study of970

multiple-pass aeroassisted orbital transfer, Optimal Control Applications

and Methods 23 (4) (2002) 215–238. doi:10.1002/oca.711.

[11] H. Gao, X. Yang, P. Shi, Multi-objective robust h-infinity control of space-

craft rendezvous, IEEE Transactions on Control Systems Technology 17

(4) (2009) 794–802. doi:10.1109/TCST.2008.2012166.975

[12] M. Pontani, B. A. Conway, Optimal finite-thrust rendezvous trajectories

found via particle swarm algorithm, Journal of Spacecraft and Rockets 50

(6) (2013) 1222–1234. doi:10.2514/1.A32402.

[13] C. Gan, W. Zi-ming, X. Min, C. Si-lu, Genetic Algorithm Optimization

of RLV Reentry Trajectory, International Space Planes and Hypersonic980

Systems and Technologies Conferences, American Institute of Aeronautics

and Astronautics. doi:doi:10.2514/6.2005-3269.

[14] Z. Kenan, C.Wanchun, Reentry Vehicle Constrained Trajectory Optimiza-

tion, International Space Planes and Hypersonic Systems and Technolo-

gies Conferences, American Institute of Aeronautics and Astronautics,985

2011. doi:doi:10.2514/6.2011-2231.

[15] A. Rajesh, Reentry Trajectory Optimization: Evolutionary Approach,

Multidisciplinary Analysis Optimization Conferences, American Institute

of Aeronautics and Astronautics, 2002. doi:doi:10.2514/6.2002-5466.

[16] W. Robert, A. Mark, B. Jeffrey, W. Robert, A. Mark, B. Jeffrey, Min-990

imum heating reentry trajectories for advanced hypersonic launch ve-

hicles, Guidance, Navigation, and Control and Co-located Conferences,

American Institute of Aeronautics and Astronautics, 1997. doi:doi:

10.2514/6.1997-3535.

[17] I. Mikhail, V. Pavel, K. Alexandr, Numerical Investigation of the EX-995

PERT Reentry Vehicle Aerothermodynamics Along the Descent Trajec-

tory, Fluid Dynamics and Co-located Conferences, American Institute of

Aeronautics and Astronautics, 2007. doi:doi:10.2514/6.2007-4145.

39



[18] I. M. Ross, M. Karpenko, A review of pseudospectral optimal control:

From theory to flight, Annual Reviews in Control 36 (2) (2012) 182–197.1000

doi:https://doi.org/10.1016/j.arcontrol.2012.09.002.

[19] A. Gardi, R. Sabatini, S. Ramasamy, Multi-objective optimisation of air-

craft flight trajectories in the atm and avionics context, Progress in

Aerospace Sciences 83 (2016) 1–36. doi:https://doi.org/10.1016/j.

paerosci.2015.11.006.1005

[20] A. V. Rao, A survey of numerical methods for optimal control, Advances

in the Astronautical Sciences 135 (1).

[21] J. T. Betts, W. P. Huffman, Mesh refinement in direct transcription meth-

ods for optimal control, Optimal Control Applications and Methods 19 (1)

(1998) 1–21.1010

[22] H. Yang, H. Baoyin, Fuel-optimal control for soft landing on an irregular

asteroid, IEEE Transactions on Aerospace and Electronic Systems 51 (3)

(2015) 1688–1697. doi:10.1109/TAES.2015.140295.

[23] H. Yang, X. Bai, H. Baoyin, Rapid generation of time-optimal trajecto-

ries for asteroid landing via convex optimization, Journal of Guidance,1015

Control, and Dynamics 40 (3) (2017) 628–641. doi:10.2514/1.G002170.

[24] I. M. Ross, A primer on Pontryagin’s principle in optimal control, CA:

Collegiate Publishers, 2015.

[25] T. R. Jorris, R. G. Cobb, Multiple method 2-D trajectory optimization

satisfying waypoints and no-fly zone constraints, Journal of Guidance,1020

Control, and Dynamics 31 (3) (2008) 543–553. doi:10.2514/1.32354.

[26] T. R. Jorris, R. G. Cobb, Three-dimensional trajectory optimization satis-

fying waypoint and no-fly zone constraints, Journal of Guidance, Control,

and Dynamics 32 (2) (2009) 551–572. doi:10.2514/1.37030.

[27] A.Weiss, M. Baldwin, R. S. Erwin, I. Kolmanovsky, Model predictive con-1025

trol for spacecraft rendezvous and docking: Strategies for handling con-

straints and case studies, IEEE Transactions on Control Systems Tech-

nology 23 (4) (2015) 1638–1647. doi:10.1109/TCST.2014.2379639.

40



[28] H. Zhang, X. Zhang, Pointwise second-order necessary conditions for

stochastic optimal controls, part i: The case of convex control constraint,1030

SIAM Journal on Control and Optimization 53 (4) (2015) 2267–2296.

doi:10.1137/14098627X.

[29] A. Boccia, M. de Pinho, R. Vinter, Optimal control problems with mixed

and pure state constraints, SIAM Journal on Control and Optimization

54 (6) (2016) 3061–3083. doi:10.1137/15M1041845.1035

[30] J. Bonnans, A. Festa, Error estimates for the euler discretization of an

optimal control problem with first-order state constraints, SIAM Journal

on Numerical Analysis 55 (2) (2017) 445–471. doi:10.1137/140999621.

[31] W. w. Cai, Y. w. Zhu, L. p. Yang, Y. w. Zhang, Optimal guidance for hy-

personic reentry using inversion and receding horizon control, IET Control1040

Theory and Applications 9 (9) (2015) 1347–1355. doi:10.1049/iet-cta.

2014.1155.

[32] C.-F. Hu, Y. Xin, Reentry trajectory optimization for hypersonic vehicles

using fuzzy satisfactory goal programming method, International Journal

of Automation and Computing 12 (2) (2015) 171–181.1045

[33] R. Chai, A. Savvaris, A. Tsourdos, Fuzzy physical programming for space

manoeuvre vehicles trajectory optimization based on hp-adaptive pseu-

dospectral method, Acta Astronautica 123 (2016) 62–70. doi:http:

//dx.doi.org/10.1016/j.actaastro.2016.02.020.

[34] J. A. Englander, B. A. Conway, Automated solution of the low-thrust1050

interplanetary trajectory problem, Journal of Guidance, Control, and Dy-

namics 40 (1) (2017) 15–27. doi:10.2514/1.G002124.

[35] M. Pontani, B. A. Conway, Particle swarm optimization applied to space

trajectories, Journal of Guidance, Control, and Dynamics 33 (5) (2010)

1429–1441. doi:10.2514/1.48475.1055

[36] M. Pontani, B. A. Conway, Particle swarm optimization applied to impul-

sive orbital transfers, Acta Astronautica 74 (2012) 141–155. doi:https:

//doi.org/10.1016/j.actaastro.2011.09.007.

41



[37] G. Ambrosino, M. Ariola, U. Ciniglio, F. Corraro, E. D. Lellis, A. Pironti,

Path generation and tracking in 3-d for uavs, IEEE Transactions on Con-1060

trol Systems Technology 17 (4) (2009) 980–988. doi:10.1109/TCST.2009.

2014359.

[38] Y. Wang, S. Wang, M. Tan, C. Zhou, Q. Wei, Real-time dynamic dubins-

helix method for 3-d trajectory smoothing, IEEE Transactions on Control

Systems Technology 23 (2) (2015) 730–736. doi:10.1109/TCST.2014.1065

2325904.

[39] X. Ma, Z. Jiao, Z. Wang, D. Panagou, 3-d decentralized prioritized motion

planning and coordination for high-density operations of micro aerial ve-

hicles, IEEE Transactions on Control Systems Technology 26 (3) (2018)

939–953. doi:10.1109/TCST.2017.2699165.1070

[40] J. Nocedal, S. J. Wright, Numerical Optimization, Springer series in op-

erations research, 2006.

[41] J. Laurent-Varin, F. Bonnans, N. Berend, M. Haddou, C. Talbot, Interior-

point approach to trajectory optimization, Journal of Guidance, Control,

and Dynamics 30 (5) (2007) 1228–1238. doi:10.2514/1.18196.1075

[42] R. Chai, A. Savvaris, A. Tsourdos, S. Chai, Y. Xia, Improved gradient-

based algorithm for solving aeroassisted vehicle trajectory optimization

problems, Journal of Guidance, Control, and Dynamics 40 (8) (2017)

2093–2101. doi:10.2514/1.G002183.

[43] X. Liu, P. Lu, B. Pan, Survey of convex optimization for aerospace1080

applications, Astrodynamics 1 (1) (2017) 23–40. doi:10.1007/

s42064-017-0003-8.

[44] X. Liu, Z. Shen, P. Lu, Entry trajectory optimization by second-order cone

programming, Journal of Guidance, Control, and Dynamics 39 (2) (2016)

227–241. doi:10.2514/1.G001210.1085

[45] J. Helton, J. Nie, Sufficient and necessary conditions for semidefinite rep-

resentability of convex hulls and sets, SIAM Journal on Optimization 20

(2) (2009) 759–791. doi:10.1137/07070526X.

42



[46] W. Hongying, C. Nayibe Chio, H. Bouadi, Z. Lunlong, F. Mora-Camino,

Dynamic programming for trajectory optimization of engine-out trans-1090

portation aircraft, in: 2012 24th Chinese Control and Decision Conference

(CCDC), 2012, pp. 98–103. doi:10.1109/CCDC.2012.6244015.

[47] J. D. Aziz, J. S. Parker, D. J. Scheeres, J. A. Englander, Low-thrust many-

revolution trajectory optimization via differential dynamic programming

and a sundman transformation, The Journal of the Astronautical Sciences1095

65 (2) (2018) 205–228. doi:10.1007/s40295-017-0122-8.

[48] N. Ozaki, S. Campagnola, R. Funase, C. H. Yam, Stochastic differential

dynamic programming with unscented transform for low-thrust trajectory

design, Journal of Guidance, Control, and Dynamics 41 (2) (2017) 377–

387. doi:10.2514/1.G002367.1100

[49] S.M. Elsayed, R. A. Sarker, D. L. Essam, An improved self-adaptive differ-

ential evolution algorithm for optimization problems, IEEE Transactions

on Industrial Informatics 9 (1) (2013) 89–99. doi:10.1109/TII.2012.

2198658.

[50] R. Chai, A. Savvaris, A. Tsourdos, Violation learning differential1105

evolution-based hp-adaptive pseudospectral method for trajectory opti-

mization of space maneuver vehicle, IEEE Transactions on Aerospace and

Electronic Systems 53 (4) (2017) 2031–2044. doi:10.1109/TAES.2017.

2680698.

[51] B. Zhang, H. Duan, Three-dimensional path planning for uninhabited1110

combat aerial vehicle based on predator-prey pigeon-inspired optimization

in dynamic environment, IEEE/ACM Transactions on Computational Bi-

ology and Bioinformatics 14 (1) (2017) 97–107. doi:10.1109/TCBB.2015.

2443789.

[52] G. Radice, G. Olmo, Ant colony algorithms for two impluse interplanetary1115

trajectory optimization, Journal of Guidance, Control, and Dynamics 29

(6) (2006) 1440–1444. doi:10.2514/1.20828.

[53] H. Duan, S. Li, Artificial bee colony based direct collocation for reen-

try trajectory optimization of hypersonic vehicle, IEEE Transactions on

43



Aerospace and Electronic Systems 51 (1) (2015) 615–626. doi:10.1109/1120

TAES.2014.120654.

[54] P. Lu, M. A. Khan, Nonsmooth trajectory optimization - an approach

using continuous simulated annealing, Journal of Guidance, Control, and

Dynamics 17 (4) (1994) 685–691. doi:10.2514/3.21256.

[55] H. Nobahari, A. Haeri, A heuristic predictive los guidance law based on1125

trajectory learning, ant colony optimization and tabu search, in: 2016

6th IEEE International Conference on Control System, Computing and

Engineering (ICCSCE), 2016, pp. 163–168. doi:10.1109/ICCSCE.2016.

7893564.

[56] M. Heinkenschloss, D. Ridzal, A matrix-free trust-region sqp method for1130

equality constrained optimization, SIAM Journal on Optimization 24 (3)

(2014) 1507–1541. doi:doi:10.1137/130921738.

[57] B. Senses, A. V. Rao, Optimal finite-thrust small spacecraft aeroassisted

orbital transfer, Journal of Guidance, Control, and Dynamics 36 (6) (2013)

1802–1810. doi:10.2514/1.58977.1135

[58] J. J. Kim, J. J. Lee, Trajectory optimization with particle swarm optimiza-

tion for manipulator motion planning, IEEE Transactions on Industrial

Informatics 11 (3) (2015) 620–631. doi:10.1109/TII.2015.2416435.

[59] N. Yokoyama, S. Suzuki, Modified genetic algorithm for constrained tra-

jectory optimization, Journal of Guidance, Control, and Dynamics 28 (1)1140

(2005) 139–144. doi:10.2514/1.3042.

[60] K. Subbarao, B. M. Shippey, Hybrid genetic algorithm collocation method

for trajectory optimization, Journal of Guidance, Control, and Dynamics

32 (4) (2009) 1396–1403. doi:10.2514/1.41449.

[61] M. Ceriotti, M. Vasile, Mga trajectory planning with an aco-inspired1145

algorithm, Acta Astronautica 67 (9) (2010) 1202–1217. doi:https:

//doi.org/10.1016/j.actaastro.2010.07.001.

[62] J. A. Englander, B. A. Conway, Automated solution of the low-thrust

interplanetary trajectory problem, Journal of Guidance, Control, and Dy-

namics 40 (1) (2016) 15–27. doi:10.2514/1.G002124.1150

44



[63] P. C. Roy, M. M. Islam, K. Murase, X. Yao, Evolutionary path control

strategy for solving many-objective optimization problem, IEEE Trans-

actions on Cybernetics 45 (4) (2015) 702–715. doi:10.1109/TCYB.2014.

2334632.

[64] X. Liu, P. Lu, Solving nonconvex optimal control problems by convex1155

optimization, Journal of Guidance, Control, and Dynamics 37 (3) (2014)

750–765. doi:10.2514/1.62110.

[65] B. Acikmese, J. M. Carson, L. Blackmore, Lossless convexification of non-

convex control bound and pointing constraints of the soft landing optimal

control problem, IEEE Transactions on Control Systems Technology 211160

(6) (2013) 2104–2113. doi:10.1109/TCST.2012.2237346.

[66] M. W. Harris, B. Acikmese, Maximum divert for planetary landing using

convex optimization, Journal of Optimization Theory and Applications

162 (3) (2014) 975–995. doi:10.1007/s10957-013-0501-7.

[67] J. B. Mueller, P. R. Griesemer, S. J. Thomas, Avoidance maneuver1165

planning incorporating station-keeping constraints and automatic relax-

ation, Journal of Aerospace Information Systems 10 (6) (2013) 306–322.

doi:10.2514/1.54971.

[68] C. Colombo, M. Vasile, G. Radice, Optimal low-thrust trajectories to

asteroids through an algorithm based on differential dynamic program-1170

ming, Celestial Mechanics and Dynamical Astronomy 105 (1) (2009) 75.

doi:10.1007/s10569-009-9224-3.

[69] G. Lantoine, R. P. Russell, A hybrid differential dynamic programming

algorithm for constrained optimal control problems. part 1: Theory, Jour-

nal of Optimization Theory and Applications 154 (2) (2012) 382–417.1175

doi:10.1007/s10957-012-0039-0.

[70] G. Lantoine, R. P. Russell, A hybrid differential dynamic programming

algorithm for constrained optimal control problems. part 2: Application,

Journal of Optimization Theory and Applications 154 (2) (2012) 418–442.

doi:10.1007/s10957-012-0038-1.1180

45



[71] C.-H. Huang, J. Galuski, C. L. Bloebaum, Multi-objective pareto concur-

rent subspace optimization for multidisciplinary design, AIAA Journal 45

(8) (2007) 1894–1906. doi:10.2514/1.19972.

[72] R. Azizipanah-Abarghooee, V. Terzija, F. Golestaneh, A. Roosta, Mul-

tiobjective dynamic optimal power flow considering fuzzy-based smart1185

utilization of mobile electric vehicles, IEEE Transactions on Industrial

Informatics 12 (2) (2016) 503–514. doi:10.1109/TII.2016.2518484.

[73] Y. Shen, Y. Wang, Operating point optimization of auxiliary power

unit using adaptive multi-objective differential evolution algorithm, IEEE

Transactions on Industrial Electronics 64 (1) (2017) 115–124. doi:1190

10.1109/TIE.2016.2598674.

[74] R. Chai, A. Savvaris, A. Tsourdos, S. Chai, Solving Multi-objective

Aeroassisted Spacecraft Trajectory Optimization Problems Using Ex-

tended NSGA-II, AIAA SPACE Forum, American Institute of Aeronautics

and Astronautics, 2017. doi:10.2514/6.2017-5193.1195

[75] R. Chai, A. Savvaris, A. Tsourdos, S. Chai, Y. Xia, Unified multiobjective

optimization scheme for aeroassisted vehicle trajectory planning, Journal

of Guidance, Control, and Dynamics 41 (7) (2018) 1521–1530. doi:10.

2514/1.G003189.

[76] R. Chai, A. Savvaris, A. Tsourdos, Y. Xia, S. Chai, Solving multiobjective1200

constrained trajectory optimization problem by an extended evolutionary

algorithm, IEEE Transactions on Cybernetics (2018) 1–14doi:10.1109/

TCYB.2018.2881190.

[77] S. Jiang, S. Yang, Evolutionary dynamic multiobjective optimization:

Benchmarks and algorithm comparisons, IEEE Transactions on Cyber-1205

netics 47 (1) (2017) 198–211. doi:10.1109/TCYB.2015.2510698.

[78] B. Xue, M. Zhang, W. N. Browne, Particle swarm optimization for fea-

ture selection in classification: A multi-objective approach, IEEE Trans-

actions on Cybernetics 43 (6) (2013) 1656–1671. doi:10.1109/TSMCB.

2012.2227469.1210

46



[79] H. Han, W. Lu, J. Qiao, An adaptive multiobjective particle swarm op-

timization based on multiple adaptive methods, IEEE Transactions on

Cybernetics 47 (9) (2017) 2754–2767. doi:10.1109/TCYB.2017.2692385.

[80] H. Han, X. Wu, L. Zhang, Y. Tian, J. Qiao, Self-organizing rbf neural

network using an adaptive gradient multiobjective particle swarm opti-1215

mization, IEEE Transactions on Cybernetics (2017) 1–14doi:10.1109/

TCYB.2017.2764744.

[81] R. Akbari, R. Hedayatzadeh, K. Ziarati, B. Hassanizadeh, A multi-

objective artificial bee colony algorithm, Swarm and Evolutionary Compu-

tation 2 (2012) 39–52. doi:https://doi.org/10.1016/j.swevo.2011.1220

08.001.

[82] M. A. Abido, A niched pareto genetic algorithm for multiobjective envi-

ronmental/economic dispatch, International Journal of Electrical Power

& Energy Systems 25 (2) (2003) 97–105. doi:http://dx.doi.org/10.

1016/S0142-0615(02)00027-3.1225

[83] A. Elhossini, S. Areibi, R. Dony, Strength pareto particle swarm opti-

mization and hybrid ea-pso for multi-objective optimization, Evolution-

ary Computation 18 (1) (2010) 127–156. doi:10.1162/evco.2010.18.1.

18105.

[84] R. Chai, A. Savvaris, A. Tsourdos, S. Chai, Multi-objective trajectory op-1230

timization of space manoeuvre vehicle using adaptive differential evolu-

tion and modified game theory, Acta Astronautica 136 (2017) 273–280.

doi:http://dx.doi.org/10.1016/j.actaastro.2017.02.023.

[85] H.-G. Han, H.-H. Qian, J.-F. Qiao, Nonlinear multiobjective model-

predictive control scheme for wastewater treatment process, Journal of1235

Process Control 24 (3) (2014) 47–59. doi:https://doi.org/10.1016/j.

jprocont.2013.12.010.

[86] A. Messac, Physical programming - effective optimization for computa-

tional design, AIAA Journal 34 (1) (1996) 149–158. doi:10.2514/3.

13035.1240

[87] R. V. Tappeta, J. E. Renaud, A. Messac, G. J. Sundararaj, Interac-

tive physical programming: Tradeoff analysis and decision making in

47



multicriteria optimization, AIAA Journal 38 (5) (2000) 917–926. doi:

10.2514/2.1048.

[88] R. Chai, A. Savvaris, A. Tsourdos, Y. Xia, An interactive fuzzy physical1245

programming for skip entry problem, IEEE Transactions on Aerospace

and Electronic Systems 53 (5) (2017) 2385–2398. doi:10.1109/TAES.

2017.2696281.

[89] L.-H. Chen, F.-C. Tsai, Fuzzy goal programming with different importance

and priorities, European Journal of Operational Research 133 (3) (2001)1250

548–556. doi:http://dx.doi.org/10.1016/S0377-2217(00)00201-0.

[90] W.Wang, H. Peng, A fast multi-objective optimization design method for

emergency libration point orbits transfer between the sun-earth and the

earth-moon systems, Aerospace Science and Technology 63 (2017) 152–

166. doi:https://doi.org/10.1016/j.ast.2016.12.026.1255

[91] C. Dai, Y. Wang, M. Ye, A new multi-objective particle swarm optimiza-

tion algorithm based on decomposition, Information Sciences 325 (Supple-

ment C) (2015) 541–557. doi:https://doi.org/10.1016/j.ins.2015.

07.018.

[92] I. Giagkiozis, P. J. Fleming, Methods for multi-objective optimization:1260

An analysis, Information Sciences 293 (Supplement C) (2015) 338–350.

doi:https://doi.org/10.1016/j.ins.2014.08.071.

[93] J. Cheng, G. G. Yen, G. Zhang, A grid-based adaptive multi-objective

differential evolution algorithm, Information Sciences 367 (Supplement C)

(2016) 890–908. doi:https://doi.org/10.1016/j.ins.2016.07.009.1265

[94] S. Lalwani, S. Singhal, R. Kumar, N. Gupta, A comprehensive survey:

Applications of multi-objective particle swarm optimization (mopso) al-

gorithm, Transactions on Combinatorics 2 (1) (2013) 39–101.

[95] M. Vasile, F. Zuiani, A hybrid multiobjective optimization algorithm ap-

plied to space trajectory optimization, 2010, pp. 1–8. doi:10.1109/CEC.1270

2010.5586240.

[96] B. Xue, M. Zhang, W. N. Browne, Particle swarm optimization for fea-

ture selection in classification: A multi-objective approach, IEEE Trans-

48



actions on Cybernetics 43 (6) (2013) 1656–1671. doi:10.1109/TSMCB.

2012.2227469.1275

[97] V. A. Kostenko, A. V. Frolov, Self-learning genetic algorithm, Journal

of Computer and Systems Sciences International 54 (4) (2015) 525–539.

doi:10.1134/s1064230715040103.

[98] Y. J. Gong, J. J. Li, Y. Zhou, Y. Li, H. S. H. Chung, Y. H. Shi, J. Zhang,

Genetic learning particle swarm optimization, IEEE Transactions on Cy-1280

bernetics 46 (10) (2016) 2277–2290. doi:10.1109/TCYB.2015.2475174.

[99] W.Hu, G.G. Yen, G. Luo, Many-objective particle swarm optimization us-

ing two-stage strategy and parallel cell coordinate system, IEEE Transac-

tions on Cybernetics 47 (6) (2017) 1446–1459. doi:10.1109/TCYB.2016.

2548239.1285

[100] B. Ji, X. Yuan, Y. Yuan, Modified NSGA-II for solving continuous berth

allocation problem: Using multiobjective constraint-handling strategy,

IEEE Transactions on Cybernetics 47 (9) (2017) 2885–2895. doi:10.

1109/TCYB.2017.2669334.

[101] X. Cai, Z. Yang, Z. Fan, Q. Zhang, Decomposition-based-sorting and1290

angle-based-selection for evolutionary multiobjective and many-objective

optimization, IEEE Transactions on Cybernetics 47 (9) (2017) 2824–2837.

doi:10.1109/TCYB.2016.2586191.

[102] O. Schutze, M. Vasile, O. Junge, M. Dellnitz, D. Izzo, Designing op-

timal low-thrust gravity-assist trajectories using space pruning and a1295

multi-objective approach, Engineering Optimization 41 (2) (2009) 155–

181. doi:10.1080/03052150802391734.

[103] M.Martens, D. Izzo, The asynchronous island model and nsga-ii: Study of

a new migration operator and its performance, in: Proceedings of the 15th

Annual Conference on Genetic and Evolutionary Computation, GECCO1300

’13, ACM, New York, NY, USA, 2013, pp. 1173–1180. doi:10.1145/

2463372.2463516.

[104] P. A. N. Bosman, On gradients and hybrid evolutionary algorithms for

real-valued multiobjective optimization, IEEE Transactions on Evolution-

ary Computation 16 (1) (2012) 51–69. doi:10.1109/TEVC.2010.2051445.1305

49



[105] B. Chen, W. Zeng, Y. Lin, D. Zhang, A new local search-based multiob-

jective optimization algorithm, IEEE Transactions on Evolutionary Com-

putation 19 (1) (2015) 50–73. doi:10.1109/TEVC.2014.2301794.

[106] K. Deb, H. Jain, An evolutionary many-objective optimization algorithm

using reference-point-based nondominated sorting approach, part i: Solv-1310

ing problems with box constraints, IEEE Transactions on Evolutionary

Computation 18 (4) (2014) 577–601. doi:10.1109/TEVC.2013.2281535.

[107] D. Gonzalez-Arribas, M. Soler, M. Sanjurjo-Rivo, Robust aircraft trajec-

tory planning under wind uncertainty using optimal control, Journal of

Guidance, Control, and Dynamics (2017) 1–16doi:10.2514/1.G002928.1315

[108] Z. Zhao, M. Kumar, Split-bernstein approach to chance-constrained opti-

mal control, Journal of Guidance, Control, and Dynamics 40 (11) (2017)

2782–2795. doi:10.2514/1.G002551.

[109] L. Blackmore, M. Ono, B. C. Williams, Chance-constrained optimal path

planning with obstacles, IEEE Transactions on Robotics 27 (6) (2011)1320

1080–1094. doi:10.1109/TRO.2011.2161160.

[110] M. Cannon, Q. Cheng, B. Kouvaritakis, S. V. Rakovic, Stochastic tube

mpc with state estimation, Automatica 48 (3) (2012) 536–541. doi:

https://doi.org/10.1016/j.automatica.2011.08.058.

[111] M. Cannon, B. Kouvaritakis, S. V. Rakovic, Q. Cheng, Stochastic tubes in1325

model predictive control with probabilistic constraints, IEEE Transactions

on Automatic Control 56 (1) (2011) 194–200. doi:10.1109/TAC.2010.

2086553.

[112] S. Salomon, G. Avigad, P. J. Fleming, R. C. Purshouse, Active robust opti-

mization: Enhancing robustness to uncertain environments, IEEE Trans-1330

actions on Cybernetics 44 (11) (2014) 2221–2231. doi:10.1109/TCYB.

2014.2304475.

[113] H. Gui, G. Vukovich, S. Xu, Attitude tracking of a rigid spacecraft us-

ing two internal torques, IEEE Transactions on Aerospace and Electronic

Systems 51 (4) (2015) 2900–2913. doi:10.1109/TAES.2015.140670.1335

50



[114] L. Wang, Y. Xia, Mars entry navigation with uncertain parameters based

on desensitized extended kalman filter, IEEE Transactions on Industrial

Informatics 11 (5) (2015) 998–1005. doi:10.1109/TII.2015.2463763.

[115] T. Chan, P. Mar, Stability and continuity in robust optimization,

SIAM Journal on Optimization 27 (2) (2017) 817–841. doi:10.1137/1340

16M1067512.

[116] H. Li, Y. Shi, Robust distributed model predictive control of constrained

continuous-time nonlinear systems: A robustness constraint approach,

IEEE Transactions on Automatic Control 59 (6) (2014) 1673–1678. doi:

10.1109/TAC.2013.2294618.1345

[117] X. Qiu, J. X. Xu, Y. Xu, K. C. Tan, A new differential evolution algo-

rithm for minimax optimization in robust design, IEEE Transactions on

Cybernetics PP (99) (2017) 1–14. doi:10.1109/TCYB.2017.2692963.

[118] S.Wang, W. Pedrycz, Data-driven adaptive probabilistic robust optimiza-

tion using information granulation, IEEE Transactions on Cybernetics 481350

(2) (2018) 450–462. doi:10.1109/TCYB.2016.2638461.

[119] D. Bienstock, M. Chertkov, S. Harnett, Chance-constrained optimal power

flow: Risk-aware network control under uncertainty, SIAM Review 56 (3)

(2014) 461–495. doi:10.1137/130910312.

[120] N. Wan, C. Zhang, A. Vahidi, Probabilistic anticipation and control in1355

autonomous car following, IEEE Transactions on Control Systems Tech-

nology 27 (1) (2019) 30–38. doi:10.1109/TCST.2017.2762288.

[121] M. P. Vitus, Z. Zhou, C. J. Tomlin, Stochastic control with uncertain pa-

rameters via chance constrained control, IEEE Transactions on Automatic

Control 61 (10) (2016) 2892–2905. doi:10.1109/TAC.2015.2511587.1360

[122] A. Nemirovski, A. Shapiro, Convex approximations of chance constrained

programs, SIAM Journal on Optimization 17 (4) (2006) 969–996. doi:

10.1137/050622328.

[123] A. Geletu, M. Kloppel, A. Hoffmann, P. Li, A tractable approxima-

tion of non-convex chance constrained optimization with non-gaussian1365

51



uncertainties, Engineering Optimization 47 (4) (2015) 495–520. doi:

10.1080/0305215X.2014.905550.

[124] A. Geletu, A. Hoffmann, M. Kloppel, P. Li, An inner-outer approximation

approach to chance constrained optimization, SIAM Journal on Optimiza-

tion 27 (3) (2017) 1834–1857. doi:10.1137/15M1049750.1370

[125] M. Lorenzen, F. Dabbene, R. Tempo, F. Allgower, Constraint-tightening

and stability in stochastic model predictive control, IEEE Transactions

on Automatic Control 62 (7) (2017) 3165–3177. doi:10.1109/TAC.2016.

2625048.

[126] G. C. Calafiore, L. Fagiano, Robust model predictive control via scenario1375

optimization, IEEE Transactions on Automatic Control 58 (1) (2013) 219–

224. doi:10.1109/TAC.2012.2203054.

[127] A. E.-M. A. Mohamed, M. A. A. El-Hadidy, Coordinated search for a con-

ditionally deterministic target motion in the plane, European Journal of

Mathematical Sciences 2 (3) (2013) 272–295.1380

[128] T. Huschto, S. Sager, Solving stochastic optimal control problems by a

wiener chaos approach, Vietnam Journal of Mathematics 42 (1) (2014)

83–113. doi:10.1007/s10013-014-0060-8.

[129] P. Dutta, R. Bhattacharya, Nonlinear estimation of hypersonic state tra-

jectories in bayesian framework with polynomial chaos, Journal of Guid-1385

ance, Control, and Dynamics 33 (6) (2010) 1765–1778. doi:10.2514/1.

49743.

[130] C. Chawla, P. Sarmah, R. Padhi, Suboptimal reentry guidance of a

reusable launch vehicle using pitch plane maneuver, Aerospace Science and

Technology 14 (6) (2010) 377–386. doi:http://dx.doi.org/10.1016/j.1390

ast.2010.04.001.

[131] B. Tian, Q. Zong, Optimal guidance for reentry vehicles based on indirect

legendre pseudospectral method, Acta Astronautica 68 (7) (2011) 1176–

1184. doi:http://dx.doi.org/10.1016/j.actaastro.2010.10.010.

[132] Y. Xia, R. Chen, F. Pu, L. Dai, Active disturbance rejection control for1395

drag tracking in mars entry guidance, Advances in Space Research 53

52



(5) (2014) 853–861. doi:http://dx.doi.org/10.1016/j.asr.2013.12.

008.

[133] Y. Xia, G. Shen, L. Zhou, H. Sun, Mars entry guidance based on segmented

guidance predictor-corrector algorithm, Control Engineering Practice 451400

(2015) 79–85. doi:http://dx.doi.org/10.1016/j.conengprac.2015.

08.006.

[134] J. Dai, Y. Xia, Mars atmospheric entry guidance for reference trajectory

tracking, Aerospace Science and Technology 45 (2015) 335–345. doi:

http://dx.doi.org/10.1016/j.ast.2015.06.006.1405

[135] B. Kevin, R. Michael, D. David, Optimal Nonlinear Feedback Guidance

for Reentry Vehicles, Guidance, Navigation, and Control and Co-located

Conferences, American Institute of Aeronautics and Astronautics, 2006.

doi:doi:10.2514/6.2006-6074.

[136] B. Panchal, N. Mate, S. E. Talole, Continuous-time predictive control-1410

based integrated guidance and control, Journal of Guidance, Control, and

Dynamics (2017) 1–17.

[137] X. Liu, F. Zhang, Z. Li, Y. Zhao, Approach and landing guidance design for

reusable launch vehicle using multiple sliding surfaces technique, Chinese

Journal of Aeronautics 30 (4) (2017) 1582–1591. doi:https://doi.org/1415

10.1016/j.cja.2017.06.008.

[138] X. Liu, K. D. Kumar, Network-based tracking control of spacecraft forma-

tion flying with communication delays, IEEE Transactions on Aerospace

and Electronic Systems 48 (3) (2012) 2302–2314. doi:10.1109/TAES.

2012.6237593.1420

[139] G. Liu, S. Zhang, A survey on formation control of small satellites, Pro-

ceedings of the IEEE 106 (3) (2018) 440–457. doi:10.1109/JPROC.2018.

2794879.

[140] R. Kristiansen, P. J. Nicklasson, Spacecraft formation flying: A review

and new results on state feedback control, Acta Astronautica 65 (11)1425

(2009) 1537–1552. doi:https://doi.org/10.1016/j.actaastro.2009.

04.014.

53



[141] L. Pettazzi, H. Kruger, S. Theil, D. Izzo, Electrostatic force for swarm

navigation and reconfiguration, Acta Futura 4 (2008) 80–86.

[142] N. Petit, M. Milam, R. Murray, Constrained trajectory generation for1430

micro-satellite formation flying, Guidance, Navigation, and Control and

Co-located Conferences, American Institute of Aeronautics and Astronau-

tics, 2001. doi:doi:10.2514/6.2001-4030.

[143] Y. Kim, M. Mesbahi, F. Y. Hadaegh, Dual-spacecraft formation flying in

deep space: Optimal collision-free reconfigurations, Journal of Guidance,1435

Control, and Dynamics 26 (2) (2003) 375–379. doi:10.2514/2.5059.

[144] M. Sagliano, E. Mooij, S. Theil, Onboard Trajectory Generation for Entry

Vehicles via Adaptive Multivariate Pseudospectral Interpolation, AIAA

SciTech Forum, American Institute of Aeronautics and Astronautics,

2016, doi:10.2514/6.2016-2115. doi:doi:10.2514/6.2016-2115.1440

[145] M. Sagliano, E. Mooij, S. Theil, Onboard trajectory generation for entry

vehicles via adaptive multivariate pseudospectral interpolation, Journal of

Guidance, Control, and Dynamics 40 (2) (2017) 466–476. doi:10.2514/

1.G001817.

54



Cranfield University

CERES https://dspace.lib.cranfield.ac.uk

School of Aerospace, Transport and Manufacturing (SATM) Staff publications (SATM)

2019-06-04

A review of optimization techniques in

spacecraft flight trajectory design

Chai, Runqi

Elsevier

Chai R, Savvaris A, Tsourdos A, et al., (2019) A review of optimization techniques in spacecraft

flight trajectory design. Progress in Aerospace Sciences, Volume 109, August 2019, Article

number 100543

https://doi.org/10.1016/j.paerosci.2019.05.003

Downloaded from Cranfield Library Services E-Repository


