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ABSTRACT

Environmental contamination comprises a complex mixture of both organic and

inorganic contaminants. Understanding their distribution, behaviour and

chemical interactions provides the evidence necessary to make informed

decision and implement robust remediation strategies. However most of the

current risk assessment frameworks, used to manage land contamination, are

based on the total contaminant concentration rather than the concentration

likely to pose significant risk, the bioavailable concentration. Further to this, the

exposure assessments embedded within the frameworks do not explicitly

address the partitioning and bioavailability of chemical mixtures. This inability

may contribute to an overestimation of both the eco-toxicological effects of the

fractions and their mobility in air and water; leading to an overestimation of

health and environmental effects. In turn, this may limit the efficacy of the risk

assessment frameworks to inform targeted and proportionate remediation

strategies. The aim of this PhD study was to address this gap by delivering an

integrated risk assessment framework for sites contaminated with complex

chemical mixtures. Specifically, this PhD study investigated the fate and

behaviour of complex mixtures of petroleum hydrocarbons, metals and

metalloids in soils and its implication for partitioning, bioavailability and risk

assessment through a 12 month mesocosms study. Further to this, an

integrated approach, where contaminants bioavailability and distribution

changes along with a range of microbiological indicators and ecotoxicological

bioassays, was used to provide multiple lines of evidence to support the risk

characterisation and assess the remediation end-point over a 6 month study.

From the empirical data obtained from the two mesocosm studies, two Machine

Leaning (ML) approaches have been developed to provide a quick and reliable

tool to assess multi-contaminated sites with Visible and Near-Infrared

Spectroscopy (Vis-NIRS), and to predict bioavailability and toxicity changes

occurring during bioremediation. Overall this PhD study shed light on the

behaviour of bioavailability, and toxicity of complex chemical mixtures in soils

genuinely contaminated. This was supported through a comprehensive and

integrated analytical framework providing the necessary lines of evidence to
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evaluate the implications for risk assessment and identify the end point

remediation. The developed framework can significantly help to identify optimal

remediation strategies and contribute to change the over-conservative nature of

the current risk assessments.

Keywords: contaminated land, bioavailability, toxicity, bioremediation, machine

learning.
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RSD Relative standard deviation

SPE Solid phase extraction

SGV UK soil guideline values

SMMR Self-modelling mixture resolution algorithm

SuRF-UK UK sustainable remediation forum

TC Total carbon

TOC Total organic carbon

TN Total nitrogen

TSA Tryptone soya agar

TP Total phosphorous

UK United kingdom

USA United States of America

Vis-NIRS Visible and near infrared spectroscopy
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1. Introduction

The last 40 years of ‘environmental revolution’ in Europe and beyond has

helped to establish comprehensive frameworks built around preventing pollution

and risk-based management. After various lessons learnt, several countries,

namely the United Kingdom (UK), Netherlands, Belgium, the United States of

America (USA), and Australia have now a set of mature policy frameworks and

successful track records of sustainable integrated remediation strategies

(Bardos et al., 2016). The risk-based approach of their contaminated land

legislative regimes has further allowed more innovative and cost effective

approaches to be applied elsewhere in the world. Nevertheless, tackling the

protection and recovery of soils impacted by complex chemical mixtures such

as among others, polycyclic aromatic hydrocarbons (PAH), heavy metals (HM)

and metalloids remain a key challenge because of its consequences for water

resources and land use (Van Liedekerke et al., 2014; Kienzler et al., 2016).

Petroleum hydrocarbons originate from incomplete combustion of organic

materials, petroleum-based products, coke or aluminium production, and

accidental spills (Abdel-Shafy and Mansour, 2016) while heavy metals usually

come from vehicle emission, industrial wastes, and mining activities (Yuan et

al., 2014). These contaminants are ubiquitous and persistent in soil (Ivshina et

al., 2016). They can negatively impact both human and ecological receptors

(Duan et al., 2015). Thus the importance of studying these groups of

contaminants is related to their co-occurrence in polluted soils, which

challenges the risk evaluation and complicates the achievement of site-specific 

remediation objectives (Renoux et al., 2013).

Risk assessment (RA) is recognised as a robust process to support decision-

making practice for contaminated land and to prevent further damage to the

environment and human health (Cipullo et al., 2016). It has been further shown

that measuring only the total concentration of contaminants in soil does not give

a useful basis for the evaluation of the potential risks to human and the

environment. Thus, in the last decade in the UK, and increasingly across the

world, the end-point of remedial activity is defined not by the total concentration
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of the chemicals of concern but by the concentration likely to pose significant

risk, the bioavailable concentration (Ortega et al., 2015; Kuppusamy et al.,

2017; Cipullo et al., 2018).

Several risk-based frameworks for contaminated soils have been published,

under the auspices of national and international regulatory organizations, each

reflecting national legislation and a range of expert judgments and

socioeconomic issues (Rodrigues et al., 2009). Typically, these frameworks use

a tiered assessment approaches. However the limitation of such frameworks,

similar to that of exposure assessment methods, is the inability to assess the

risk posed by complex chemical mixtures. Unlike single contaminant, the

physico-chemical interactions of chemical mixtures are still not fully understood

as the additive, synergistic or antagonistic effects of mixtures will often yield

bioavailability values that differ from those of individual contaminants

(Ramakrishnan et al., 2011; Kienzler et al., 2016). It is also recognised that

bioavailability of complex chemical mixtures is strongly influenced by

sorption/desorption processes occurring in the soil matrix (Caporale and

Violante, 2016; Yu et al., 2018). These processes are controlled by a number of

biotic and abiotic factors including; soil characteristics, contaminants physico-

chemical properties, co-contaminants interactions, and biological/environmental

factors (Wuana et al., 2014).

These oversights may contribute to an overestimation of both the eco-

toxicological effects of the fractions and the mobility of contaminants. In turn,

this may limit the efficacy of the risk frameworks to inform targeted and

proportionate remediation strategies. Thus, understanding the distribution,

behaviour, and interactions of complex chemical mixtures is key for providing

the evidence necessary to make informed decisions and implement robust

remediation strategies.

While bioavailability of chemical mixtures is still poorly understood and rarely

incorporated into risk decision making, it represents a significant area of

research to be tackled in order to move forward the over-conservative nature of

the current risk assessments.
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1.1. Aim and objectives

The aim of the PhD research is to deliver a comprehensive and integrated

analytical framework for historically contaminated sites where complex chemical

mixtures are present. It will yield underpinning science from the areas of

environmental fate and behaviour modelling, chemical and risk analysis that will

guide new remediation strategies. It will also help to determine if remediation is

required and inform planning by defining safe post-remediation contamination

levels.

To achieve the research aim, the following specific objectives have been

addressed:

• Objective 1: To critically review relevant literature to highlight how

different mechanisms, partitioning, and bioavailability of chemical

mixtures, can affect the risk estimation.

• Objective 2: To understand the influence of physico-chemical factors

affecting chemical mixtures behaviour including inorganic and organic

contaminants

• Objective 3: To link bioavailability of complex chemical mixtures to

toxicity data informing risk assessment and end-point remediation.

• Objective 4: To evaluate the feasibility of Visible and Near-Infrared

Spectroscopy (Vis-NIRS) as rapid-measurement tool for chemical

mixtures.

• Objective 5: To develop machine learning (ML) predictive tools for

complex chemical mixtures behaviour and fate.
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1.2. Thesis structure and format

The PhD thesis is comprised of seven chapters, of which five have been written

as paper format (Figure 1.1). A brief description of each chapter is provided

hereinafter:

Chapter 1: This chapter presents a general introduction and provide research

context, background, aim and objectives of the research.

Chapter 2: This chapter provides a critical review of the state of the art

regarding bioavailability of chemical mixtures; it helped to identify gaps within

the literature, to set the research focus, and to structure the research plan. This

chapter has been published in Science of the Total Environment.

Chapter 3: A 12-month mesocosms experiment was setup to investigate the

effect of physico-chemical factors (pH, moisture, and temperature) and

weathering (time) on (i) heavy metals/metalloids fractionation, and (ii) petroleum

hydrocarbons degradation in five different soils genuinely contaminated (3

industrial contaminated soils, and 2 rural contaminated soils) ranging from

low/medium (HM ≤ 800 mg/kg, PHC ≤ 500 mg/kg) to high (HM ≥ 6200 mg/kg, 

PHC ≥ 1000 mg/kg) contamination. Total exhaustive extraction of organic 

compound was performed with dichloromethane: hexane, and pseudo-total

element digestion was performed according to the ISO 11047 method with aqua

regia. Moreover, non-exhaustive extractions with methanol or hydroxypropyl-β-

cyclodextrin (HP-β-CD) solutions (organics), and sequential extraction with 

weak-acid solutions (inorganics) were applied. The complex environmental

datasets, obtained in this study, were used to evaluate metal and organic

contaminants persistence, fate, and distribution pattern in soils, through

chemometric analysis.

Chapter 4: The use of Visible and near-Infrared Spectroscopy Analysis (Vis-

NIRS) coupled with the empirical data obtained in the 12 month experimental

setup (Chapter 3) have been evaluated as a potentially better technique for

delivering cost-effective and fast analyses to support site investigation and

reduce the analytical cost associated with complex-contaminant assessments.

Infrared spectroscopy scanning in parallel with chemical extraction of petroleum
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hydrocarbons (PHC) and heavy metals (HM) were used to assess the

performance of random forest (RF) to predict total and bioavailable

concentrations changes in soils contaminated with complex chemical mixtures.

Chapter 5: A 6-month laboratory scale study was carried out to assess the

effect of biochar and compost amendment on the fate and behaviour of complex

chemical mixtures in two genuine contaminated soils collected from former

gaswork sites (Soil 1, 450 mg/kg HM/metalloids and 9000 mg/kg PHC, and Soil

2, 500 mg/g HM/metalloids and 2000 mg/kg PHC). The total and bioavailable

PHC and HM were monitored throughout 180 days incubation. Additionally, to

define the end point of remediation and link the bioavailability to the toxicity

changes, a range of biological and ecological indicators including: microbial

biomass, total bacteria count, soil respiration, phospholipid fatty acids analysis,

seeds germination (mustard, rye grass, and pea), earthworm’s lethality, and

Microtox® basic solid phase test were assessed to provide complementary

evidence of the risk posed by multiple contaminants present in soil.

Chapter 6: Empirical data obtained from the 6-month mesocosm experiment

(Chapter 5) were used to assess the ability and performance of two machine

learning (ML) models to predict the temporal bioavailability and toxicity changes

of PHC, HM and metalloids in contaminated soils amended with compost or

biochar. The models included artificial neural network (NN) and random forest

(RF). ML models can be a powerful tool to support site-investigation, inform

decision making, action plans for remediation, and risk-reduction approaches.

Chapter 7: This chapter provides an overall discussion and summary of the key

outputs from each chapter. Further it describes how each chapter contributed to

the achievement of the aim of the research and the overall implications of the

study. This chapter summarized the novelty of this research, and provides

recommendations for further studies.
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Chapter 1
General introduction, aim and objectives

Chapter 2
(Objective 1, Critical review)

Assessing bioavailability of complex chemical mixtures in
contaminated soils: Progress made and research needs.

2017, Sci. Total Environ. 615, 708–723.

Laboratory level (Data collection)

Chapter 3
Insights into mixed contaminants

interactions and its implication for heavy
metals and metalloids mobility,

bioavailability and risk assessment.
2018, Sci. Total Environ. 645, 662–673.

Data analysis and modelling

To understand the influence of
physico-chemical factors affecting

chemical mixtures behaviour
including inorganic and organic

contaminants
(Objective 2)

Chapter 7
Overall discussion and conclusions :

Implementation of the work, key findings, implications
of the study, and future work

To link bioavailability of complex
chemical mixtures to toxicity data

informing risk assessment and end-
point remediation

(Objective 3)

Chapter 4
Predicting bioavailability change of

complex chemical mixtures in
contaminated soils using visible and

near-infrared spectroscopy and random
forest regression.

2018, Scientific Reports, Submitted

Chapter 6
Prediction of bioavailability and toxicity
of complex chemical mixtures through

machine learning models.
2018, Chemosphere, In Press

To evaluate the feasibility of Visible
and Near-Infrared Spectroscopy

(VisNIRS) as rapid-measurement tool
for chemical mixtures

(Objective 4)

To develop machine learning (ML)
predictive tools for complex chemical

mixtures behaviour and fate
(Objective 5)

Chapter 5
Linking bioavailability and toxicity

changes of complex chemicals mixture to
support decision making for remediation

endpoint of contaminated soils.
2019, Sci. Total Environ, 650 Part 2,

2150-2163.

Figure 1.1: Thesis structure and chapters mapped against each objective
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1.3. Publications

At the time of writing this thesis, four papers have been accepted for publication

in international peer-reviewed journals, and one is currently under revision as

listed below. Further to this, one book chapter as lead author and five papers as

co-author have been published.

Publications included in the thesis

• Cipullo, S., Prpich, G., Campo, P., Coulon, F., 2018. “Assessing

bioavailability of complex chemical mixtures in contaminated soils:

Progress made and research needs”. Sci. Total Environ. 615, 708–723.

(Chapter 2)

• Cipullo, S., Snapir, B., Tardif, S., Campo, P., Prpich, G., Coulon, F.,

2018. “Insights into mixed contaminants interactions and its implication

for heavy metals and metalloids mobility, bioavailability and risk

assessment”. Sci. Total Environ. 645, 662–673. (Chapter 3)

• Cipullo, S., Nawar, S., K., Mouazen, A.M., Campo, P., Coulon, F., 2018.

“Feasibility of Visible and Near-Infrared Spectroscopy and random forest

for predicting complex chemical mixtures bioavailability in multi-

contaminated soils”. Scientific Reports, Submitted, under revision

(Chapter 4)

• Cipullo, S., Negrin, I., Claveau, L., Snapir, B., Tardif, S., Pulleyblank, C.,

Campo, P., Prpich, G., Coulon, F., 2018. “Linking bioavailability and

toxicity changes of complex chemicals mixture to support decision

making for remediation endpoint of contaminated soils”. Sci. Total

Environ, 650 Part 2, 2150-2163 (Chapter 5)

• Cipullo, S., Snapir, B., Prpich, G., Campo, P., Coulon, F., 2018.

“Prediction of bioavailability and toxicity of complex chemical mixtures

through machine learning models”. Chemosphere, in press (Chapter 6).
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Other publications

• Cipullo S., Brassington K.J., Pollard S.J.T., Coulon F. 2016. Weathered

hydrocarbons biotransformation: implications for bioremediation, analysis

and risk assessment. Chapter 5. In: Steffan R. (eds) Consequences of

Microbial Interactions with Hydrocarbons, Oils, and Lipids:

Biodegradation and Bioremediation. Handbook of Hydrocarbon and Lipid

Microbiology. Springer, Cham, 18 pp, https://doi.org/10.1007/978-3-319-

44535-9_4-1

• Douglas, R.K., Nawar, S., Cipullo, S., Alamar, M.C., Coulon, F.,

Mouazen, A.M., 2018. “Evaluation of Vis-NIR reflectance spectroscopy

sensitivity to weathering for enhanced assessment of oil contaminated

soils”. Sci. Total Environ. 626, 1108–1120.

• Sajedi-Hosseini, F., Malekian, A., Choubin, B., Rahmati, O., Cipullo, S.,

Coulon, F., Pradhan, B., 2018. “A novel machine learning-based

approach for the risk assessment of nitrate groundwater contamination”.

Sci. Total Environ. 644, 954–962.

• Tardif, S., Cipullo, S., Sø,H., Wragg, J., Holm, P, Coulon, F., Brandt,

K.K, Cave, M .R., 2018. “Factors governing the solid phase distribution of

Cr, Cu and As in contaminated soil after 50 years of ageing”. Sci. Total

Environ, In press.

• Mehta, N., Cocerva, T., Cipullo, S., Padoan, E., Dino, G.A., Ajmone

Marsan, F., Cox, S., Coulon, F., De Luca, D.A., 2018. “Linking oral

bioaccessibility and solid phase distribution of potentially toxic elements

in extractive waste and soil from an abandoned mine site: Case study in

Campello Monti, NW Italy”. Sci. Total Environ, In press.

• Pulleyblank, C., Cipullo, S., Campo, P., Kelleher, B, Coulon, F., 2018.

“Analytical progress and challenges for the detection of oxygenated

polycyclic aromatic hydrocarbon degradation products in aqueous and

soil environmental matrices: A review”. Crit Rev Environ Sci Technol.

In press.
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2. Assessing bioavailability of complex chemical

mixtures in contaminated soils: Progress made and

research needs

Cipullo S. 1, Prpich G.2, Campo P. 1, Coulon F. 1

1Cranfield University, School of Water, Energy and Environment, Cranfield, UK
2 University of Virginia, Department of Chemical Engineering

Abstract: Understanding the distribution, behaviour and interactions of complex

chemical mixtures is key for providing the evidence necessary to make informed

decisions and implement robust remediation strategies. Much of the current risk

assessment frameworks, applied to manage land contamination, are based on

total contaminant concentrations, and the exposure assessments embedded

within them do not explicitly address the partitioning and bioavailability of

chemical mixtures. These oversights may contribute to an overestimation of

both the eco-toxicological effects of the fractions and the mobility of

contaminants. In turn, this may limit the efficacy of risk frameworks to inform

targeted and proportionate remediation strategies. In this review we analyse the

science surrounding bioavailability, its regulatory inclusion and the challenges of

incorporating bioavailability in the decision making process. While a number of

physical and chemical techniques have proven to be valuable tools for

estimating bioavailability of organic and inorganic contaminants in soils, doubts

have been cast on its implementation into risk management soil frameworks

mainly due to a general disagreement on the interchangeable use of

bioavailability and bioaccessibility, and the associated methods which are still

not standardised. This review focuses on the role of biotic and abiotic factors

affecting bioavailability along with soil physico-chemical properties and

contaminant composition. We also included advantages and disadvantages of

different extraction techniques and their implications for bioavailability

quantitative estimation. In order to move forward the integration of bioavailability

into site-specific risk assessments we should (1) account for soil and

contaminant physico-chemical characteristics and their effect on bioavailability;

(2) evaluate receptor’s potential exposure and uptake based on mild-extraction;
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(3) adopt a combined approach where chemical-techniques are used along with

biological methods; (4) consider a simplified and cost-effective methodology to

apply at regulatory and industry setting; (5) use single-contaminant exposure

assessments to inform and predict complex chemical mixture behaviour and

bioavailability.

Keywords: bioavailability, partitioning, contaminated land, risk assessment,

sorption, ageing.
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2.1. Introduction

Contaminated sites are often impacted by a wide range of organic and inorganic

chemical mixtures, and among them heavy metals/metalloids and petroleum

hydrocarbons are the most commonly found (European Environment Agency,

2012; British Geological Survey, 2014; Coulon et al., 2014). These

contaminants will often form complex mixtures in soil that complicate the

assessment of risk, and the achievement of site-specific remediation objectives

(Renoux et al., 2013). Unlike single contaminants, the physico-chemical

interactions of mixed contaminants are not well understood as the additive,

synergistic or antagonistic effects of mixtures will often yield bioavailability

values that differ from those of individual contaminants (Ramakrishnan et al.,

2011). Poor understanding about the fate and behaviour of contaminant

mixtures in soil limits the effectiveness of risk-based contaminated land

management decisions.

Risk assessment is an established methodology that is employed to assess the

potential impacts of contaminants on human and ecological health (Vegter et

al., 2002). Reflecting regional legislation, expertise, and socio-economic issues,

several risk-based contaminated land management frameworks have been

published to support environmental management decisions (Brassington et al.,

2016; Kabari et al., 2016). Typically, these frameworks use a tiered assessment

approach. A limitation of such frameworks, similar to that of exposure

assessment methods, is the inability to assess the risk posed by complex

chemical mixtures. In fact, these frameworks are based on conservative risk

screening levels, and therefore tend to overestimate the risk, as they do not

take into account the amounts of chemicals potentially bioavailable in soil and

bioaccessible to organisms. Determining appropriate site specific measures and

remedial objectives depends on our understanding of contaminant partitioning

and interaction with the soil matrix over time. Measuring the total concentration

of contaminants in soil does not provide a useful basis for the evaluation of the

potential risks to humans and the environment. The variety of physical–

chemical properties, and thus differences in the migration and fate of individual
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compounds, as well as the toxicity of different fractions and compounds, must

be taken into account in risk assessments.

Over the last 30 years, accounting for the bioavailable nature of soil

contaminants has received increasing attention. As a result, great amounts of

scientific literature have reported on the development of methods to estimate

the bioavailable fraction of these contaminants. Despite this progress,

implementation of these methods into contaminated land decision-making

processes has not yet been statutorily defined, and uncertainties remain on how

bioavailability should be assessed and integrated into existing risk based

management frameworks (Ortega-Calvo et al., 2015; Wu et al., 2013; Harmsen

and Naidu, 2013; Naidu et al., 2015).

In this review we will highlight the factors that influence the bioavailability of

chemical in soil, and will discuss the challenges that complex chemical mixtures

pose. We will critically review the existent literature to assess the use of

bioavailability in contaminated land risk assessments. Finally, we will offer

suggestions for how bioavailability could be integrated into existing

contaminated land risk assessment frameworks.

2.2. Bioavailability concept

Defined from a chemical perspective, bioavailability is the fraction of freely

available (not sorbed or sequestrated) contaminant in the environment that is

mobile, and thus most likely to lead to human exposure (Dean and Scott, 2004;

Ruby et al., 1996). Similarly, Semple et al. (2004) defined bioavailability as the

contaminant fraction “freely available” in a medium and able to reach the

cellular membrane of an organism over a given time. Thus, for a contaminant to

be bioavailable it must be mobile and there must be likelihood for exposure with

a biological membrane.

2.2.1. Factors affecting bioavailability

Managing risk associated with chemical mixture in the environment requires an

understanding of how contaminants are released, transported, and taken up by

a target receptor. The different transportation and uptake pathways, that affect

the quantitative estimation of bioavailable fractions of metals and oil-derived
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products in soil, depends on both the physico-chemical characteristics (Table

2.1), the receptors (Table 2.2), and other additional factors (Table 2.3). Among

the physico-chemical factors, soil characteristics (pH, soil composition, organic

carbon percentage, and salinity), compound properties (hydrophobicity,

aqueous solubility, and acid dissociation constant), and

transformation/degradation processes are generally responsible for interactions

occurring between the soil matrix and the chemical compounds (Table 2.1).

Biological processes (e.g. bioaccumulation, biotransformation) whereby

contaminants are transported into an organism, are highly dependent on the

type of organism and its biology (Table 2.2). It is important to recognize that any

combination of individual physico-chemical and biological processes will affect

contaminant bioavailability and exposure of receptors.

Soil matrix heterogeneity will also affect bioavailability (Farmer, 1997). Among

physico-chemical factors, sorption is the main factor influencing the biotic and

abiotic transformations happening over time (i.e. ageing) in solid environmental

matrices, which normally yield to a more stable solid-associated compound and

therefore a decrease in bioavailability (Zhang et al., 2014; Moyo et al., 2014;

Dube et al., 2001; Kleber et al., 2007).

Sorption, which includes absorption and adsorption, is the process whereby a

chemical compound adheres (reversibly or otherwise) to the surface of a soil

particle (Olu-Owolabi et al., 2014). The sorbed substance is referred to as the

sorbate (compound), and the material that it is sorbed to is referred to as the

sorbent (solid phase). When contaminants are released in the soil, the

chemistry of the particles and the equilibrium between phases will influence the

pathways and interactions between sorbate and sorbent. Contaminants will

interact with both the mineral and organic content of soil, either sorbing to

surfaces, or migrating within the porous structure of soil compartments (Reid et

al., 2000). Contaminants can also dissolve into the pore water of a soil matrix,

making it available for biodegradation (Figure 2.1). The interaction between

contaminant and soil particle will lead to different degrees of desorption (1)

rapid — compounds can easily desorb and return to the pore water; (2) slow —

reversible but over a longer timeframe (Ren et al., 2018); (3) non reversible —
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rate of contaminant removal is low and compounds are bound (sequestered) to

the soil (Kuppusamy et al., 2017). The non-reversible fraction is generally

believed not to be relevant for bioavailability assessment.

Partitioning of a contaminant at the solid-water interface will depend on the

chemical structure of the contaminant. For example, small organic contaminants

and low molecular weight PAH could dissolve into the soil pore water, or could

be rapidly sorbed onto the particle surface (Vicent et al., 2013; Abdel-Shafy and

Mansour, 2016). PAH with high molecular and larger organic molecules with

non-polar structures, on the other hand, tend to sorb onto the non-polar,

condensed organic domains of soils (Loibner et al., 2000). These fractions

resist degradation and will persist in soil. However, even small molecules can

become persistent environmental pollutants; for example, chloro-organic

compounds show a great stability and recalcitrance due to their C–Cl bond

(Nikel et al., 2013). Metals also sorb to soil particles, particularly iron

hydroxides, clays, and carbonate minerals, and can form solid stable

compounds with oxygen and sulphur, becoming irreversibly enclosed and thus,

not bioavailable.
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Table 2.1: Physico-chemical factors influencing bioavailability of metals and oil-derived products in soil (similarities and

differences).

Factors Metals
Implication for element
behaviour and
bioavailability

Oil-derived products
Implication for oil-derived
compounds behaviour and
bioavailability

Reference of special interest

C
o

n
ta

m
in

a
n

t
c
h

a
ra

c
te

ri
s
ti

c
s

Present in different
elemental forms
(metal speciation).

Metals’ bioavailability can
increase or decrease
depending on their chemical
form. Formation of sulphide
cause low solubility (low
bioavailability).

Molecular weight,
polarity,
hydrophobicity,
solubility,
octanol partitioning
coefficient (KOW),
sorption coefficients
(KOC, Kd), acid
dissociation constant
(pKa).

Highly complex chemical
mixture
and concentration constantly
changing due to
transformations
and interactions
with environmental
media over time.

Violante et al., 2010;
Rinklebe et al., 2016;
Liu et al., 2016;
Shahid et al., 2017;
Duan & Naidu, 2013;
National Research Council,
2014;
Trellu et al., 2017.

S
o

il
c
h

a
ra

c
te

ri
s
ti

c
a
n

d
s
o

rp
ti

o
n

,
d

e
s
o

rp
ti

o
n

Influenced by both
geochemical
processes (e.g.,
redox/pH) and soil
characteristics (e.g.
particle size, organic
content).

High pH form insoluble metal
(decrease in bioavailability),
low pH form free ionic
species or organo-metals
(increase in bioavailability).
The presence of mineral
phosphates and carbonates
decreases bioavailability.

Quantity and
type/quality of organic
carbon, clay content,
organic content
(condensed humic
material, soot
particles), and soil
organic
matter can influence
bioavailability.

Binding of PAH to
condensed organic domains
rend these compounds less
bioavailable. Adsorption can
be also influenced by pH,
depending on the presence
or absence of intrinsic
positive or negative charges
on the compounds functional
groups.

Lomaglio et al., 2017;
Wang et al., 2016;
Pauget et al., 2011;
Pan et al., 2016;
Tahervand & Jalali, 2016;
Cecchin et al., 2016;
Lukić et al., 2016;  
M. Zhang et al., 2014;
Sabljic & Nakagawa, 2014;
Wu et al., 2013;
Chen et al., 2017;
Yu et al., 2018.
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Factors Metals
Implication for element
behaviour and
bioavailability

Oil-derived products
Implication for oil-derived
compounds behaviour and
bioavailability

Reference of special interest
T

ra
n

s
fo

rm
a
ti

o
n

,
d

e
g

ra
d

a
ti

o
n

(b
io

lo
g

ic
a
l/
c
h

e
m

ic
a

l)

No degradation.

HM can only be bio-
accumulated or
sequestrated (Olaniran et
al., 2013). Their
bioavailability depends on
partitioning and distribution
across soil substrates.
presence of metals
(if bioavailable) can inhibit
organic compounds
degradation interfering with
microbial processes.

Both biotic (microbial
degradation), and
abiotic degradation
(volatilisation, leaching,
and photodegradation)
can lead to
transformation and
degradation of organic
compounds in soil.

Bioavailability of organic
compounds over time tends
to decrease due to diffusion
into soil particles, formation
of stabile complexes, and to
microbial degradation.

Yu et al., 2016;
Palleiro et al., 2016;
Young, 2013;
Sihag et al., 2014;
Vila et al., 2015;
Ghosal et al., 2016;
Marquès et al., 2016;
Alegbeleye et al., 2017.

O
x
id

a
ti

o
n

/r
e
d

u
c
ti

o
n

c
a
ti

o
n

e
x
c
h

a
n

g
e

c
a
p

a
c
it

y
,

a
n

d
s

o
il

p
H

Influenced by the
presence of organo-
mineral colloids
(adsorption).
Complexation with
humus, precipitation in
presence of clay
mineral and Fe, Mn, Al
oxides and carbonates.

Reducing conditions, due to
a high content of organic
carbon and/or sulphide, can
cause formation of less
soluble species e.g. Cr (III).

Changes in pH can
influence mostly
ionizable organic
compounds, impacting
sorption and removal of
organic solutes from
solution (Naidu, 2011).
Changes in redox
potential and pH can
accelerate oxidation of
organic contaminants
(Eggleton and Thomas,
2004).

Both mineral and humic
substances can impact
bioavailability of organic
pollutants via oxidative and
reductive transformation
processes.

Ashraf et al., 2012;
Yu et al., 2016;
An et al. ,2015;
Schneider et al., 2016;
Kunhikrishnan et al., 2016;
Ling et al., 2015;
Xiao et al., 2014;
Zhang & Fan, 2016;
Zhang et al., 2015.
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Table 2.2: Biological factors influencing bioavailability of metals and oil-derived products in soil (similarities and differences).

Factors Metals
Implication for element behaviour
and bioavailability

Oil-derived products

Implication for
oil-derived
compounds
behaviour and
bioavailability

Reference of special
interest

U
p

ta
k
e

Metals uptake is typically
based upon bioassay
exposures to a dissolved
chemical, therefore highly
dependent on the metals
solubility in solution, and
oxidation states.

Highly dependent on the system
considered for example in plants the
bioavailability of a certain metal in the
water phase, depends on root
structure, but also presence/absence
of organic acids exudates (such as
citrate and oxalate). For aquatic
species bioavailability depends on
both ingestion of metal-enriched
sediment during feeding, and uptake
of metal suspended particles from
solution (Du Bray, 1995).

Depend on multiple
factors such as
concentration in soil,
its chemical form, soil
pH, biological species,
and uptake pathways
of specific species.

Depend on where
and how an
organism lives and
feeds in the soil or
sediment.

Wyszkowska et al., 2012;
Seshadri et al., 2015;
Tangahu et al., 2011;
Rüdel et al., 2015;
Peters et al., 2016;
Juhasz et al., 2014;
Beriro et al., 2016;
Lal et al., 2015;
Rostami & Juhasz, 2011.

B
io

-
c
o

n
c
e
n

tr
a
ti

o
n

,
b

io
-

a
c
c
u

m
u

la
ti

o
n

,
a
n

d
b

io
-

tr
a
n

s
fo

rm
a
ti

o
n

Metal bioaccumulation (in
bacteria, fungi, and plants)
can happend throught
biosorprion or absorption
and uptake. Metal can
potentially interact and
affect funtion of enzymes
involved in biodegradation
of chlorinated organic
compounds.

Depend on uptake, levels of fats
(lipids) within the organism,
metabolism, age, growth life stage,
and gender.

Strong correlations
between the bio-
concentration factor,
bioaccumulation factor
and the octanol: water
partition coefficient
(KOW).

Depend on
uptake, levels of
fats (lipids) within
the organism,
metabolism, age,
growth life stage,
and gender.

Berthelot et al., 2008;
Jaishankar et al., 2014;
Tchounwou et al., 2012;
Khan et al., 2015;
Fantke et al., 2016;
McLachlan et al., 2011;
Pampanin 2017;
Vasseur & Bonnard, 2014.
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Table 2.3: Additional factors influencing bioavailability of metals and oil-derived products in soil (similarities and differences).

Factors Metals
Implication for element
behaviour and
bioavailability

Oil-derived products

Implication for oil-
derived compounds
behaviour and
bioavailability

Reference of special
interest

A
g

e
in

g

A rapid uptake via
electrostatic adsorption is
usually followed by a
secondary transformation
that form a more stable
complex.

Ageing can have an
effect on inorganic
contaminants, where
metal precipitation can
occur rapidly causing a
decrease in bioavailability
and toxicity. However is
less clear how
stable/reversible is the
process (Hamon et al.,
2006).

Different processes might
occur: incorporation into
natural organic matter
(absorption), slow diffusion
into small pores (soil
intraparticle).

Overall a decrease in
bioavailability has been
observed during time
due to different factors
(dilution, dispersion,
biodegradation,
volatilisation, and
irreversible sorption).

Wijayawardena et al., 2015;
Liang et al., 2014;
Wang et al., 2017;
Romero-Freire et al., 2017;
Jiang et al., 2017;
Duan et al., 2014, 2015;
An et al., 2017;
Smith et al., 2011;
Liu & Haderlein, 2013.

C
o

-c
o

n
ta

m
in

a
n

t
in

te
ra

c
ti

o
n

(1) Metal-metal
interaction is mostly
competitive affecting
affinity for soil-surface
and sorption sites (e.g.
Zn is a competitor for Cd
and Pb).
(2)Metal-organic
interaction can henance
HM transport (Chigbo et
al., 2013) due to:
association with mobile
colloids, and formation of
metal-organic complexes
that are not sorbed onto
the surfaces.

Metals that compete for
the same sorption sites
can trigger the release of
the competitor metals,
enhancing their
bioavailability.

Necessity of addressing
contaminant as a mixture.

(1) Organic-metal interactions:
high concentration of
inorganics might influence
mobility of PAH.
(2) Organic-organic
interaction: competitive
displacement, and co-
solvency. Molecules with
similar structure are highly
competitive
(interchangeability).

The non-linear
behaviour affecting
sorption/desorption rate
can challenge
bioavailability
predictions. Some
natural compounds
might also share a
similar structure and
therefore displace
contaminants
increasing their
bioavailability.
Necessity of addressing
contaminant as a
mixture.

Sun & Zhou, 2010;
Van Genderen et al., 2015;
Meyer et al., 2015;
Zhao et al., 2016;
Chigbo et al., 2013;
Olaniran et al., 2013;
Gauthier et al., 2014;
Biswas et al., 2015;
Wuana et al., 2014.
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Figure 2.1: Process of sequestration of the compounds in soil, adapted from

(Reid et al., 2000); bold textbox indicates the non-desorbing fraction

(irreversible processes), dashed textbox indicates the rapidly-desorbing fraction

(reversible processes), and the highlighted textbox represent the dissolved

fraction (bioavailable).

Contaminant retention is largely regulated by soil particle size distribution (Table

2.1). Smaller particle sizes provide a greater surface for interactions with

hydrophobic organic chemicals (Capri et al., 2004). Clays and fine-grained

sediments have the greatest surface area and therefore a high capacity to

retain organic and inorganic compounds. Further to this, the presence of oxides

(Fe and Al oxides, hydroxides, and oxyhydroxides) along with reactive calcium

carbonate (CaCO3) can enhance organic and inorganic contaminants retention

(Loibner et al., 2006) and therefore favour the biological stabilization of organic

carbon (encapsulation) (Heng et al., 2010). Such mechanisms will however

hinder microbial degradation of the compounds of concern due to reduced

accessibility (Krull et al., 2001) (Figure 2.1). Hard- and soft-organic matters are

also associated with retention and ageing processes (Table 2.3). Soil organic

matter (SOM) is formed from natural organic matter (e.g. vegetal decomposed

material), animal residues at various stages of decomposition, fulvic acids, and



23

humic acids (Sharma et al., 2010). Generally, SOM is thought to be composed

of “soft carbon” (amorphous or hydrolysable carbon), and “hard carbon”

(condensed or non-hydrolysable carbon) constitute of kerogen, black carbon,

and lignin (Weber et al., 1992). Black carbon and kerogen, in particular, can

bind tightly the organic contaminants reducing their solubility and/or dissolution

rate, and thus bioavailability (Stroud et al., 2007; Van Elsas et al., 2006;

Berkowitz et al., 2008). Large amounts of organic matter in the soil have also

been shown to effect the residence time of organic matter-associated metals.

For example, when organic matter is oxidized, the associated metals are likely

to be released, becoming more bioavailable. Conversely, soil with low organic

matter content will often accumulate oxide minerals (e.g. clay) that favour the

complexation of both metals and metalloids, thus reducing the bioavailable

fraction (John and Leventhal, 1995). Soil properties are site specific and will

vary from one site to another, therefore, if two sites contain equivalent amounts

of a certain contaminant, their bioavailability may still vary significantly,

depending on how tightly the chemical is bound to the soil.

The ratio between bioavailable and non-bioavailable fractions is shown in

Figure 2.2. Over time, the proportion of bioavailable contaminant will decrease,

relative to the non-bioavailable fraction. Pollutants in soil and sediment do not

disperse quickly and the desorption and remobilization of metals and oil-derived

products in soil are considered long-term processes. For example, heavy

metals associated with fluvial sediments can display a residence time from days

to years, on the order of 100 – 1000 years (depending on stream-flow

dynamics) (Ciszewski and Grygar, 2016; Coulthard and Macklin, 2003). Heavy

metals also have a long residence time in soil (Sayadi et al., 2017), ranging

from 500 to 3000 years (Lepp, 2012; Jørgensen, 2000; Ayres, 1992; Alloway,

1995). The process of aging can enhance the amount of absorbed heavy

metals in soil, where a redistribution from weakly bound fractions to more

strongly bound fractions can be observed (Settimio et al., 2014; Wang et al.,

2015). Recent metal contamination tends to be more reactive and prone to

dissolution compared to older contamination where the elements might be in

crystalline forms (Lynch et al., 2014), which presents a lower environmental risk
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(Baran et al., 2015; Environmental Agency, 2008). Sediment and soil-bound

organic contaminants can persist over decades without significant concentration

reductions. Chlorinated or hydrophobic contaminants, in particular, tend to

desorb very slowly over time with a desorption rate on the order of years, due to

their hydrophobicity (Eggleton and Thomas, 2004). Though oil-derived products

tend to persist in soil, the PAH bioavailable fraction will decline exponentially

over time (Yang et al., 2016). Weathered hydrocarbon residues pose negligible

risks to human health, and this is reflected in post-treatment remedial objectives

(Coulon et al., 2010; Jiang et al., 2016). When bioavailable fractions are high

(despite being below risk-based clean-up levels) further treatment and more

stringent clean-up levels should be mandated to reduce the elevated risk of

exposure that is present (Cipullo et al., 2016).

Figure 2.2: Relationship between the percentage of bioavailable and non-

bioavailable contaminants in soil, exposure risks and risk based clean-up level

(adapted from Reid et al., 2000; and Tri-Service Ecological Risk Assessment

Workgroup, 2003).

The necessity of collecting case-specific parameters can challenge the 

development of a unified methodology to assess the bioavailable fraction, and

to determine the risks to human and environment in a straightforward way. A

number of analytical methods to assess readily (bio) available compounds in

soil and sediments are available, and we discuss these in the following

sections.
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2.2.2. Methods for estimating bioavailability of heavy metals

Metals can be present in soil as either free metal ions, forming various soluble

complexes with inorganic or organic ligands; or associated with colloidal and

mineral materials (McLean and Bledsoe, 1992) becoming strongly incorporated

with the soil matrix (inert). Most of the divalent heavy metal cations (e.g., Mn2+,

Fe2+, Co2+, Ni2+, Cu2+ and Zn2+) share a relatively similar structure and therefore

display similar behaviour in soil (Olaniran et al., 2013).

Total metal concentration estimated with acid digestion (e.g. aqua regia)

mobilizes all forms of metal in soils and sediment. This measure refers to both

metal content in particulate (sorbed + precipitated), and dissolved (inorganic

complexes + organic complexes + free ionic forms) fractions. However,

particulate metals do not contribute to the solid-solution distribution (potentially

bioavailable), and may only become available through very slow desorption

processes. This fraction does not provide appropriate basis for expressing

metal bioavailable (labile) concentrations in soil, thus presumably not readily

available for receptors’ uptake.

Several approaches are used to determine the pool of labile metals

(concentration and distribution) in soils and sediments; including exchange

resins, diffusive gradient in thin films (DGT), conventional single-step

extractions, and sequential extractions (Table 2.4).

Passive samplers (e.g. exchange resins) act as ion sinks and are used to

quantify free ion activities, soluble fractions, and labile pool concentrations of

metals in soils (Qian and Schoenau, 2002; Ge et al., 2005). Free ion activity in

solution represents the most relevant parameter for assessing bioavailability

and toxicity of metals in contaminated soils. The use of exchange resins has

been successfully applied to predict uptake of metal in the environment (e.g. in

plants (Peijnenburg et al., 2007)), (Table 2.4), however, to date no standard

technique has been validated.

Diffusive gradients in thin films (DGT), is a relatively cost-effective technique,

based on a layer of hydrogel and resin gel. The DGT devices allow for the

passive accumulation of labile species from a solution (in real time), and have
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been used to assess in-situ the fraction of metals dissolved in water (Zhang,

1998; Hooda et al., 1999; Parker et al., 2016). As an in situ sampling technique,

DGT can be also used in soil to determine the labile (bioavailable) fraction of

elements, and to understand how this fraction changes in the environment.

However, continuous depletion of metals from pore water can limit the diffusion

of analytes to the DGT sampler, affecting the estimation of the available pool of

metals (Peijnenburg et al., 2014). In addition, development and validation of a

DGT method to establish accumulation in biological endpoints remains a

challenge, due to the complexity of the uptake by model organisms and

inconsistent results often obtained (Menegário et al., 2017).

Single-step extraction (Table 2.4) uses a wide range of extractants including:

salt solutions (CaCl2, NaNO3, NH4NO3, Ca(NO3)2, AlCl3, MgCl2), acid solutions

(HNO3, CH3COOH, HCl) and chelating agents (EDTA, DTPA). These tests were

initially designed to predict nutrient deficiency in soil, and generally contain

organic chelates and acids in order to mimic plant metals uptake (National

Research Council, 2003). Single-step extractions were lately adapted to

measure the labile concentration of metals in soil and sediments, potentially

available for ecological receptors uptake (Alvarez et al., 2011). Complex organic

reagents (EDTA, DPTA) are also used to mimic the organic exudates produced

by plants, and have been positively correlated with metals concentration found

in plants (Domínguez, 2008), and further exploited to mimic the bioavailable

fraction. Chelating agents, due to their high affinity for metal ions, are used to

enhance the solubilisation of metal(loids) through the formation of soluble

chelates (Bolan et al., 2014). Caution is needed, however, because studies

have shown that results are not consistent and robust across different types of

soil (National Research Council, 2003), and are highly dependent on extraction

conditions and trace elements speciation (Cappuyns, 2012). Single-step

extraction techniques widely vary in type of extractant used, its concentration,

soil: solution ratio, and extraction time. They can partially dissolve trace

elements associated with different fractions (e.g. pore water and

exchangeable), which provides useful information about metals behaviour

(Alvarez et al., 2011). Though relatively simple to use (minor sample handling),
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in single-step extraction mode the non-labile metal fraction might also become

solubilized, which might cause an overestimation of the labile pool of several

metals (Moreno et al., 2005; Qasim et al., 2015).

While passive samplers and single-step sequential extractions have been used

to measure labile metals, these methods do not provide information on the fate

and behaviour of contaminants over time.

Sequential extraction, however, can be used to quantify the distribution of

metals and assess the mobility of potentially harmful elements over time

(Sungur et al., 2015). The procedure involves leaching successive fractions of

metals by increasing the strength of an acid solution (HNO3, HF-HClO4, HClO4,

HCl, and CH3COOH) or other reagents (such as Na4P2O7 and NH2OH) used for

each phase association (Zimmerman and Weindorf, 2010). The number of step

may vary from 3 to 7 (Table 2.4). Sequential extraction has been used for over

30 years (Tessier et al., 1979) and has been modified to create the community

Bureau of Reference Method (BCR) (Rauret et al., 2000) and the Chemometric

Identification of Substrates and Element Distribution (CISED) method (Cave et

al., 2004), which overcome non-selectivity and redistribution of trace elements.

The BCR method has been validated against a sediment reference material

(BCR-701) and provides extractable concentrations for several metals (Rodgers

et al., 2015). The non-specific sequential extraction CISED has been validated

against a sediment reference material (BGS-102) and uses chemometric data

processing to provide mechanistic information about metal-soil phase

associations (Gál et al., 2006). Results from CISED could be a powerful tool to

understand how mineralogical forms might affect bioavailability, yet

considerably more chemometric and geochemistry information need to be

applied (Giacomino et al., 2011). Despite the large amount of information that

sequential approaches can provide the standardisation and application of these

technique in commercial laboratories is limited because of the laborious and

time-consuming nature of these techniques and the difficulty of interpreting the

results (Alvarez et al., 2011).
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Table 2.4: Methods to characterize labile fraction and bioavailability of metals in contaminated soils.

Method Advantages Disadvantages Specifics Reference

P
a
s

s
iv

e
s
a
m

p
le

r

• Passive samplers are relatively low-cost, can
be used for in-situ measurements (Menegário
et al., 2017), can achieve low detection limits
(Peijnenburg et al., 2014), and allow long-term
trends assessments. .
• DGT was found to be a good tool for
measuring in situ metal bioavailability in
sediments (Ren et al., 2015).
• DMG is a relevant tool for in-situ assessment
of environmental risks posed by metals (Perez
et al., 2016).
• Passive sampler measurement can be
translated into fugacity models and
equilibrium studies to understand chemical
potential activity and estimate potential risk
(Amiard-Triquet et al., 2015).

• Little attention is given to the effects that
water chemistry and method of field
deployment may have on uptake kinetics
(Mills et al., 2014).
• In some cases require a time-consuming
elution step with acids, in order to retrieve
the analyte from the solid sorbent phase
(Almeida et al., 2014).
• DGT and DMT not yet considered suitable
for routine analysis due to poor detection
limits, time-consuming procedures, and a
lack of validation (Brand et al., 2009).
• Deployment of DGT samplers, where
nanoparticles are high, may result in an
overestimation of dissolved metals
concentrations (Pham et al., 2015).

Exchange
resins
Diffusive
gradient thin
film (DGT)
Donnan
membrane
technique
(DMT)
Diffusive milli-
gels (DMG)

Cantwell et al., 1982;
Holm et al., 1995;
Lorenz et al., 1997;
Christensen & Christensen,
1999;
Davlson & Zhang, 1994;
Agbenin & Welp, 2012;
Koopmans et al., 2008;
Pampura et al., 2006;
Weng et al., 2005;
Perez et al., 2015.

S
tr

ip
p

in
g

v
o

lt
a
m

m
e
tr

y

• High sensitivity, high reproducibility, and
mainly used for the detection of trace levels of
heavy metal ions (Almeida et al., 2014).
• Found to be suitable for assessment of
heavy metals bioavailability to plants (Dytrtova
et al., 2008).

• Limitations for on field measurements,
sample perturbations due to sample handling
and storage (Rurikova & Kudrava, 2006).
• Adsorption effects of humic and fulvic acids
in soil accompanied by the metal
complexation can limit the success of this
method (Rurikova & Kudrava, 2006).

Anodic
(or cathodic)
stripping
voltammetry

Sauvé et al., 1997;
Zima & Van Den Berg, 1994;
Davidson & Smyth, 1979.

C
o

m
p

e
ti

ti
v
e

c
h

e
la

ti
o

n

• Method has good sensitivity and can provide
reliable estimates of ion activities (Amacher,
1984).

• Equilibrium between chelate and soil can
take a long time to be attained (Norvell &
Lindsay, 1972; Norvell & Lindsay, 1969).
• The success of the method depends on
abundancy of metal of interest and the
selected competing metal (Workman &
Lindsay, 1990).

Xue et al., 1995.
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Method Advantages Disadvantages Specifics Reference
Io

n
e
x
c
h

a
n

g
e

• Results were comparable to ion selective
electrode, and anodic stripping voltammetry
(Ge et al., 2005).
• Simple, cost-effective, relatively easy to use,
and applicable to different soil types (Qian &
Schoenau, 2002).
• Possibility of simultaneous multi-metal
measurement (Weng et al., 2005).

• Requires a characterization of the resin
adsorption properties (Weng et al., 2005).
• Soil solution composition need to be
considered during speciation analysis
(Fotovat & Naidu, 1997).

Cation
exchange resin

Sunda, 1984;
Apte & Batley, 1995;
Qian & Schoenau, 2002;
Ge et al., 2005.

S
in

g
le

e
x
tr

a
c
ti

o
n

w
it

h
(1

)
s
a
lt

s
o

lu
ti

o
n

s
,(

2
)

a
c
id

s
o

lu
ti

o
n

s
,
(3

)
c
h

e
la

ti
n

g
a

g
e
n

ts

• Can be used to perform fast screening
analysis of the labile pool of elements in soils
and sediments (Sakan et al., 2016).
• Significant positive correlations between the
single extractions methods results and lettuce
shoot content were obtained for several
metals (Pinto et al., 2015).
• CaCl2 extraction has been reported as being
a good proxy for bioavailability of metals in
soils to plants (Houben et al., 2013) and was
correlated with concentrations of potential
harmful elements in plant (Qasim et al., 2015).
• Leaching test employing a neutral salt
solution (CaCl2 or NH4NO3) is considered to
be sufficient to measure the bioavailable
fraction of mobile metals (in particular Cd, Ni,
and Zn) (Kim et al., 2015).
• The single extraction method involving
EDTA presented good precision (Sahito et al.,
2015).
• Using the single-step extraction (EDTA or
acetic acid) allows predicting metal
extractable content (bioavailable) in vineyard
soil-grapevine system (Vázquez et al., 2016).

• Chemical extractions can hardly account for
the complex processes involved in metals
uptake by plants therefore not sufficient for
estimating soil metal bioavailability to plants
(Krishnamurti et al., 2015).
• No consensus on best single step
extraction conditions to extract and maintain
integrity of arsenic species (Sun et al., 2015).
• At low reactive element to organic matter
ratios, diluted nitric acid extraction (0.43 M)
can underestimate concentrations of
geochemically reactive elements with a
particularly high affinity for organic matter or
oxides (Groenenberg et al., 2017).
• Complexing and chelating extractants
(EDTA and DTPA) showed poor correlation
with potential harmful elements
concentrations in plant (Qasim et al., 2015).

0.01-1 M CaCl2
0.1 M NaNO3

NH4NO3

0.1 M Ca(NO3)2

0.3 M AlCl3
0.02-0.1 M
MgCl2
different
concentrations
of HNO3

CH3COOH
HCl

EDTA
DTPA

Houba et al., 2000;
Young et al., 2000;
Novozamsky et al., 1993;
Ure, 1996;
Gupta & Aten, 1993;
Novozamsky et al., 1993;
Meers et al., 2007;
Hughes & Noble, 1991;
Makino et al., 2006;
Tipping et al., 2003;
Almås et al., 2007;
Novozamsky et al., 1993;
Cappuyns, 2012;
Leggett & Argyle, 1983;
Lindsay & Norvell, 1978.
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• These methods are simple, low cost,
applicable to different soil type, and results
are often comparable (Rosado et al., 2016).
• BCR method provide relevant information on
the relationships between soil characteristics
and metal potential fractions for uptake by
plants (Sungur et al., 2014).
• BCR method showed correlations between
available metal and the plant uptake
(Fernández-Ondoño et al., 2017).
• The modified version of the three-step
procedure proposed and validated by the
BCR (Community Bureau of Reference) could
potentially be accepted as the standard
method (Ahmadipour et al., 2014).
• CISED method can provide a powerful tool
for understanding metal fractionation in soils
(Cave et al., 2015).
• CISED is a valuable methodology for
studying the solid-phase fractionation of
potential harmful element in soil and potential
bioavailability (Reis et al., 2014; Palumbo-Roe
et al., 2013; Cox et al., 2013).
• Sequential leaching studies can help
understanding leachability, solubility, and
mobility of heavy metal, therefore allowing to
make assumptions on metal bioavailability for
risk assessment (Kaakinen et al., 2015).

• Sequential extraction are inadequate for
determining the extraction kinetics, and
subjected to high risk of bias due to re-
adsorption processes (Rosas-Castor et al.,
2015).
• BCR method drawbacks include lacks of
specificity and difficulty in interpreting results
(Huang et al., 2014).
• BCR method results tedious and time-
consuming due to long shaking time and
filtration requirements (Matong et al., 2016).
• Interpretation of data from the CISED
extraction may be more challenging than
selective chemical extractions (Reis et al.,
2014).
• Main limitation associated with sequential
extraction procedures is the long time
associated with extraction (Khan et al.,
2013).
• Limitations associated with sequential
extraction methods includes; redistribution of
analytes among phases, incomplete
extraction, non-selectivity of reagents, and
precipitation of other minerals (Selim, 2015).
• Laborious and time consuming techniques,
results often of difficult interpretation (Domini
et al., 2011).

modified BCR
extraction

four-step
chemical
fractionation
procedure

five-step
chemical
fractionation
procedure

six-step
chemical
fractionation
procedure

seven-step
chemical
fractionation
procedure

non-specific
sequential
extraction
(CISED)

Ure et al., 1993;
Rauret et al., 2000;
Tessier et al., 1979;
Elliott et al., 1990;
Mclaren & Crawford, 1973;
Miller et al., 1986;
Krishnamurti et al., 1995;
Cave et al., 2004.
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2.2.3. Methods for estimating bioavailability of oil-derived

products

Estimating the bioavailability of organic compounds and integrating it into the

decision-making processes remains a scientific and regulatory challenge.

Research into the bioavailability of oil-derived contaminants has received

considerable attention in the last 20 years (Thompson, 2016). In the context of

implementing bioavailability into regulatory frameworks it is important to both

quantify the (potentially) bioavailable fraction, but to also understand the

mobility and behaviour of contaminants in soil in order to assess potential

effects of complex contaminations on receptors. Empirical approaches are often

used to predict contaminant toxicity or assess the effectiveness of remediation

treatments (Environment Agency 2006, 2010). Computational methods which

integrate the multitude of compounds and molecular structures have proven to

be the most challenging. In particular, the prediction of complex contaminants’

toxicity, such as crude oil, requires understanding and forecasting the potential

effects of several hundreds of different organic compounds, which possesses

different chemical characteristics and different behaviours that might influence

the rate and efficacy of degradation (Weng et al., 2015). Molecular weights

have been shown to most strongly affect compounds’ persistence in soil (Atlas,

1995). Moreover, complex physico-chemical interactions between different

compounds can lead to unexpected or poorly understood reactions (e.g. co-

solvency), which might alter the bioavailable nature of a compound in mixture. A

wide range of analytical procedures have been used to estimate the

bioavailable fractions of organic contaminants in mixtures (e.g. oil constituents)

(see for review Brand et al., 2012; Ortega-Calvo et al., 2015). These procedures

can measure different fractions: freely dissolved fraction (passive samplers),

which measure the dissolved (actual) concentration in a matrix, and rapidly

desorbed fraction (non-exhaustive techniques), which uses extractants to

recover compounds from soil (Table 2.5).
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Table 2.5: Extraction methods in relation to bioavailability of organic compounds.

Type Method Advantages Disadvantages
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Polydimethylsiloxane
(PDMS)
Solid-phase
microextraction
(SPME)
Polyoxymethylene
solid phase extraction
(POM-SPE)
Triolein embedded
cellulose acetate
membrane (TECAM)
C18 membrane disks
Diffusive gradients in
thin films (DGT)
Semipermeable
membrane devices

• Consistent relationship between chlorobenzenes
levels in biota and in the PDMS-SPME fibres (Van
Der Wal et al., 2004).

• SPME can accurately measure freely dissolved pore
water concentrations to estimates earthworms
uptake (Van Der Wal et al., 2004).

• PDMS is very sensitive and able to detect PAH freely
dissolved pore water concentrations (ng/L) (Laak et
al., 2006).

• SPME shows good correlation between
bioaccumulation of organic contaminants on a wide
range of organisms(You & Landrum, 2006).

• SPME and POM-SPE generally are able to predict
PAH concentrations in earthworms (Gomez-Eyles et
al., 2011).

• SPME and POM-SPE tend to under-predict PAH root
concentrations (Gomez-Eyles et al., 2011).

• SPME measures truly dissolved concentrations but it is not
able to measure compounds associated with dissolved organic
matter (ECETOC, 2014).

• Poor correlation between availability of PAH in soil and bio-
concentration factors in earthworms (Bergknut et al., 2007).

F
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Subcritical water
extraction (SWE),
superheated water
technique (SWAT)
Supercritical fluid
extraction (SFE)
Sequential
supercritical fluid
extraction (SSFE)

• Good correlation between SWE extractions of 14C-
activity fraction mineralized by catabolically active
Pseudomonas (Latawiec et al., 2008).

• Successfully used to predict rates of long-term
release of organic compounds (Weber, 2001;
Hawthorne et al., 2000; Miller & Hawthorne, 1998).

• SWE selectively extracts the PAH relative to the
readily extracted fraction (Smith, 2002).

• SFE recoveries of the ‘‘mobile’’ fraction of PAH were
greater than 90% (Librando & Aresta, 2004).

• The amount of PCBs extracted by SFE was very
close to the estimated bioavailable fraction in
earthworms (Hallgren et al., 2006).

• Potential degradation of analytes subjected to high
temperatures.

• Lack of significant correlation between the amounts
desorbed/amount assimilated by earthworms (Weber et al.,
2002).

• Contaminants with high molecular weight (decreasing polarity
and increasing Kaw coefficients) showed reduced recoveries
when applying SSFE (Loibner et al., 2000).

• Mild SFE was not able to differentiate pyrene availability in
unaged soils (Sun & Li, 2005).

• Using SFE for predicting bioavailability can be limited due to
great variability of soil matrix (Cajthaml & Väclav, 2005)
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Type Method Advantages Disadvantages
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(i
)

Mild-solvents (butanol,
methanol, n-propanol,
or ethyl acetate)
Combination of solvent
and CaCl2 solution
Surfactants (Triton X-
100)

• Methanol-water and n-butanol extraction of chemical
mixtures were correlated with uptake by earthworms
(Elsey & Lexander, 1997).

• Good correlation between extractable fraction/
uptake earthworms(Kelsey et al., 1997; Tang et al.,
1999).

• Good correlations between extractable fractions/
bacterial genotoxicity assay (Alexander & Alexander,
2000; Tang et al., 2002).

• Little consistency among different soils (Chung & Alexander,
1998).

• High variability in technical operation (type of mixture, shaking
time) limits the comparability of data (Cachada et al., 2014).

• PAH extracted by mild solvent extraction show a similar
composition to the total soil PAH (Bergknut et al., 2007).

• Mild solvent extractions consistently over predicted PAH biotic
concentrations (Gomez-Eyles et al., 2011).

• PAH bioavailability (estimated with butanol) and earthworm
bioavailability were found to be non-related (Johnson et al.,
2002).

• Triton X-100 failed to predict PAH bioavailability in
contaminated sediments because extracted both readily and
poorly bioavailable PAH (Cuypers et al., 2002).
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Tenax
®

• Tenax
®

was found to be a matrix-independent, cheap
and less time-consuming chemical method of
estimating bioavailable fraction in PCB-contaminated
field and sediments (Trimble et al., 2008).

• Successfully used to assess the bioavailability of
aromatic compounds in sediment (Morrison et al.,
2000; Cal et al., 2008; Harwood et al., 2012).

• Good correlation between bioavailable fraction in the
sediment and quantity measured by Tenax

®

extraction (You & Pehkonen, 2007).
• Rapidly desorbing fractions of PAH measured by

Tenax
®

have been linked to biodegradation rate
(Braida et al., 2004; Shor et al., 2003; Cornelissen et
al., 1998).

• Tenax
®

extraction of PAH, PCB, and organochlorine
pesticides were correlated to bioavailability to worms
(Hulscher et al., 2003).

• Tenax
®

extraction is a good technique to predict
bioavailability to earthworms of aged PAH in soil (Lu
et al., 2011).

• The process involves a lot of steps in order to estimate the
rapidly desorbing fraction (Xing et al., 2011).

• Contaminant desorbing fractions in river sediments extracted
by Tenax

®
over-estimated the bioavailable fraction of benthic

invertebrates (Leppanen et al., 2003).
• Few studies where correlations between Tenax

®
extractable

amount and biota-sediment accumulation were not related
(Sormunen et al., 2008, 2009; Leppa & Kukkonen, 2006).

• The Tenax
®

measure of rapidly desorbing fraction is not the
only factor contributing to the bioavailability. A number of
ecological factors (species and feeding habits) can affect the
bioavailable fraction in model organisms, and remain
undetected by Tenax

®
extractions (Akkanen et al., 2007).
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Aqueous
hydroxypropyl-
cyclodextrin (HPCD)

• A 1:1 correlation between phenantrene extracted
and phenantrene degraded by microorganisms was
obtained ( Reid et al., 2000).

• HPCD was successfully used to predict PAH
bioavailability in contaminated sediments (Cuypers
et al., 2002).

• HPCD was successfully used to predict the microbial
bioaccessibility and mineralisation rate of aliphatic
hydrocarbons (Stroud et al., 2008).

• A significant relationship (p < 0.01) between HPCD
extractability and mineralization was observed
(Rhodes et al., 2008).

• HPCD β was found to be a good estimation of 
bioavailable fraction in both single, and multiple
contaminants conditions (Stroud et al., 2009).

• HPCD ease in sample handling and that no
additional device is needed (Cui et al., 2013).

• Predictability of HPCD extraction decreased for higher
organisms such as earthworms (Barthe & Pelletier, 2007;
Hartnik et al., 2008).

• Poor indicator of PAH accumulation in benthic invertebrates
(Barthe & Pelletier, 2007).

• Cyclodextrin size and structure can limit the complexation of
some PAH (size dependent) (Villaverde & Pe, 2012; Stokes et
al., 2005).

• Cyclodextrin extractions consistently over predicted PAH biotic
concentrations (Gomez-Eyles et al., 2011).
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2.2.3.1. Passive sampler methods (PSMs)

Passive sampler methods (PSM) (Table 2.5), commonly defined as biomimetic

extractions (ECETOC, 2014), are used to measure the freely dissolved

concentration (Cfree) of contaminants (Parkerton et al., 2012) in equilibrium

with the rapidly desorbing fraction. These techniques are based on the

molecular diffusion principle, and often use polymer materials such as

polydimethylsiloxane, polyethylene, polyoxymethylene, and ethylvinylacetate

(Parkerton et al., 2012). Passive sampler methods have been used to predict

PAH bioavailability, and have been shown to correlate well with model organism

PAH uptake and bioaccumulation (Jonker et al., 2007; Gomez-Eyles et al.,

2011; Muijs and Jonker, 2011), (Table 2.5). Although PSM are valuable tools for

providing weight of evidence and informing regulatory decision-making, there

exists a lack of consensus about its implementation and standardization. The

following issues were identified and need to be overcome in order to further

develop and implement these techniques: (1) PSM have been applied to only a

limited number of target compounds; (2) the complexity of the PSM equilibrium

requires better characterization of potential errors when applied in-situ; (3)

adoption of robust quality assurance and control strategies are needed (Mayer

et al., 2014).

Correlation with in-vivo measurements and bioaccessibility data are not fully

validated, and the complexity of (bio)accumulation mechanisms (Cachada et al.,

2014) that govern toxicity responses are not yet fully understood. More

information and guidance on the application of passive sampling for the

management contaminated sediment sites can be found in the SERDP and

ESTCP national guidance documents (Burgess and Driscoll, 2016; Driscoll and

Thompson, 2016).

2.2.3.2. Fluid-phase extractions

Supercritical Fluid Extraction (SFE) (Table 2.5) uses supercritical fluids (e.g.

CO2 in combination with solvents) to extract a compound from a soil matrix.

This technique can be used to study sorption/desorption processes, and to

estimate bioavailability of organic pollutants in soil and sediment. Data obtained
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from SFE can be fit to a prediction model to obtain information about the PAH

bioavailable fraction. Different experiments found that the amount of organic

compounds (PCB) extracted by SFE was able to represent the readily extracted

fraction (Smith, 2002) and the bioavailable fraction uptaken by earthworms

(Hallgren et al., 2006), (Table 2.5). SFE was also found to recover over 90% of

the mobile fraction of PAH from soil and sediments samples (Librando and

Aresta, 2004). Though SFE can measure the freely dissolved fraction, it is likely

to underestimate the concentration/uptake in benthic organisms (with other

uptake routes) and its use can be limited due to great variability of soil matrix

(Cajthaml and Väclav, 2005). In addition, SFE was found to be able to predict

degradation for low molecular weight PAH (three and four ring), with a good

correlation between biodegradability and bioavailability (Naidu, 2011), but often

overestimated bioavailability of high molecular weight PAH due to their different

extractability.

2.2.3.3. Non-exhaustive techniques

Non-exhaustive techniques to assess the bioavailability of organic compounds

in soil (Table 2.5) include mild solvent extraction (Kelsey et al., 1997; Liste and

Alexander, 2002), solid sorbents (e.g. Tenax®) (Cornelissen et al., 2001;

Hulscher et al., 2003; Lydy et al., 2015), and hydroxypropyl-β-cyclodextrin 

(HPCD) (Reid et al., 2000; Cuypers et al., 2002; Stokes et al., 2005).

Mild-solvent extraction consists of adding a polar solvent or mixture of solvents

and water (e.g. butanol, ethanol, methanol, methanol-water) to a sediment or

soil sample, agitating the mixture, and then analysing the extract for

contaminants’ presence (Cui et al., 2013). This technique has shown good

correlation between extractable fraction and uptake in earthworms (Kelsey et

al., 1997) and bacterial genotoxicity assay (Alexander and Alexander, 2000;

Liste and Alexander, 2002), (Table 2.5). Mild-solvent extraction could also be

used as a proxy to estimate the contaminant bioaccessible fraction, however it

shows little consistency between different soil types (Chung and Alexander,

1998).
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Tenax® is a porous polymeric resin that when mixed with contaminated

sediment, will recover target compounds. Sorbed compounds are eluted from

the resin with a solvent, and fresh polymeric beads can be added several times

(multiple steps) and harvested to measure the recoverable hydrocarbons

fraction (Cui et al., 2013). Tenax® has been largely used to assess the

bioavailability of aromatic compounds in soil and sediment (Morrison et al.,

2000; Cal et al., 2008; Harwood et al,. 2012).

Hydroxypropyl-cyclodextrin (HPCD) is a cyclic oligosaccharide formed by α-D-

glucopyranoside units linked 1-4 and bound together in a ring (Riding et al.,

2013). This structure is highly soluble (hydrophilic outside), and creates a

hydrophobic cavity, capable of forming inclusion complexes with hydrophobic

compounds such as organic contaminants (Bardi et al., 2000). In these

inclusion complex formations, water molecules are released from the HPCD

cavity through displacement by a more hydrophobic molecule in solution (Del

Valle, 2004). HPCD vary in size (α, β, γ) depending on the number of glucose 

monomers (from six to eight units) present in the ring. Generally, an aqueous

solution of HPCD is mixed with soil or sediment (1:20 ratio), and then the

aqueous phase recovered via centrifugation and the supernatant is analysed for

the presence of target contaminants (Cui et al., 2013). Alternatively, the

supernatant is discarded and the soil pellet resuspended and extracted using

exhaustive-solvents (total extraction), and cyclodextrin uptake measured by

subtraction (comparing the sum totals of PAH extracted by HPCD against the

total amount extracted by exhaustive solvent) (Papadopoulos et al., 2007). Reid

et al. (2000) showed a reliable prediction of the microbial available

concentration of PAH in soil compared to classical methods based on Soxhlet

extraction. Positive correlation has been also observed between the amount of

HPCD extracted and microbial mineralization in activated carbon-amended soils

(Rhodes et al., 2008) (Table 2.5). Potential of HPCD for indicating bioavailable

organic contaminants has been recognized, but no clean-up thresholds for

HPCD-extractable PAH have been implemented yet (Canadian Council of

Ministers of the Environment, 2006). Main limitations associated with HPCD

extraction are the reduction of potential for indicating bioavailable fraction in
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higher organisms (earthworms, benthic invertebrates) (Barthe and Pelletier,

2007; Hartnik et al., 2008) and the size of the HPCD cavity that might prevent

PAH complexation, owing to steric constraints, which would result in poor

extraction efficiencies (Stokes et al., 2005).

In summary, while passive samplers can be used to estimate the readily-

available (pore water concentration) for most soil organisms (Brand et al.,

2013), bioavailable concentrations measured by Tenax® and HPCD correspond

to the sum of the fraction dissolved in pore water and the concentration that

could become available on a longer term (i.e. rapid and slow desorbing

fraction). Methods to estimate potential bioavailable concentrations can be

considered more conservative; therefore we believe that both Tenax® and

HPCD could be more suitable compared to PSM for the evaluation of receptor’s

potential exposure and implementation into the risk assessment. Overall the

number of laboratory studies and publications on less exhaustive techniques is

promising, but they require further efforts to obtain an optimised and enhanced

procedure that can be applied across different soil samples and a wider range

of contaminants. Such methods could assist in evaluating exposure of

ecological receptors and facilitate a more proportionate definition of risk. In

addition, these measurements may have implication when establishing

remediation end-points.

2.3. Challenges in assessing complex chemical mixtures

bioavailability

Methods to assess bioavailability predominantly focus on assessments carried

out on individual substances, or a limited number of substances. Humans and

ecological receptors, however, are exposed to a wide variety of chemicals and

therefore understanding the potential adverse effects of interactions between

these chemicals in a mixture is fundamental to assess risk. We can summarise

the challenges of assessing the bioavailability of complex chemical mixtures in

three key points (1) standards for mixed-pollutants are absent; (2) combination

effects studies on complex chemical mixtures are limited; (3) bioavailability is

often neglected.
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In co-contaminated sites, the presence of both inorganic and oil-derived

products, in mixture compositions of near infinite character can produce

unpredictable effects (Borgert, 2004). Uncertainty in the behaviour of these

mixtures reflects not only the complexity of the soil matrix, but also the

heterogeneous nature of contaminants in soil, as well as temporal variations in

chemical structure and concentrations. Conventional risk assessments apply

risk-based criteria (guideline values) to deterministic models to make decisions

about soil remediation, and establish clean-up standards. However, exposure-

risk relationships are established on specific quantitative values (maximum

acceptable risk), which can largely vary among different countries (Aqeel et al.,

2014), depending on the assumption made when modelling exposure. Whereas

conventional exposure assessment relied on the measurable effects of

individual chemical species (De Zwart and Posthuma, 2005), predictive models

for exposure assessment, are unlikely to account for (and interprete) the

combative effects of chemical mixtures (Cornelis et al., 2010). Regulatory

frameworks address chemical mixtures based on the contribution of each

individual compound present in the mixture, if individual compound toxicity does

not exceed the threshold, the overall mixture is often considered non-toxic

(Heys et al., 2016). Over the last decade, the increasing interest in complex

chemical mixtures has been reflected by legislative developments and scientific

improvement in understanding of the role of bioavailability of single (Elgh-

Dalgren, 2009; Bradham et al., 2015; Chen et al., 2015; Fadaei et al., 2015;

Henry et al., 2015; Juhasz et al., 2015; Ortega-Calvo et al., 2015; Stegemeier et

al., 2015; Tao et al., 2015) and multiple contaminants (Allan et al., 2012;

Gouliarmou and Mayer, 2012; Cain et al., 2013; Liu et al., 2013; Kuhn and

Maurice, 2014; Amato et al., 2014; Jia et al., 2014; Arp et al., 2014); however to

date potential risks of combined chemicals are rarely examined in risk

assessment (Kienzler et al., 2016).

Only a few laboratory based studies have attempted at studying complex

chemical mixtures toxic effect on in vitro or biological systems (European

Environment Agency, 2012), more data are required on synergistic and

antagonistic interactions of these compounds. While the concepts of mixture
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toxicity have been discussed for decades, their use has been limited by the

absence of toxicological data associated with specific substances, the lack of

bioavailability data, and generally the uncertainty associated with knowledge on

mixtures of compound. The greatest knowledge gap at the present time is the

lack of understanding regarding the mode of action of mixture of compounds

which limits the definition of a set of criteria, and therefore requires a careful

case-by case approach (EU Scientific Committee on Health and Environmental

Risks, 2011).

Cumulative risk assessment (CRA) is a relatively new approach that aims to

quantify the health, or environmental risk, by estimating the level of exposure to

multiple contaminants (U.S. Environmental Protection Agency, 2003). CRA

represents a conceptual innovation in the decision making process by moving

from a single effect approach to a multiple ecological and human approach to

the effects caused by multiple exposure of contaminants (Fox, 2002). Although

cumulative risk assessment appears to be pragmatic, few ecotoxicological

specific guidelines (e.g. pesticides regulations) account for it (European

Environment Agency, 2012). At present, CRA may be the best way to add a

health dimension to basic contaminant concentration evaluation. It also might

support the decision making process creating a more comprehensive

understanding of chemicals behaviour in the environment. Further development

and additional studies to verify if CRA is a fair representation of the combine

risk for compounds, that might not be equal in toxicity, ecotoxicity and chemical

behaviour are needed. Ultimately, CRA should not be the only measure of risk,

but a valuable support to other analytical tools for investigating environmental

risk. Moreover, as highlighted in this review, bioavailability is influenced by a

wide range of physico-chemical (including both soil and nature of contaminant)

(Table 2.1) and biological factors (Table 2.2) and it can greatly differ among

different organisms; therefore designing suitable one-fit-all extraction approach

can be challenging. In order to estimate the bioavailable fraction we should

question which of these methods provide a good representation for the specific

species we intend to protect. Several chemical analytical methods have been

developed to assess the bioavailability of inorganic and organic compounds, yet
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few of them were found to correlate with uptake in model organisms. As such,

none of these techniques have been applied to complex chemical mixtures

(Muijs and Jonker, 2011).

2.4. Conclusions

Given the multiple variables affecting the availability of chemicals in soil, we

should look at bioavailability not as a fixed value (concentration), but as a

dynamic process between an organism and the chemical-uptake over time

(ageing). Methods to estimate bioavailability are still not sufficiently cost-

effective and standardised. While a great deal of studies and results have been

achieved in regards to estimating bioavailability of inorganic contaminants, there

is still more work to be done for organic contaminants. Bioavailability and

bioaccessibility estimations are seen as useful means to inform human health

risk assessment and improving cost-effective management of contaminated

land. For instance, when the exceedance of the guideline values is minor,

bioaccessibility become the main driver on large site investigations, where costs

associated with soil removal are considerably high. Nevertheless, lack of

information regarding other potential routes of exposure (dermal contact and

inhalation) contributes in limiting our confidence in integrating these findings into

risk assessment. Similarly, bioavaliability is still not fully understood and

implemented in existing frameworks, because of both multiple definition across

different disciplines and lack of standardised tests to measure it. Also, a large

number of studies and chemical methods have shown that bioavailable fractions

can be positively correlated with uptakes in model organisms and microbial

mineralization; obtained data are however inconsistent among different type of

contaminants and across different receptors tested. An approach based on

weigh-of-evidence should apply chemical techniques to measure the

bioavailable and bioaccessible fractions, along with biological methods

(bioassays) to better understand effects of contaminants uptake and relate it to

bioavailability in potential receptors. Bioassays provide a direct measure of

contaminant’s (bioavailable) concentration for a specific organism over time and

are able to quantify and detect a wide range of toxins at relatively low cost.
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Understanding and implementing site-specific bioaccessibility and bioavailability

data means being able to represent more realistically the on-site conditions.

Implementation of bioavailability can help the revision of exposure estimate,

reducing the cost of remediation, and bringing a greater degree of judgment

when assessing risk, and allowing greater levels of contamination left safely in

soil. However, in order to provide increased confidence in using bioavailability,

further investigation is needed on how to incorporate it into risk assessment.

Moreover new approaches are required to tackle the complexity of chemical

mixtures and the likely effect of exposure. The challenges are understanding

the potential risk connected to a complex chemical mixture, and assessing how

the physico-chemical interactions, such as co-solvency, sorption, desorption,

and saturation, can affect the potential toxicological response. Understanding

which chemicals are effectively bioavailable may be the key for future risk

assessment.
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Abstract: Mobility of heavy metals at contaminated sites is mainly influenced by

the soil physico-chemical properties and environmental conditions, therefore

assessing heavy metals (HM) and metalloids fractionation can provide insights

into their potential risk and the mechanisms that regulate bioavailability. A 12-

month mesocosms experiment was setup to investigate the effect of physico-

chemical factors (pH, moisture, and temperature) and weathering (time) on HM

and metalloids fractionation in three different multi-contaminated soil matrices

(low, medium, and high contamination) collected from a soil treatment facility

located in the United Kingdom, and two rural contaminated soil samples. The

study demonstrates that even though Pb and Zn were found associated with the

exchangeable fraction in the soil with the highest contamination (total average

Pb 3400 mg/kg, and total average Zn 2100 mg/kg in Soil 3), neither the

conditions applied nor the weathering caused an increase in their mobility.

Although it was expected that lower pH (4.5) would favours the dissociation of

HM and metalloids, no significant differences were observed, potentially due to

the initial alkaline pH of the genuine-contaminated soil samples. The results

show that even though total concentration of Pb, Cu, and Zn exceed the soil

standards and guideline values, HM were predominantly associated with the

non-exchangeable fraction, while only 5% were dissolved in the pore water

fraction (potentially bioavailable). In addition, the mobility and bioavailability of

HM remained constant over the 12 month monitoring, suggesting that these

soils pose negligible risk to the environment.

Keywords: chemical mixtures, fractionation, mobility, ageing, risk assessment.
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3.1. Introduction

Anthropogenic activities such as mining, waste disposal, combustion of leaded

fuels, the use of fertilizers and pesticides, and petrochemical spills all contribute

to the presence, accumulation, and persistence of heavy metals (HM) in soil

(Tóth et al., 2016; Suresh et al., 2012; Wuana and Okieimen, 2011). While

organic contaminants might be degraded as they persist in the environment,

inorganic contaminants, such as heavy metals and metalloids, are non-

degradable and display long-term persistence in soils (Lu et al., 2017), which

can potentially cause risk for plants, animals, and humans (Bolan et al., 2014).

European environmental regulatory frameworks, to manage HM pollution,

define risk based on the total extractable concentration of metals in soil. This

approach does not consider how likely an HM is to be bioavailable, which can

lead to an over/under estimation of risk (Cipullo et al., 2018). In relation to

contaminated land risk assessment and remediation, bioavailability can be

interpreted as the fraction of contaminant that is freely available in the

environment (not sorbed or sequestrated), and mobile (extractable by mild

extraction), thus the most likely to lead to receptor exposure (Adedigba and

Semple, 2015; Dean and Scott, 2004).

Sorption and desorption are the main processes controlling bioavailability of HM

(Caporale and Violante, 2016); in particular soil components responsible for the

sorption includes; amorphous materials, silicates, clay minerals, carbonates,

and organic matter (Leleyter et al., 2012). How a HM interacts with the different

soil compartments will influence its bioavailability, and it is bioavailability that

can inform the likelihood that a HM might leach into the broader environment

(Ashraf et al., 2012). For example, HM that are dissolved in pore water can be

easily mobilized, and are considered readily available for uptake by plants

(Chang et al., 2014) or available for interaction with biological systems (Hodson

et al., 2011); while those dissolved in labile fractions are potentially bioavailable,

if physico-chemical conditions were to change (e.g. pH decrease) (Di Bonito et

al., 2018). Many physico-chemical factors such as soil pH, composition, organic

carbon content, and redox potential, can impact partitioning between soil-solid

phase and pore water, which will consequently have an impact on HM
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bioavailability (Islam et al., 2015; Venegas et al., 2016). In contrast, HM

associated with non-exchangeable or non-mobile soil fractions are

characterized by a stronger binding (weaker reversibility), therefore unlikely to

leach into the surrounding environment.

Despite the recent shift toward risk-based approaches for assessing

contaminated sites, risk characterization remains a conservative approach

(Harmsen and Naidu, 2013; Naidu et al., 2015; Ortega-Calvo et al., 2015),

because it relies on total contaminant concentration, rather than assessing the

fraction of the total (bioavailable) that can potentially interact with biological and

environmental targets. For bioavailability to be implemented and support

regulatory decisions, the bioavailable estimation should rely on standardized

methods, however to date there exists no systematic method of assessment

(Alvarez et al., 2011; Kim et al., 2015).

A number of techniques have been developed over the past two decades, and

are still used, to estimate HM bioavailability in soil; including diffusive gradient in

thin films (Agbenin and Welp, 2012; Menegário et al., 2017; Parker et al., 2016;

Ren et al., 2015), ion exchange (Ge et al., 2005; Qian and Schoenau, 2002),

single-step extractions (Kim et al., 2015; Pinto et al., 2015; Sakan et al., 2016),

and sequential extractions (Cox et al., 2013; Fernández-Ondoño et al., 2017;

Palumbo-Roe et al., 2013; Reis et al., 2014; Sungur et al., 2014).

Sequential extractions, in particular, are simple low cost methods, that can be

applied to different soil types (Rosado et al., 2016), and can help understanding

HM and metalloids leachability, solubility, and mobility (Kaakinen et al., 2015),

providing the most information about the fate, transport, and behaviour of HM in

soil. However, most studies focus on (1) assessing effects and toxicity of one

contaminant in isolation (Cui et al., 2005), (2) using sequential chemical

extraction on synthetic models or spiked samples (Kim et al., 2015; Ma et al.,

2015) rather than genuine contaminated soil samples (Ma et al., 2015).

Limitations associated with these approaches include; metal transfer among

phases (Bermond, 1992) when performing sequential extractions resulting in an

overestimation of metals concentration and risk, and the inability of an artificial



71

contamination to reproduce the actual geochemistry encountered in real site

conditions (Ribeiro and Mexia, 1997). While it is challenging to establish a one-

size fits all approach for assessing HM behaviour in contaminated soil, the

choice of procedure should be based on a more realistic prediction of elemental

mobility and characterisation of their association with the soil matrix.

In this study a modified version of a non-specific sequential extraction method

coupled to chemometric analysis known as the Chemometric Identification of

Substrates and Element Distributions (CISED), was used and applied to five

different genuine contaminated soils. Our objectives were (1) to apply a

sequential extraction technique in genuine-contaminated soil samples and

identify the common soil phases, (2) to evaluate the spatial distribution of

HM/metalloids and potential changes over time in order to ascertain the

bioavailability of HM/metalloids and potential risk, (3) to determine the influence

of different physico-chemical factors on HM/metalloids solid phase distribution

and bioavailability, and (4) to evaluate the effect of co-occurrence of

hydrocarbons on HM/metalloids partitioning in soil samples.

The novelty of this study lies in the fact that it highlights the importance of taking

into account the effects of a range of environmental stressor conditions (pH,

moisture, and temperature) and weathering (time), on HM/metalloids potentially

labile fractions; including both dissolved elements (pore water), and

exchangeable fraction in genuine co-contaminated soil samples. A special

emphasis on the effectiveness of this protocol with multi-contaminated samples

of different nature (with and without stabilisation treatment), origins (industrial

and rural), and with a wide range of HM contents has also been verified. This

information can be used as additional lines of evidence to support risk-based

decisions about endpoint remediation and to evaluate potential reuse of

remediated soil.
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3.2. Materials and methods

3.2.1. Sample collection and preparation

Since soil contaminants are often present in the environment in a complex

mixture, including both inorganic and organic compounds as by-products of

industrial activities (Wawra et al., 2018), this study investigates five multi-

contaminated soil samples.

Three genuine contaminated soils, denoted as Soil 1, Soil 2 (treated), and Soil

3, were collected from a soil treatment facility located in the United Kingdom

(UK). Information regarding original location of the soil samples collected, and

specific details regarding the treatment applied (Soil 2), were not disclosed to

maintain anonymity and confidentiality. Two additional samples were collected

from a rural site contaminated by HM/metalloids and diesel range organic

(DRO) compounds (EC10 - EC24) (Soil 4), and HM/metalloids mineral oil range

organic (MRO) compounds (EC22 - EC34) (Soil 5). The mutual presence of

organic and inorganic contaminants in these soil samples could potentially

enhance (or inhibit) HM transport by competitive sorption, where metal-organic

complexes are formed, limiting their capacity to interact with soil-surfaces

(Wuana et al., 2014). Information about the soil matrix and type of

contamination is provided in Table 3.1.

All samples were collected randomly by disturbing sampling soil, up to a depth

of 30 cm and immediately stored at 4°C to minimise biological transformation

and other chemical reactions. Soil 1 was a sandy loam soil heavily

contaminated with tar and HM (petroleum hydrocarbons compounds (PHC) >

1000 mg/kg of soil, HM > 800 mg/kg of soil); Soil 2 was similar to Soil 1 except

that the former was stabilised with a cement-binder mixture.

Soil 3 was a sandy loam soil presenting low petroleum hydrocarbon content

(PHC < 1000 mg/kg) but high concentration of HM (HM > 6200 mg/kg of soil). In

addition, two different rural soils contaminated with HM and diesel (Soil 4), and

HM and mineral oil (Soil 5) (PHC < 500 mg/kg of soil, HM < 800 mg/kg of soil)

were used.
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Table 3.1: Soils samples and soil characteristics used in the mesocosms
experimental setup.

Soil Treatment Soil type Contamination type Soil matrix

Soil 1 Pre- treatment*
Industrial

PHC > 1000 mg/kg (high),
HM > 800 mg/kg

Sandy loam
Soil 2 Post- treatment**

Soil 3 No treatment Industrial
PHC <1000 mg/kg (medium),
HM > 6200 mg/kg

Sandy loam

Soil 4 No treatment Rural PHC < 500 mg/kg (low),
HM < 800 mg/kg

Clay loam
Soil 5 No treatment

PHC: petroleum hydrocarbons, HM: heavy metals
* No stabiliser, ** application of cement stabiliser

3.2.2. Mesocosms experimental design

Duplicate soil mesocosms were set up for each condition studied using a 10 L

polypropylene bucket. Each bucket was filled with approximately 5 kg of loosely

packed soil, and amended with buffer or moisture as according to the

experimental conditions described in Table 3.2. All experiments were tested

over a 12 month period. Different temperature conditions were simulated by

storing samples in controlled temperature rooms at 20°C and 4°C. Those

experiments treated under outdoor conditions were placed outside and subject

to seasonal UK temperature variations. Soil samples were amended with a

mixture of sulphuric acid and water to achieve different pH conditions. Redox

reactions are a relevant aspect of soil chemistry as they can affect speciation

and solubility of heavy metals and metalloids in soil, altering the biochemistry of

soils (Kuhlbusch and Crutzen, 2018; Tuor, 1990). Therefore this experiment

was conducted in presence of atmospheric O2 for all the soil samples and all

the conditions tested. Moisture content was maintained by adding deionized

water up to 20 and 70% of the soils’ maximum water holding capacity (WHC)

and moisture content was re-assessed bi-monthly. The moisture content for

Condition 6, which was kept outdoors, was not altered. Soil samples were taken

from each mesocosm at 0, 6, and 12 months’ time. All samples were analysed

for pseudo-total and bioavailable HM content.
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Table 3.2: Experimental design, conditions applied to all soils.

Condition pH Temperature Moisture content

Cond 1 Buffered to 6-7 20°C As received

Cond 2 Constant acid rain simulation (pH 4.5) 20°C As received

Cond 3 As received 20°C 20% WHC

Cond 4 As received 20°C 70% WHC

Cond 5 As received 20°C As received

Cond 6 As received Outdoor As received

Cond 7 As received 4°C As received

Cond: condition, WHC: water holding capacity

3.2.3. Physico-chemical characterisation

Soil samples were sieved using a 2 mm mesh to separate large particles (e.g.

roots, stems, and pebbles). Each soil sample was divided and processed for

analysis in the following way: (1) 5 g of sample was used for dry matter and

water content analysis, (2) a volume of 225 cm3 of sample was used for water

holding capacity measurement. Additionally, a large aliquot of each soil sample,

approximately 500 g, was air dried for 7 days to perform multiple analysis where

individual air-dried samples were used as follow: (1) 10 mL of sample

(measured with 10 mL brass scoop) was used for pH analysis, (2) 10 mL of

sample was used for particle size distribution, (3) 5 g of sample was used for

loss of ignition (LOI), (3) 0.001 mg was used for total Nitrogen (TN) and total

carbon (TC), (4) 5 g of sample was used for total phosphorous (TP) and

available phosphorous (AP).

For dry matter and water content analysis, 5 g of fresh soil samples were

weighted in a crucible and dried at 105°C ± 5°C for 24 hrs; the difference in

mass of an amount of soil before and after drying was used to calculate the dry

matter and water contents on a mass basis. Maximum water holding capacity

was determined according to ISO 11274 (1998). Soil samples were air-dried

and then flooded on a wetting-up bath for 7 days; the mass recorded was used

to determine the moisture content at saturation.

Soil pH was measured using a pH meter. Samples were prepared by adding

distilled water to create a slurry (1 part soil: 5 parts water). Samples were
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shaken for 60 min and allowed to equilibrate for an additional 30 min before pH

was measured (ISO 10390:2005).

Particle size distribution was determined by the sieving and sedimentation

method. In short, soil organic matter was discomposed with hydrogen peroxide,

and the resulting slurry dispersed with a buffered sodium hexametaphosphate

solution, then the different particle size fractions was determined by a

combination of sieving and sedimentation (ISO 11277:2009).

The soil organic content was determined by loss of ignition (LOI); air-dried soil

was dehydrated at 105°C then ashed at 450°C, loss on ignition is expressed as

a percentage of the dehydrated sample (British Standard BS EN 13039:2000).

Total carbon and total nitrogen in soil material were determined by heating to a

temperature of at least 900°C in the presence of oxygen gas, the amount of

nitrogen and carbon is then measured by a thermal conductivity detector (TCD)

(British Standard BS EN 13654-2:2001).

Total phosphorous was measured with a hydrochloric/nitric acid mixture

extraction; the phosphorus content was then determined by a spectrometric

measurement in solution (ISO 11047:1998). Available phosphorous was

measured by treating the soil with a 0.5 mol/L sodium hydrogen carbonate

solution at pH 8.5, the extract is then analysed by a spectrometric method (ISO

11263:1994).

3.2.4. Extraction and quantification of total PHC

The method used to determine total petroleum hydrocarbons compounds

(PHC), including both aliphatic (ALK) and aromatic (PAH) fractions in soil, was

based on the Risdon et al. (2008) procedure. Briefly 2.5 g of soil were weighted

and chemically dried with 2 g anhydrous sodium sulphate. At the same time as

weighing samples for extraction, moisture content was measured to provide the

appropriate correction factors. The chemically dried samples were extracted for

PHC content with a mixture of 15 mL of dichloromethane:hexane sonicated for

20 min at room temperature, and shaken at 150 rpm for 16 h. On the following

day, samples were again sonicated for 20 min at room temperature and

centrifuged at 2000 g for 10 min to separate the solid and liquid fractions. The
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liquid fraction was then cleaned onto a 6 mL SPE DSC-Si silica tubes,

concentrated to dryness (on ice) under a gentle stream of nitrogen, and re-

suspended in 0.5 mL dichloromethane:hexane (1:1) with addition 0.5 mL of

internal standards comprised of a deuterated alkanes mix (C10d22, C19d40 and

C30d62) and deuterated PAH mix (1,4-dichlorobenzened4, naphthalened8,

anthracened10, chrysened12, and perylened12) at 10 µg/mL each, respectively.

Concentration of petroleum hydrocarbons were identified and quantified by gas

chromatography-mass spectrometry (GC-MS) using an Agilent gas

chromatograph coupled to a Turbomass Gold mass spectrometer operated at

70 eV in positive ion mode. The column used was a Restek fused silica capillary

column (30 x 0.25 mm internal diameter) coated with RTX®-5MS (0.25 µm film

thickness). Splitless injection with a sample volume of 1 µL was applied. The

oven temperature was increased from 60°C to 220°C at 20°C/min then to 310°C

at 6°C/min and held at this temperature for 15 min; for a total run time of 38 min.

The mass spectrometer was operated using the full scan mode (range m/z 50-

500) for quantitative analysis of target aliphatic and aromatic hydrocarbons. For

each compound, quantification was performed by integrating the peak at

specific m/z. External multilevel calibrations were carried out using alkane

(standard solution (EC8-EC40) Sigma Aldrich, Dorset, UK) and PAH (EPA 525

PAH Mix A; Sigma Aldrich, Dorset, UK) standards, the concentration of which

ranged from 2.5 to 50 µg/mL respectively. For quality control, blank controls and

a 500 µg/mL diesel standard solution (ASTM EC12-EC60 quantitative, Supelco)

were analyzed every 20 samples. The variation of the reproducibility of

extraction and quantification of soil samples were determined by successive

injections (n = 7) of the same sample and estimated to ± 8%. In addition,

duplicate reagent control and reference material were systematically used. The

reagent control was treated following the same procedure as the samples

without adding soil sample. The reference material was an uncontaminated soil

of known characteristics, and was spiked with a diesel and mineral oil standard

at a concentration equivalent to 16,000 mg/kg. Relative standard deviation

(RSD) values for all the soils were < 10%.
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3.2.5. Modified sequential extraction and pseudo-total element

digestion

Assessing metal partitioning through the non-specific sequential extraction with

Chemometric Identification of Substrates and Element Distributions (CISED)

can (1) limit the re-adsorption and re-distribution of elements among phases

during extraction, often happening in genuine contaminated samples, (2)

overcome problems linked with “operational speciation”, where soil phases

(operationally defined metal forms) are identified strictly based on their

response to the extraction reagents, which not necessarily reflects the

behaviour of natural samples (Adamo and Zampella, 2008).

In this work, a modified procedure for sequential extraction was conducted

similar to that described in Cave et.al. (2004). Soil samples of approximately 2 g

were consecutively extracted by addition of 10 mL of an extraction solution

(Table 3.3) which contained an increasing concentration of nitric acid (i.e. from

0 to 5 M). After adding 10 mL of extraction solution, samples were mixed on an

end-over-end shaker for 10 minutes, and the liquid phase was recovered via

centrifugation (4350 g for 5 min) and used for analysis; the soil pellet was

resuspended again with the following extraction solution. Each extraction

solution (7 solutions) was used twice to obtain a total of 14 extracts (10 mL). As

highlighted in Table 3.3, in the last 8 extractions (E7 to E14) increasing amount

of H2O2 were added to the extraction solutions to enhance degradation of

organic matter and favour the dissociation of Fe–Mn oxides (Filgueiras et al.,

2002). However addition of H2O2 caused a high release of gas in the genuine

contaminated soil samples, rendering the centrifugation and separation phase

not possible without losing significant amount of soil material. We hypothesised

that this was due to both (1) high calcium and phosphorus content typical of the

content of cement-based stabilisers (Saeed, 2012), (2) the high reactive organic

content soils caused by the presence of co-contamination (petroleum

hydrocarbons), often observed in multi-contaminated soil matrix, such as the

industrially-polluted soils used in this study. Therefore in our approach we

implemented a modified version of the Cave et.al. (2004) extraction procedure,

which required the inclusion of an additional step. Hence, when 10 mL of
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solution 4 (9.75 mL of 0.10 M HNO3, and 0.25 mL of H2O2 100 volumes > 30%

w/v) were added to the samples, tubes were placed in a water bath for 30 min

at 70ºC, to favour the reaction and limit the gas production. This additional step

was sufficient to reduce the re-mixing of the solution allowing a proper

separation when centrifuging.

Table 3.3: Sequential extraction steps.

Extraction
number

Solution
number

Concentration
(M)

Deionised
water

Volume
HNO3

(mL)

Volume
H2O2

(mL)

Total
volume

(mL)

E1-2 Sol 1 0.00 10.0 0.00 0.00 10.00

E3-4 Sol 2 0.01 0.00 10.00 0.00 10.00

E5-6 Sol 3 0.05 0.00 10.00 0.00 10.00

E 7-8 Sol 4 0.10 0.00 9.75 0.25 10.00

E 9-10 Sol 5 0.50 0.00 9.50 0.50 10.00

E 11-12 Sol 6 1.00 0.00 9.25 0.75 10.00

E 13-14 Sol 7 5.00 0.00 9.00 1.00 10.00

E: extraction, Sol: solution, M: molar, HNO3: nitric acid, H2O2: hydrogen peroxide

The pseudo-total element digestion was performed according to the ISO 11047

method with aqua regia (ISO 11047:1998). Briefly, 0.5 g of soil was extracted

with 8 mL hydrochloric/nitric acid mixture using a microwave digestion system.

The extract was then filtered with 0.45 μm 25 mm nylon syringe filters and made 

up to 50 mL volume with water.

All pseudo-total and sequential solutions extracted were filtered with 0.45 μm 25 

mm nylon syringe filters and diluted 4 times with 1% HNO3 before analysis by

inductively coupled plasma mass spectrometry (NexION® 350D ICP-MS, Perkin

Elmer). The ICP-MS was calibrated using a mixture of both major (Ca, Fe, K,

Mg, Mn, Na, S, Si, P) and trace (Al, As, Ba, Cd, Co, Cr, Cu, Hg, Li, Mo, Ni, Pb,

Sb, Se, Sr, V, Zn) elements. The concertation ranges were 1, 5, 15, 20, 40

μg/mL for major elements and 0.01, 0.1, 0.5, 1, 2 μg/mL for trace elements. In 

both cases, working standards were prepared in matching sample matrix

solutions (nitric acid 1%). Calibration standards and samples extracts were

spiked with the following mix of four internal standards: Sc, Ge, Rh, and Bi.

ICP–MS was calibrated after each sample (14 sequential extracts). Limits of

detection (LOD) were estimated as the concentrations corresponding to three

times the standard deviation of measurements of analytes in a series of blank
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solutions (MilliQ water with 1% HNO3 and buffer solution) (n = 40) treated the

same way as the samples. The results are given in Appendix in Table 3.6.

Additionally, acid blanks (1% nitric acid), digestion blank, and guidance

materials (BGS102) were analysed every batch of 7 samples along with an

adequate rinse time programmed in between samples; to monitor blank

contamination, sensitivity, operating conditions, and extraction’s accuracy. For

the quantitative analyses, no blank correction was necessary as the calibration

standards and samples were treated exactly in the same way adding the same

amount and concentration of HNO3. The blank value was therefore taken into

account in the calibration curve.

Mean repeatability of guidance materials (BGS102) (expressed as relative

standard deviation %) was lower than 6 and 8% for sequential and aqua regia

digestion respectively. All elements’ concentrations have been converted into

mg/kg extracted from the soil-solid matrix. Descriptive statistics for the metals

and metalloids concentrations (expressed in mg/kg) is presented in Appendix in

Table 3.5.

Soil samples extraction recoveries obtained with the CISED method compared

with pseudo-total metal concentration averages were lower. The reason these

extraction recoveries are not 100% is that the CISED extraction protocol mainly

targets the easily soluble surface coatings, without attacking the silicate matrix

of soil. However, assessing the pore-water, carbonates, and oxides fractions, it

is sufficient to make assumption on HM and metalloids fractionation, as in

contaminated soil the input of HM (anthropogenic contamination) is mostly

provided by non-silicate bound forms (Wuana et al., 2014).

3.2.6. Modelling

Data obtained from the HM/metalloids sequential extraction were analysed

using MatLab® (Version R2015a) following the protocol developed by Cave et

al. (2004). The non-specific sequential extraction method named Chemometric

Identification of Substrates and Element Distributions (CISED) assumes that the

chemical composition data for each extract is made up from different

proportions of the physico-chemical components in the soil. Since the algorithm
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is designed to identify the number of components based on principal component

analysis and by Varimax rotation (Giacomino et al., 2011), for the purpose of

the modelling, the soil samples extracted were grouped according to soil matrix

type (Soil 1, Soil 2, Soil 3, Soil 4, and Soil 5) and metals concentration (low,

medium, and high contamination), in order to derive a more homogeneous data

matrix for processing. Data processing of the sequential extraction was carried

out on 5 multiple data matrices, each comprising the elemental extraction data

(25 elements) for the 14 extracts for each test soil, over 7 conditions at 3

sampling times (294 rows of data per matrix). The data were processed using a

self-modelling mixture resolution (SMMR) algorithm in MatLab® (Cave et al.,

2004). The algorithm output is based on three main data matrices: profile

(PRF), distribution (DST), and composition (CMP). The PRF of each modelled

soil component is calculated as the overall amount extracted (mg/kg) in each of

the 14 extractions. The DST expressed in mg/kg represents the concentration of

each element across the different soil components identified by the model. The

CMP data is expressed as a percentage of each element present in the

identified component. Both PRF and CMP are then used to calculate the single

element concentrations (mg/kg). More details are provided in paragraph 3.7

Annex.

3.2.7. Cluster analysis and complex associations between

variables

Modelled soil components and element distribution data, obtained from the

MatLab® algorithm, have been post-processed in RStudio to create a matrix,

which has been further categorised using a clustering methodology, and

visualised in a heatmap as previously described by Wragg et al. (2014) and Cox

et al. (2013). More details are provided in paragraph 3.7 Annex.

The SMMR algorithm produced distinct sets of physico-chemical phases for

each of the 5 multiple data matrices analysed. Briefly, representative samples

for each soil were selected and arranged in a data matrix containing on the left

side the elements composition (CMP) (Na, Mg, Al, Si, P, S, K, Ca, V, Cr, Mn,

Fe, Co, Ni, Cu, Zn, As, Li, Mo, Cd, Sb, Sr, Ba, Pb, Se) expressed as

percentage, and on the right side the extraction profile (PRF) of each soil under
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investigation (expresses in mg/kg). The matrix was then imported in RStudio

and subjected to hierarchical clustering where the data were mean centred and

scaled with Euclidean distance and linkage using Ward’s method (Ward, 1963)

and the ‘Agnes’ function in the cluster package (Maechler et al., 2012) in

RStudio (Version 1.1.423 – © 2009-2018 RStudio, Inc.). Clustering results were

visualized using a heatmap (presented in Figure 3.1 for overall soils and

treatments, and from Figure 3.4 to Figure 3.8 in Appendix for individual soils

and treatments) created using ggplot2, reshape2, grid, and ggdendro packages

(Wickham, 2007; Kahle and Wickham, 2013), where each row represents a

physico-chemical soil components found for a given soil. Soil name is indicated

by the ‘soil name’ previously used in Table 3.1 (Soil 1, Soil 2, Soil 3, Soil 4, and

Soil 5), followed by the elements name (e.g. Ca, Ca-K-Si, Fe-Mg) that make up

>10% of the physico-chemical component composition. The hierarchal

clustering obtained was used in parallel with chemical profile to provide

interpretations and classify the components into common distinct soil phases;

pore water (readily available or bioavailable), carbonates (potentially available

with time), and oxides (bounded, non-available) and to assess the partitioning

and bioavailable concentrations of HM/metalloids in soil.

3.2.8. Data analysis and descriptive statistics

In the context of this research, PERMANOVA was used to investigate the

significance and relationship between conditions tested (Cond 1, Cond 2, Cond

3, Cond 4, cond 5, Cond 6, and Cond 7), and PHC concentration (high,

medium, low) on (1) pore water, (2) exchangeable, and (3) non-exchangeable

fractions of inorganic contaminants in the soil samples. Permutational

Multivariate Analysis of Variance (PERMANOVA) is a Multivariate ANOVA with

permutations; it was applied by using “adonis” function of the vegan library in R

Studio (Oksanen et al., 2011).

Additionally using the “describe” function of Hmisc package (Harrell, 2018),

descriptive statistics for the metals and metalloids concentrations in the different

fractions and the 40 blank measurements and limit of detection (LOD) were

calculated, and are provided in Appendix in Table 3.5, Table 3.6, and Table 3.7.
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To establish a direct or indirect correlation between HM, which might be

indicative of similar elements behaviour in multi-contaminated soil, univariate

linear regression analysis was used by applying Pearson correlation coefficient

with the “corrplot” package in R Studio (Oksanen et al., 2011). The output

returned a correlation matrix for each soil (available in Appendix Table 3.8,

Table 3.9, Table 3.10, Table 3.11, and Table 3.12) which allows assessment of

relationships between all the HM.

3.3. Results and discussion

3.3.1. Soils characteristics and pseudo-total HM and PHC

content

All soil samples physico-chemical properties, HM/metalloids pseudo-total

concentrations, and hydrocarbons total content are summarised in Table 3.4.

Soils 1, 2, and 3 are representative of industrial sites with low total nitrogen

(700, 800 and 1200 mg/kg) and phosphorus (450, 430 and 500 mg/kg) contents

as well as alkaline pH; conditions often found in urban settings (Vodyanitskii

and Savichev, 2017). Soil samples collected at the treatment facility (Soil 1, 2,

and 3) belonged to a manufacturing gas plant, where often in addition to co-

presence of PAH and heavy metals, the coal ash and wood are generally

characterised by alkaline pH (Hatheway and Speight, 2017). Soil 2 had high

calcium and phosphorus content typical of the content of cement-based

stabilisers (Saeed, 2012). For the majority of metals, alkaline conditions can

potentially increase their adsorption (Horváth et al., 2015), and reduce their

mobility and thus limiting risk of exposure. However, some metals (Cr (VI), Mo

(V)) and metalloids (e.g. As and Se) are mainly present in stable oxyanions

forms (e.g. arsenate, selenite, vanadate, Cr (VI) chromate, and molybdate)

under alkaline pH. Oxyanionic species are negatively charged and can be more

mobile compared to the cationic species due to their high solubility and lack of

adsorption on the surface of soil minerals (Cornelis et al., 2008).

Soil 4 and Soil 5 texture was clay loam (sand content < 35%), and pH 7.0 - 8.0,

and presented a higher nutrient content overall. In these soils the presence of

soil particles smaller than 0.002 mm, such as clay, could contribute to increase
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the HM retention capacity due to the larger specific surface area (Ander et al.,

2011).

The C/N ratio of Soil 1 and 2 was more than 5 times higher than for the rural

contaminated soils (Soil 4 and 5), because of the larger amount of

hydrocarbons present in the industrial contaminated soil. The high organic

content might also be responsible for higher HM retention (Almeida et al., 2008;

Millward et al., 2004). For all the soils investigated, the pseudo-total metal

concentrations of Pb and Zn exceeded 8 times and 4 times the UK Soil

Guideline Values (SGV) and the European Directive 86/278/EEC; with an

average pseudo-total concentration of respectively 3400 mg/kg (Pb) and 2130

mg/kg (Zn) for the most contaminated sample (Soil 3).

Descriptive statistics for the total concentration of ALK, PAH, and PHC

compounds are provided in Table 3.4, where total maximum concentrations

values in rural contaminated soil samples were half compared to the most

contaminated industrial sample (Soil 1) ; 1295, 552, 286, 592, 427 mg/kg PHC

for Soil 1, Soil 2, Soil 3 , Soil 4 and Soil 5, respectively.
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Table 3.4: Physico-chemical properties of the five soil samples including pseudo-total heavy metals/metalloids and total
petroleum hydrocarbon concentrations.

Industrial Rural

Characteristics Analysis Soil 1 Soil 2 Soil 3 Soil 4 Soil 5

Nutrients

Total N (%) 0.07 0.08 0.12 0.23 0.25

Total C (%) 4.00 4.14 3.87 2.39 2.78

C:N 57.28 52.86 31.71 10.44 10.93

Total P (mg/kg) 453.37 433.73 499.60 798.59 801.12

Available P (mg/kg) 31.55 30.55 42.18 35.22 36.72

Physical properties

70% of WHCmax (% m/m) 21.92 20.37 19.64 39.21 40.02

20% of WHCmax (% m/m) 6.26 5.99 5.61 11.20 12.00

Dry matter content Wdm (%) 78.40 76.37 79.88 68.24 68.28

Water content (%) 27.55 30.94 25.19 46.53 46.46

Chemical properties
pH 9.71 9.56 9.22 7.99 7.54

LOI (%) 4.28 3.97 5.44 5.99 6.49

Stone/gravel content

% > 5.5 mm 25.97 23.47 20.13 0.00 0.00

% 5.5 mm< > 2 mm 24.54 27.00 38.73 24.69 23.57

% < 2 mm 49.48 49.54 41.15 75.31 76.43

Particle size

% 0.6 - 2 mm (Coarse sand) 11.88 13.65 16.86 3.55 4.36

% 0.2 – 0.6 mm (Medium sand) 29.86 33.41 34.58 14.90 14.46

% 0.06 - 0.2 mm (Fine sand) 30.37 27.04 20.24 11.70 11.29

Overall sand content 72.11 74.10 71.68 30.16 30.10

% 0.002 mm - 0.06 mm (Silt) 19.67 16.70 16.14 40.57 36.07

% < 0.002 mm (Clay) 8.22 9.20 12.17 29.28 33.83
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Industrial Rural

Characteristics Analysis Soil 1 Soil 2 Soil 3 Soil 4 Soil 5

HM and metalloids
pseudo-total
concentrations
(mg/kg) *

As 1.38 - 22.05 4.13 - 22.4 3.31 - 46.99 3.95 - 25.89 5.88 - 33.29

Cd 0.08 - 3.6 0.26 - 2.29 0.27 - 1.9 0.05 - 0.4 0.08 - 0.33

Cr 3.08 - 44.02 8.7 - 99.99 5.2 - 51.23 7.7 - 85.17 19.93 - 61.81

Cu 5.19 - 169.82 10.42 - 99.08 9.25 - 128.08 4.01 - 34.28 8.47 - 30.49

Hg 0 - 1.63 0 - 5.68 0 - 0.24 0 - 0.06 0 - 0.04

Ni 2.16 - 29.76 6.39 - 34.88 4.1 - 36.54 7.04 - 49.14 10.64 - 34.44

Pb 18.49 - 794.1 9.21 - 672.67 337.38 - 6603.57 11.51 - 66.85 20.44 - 59.73

Se 0.42 - 45.24 0.61 - 44.95 0.55 - 4.11 0.81 - 4.08 0.97 - 3.97

Zn 15.42 - 272.17 66.2 - 281.63 277.81 - 3527.2 30.03 - 156.62 44.57 - 130.83

PHC
Total concentrations
(mg/kg)*

TOT ALK 83.2 - 496.1 49.5 - 147.9 81.3 - 323.0 78.5 - 323.0 78.8 - 184.2

TOT PAH 59.1 - 796.1 135.0 - 405.4 4.9 -140.8 0.34 - 267.0 0.5 - 293.9

*across all condition tested and time points analysed

N: nitrogen; C: carbon; P: phosphorous, WHC: water holding capacity; LOI: loss of ignition; As: arsenic; Cd: cadmium; Cr: chromium; Cu:
copper; Hg: mercury; Ni: nickel; Pb: lead; Se: selenium; Zn: zinc; HM: heavy metals; PHC: petroleum hydrocarbons compounds; ALK:
alkanes; PAH: polycyclic aromatic hydrocarbons.
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3.3.2. HM solid phase distribution

Soil samples were subjected to the CISED sequential extraction procedure to

determine the physico-chemical soil components (substrates) being extracted

from the soil (e.g. carbonates, clays, exchangeable phases); and the solid

phase distribution of HM/metalloids between each identified soil component.

Figure 3.1 indicates the presence of 10 distinct physico-chemical clusters

(blocks) which have been further grouped as: (1) Pore water, (2) Carbonates

(low and high carbonates) and (3) oxides (Al-oxides, Mn-Oxides, and Fe-

oxides) (Figure 3.2). HM chemical partitioning results, obtained by sequential

extraction, are essential to understand their mobility; the results obtained show

that the extractable amounts obtained from each fraction can vary widely

(Figure 3.1 and Figure 3.2). The first physico-chemical cluster (Figure 3.1,

clusters 3, 5, and 8) is dominated by the presence of Na, Ca, S, and K, and was

extracted by the initial step of CISED, when deionized water (E1-E2) or low acid

concentration (HNO3 0.01 M, E3-E4) was used. This step was used to extract

elements that are soluble, highly mobile, and most likely associated with the

pore water fraction. The second physico-chemical cluster, Ca dominated, is well

identified in these samples (in particular Soil 2) and mainly composed of Ca

and, to lesser extent, of K, Si, and S (Figure 3.1, clusters 1, 2, 7, and 9). The

elevated presence of Ca in this fraction is linked to the fact that common

binders are calcium-based. This fraction can be divided into low carbonate

(extracted with low acid strength HNO3 0.05 – 0.1 M, E5-E6, E7-E8) and high

carbonate (extracted with HNO3 0.5 M, E9-E10). The third physico-chemical

cluster identified through the modelling corresponds to oxides including Mn-

oxides, Al-oxides, and Fe-oxides (Figure 3.1, clusters 4, 6, and 10). This cluster

was associated with elements (e.g. Mn, Al, and Fe) released after H2O2 addition

and dissolved by the concentrated HNO3 (E7 to E14). These elements were

extracted with very strong acid concentrations (E9-E14) and likely associated

with the clay components of the soil, therefore being overall immobile under

natural environmental conditions.
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Figure 3.1: Heatmap and associated clustergram for CISED extraction data for a selection of test soils. The horizontal white

lines divide the heatmap into the 10 different clusters, The vertical white line divides the elements composition data on the left

side (e.g. Na, Mg, Al) from the extraction number data (E1 to E14) on the right side. A high proportion of each component and

an indication of its composition are shown by a white or pale grey colouration with a low proportion as dark grey or black.
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Figure 3.2: Overall HM/metalloids distribution for Soil 1, Soil 2, Soil 3 , Soil 4,

and Soil 5 across the 7 conditions for all sampling times (T0, 6, and 12 months)

expressed as percentage. Concentrations have been averaged across time and

conditions in order to provide an overview of the overall metal behaviour.
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3.3.3. Relationship between HM and metalloids distribution

and bioavailability

The compositional data and distribution of HM and metalloids, for all soil

samples in these fractions, were obtained by transforming each original raw

concentration (i.e. mg/kg) into proportions of the total (100%) and are shown in

Figure 3.2. Concentrations have been averaged across time and conditions in

order to provide an overview of the overall metals behaviour in the five soils

types (Soil 1, Soil 2, Soil 3, Soil 4, and Soil 5) (see for details Appendix, Table

3.7). The most mobilised elements in the exchangeable fraction were the

following: Hg and Se for Soil 1; Cd and Se for Soil 2; Cd and Hg for Soil 3; Cd

for Soil 4, and Cd, Cu for Soil 5. Conversely, As and Cr showed the least

mobility. The order of mobility of the metals in the exchangeable fraction was as

follows: Hg > Se > Ni > Cr > Cd > As > Zn > Cu > Pb (Soil 1); Se > Cd > Cr Hg

> Ni > As > Cu > Zn > Pb (Soil 2); Cd – Hg - Zn > Pb > Ni > Cu > Se > Cr >As

(Soil 3); Cd > Hg > Ni – Zn > Cu > As > Se > Pb > Cr (Soil 4); and Cd > Cu >

Pb - Se > Zn > Ni > As > Cr > Hg (Soil 5). Interestingly As was the least mobile,

while Cd was very mobile at pH > 9 in the industrial soil samples (Soil 1, Soil 2,

and Soil 3). Previous literature showed that As adsorption tend to decrease

under alkaline conditions (pH > 9) due to the presence of negatively charged

H2AsO3, HAsO3, and AsO3 (forming soluble species of As(III)) (Dias et al.,

2009). However in these samples, As was found mostly associated with the

non-exchangeable fraction (Mn-Al and Fe oxides). Therefore we can assume

that the majority of As was present as inorganic oxyanion As(V) forming H2AsO4

and HAsO4
2, which is known to strongly interact with oxides (positively charged)

in both un-contaminated and contaminated soils (Lin and Puls, 2000; Sarkar,

2002).

In Soil 3, 4, and 5, Cd sorption was limited as the element was predominantly

found in the exchangeable fraction which is likely due to the influence of the

soil-solid particle distribution on Cd behaviour. Previous studies highlighted that

Cd binding on clay minerals is weaker compared to binding to organic matter

(Janssen, 1997; Prokop et al., 2003) which was the case for these soils.
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In Soil 1, both Mn and Fe were below detection limit in the pore water fraction.

Changes in Mn and Fe concentrations, in the pore water, were negligible for

Soil 2 and Soil 3. In contrast for Soil 5, both Fe and Mn concentrations

decreased overtime in the pore water, suggesting that pore water Fe (II) was

oxidised to insoluble Fe (III).

The partitioning, mobility, and distribution of HM and metalloids assessed in

these soil samples can provide different level of information, such as (i)

information on the origin of the contamination, (ii) the effectiveness of cement-

stabiliser and potential reuse of soil material, (iii) the limitation often associated

with guideline values thresholds. HM/metalloids partitioning can provide

information on the origin of the contamination, where often HM from

anthropogenic sources usually bind to the exchangeable fractions (Frentiu et

al., 2008; Hu et al., 2006; Iwegbue, 2015); as observed for Soil 1 where 90, 50,

and 25% of Hg, Se and Ni were distributed in the exchangeable fraction. Over

33, 28, and 20% of Se, Cd, and Cr (Soil 2), and over 80% of Cd, Hg, Pb, and Zn

(Soil 3) were found in the exchangeable fraction; while Soil 4 and 5 showed

lower values below 50% for Zn and Ni. Nevertheless, HM and metalloids

present in the exchangeable fraction can also become mobilised over time

(Baran and Tarnawski, 2015) and should therefore be considered for a more

complete assessment of the entire pool of mobilisable elements. However data

regarding the soil origin and underline geology must also be considered in order

to estimate the weight of the effect of geogenic or (anthropogenic) contribution

on HM/metalloids bioavailability (Borgese et al., 2013). Being the soil samples

provided anonymously from a treatment facility, no further information on the

geology, location, or origins of the contamination were provided.

The potential of re-using soil that has been treated or remediated is a viable and

sustainable strategy (Mehta et al., 2018); however concerns regarding safety of

the re-used material and the possible further spreading of contaminants still

exists. Results obtained from sequential extraction highlighted that even though

Soil 1 and 2 showed a similar HM mobility pattern, some of the less mobile

elements including Cr, As, and Zn were significantly more associated with the

non-exchangeable fraction of Soil 2 (treated with stabiliser). The presence of
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the cement stabiliser was able to reduce HM solubility, increasing adsorption

and incorporation to the porous surfaces, as previously observed in the

literature (Jiang et al., 2006; Johnson, 2004). Since no information was

available on the type of cement stabiliser used in Soil 2, it was not possible to

draw further conclusion on the mechanism dominating the fixation of HM.

Ultimately, whilst providing information on the target HM metalloids for risk

assessment, total concentration cannot provide sufficient information about

elements mobility and bioavailability in soil; highlighting that soil guideline

values (SGV) are useful, but their application in the detailed quantitative risk

assessment is limited. Sequential extraction instead provided specific

information on the solid-phase fractionation of HM/metalloids in soil (Cox et al.,

2013; Palumbo-Roe et al., 2013; Reis et al., 2014), therefore allowing relevant

stakeholders and regulators to make informed assumptions on bioavailability for

risk assessment (Kaakinen et al., 2015).

3.3.4. Behaviour of exchangeable metal fraction over time

Average HM/metalloids content and distribution across the three fractions (pore

water, exchangeable, and non-exchangeable) in the five soil samples for the 7

conditions tested are presented in Figure 3.3. In Soil 1, no changes were found

for Cd, Cr, Cu, Ni, Pb, and Zn over time. On the other hand, As and Se

concentrations changes can be explained by the good As-Se-metals correlation

(Appendix, Table 3.8) suggesting that As and Se metals could come from

sulphides. The mobility and toxicity of As and Se depends on their redox state.

In neutral to alkaline soils, As and Se mobility increases because of the

formation of arsenate (H2AsO4
-) and selenate (SeO4

-2) ions (Soukup, 2013),

which weakly bond to oxides and other minerals. For Soil 2, all the

HM/metalloids showed little or no difference in distribution across the three

sampling events (T0, T6, and T12). Most of HM/metalloids were almost entirely

found in the non-exchangeable fraction. Such behaviour can be explained

because either (1) the addition of the stabilisers was effective in retaining the

contamination over time, as highlighted in previous paragraph, or (2) these

metals were mainly associated with clay related elements (e.g. Mn, Al, and Fe)

released after H2O2 addition, and dissolved by the concentrated HNO3. This
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suggests that Pb, Cu, and Zn are unlikely to become available with time. For

example, Pb quantities present in the exchangeable fraction (Soil 2) fell within

the range of the median concentration for UK urban topsoil G-BASE data (48-

128 mg/kg), with a 75th percentile of 253 mg/kg (Ander et al., 2011) (Appendix,

Table 3.7).

Similarly, As, Cd, Cr, and Zn in Soil 3 were not affected by ageing. In particular

As (93%) and Cr (81%) were almost exclusively present in the non-

exchangeable fraction. Pb, Cu, Ni, and Se distributions barely changed

overtime being exclusively in the exchangeable fraction. Even though Pb is one

of the main contaminant of concern with high concentration in exchangeable

fraction (average conc. 1500 mg/kg), its concentration persisted over the 12-

month incubation. This is probably due to the formation of insoluble Pb

compounds such as phosphates, carbonates, and oxides typically formed when

the pH is above 6 (Wuana and Okieimen, 2011). Zn was almost entirely

associated with the exchangeable fraction: it is well known to generally display

strong affinity to the non-residual fraction of the soil (Naji et al., 2010). Soil 4

and 5 presented a very similar distribution with the exception of Cu, Hg, Pb, and

Se, which were more exchangeable in Soil 5. In both soils and similarly to Soil

2, As, Cd, Cr, Cu, Pb, and Se were not affected by ageing. The increase of Zn

concentration in the exchangeable fraction observed for Soils 5 and 6 during

mesocosms incubation was attributed to Zn affinity for hydroxides and

carbonates, which can promote remobilization of this element in soil (Kumar,

2016). Ni also showed trends similar to Zn in metal release and its concertation

increased in the mobile fraction after incubation. Ageing, has been previously

identified as a main driver for leachability of metals in soil. However, an inverse

relationship between time of residence in soil and amount of metal leachable

exists: the shorter the time, the larger is the amount that can be released

(Kumar, 2016). Regarding the time when the contamination occurred, there was

no information associated to the soil samples collected. Nevertheless, it was

assumed that contamination in Soils 4 and 5 was more recent when compared

to Soils 1, 2, and 3.
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Figure 3.3: Heavy metals and metalloids distribution expressed as percentage (pore water, exchangeable, and non-
exchangeable), within the 5 soil samples under the 7 mesocosm conditions tested at T0, 6 and 12 months.
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3.3.5. Influence of the environmental parameters on HM and

metalloids behaviour and fate

Sequentially extracted fractions were compared to gain a mechanistic

understanding on how measurements varied when different conditions were

applied at the different times. After evaluating the concentration and distribution

of the HM/metalloids in the 5 soils, a detailed investigation of the 3 metal pool

fractions behaviour under the 7 mesocosms conditions was carried out. No

significant differences were found for the same soil samples exposed to

different pH (Conds 1 and 2), different moisture content (Conds 3 and 4) and

different temperature (Conds 6 and 7) (data not shown).

PERMANOVA was used to investigate the significance and relationship

between conditions tested (Cond 1 - 7), and PHC concentration (high, medium,

low), on (1) pore water, (2) exchangeable, and (3) non-exchangeable fractions

of inorganic contaminants in the soil samples. For all industrial contaminated

samples (Soil 1, Soil 2, and Soil 3) no significant effect (p > 0.5) of conditions,

nor PHC concentrations on pore water, exchangeable, and non-exchangeable

fractions were recorded. This confirms that difference observed in HM

partitioning among different fractions, in different soil samples was minimal, and

that these soil materials potentially pose low risk to the environment. For both

Soil 4 and 5 no significant effect (p > 0.5) of conditions, PHC concentrations on

pore water concentrations was observed. However, in Soil 4 only, a significant

effect of PHC concentrations on exchangeable (p = 0.001) and non

exchangeable (p = 0.003), fractions were found; suggesting that additional

factors may play a role in contaminant concentration changes (e.g. degradation

of organic contaminants, volatilisation, and interaction with soil organic matter),

rather than the condition applied, which did not cause a significant difference

between groups. The co-presence of PHC increased the HM/metalloids

redistribution into the exchangeable fraction for Zn, Hg, Ni, while no changes

were observed for As, Cd, Cr, Cu, Pb, and Se.

While individual compounds in a complex chemical mixture are assumed to

have independent sorption behaviour, at high concentrations co-presence of
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contaminants can influence sorption as a results of changes in the soil-solution

equilibrium (Gao et al., 2006). Thus, co-presence of mixed contaminants such

as petroleum hydrocarbons and heavy metals may influence/change mobility,

behaviour and bioavailability of HM. The degree and type of combined effects

obtained from mixtures is highly dependent on both concentration and time of

persistence in soil (Wuana and Okieimen, 2011). Most studies report a negative

effect of PAH-HM co-occurrence, due to the negative influence of HM on soil

microbial community which can hamper the biodegradation. However some

other studies highlighted the positive interaction of heavy metals and PAH;

Saison et al. (2004), Gao et al. (2006), and Zhang et al. (2011) observed an

increase in adsorption of phenanthrene in presence of HM; additionally a

positive interaction between Zn, Cd, and phenanthrene towards microbial

enzyme activity was observed in Shen et al. (2005) study. Some examples of

studies assessing effects of co-contamination are present in literature (Ding et

al., 2017; Iwegbue, 2015; Lin et al., 2008), however mechanisms that regulates

sequestration, displacement, and partitioning of HM in complex contaminated

sites is still poorly understood.

Since pH governs trace metal solubility (low pH decreases sorption and

increases bioavailability and mobility), a greater variation in HM/metalloids

distribution associated to Conds 1 and 2 were expected: this was not observed

in any of the soils tested. Different authors have previously reported that pH has

less or no effect on Cu, Pb and Zn sorption (De Matos et al., 2001; Gomes et

al., 2001; Katyal and Sharma, 1991). Such behaviour suggests that soil

chemical properties (e.g. pH) are not the only parameters affecting HM

remobilisation. This finding can be attributed to the addition of mild acidic

sulfuric acid solutions (Conds 1 and 2) which were not sufficient to permanently

modify the soils’ pH. This acid addition could just cause a transient decrease in

pH, and thus revealed the strong pH buffer capacity of these soils. Our finding

were consistent to previous results in the literature which highlighted the minor

effect on HM leaching behaviour affected by mildly acidic and neutral pH soil

values (Du et al., 2014). The lack of changes in the HM stability was more

remarkable in samples with higher sorption capacity owing to the presence of
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porous material such as high clay content (Soil 4) or presence of cement

stabiliser (Soil 2), which could have played a role in increasing the retention of

soluble HM.

Higher interstitial water (Cond 4) can cause a decrease in soil redox potential

and change HM oxidation states (Mukwaturi and Lin, 2015). This influences the

fate and transport of metals and, combined with pH, could also control solubility

or the formation of coordination complexes. Changes in pH and moisture

content (Conds 3 and 4) did not affect however, the behaviour and

transformation pathways of the metals in the soils tested. Among the factors

that could influence metal distribution, temperature (Conds 6 and 7) has

previously been found not to exert any measurable effects on Pb solubility

(Kalbasi et al., 1978) or Cd leaching (Basta and Tabatabai, 1992). A similar

trend was observed for moisture on paddy soil (Liu et al., 2016).

3.3.6. Descriptive statistics

Descriptive statistics were conducted on the data to identify relationships

between HM and metalloids, details are provided in Appendix. A positive

correlation coefficient among HM suggests that those elements may share

common sources, mutual dependence, and have identical behaviour during the

transport (Kennou et al., 2015; Suresh et al., 2012, 2011). Information on

potential sources and pathways of HM can be obtained based on inter-element

relationships (Altan et al., 2016).

Elements, namely Zn, As, Cd and Pb, were positively correlated for Soil 1,

whereas Cu did not relate with any of the studied metals and Se was only

correlated with Hg (Table 3.8). Similarly, a significant positive correlation was

also detected between Zn, As, Cd, Pb and Se for Soil 2 (Table 3.9). In Soil 3, a

significant positive correlation was also observed for Zn, Cd and Pb (Table

3.10). Table 3.11 and Table 3.12 further showed high Pearson’s correlation

coefficients between Cu, Zn, As, Pb, and Se in Soil 4 and between Ni, Cu, Zn,

Cd, Pb, and Se in Soil 5.

Cu, Zn, and Cd in particular belong to the groups 12 and 13 of the periodic table

and share similar physico-chemical characteristics therefore behaving similarly.
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Absence of correlation between Hg-Cu (- 0.052) or Pb-Hg (- 0.080) for Soil 1,

Cr-Hg (0.304) Soil 2, Ni-Cr (0.436), Pb-Hg (0.273) for Soil 3, Cd-Cr (- 0.296),

Cd-As (- 0.270) for Soil 4, and Cr-Hg (- 0.067), Cu-Cr (0.125) for Soil 5

suggests that these metals behave very differently and their fate and distribution

are not controlled by a single common factor (Kennou et al., 2015).

3.4. Conclusions

Assessing the partitioning of HM and metalloids in soil is a more suitable tool to

understand distribution and fate, rather than total concentration and the generic

guideline values which commonly assumes that 100% of the contaminant of

concern is bioavailable. The solid phase distribution highlighted the following:

(1) while pseudo-total concentration shows that Pb, Cu, and Zn exceed the

guideline values, only a negligible fraction of these HM were dissolved in pore

water, which confirm that these metals were not readily-available; (2) the

concentration of Zn and Pb in the mobile fractions (exchangeable) was higher

than those in the non-mobile fraction (non-exchangeable), both fractions

remained stable during weathering and under the different treatment applied;

(3) a clear difference was observed between Soil 1 and Soil 2, where HM were

significantly more bounded in Soil 2, a fact confirming that the stabilisation was

a successful technique to minimize element’s mobility. We assessed the

behaviour of exchangeable metal fraction over time, results showed that HM

were stable and, similar behaviours were observed for both industrial

contaminated soils (Soil 1, 2 and 3), and rural contaminated soil (Soil 4 and 5)

at 0, 6 and 12 months. In addition, the conditions applied such as different pH

(Cond 1 and Cond 2), different moisture (Cond 3 and Cond 4) and temperature

(Cond 6 and Cond 7) did not have a clear pattern/effect on metals concentration

over time. This finding can be attributed to both the soils having a strong soil pH

buffer capacity, and the initial alkaline pH of the soil samples. Lastly, the

Pearson’s correlation coefficients showed similarities between investigated

HM/metalloids and their observed distribution pattern among the three phases

(pore water, exchangeable, and non-exchangeable), and helped to classify

these HM in groups. Overall, the limited changes in metal fractionation in these

soil samples, including limited removal from more recalcitrant fractions, suggest
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that stable soil-complexes and interaction with the soil matrix were formed and

may render the elements less mobile over time, therefore reducing

environmental risk. In conclusion, standard guidelines values can provide initial

information on the target HM for risk assessment, but they are not sufficient to

understand the role of metal partitioning and soil properties on metal

bioavailability and their potential effects (risk). Using sequential extraction to

measure the HM concentration allows site specific assessment criteria to be

determined and refined, providing a better estimate of the HM/metalloids

potential bioavailable concentration.
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3.6. Appendix

Table 3.5: Descriptive statistics for metals and concentrations (expressed in mg/kg), obtained from replicates CISED
sequential extraction of guidance materials.

Elements min max range sum median mean SE.mean CI.mean.0.95 var std.dev coef.var

Al 244.59 379.45 134.87 1682.34 342.91 336.47 24.65 68.45 3039.10 55.13 0.16
As 0.39 0.81 0.43 2.49 0.43 0.50 0.08 0.22 0.03 0.18 0.36
Ba 8.45 10.38 1.93 47.71 10.18 9.54 0.44 1.23 0.98 0.99 0.10
Ca 1108.26 1535.07 426.81 6375.74 1221.39 1275.15 72.74 201.95 26454.26 162.65 0.13
Cd 0.02 0.05 0.03 0.16 0.03 0.03 0.00 0.01 0.00 0.01 0.33
Co 1.37 1.83 0.46 8.13 1.72 1.63 0.09 0.24 0.04 0.20 0.12
Cr 0.37 3.45 3.08 11.46 2.85 2.29 0.54 1.51 1.48 1.22 0.53
Cu 0.73 1.24 0.51 5.12 1.12 1.02 0.09 0.26 0.04 0.21 0.20
Fe 319.69 857.41 537.72 3392.79 762.15 678.56 94.22 261.59 44383.96 210.68 0.31
K 63.99 107.52 43.54 435.88 81.22 87.18 8.39 23.30 352.23 18.77 0.22
Li 0.24 0.60 0.36 2.04 0.46 0.41 0.07 0.19 0.02 0.15 0.37
Mg 42.30 77.94 35.64 319.76 63.17 63.95 6.47 17.95 209.06 14.46 0.23
Mn 364.95 442.46 77.51 1996.96 404.15 399.39 13.99 38.85 979.00 31.29 0.08
Mo 0.04 0.38 0.34 0.95 0.20 0.19 0.05 0.15 0.02 0.12 0.64
Ni 1.17 2.04 0.87 8.60 1.84 1.72 0.16 0.45 0.13 0.36 0.21
P 43.34 84.58 41.24 317.31 63.71 63.46 6.56 18.22 215.22 14.67 0.23
Pb 2.42 4.07 1.65 16.28 3.29 3.26 0.36 1.00 0.65 0.81 0.25
S 19.19 53.78 34.59 162.83 33.81 32.57 6.14 17.06 188.78 13.74 0.42
Se 0.24 0.58 0.33 1.62 0.27 0.32 0.06 0.18 0.02 0.14 0.44
Si 178.17 294.16 115.99 1204.00 266.29 240.80 23.00 63.87 2645.73 51.44 0.21
Sr 2.49 3.03 0.54 14.19 2.97 2.84 0.11 0.31 0.06 0.25 0.09
V 1.43 2.62 1.19 10.73 2.25 2.15 0.23 0.62 0.25 0.50 0.23
Zn 2.79 5.04 2.26 20.93 4.36 4.19 0.37 1.04 0.70 0.84 0.20

SE.mean: Standard error on the mean; CI.mean: confidence interval of the mean at the p level; var: variance; std.dev: standard deviation;
coef.var: variation coefficient, defined as the standard deviation divided by the mean.
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Table 3.6: Descriptive statistics of 40 blank measurements (expressed in counts per second), and limit of detection (LOD,
expressed in μg/L) of the analytical method applied.  

Elements min max range sum median mean
SE CI.mean.

0.95
std.dev

coef.
stdev stdev*3 slope LOD

mean var
Al 116.0 322.0 206.0 1029.1 148.6 171.5 30.9 79.3 75.6 0.4 51.6 154.8 136.8 1.1
As 1.0 6.0 5.0 19.3 3.1 3.2 0.7 1.8 1.7 0.5 1.2 3.5 318.1 0.0
Ba 1961.0 3850.0 1889.0 14543.5 2193.0 2423.9 290.3 746.1 711.0 0.3 411.5 1234.5 66104.0 0.0
Ca 2.0 12.0 10.0 38.0 6.0 6.3 1.4 3.6 3.4 0.5 2.1 6.4 4.7 1.4
Cd 5.0 26.0 21.0 59.8 7.4 10.0 3.2 8.3 7.9 0.8 3.5 10.5 6069.7 0.0
Co 4.0 448.0 444.0 497.7 7.5 82.9 73.1 187.9 179.0 2.2 81.3 244.0 7670.5 0.0
Cr 30.0 1450.0 1420.0 1681.4 43.5 280.2 234.1 601.7 573.3 2.1 214.7 644.2 3768.5 0.2
Cu 145.0 835.0 690.0 1783.9 201.0 297.3 108.4 278.7 265.6 0.9 151.1 453.2 5688.6 0.1
Fe 2606.0 30202.0 27596.0 44906.0 2922.0 7484.0 4545.0 11684.0 11134.0 1.5 4171.0 12515.0 2943.0 4.3
Hg 79.0 159.0 80.0 644.5 101.5 107.4 11.3 29.0 27.6 0.3 16.9 50.6 6151.6 0.0
K 7777.0 10162.0 2385.0 54500.9 9138.7 9083.5 310.9 799.2 761.6 0.1 298.6 895.9 299.7 3.0
Li 391.0 713.0 322.0 3080.9 488.0 513.5 47.5 122.0 116.3 0.2 96.1 288.4 81705.3 0.0

Mg 168.0 832.0 664.0 1826.8 205.8 304.5 105.9 272.2 259.4 0.9 110.1 330.2 486.4 0.7
Mn 8.0 363.0 355.0 433.1 14.5 72.2 58.2 149.6 142.6 2.0 53.4 160.3 1685.4 0.1
Mo 14.0 48.0 34.0 162.4 24.9 27.1 4.7 11.9 11.4 0.4 7.0 20.9 13962.6 0.0
Ni 19.0 663.0 644.0 831.0 31.3 138.5 105.1 270.1 257.4 1.9 128.7 386.2 2242.0 0.2
Na 4654.0 11725.0 7071.0 37876.2 5386.8 6312.7 1101.6 2831.8 2698.4 0.4 1631.2 4893.5 1139.9 4.3
P 161.0 197.0 36.0 1086.1 182.1 181.0 5.0 12.8 12.2 0.1 8.6 25.9 8.7 3.0
Pb 776.0 3336.0 2560.0 7708.6 904.5 1284.8 411.2 1056.9 1007.1 0.8 384.7 1154.1 88169.8 0.0
S 2597.0 3306.0 709.0 18408.3 3124.9 3068.1 99.7 256.4 244.3 0.1 114.1 342.3 3.1 111.9
Sb 23.0 86.0 63.0 271.5 41.8 45.3 8.9 22.9 21.8 0.5 12.5 37.6 19894.6 0.0
Se 2.0 11.0 9.0 39.5 6.8 6.6 1.2 3.2 3.0 0.5 2.1 6.3 24.3 0.3
Si 34440.0 41612.0 7172.0 236813.4 40173.7 39468.9 1037.5 2667.0 2541.3 0.1 1046.5 3139.6 116.6 26.9
Sr 732.0 1548.0 816.0 5612.9 840.5 935.5 124.5 320.1 305.0 0.3 153.7 461.1 64139.7 0.0
V 1.0 10.0 9.0 23.3 3.1 3.9 1.3 3.3 3.2 0.8 1.7 5.1 2962.4 0.0
Zn 39.0 491.0 452.0 792.0 65.8 132.0 72.0 185.2 176.5 1.3 74.7 224.1 494.8 0.5

SE.mean: Standard error on the mean; CI.mean: confidence interval of the mean at the p level; var: variance; std.dev: standard deviation;
coef.var: variation coefficient, defined as the standard deviation divided by the mean.



109

Table 3.7: Descriptive statistics of heavy metals (HM) and metalloids concentrations in pore water, exchangeable and non-
exchangeable fraction (expressed in mg/kg) in the soil samples analysed (Soil 1, Soil 2, Soil 3, Soil 4, and Soil 5).

Sample Element Pore water Exchangeable Non-exchangeable
Range Median Range Median Range Median

Soil 1

As 0.050 - 0.113 0.080 0.494 - 0.615 0.599 6.031 - 7.345 7.050
Cd 0.002 - 0.005 0.003 0.042 - 0.051 0.047 0.216 - 0.259 0.234
Cr 0.003 - 0.006 0.005 0.882 - 1.092 1.029 3.070 - 4.716 3.648
Cu 0.056 - 0.126 0.089 0.168 - 0.213 0.193 25.918 - 41.040 33.170
Hg 0.000 - 0.000 0.000 0.001 - 0.002 0.002 0.000 - 0.000 0.000
Ni 0.035 - 0.079 0.056 1.256 - 1.506 1.388 4.197 - 5.605 4.984
Pb 0.000 - 0.000 0.000 0.044 - 0.056 0.048 96.378 - 122.121 106.981
Se 0.033 - 0.075 0.053 0.691 - 0.845 0.791 0.732 - 0.918 0.864
Zn 0.106 - 0.238 0.168 4.769 - 5.756 5.320 70.648 - 81.294 73.908

Soil 2

As 0.016 - 0.028 0.021 0.542 - 0.607 0.582 7.678 - 8.684 7.929
Cd 0.004 - 0.008 0.006 0.214 - 0.256 0.250 0.582 - 0.705 0.656
Cr 0.000 - 0.000 0.000 1.091 - 1.354 1.263 4.910 - 6.364 5.375
Cu 0.024 - 0.036 0.029 2.528 - 3.079 2.867 41.476 - 46.504 43.960
Hg 0.000 - 0.000 0.000 0.001 - 0.001 0.001 0.001 - 0.006 0.002
Ni 0.004 - 0.005 0.004 0.874 - 0.990 0.894 5.945 - 9.796 6.501
Pb 0.357 - 0.648 0.468 3.848 - 4.699 4.486 149.771 - 186.686 171.491
Se 0.010 - 0.017 0.013 0.544 - 0.590 0.569 1.102 - 1.229 1.139
Zn 0.161 - 0.315 0.214 8.978 - 11.568 10.750 131.240 - 150.798 140.395

Soil 3

As 0.168 - 0.246 0.192 0.590 - 0.741 0.671 13.142 - 20.037 16.334
Cd 0.000 - 0.000 0.000 1.129 - 1.446 1.340 0.010 - 0.015 0.012
Cr 0.126 - 0.201 0.154 0.390 - 0.536 0.472 7.415 - 11.306 9.216
Cu 0.389 - 0.581 0.461 12.106 - 15.287 14.005 22.493 - 34.295 27.957
Hg 0.000 - 0.000 0.000 0.007 - 0.016 0.009 0.000 - 0.000 0.000
Ni 0.029 - 0.043 0.036 5.545 - 7.054 6.614 4.092 - 6.239 5.086
Pb 42.420 - 62.902 52.165 1624.888 - 2064.239 1891.046 420.330 - 640.887 522.437
Se 0.087 - 0.126 0.104 0.437 - 0.561 0.510 0.747 - 1.139 0.929
Zn 2.052 - 3.118 2.540 1313.302 - 1657.856 1535.797 9.358 - 14.268 11.631
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Sample Element Pore water Exchangeable Non-exchangeable
Range Median Range Median Range Median

Soil 4

As 0.002 - 0.005 0.004 0.325 - 0.385 0.343 3.094 - 4.406 3.622
Cd 0.001 - 0.002 0.002 0.170 - 0.204 0.187 0.024 - 0.032 0.028
Cr 0.001 - 0.002 0.001 0.060 - 0.073 0.063 4.267 - 9.207 5.086
Cu 0.048 - 0.090 0.069 5.286 - 6.041 5.708 10.286 - 12.040 10.661
Hg 0.000 - 0.000 0.000 0.002 - 0.003 0.002 0.001 - 0.003 0.001
Ni 0.002 - 0.009 0.004 2.759 - 3.327 3.047 2.028 - 5.379 2.245
Pb 0.000 - 0.000 0.000 0.290 - 0.340 0.302 53.687 - 58.755 56.100
Se 0.068 - 0.116 0.080 0.109 - 0.135 0.118 1.544 - 1.920 1.615
Zn 0.124 - 0.232 0.159 15.243 - 18.038 16.736 12.100 - 28.150 13.715

Soil 5

As 0.000 - 0.000 0.000 0.600 - 0.732 0.646 2.945 - 4.349 3.659
Cd 0.000 - 0.000 0.000 0.200 - 0.231 0.216 0.000 - 0.000 0.000
Cr 0.000 - 0.001 0.000 0.325 - 0.382 0.347 3.900 - 9.083 7.032
Cu 0.000 - 0.000 0.000 12.187 - 14.558 13.209 1.825 - 2.550 2.113
Hg 0.001 - 0.034 0.002 0.000 - 0.000 0.000 0.000 - 0.000 0.000
Ni 0.000 - 0.000 0.000 3.272 - 3.777 3.530 1.583 - 5.488 3.898
Pb 0.000 - 0.007 0.000 47.840 - 58.162 53.318 18.523 - 26.776 22.418
Se 0.000 - 0.000 0.000 1.071 - 1.377 1.261 0.462 - 0.645 0.534
Zn 0.001 - 0.031 0.002 18.681 - 21.512 20.115 9.521 - 22.601 17.437

Range of measurement between different sampling times (0, 6, and 12 months) and different conditions (Cond 1 - Cond 7)
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Table 3.8: Pearson’s correlation matrix for the heavy metals and metalloids
concentrations (Soil 1).

Cr Ni Cu Zn As Cd Hg Pb Se

Cr 1.000

Ni 0.980 1.000

Cu 0.566 0.572 1.000

Zn 0.910 0.877 0.722 1.000

As 0.965 0.977 0.618 0.936 1.000

Cd 0.926 0.933 0.669 0.973 0.968 1.000

Hg 0.279 0.427 -0.052 0.022 0.346 0.199 1.000

Pb 0.837 0.800 0.800 0.985 0.878 0.935 -0.080 1.000

Se 0.456 0.600 0.086 0.195 0.502 0.383 0.959 0.085 1.000

Table 3.9: Pearson’s correlation matrix for the heavy metals and metalloids
concentrations (Soil 2).

Cr Ni Cu Zn As Cd Hg Pb Se

Cr 1.000

Ni 0.742 1.000

Cu 0.890 0.775 1.000

Zn 0.859 0.918 0.959 1.000

As 0.911 0.786 0.995 0.956 1.000

Cd 0.867 0.716 0.945 0.900 0.932 1.000

Hg 0.304 0.664 0.360 0.521 0.359 0.318 1.000

Pb 0.864 0.738 0.996 0.944 0.983 0.936 0.334 1.000

Se 0.888 0.718 0.895 0.860 0.899 0.977 0.307 0.869 1.000

Table 3.10: Pearson’s correlation matrix for the heavy metals and metalloids
concentrations (Soil 3).

Cr Ni Cu Zn As Cd Hg Pb Se

Cr 1.000

Ni 0.436 1.000

Cu 0.908 0.773 1.000

Zn -0.424 0.630 -0.005 1.000

As 0.999 0.424 0.902 -0.436 1.000

Cd -0.423 0.631 -0.005 1.000 -0.435 1.000

Hg -0.075 0.198 0.017 0.280 -0.111 0.275 1.000

Pb -0.160 0.818 0.268 0.962 -0.174 0.961 0.273 1.000

Se 0.902 0.752 0.985 -0.022 0.897 -0.021 0.034 0.249 1.000
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Table 3.11: Pearson’s correlation matrix for the heavy metals and metalloids
concentrations (Soil 4).

Cr Ni Cu Zn As Cd Hg Pb Se

Cr 1.000

Ni 0.719 1.000

Cu 0.810 0.837 1.000

Zn 0.706 0.998 0.853 1.000

As 0.960 0.669 0.885 0.671 1.000

Cd -0.296 0.442 0.172 0.465 -0.270 1.000

Hg 0.577 0.893 0.689 0.890 0.514 0.463 1.000

Pb 0.891 0.528 0.856 0.535 0.969 -0.356 0.363 1.000

Se 0.952 0.613 0.863 0.614 0.992 -0.337 0.461 0.985 1.000

Table 3.12: Pearson’s correlation matrix for the heavy metals and metalloids
concentrations (Soil 5).

Cr Ni Cu Zn As Cd Hg Pb Se

Cr 1.000

Ni 0.435 1.000

Cu 0.125 0.946 1.000

Zn 0.372 0.997 0.966 1.000

As 0.964 0.644 0.371 0.592 1.000

Cd 0.034 0.914 0.995 0.940 0.284 1.000

Hg -0.067 -0.068 -0.055 -0.042 -0.073 -0.040 1.000

Pb 0.296 0.986 0.985 0.995 0.528 0.963 -0.064 1.000

Se 0.332 0.990 0.977 0.996 0.560 0.951 -0.067 0.999 1.000
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Figure 3.4: Heatmap and associated hierarchical cluster for the CISED extraction data for Soil 1.

Figure 3.5: Heatmap and associated hierarchical cluster for the CISED extraction data for Soil 2.
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Figure 3.6: Heatmap and associated hierarchical cluster for the CISED extraction data for Soil 3.

Figure 3.7: Heatmap and associated hierarchical cluster for the CISED extraction data for Soil 4.
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Figure 3.8: Heatmap and associated hierarchical cluster for the CISED extraction data for Soil 5.
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3.7. Annex

Sequential extraction data processing and heatmap visualisation

The CISED non-specific sequential extraction, used in this study, assumes that

the extraction media (14 extracts) contains a mixture of the soil target phases

and apply mathematical modelling (chemometrics) based on principal

component analysis (PCA) and factor analysis to resolve the mixture into their

components.

The concentrations data obtained from the ICP-MS analysis, expressed in

mg/kg, were arranged in a matrix (A) and scaled to its maximum value, to avoid

features with large values to dominate. The first step was to identify the number

of components in the extraction media; to do this the self-modelling mixture

resolution (SMMR) algorithm was used to decompose this matrix (A) in the

product of two matrices (B) and (C) (Figure 3.9). The matrix B contained the

proportion of each components leached in the extraction media, while the matrix

C contained information on the concentration (mg/kg) of the physico-chemical

components (N-components) identified by the model.

From these two matrices further information can be obtained, such as: (1) the

extraction profile of each modelled component (PRF), expressed in mg/kg,

which is derived from the amount of each component found in the 14 extracts;

(2) the relative proportions of each element in each modelled component, called

distribution (DST) and expressed in mg/kg; (3) the chemical composition of

each component (CMP) expressed as a percentage. Data from PRF and CMP

were further used to calculate the individual element concentration (IEC) in

each component identified by the model, an example of calculation is provided

below:

IEC (mg/kg) =
ƩPRF������ (Comp 1) ∗ CMP�������

100

In both Chapter 3 and Chapter 5 the SMMR algorithm was run separately for

each of the soil sample, resulting in distinct sets of components for each soil

investigated. From here, hierarchal clustering and heatmap were used to obtain
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a geochemical profile interpretation and to classify the components into the

common distinct soil phases (i.e. pore water, exchangeable, non-exchangeable

phases).

Briefly, for each soil sample, a matrix was created concatenating the transposed

elements composition matrix (T)CMP (expressed as a percentage), and the

transposed extraction profile matrix (T)PRF (expresses in mg/kg) of each soil

under investigation (Figure 3.9). The concatenated matrix was then imported in

RStudio (Version 1.1.423 –© 2009-2018 RStudio, Inc.) and subjected to

hierarchical clustering where the data were mean centred and scaled with

Euclidean distance and linkage using Ward’s method (Ward, 1963) and the

‘Agnes’ function in the cluster package (Maechler et al., 2018); details of the R

script are provided in Figure 3.10. In the hierarchical clustering, initially each

object (data point) is assigned to its own cluster; then the algorithm proceeds

iteratively combining the two most similar clusters, continuing until there is just a

single cluster (dendogram structure) (Vogt and Bajorath, 2017). In this study the

aim of the clustering was to group the components (identified by the model) into

clusters based on similarity, providing a means to corrrelate the clusters to their

geochemical sources.

Clustering results (dendogram) were complemented by heatmap data

visualisation created by using ggplot2, reshape2, grid, and ggdendro packages

(Wickham, 2007; Kahle and Wickham, 2013), (Figure 3.10). In the heatmap

each row represented a physico-chemical soil component found for a given soil.

Soil name is indicated by the ‘soil name’ followed by the elements name (e.g.

Ca, Ca-K-Si, Fe-Mg) that make up >10% of the physico-chemical component

composition. The heatmap colour gradient was black-white, where black (low)

and white (high) represented the mean-centered concentrations of elements

(left) and the extraction profiles (right). The hierarchal clustering obtained was

used in parallel with chemical profile to provide interpretations and classify the

components into common distinct soil phases (e.g. pore water, carbonates, and

aluminium-silicates/oxides) and to assess the partitioning and bioavailable

concentrations of HM/metalloids in soil.
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Figure 3.9: Illustrative scheme of the principal component (PCA) and factor

analysis output (matrices B and C), the model outputs including profile (PRF),

distribution (DST), and composition (CMP) matrices obtained through

chemometric analysis, and the classification of N-components into soil phases.



119

Figure 3.10: Screenshot of the RStudio script used to compute hierarchal

clustering and heatmap.
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4. Predicting bioavailability change of complex

chemical mixtures in contaminated soils using visible

and near-infrared spectroscopy and random forest

regression
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1Cranfield University, School of Water, Energy and Environment, Cranfield, UK
2Department of Environment, Ghent University, Coupure 653, 9000, Belgium

Abstract: A number of studies have shown that visible and near infrared

spectroscopy (Vis-NIRS) offers a rapid on-site measurement tool for the

determination of total contaminant concentration of petroleum hydrocarbons

compounds (PHC), heavy metals and metalloids (HM) in soil. However none of

them have yet assessed the feasibility of using Vis-NIRS coupled to random

forest (RF) regression for determining both the total and bioavailable

concentrations of complex chemical mixtures. Results showed that the

predictions of the total concentrations of polycyclic aromatic hydrocarbons

(PAH), PHC, and alkanes (ALK) were very good, good and fair, and in contrast,

the predictions of the bioavailable concentrations of the PAH and PHC were

only fair, and poor for ALK. A large number of trace elements, mainly lead (Pb),

aluminium (Al), nickel (Ni), chromium (Cr), cadmium (Cd), iron (Fe) and zinc

(Zn) were predicted with very good or good accuracy. The prediction results of

the total HMs were also better than those of the bioavailable concentrations.

Overall, the results demonstrate that Vis-NIRS coupled to RF is a promising

rapid measurement tool to inform both the distribution and bioavailability of

complex chemical mixtures without the need of collecting soil samples and

lengthy extraction for further analysis.

Keywords: visible and near infrared spectroscopy, random forest,

bioavailability, contaminated land, rapid measurement tools.
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4.1. Introduction

A number of anthropogenic activities such as waste disposal, mining activities,

manufacturing, and petrochemical industries as well as poor environmental

management practices have left a legacy of contaminated sites across Europe

and worldwide (World Health Organization, 2012). Contaminants of concerns

are often present on site as a complex mixture (Swartjes et al., 2012) and their

co-occurrence and interactions can impact their adsorption behaviour in soil,

and influence their availability (Ye et al., 2017). Recovery of brownfield sites is

often challenging as hazards are very heterogeneous, reliable exposure data

are lacking, and remediation often requires large investments and involves

multiple stakeholders (Zhu et al., 2015).

Risk assessment is recognised as a robust process to support decision-making

strategies for contaminated land, and to prevent further damage to the

environment and human health (Doak et al., 2004). It has been further shown

that measuring only the total concentration of contaminants in soil does not give

a useful basis for the evaluation of the potential risks to human and the

environment (Ortega-Calvo et al., 2015). In fact, in the United Kingdom, and

increasingly across the world, over the last decade the end-point of remedial

activity is defined by the concentration of the chemicals of concern likely to pose

significant risk, the bioavailable concentration (Cipullo et al., 2018; Kuppusamy

et al., 2017). Similarly, several risk-based frameworks for contaminated soils

have been published under the auspices of national and international regulatory

organizations each reflecting national legislation, a range of expert judgments

and socioeconomic issues (Rodrigues et al., 2009). However they all typically

adopt a three tiered approach with increasingly sophisticated levels of data

collection and analysis as an assessor moves through the tiers.

The common steps include (1) developing a conceptual site model (CSM) of the

site based on a-priori information and historical land use, (2) conducting a

preliminary site assessment to refine the initial CSM, (3) deciding if further

assessment (generic and detailed) are needed. Risk assessments generally

require more data when moving from preliminary to generic (comparison with

general contamination threshold) and to detailed risk assessments (comparison
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with site-specific contamination threshold). Therefore, in order to establish

practical and sustainable criteria to achieve a reasonable level of clean-up for

the intended land use, it is important to: 1) reduce uncertainties associated with

sampling especially for large site, 2) deliver cost-effective approaches to

support site investigation, 3) reduce analytical cost associated with complex-

contaminant assessment, and 4) reduce significantly the time associated with

sampling and subsequent laboratory analysis.

The preliminary site investigation plays a key role in the risk assessment

process, as the accuracy of the information gathered at this step is fundamental

to correctly manage the associated time and costs (Wan et al., 2016). Often, at

this stage, sample collection is not included, and probability-based sampling

strategies are mostly designed from conceptual site model information,

combining random and selected sampling starting points (Horta et al., 2015). In

this regards rapid-measurement tools (RMT), such as reflectance spectroscopy,

including visible and near-infrared (Vis-NIR) or mid-infrared (MIR) spectroscopy,

can support the decision making strategies, by improving quality and quantity of

information collected during site investigation (Douglas et al., 2018).

Additionally, the on-the-go instrument could be used to perform real-time

monitoring and assessing on-site remediation efficacy or natural attenuation

(O’Rourke et al., 2016).

The reflectance spectra of contaminated soils in the visible near-infrared and

short wave infrared region (400–2500 nm) (Vis-NIR-SWIR) allows rapid and

cost-effective acquisition of soil information based on the unique absorption

spectra of specific chemical compounds (Douglas et al., 2018; Okparanma and

Mouazen, 2013). Vis-NIRS has been successfully used to estimate both

petroleum-derived compounds (Okparanma and Mouazen, 2013) and heavy

metals (Shi et al., 2014) in genuine and spiked soil samples. In particular, Vis-

NIRS coupled with random forest (RF) modelling has been previously shown to

outperform other regression techniques such as partial least square regression

(PLSR) as it is able to account for the non-linearity associated with the soil

spectral responses (Douglas et al., 2018).
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The principle of Vis-NIRS is based on the frequencies of which molecules

rotates or vibrates generating discrete measurable energy levels (Horta et al.,

2015). Infrared spectroscopy is mostly used for the estimation of organic

compounds which allows the determination of a fixed-wavelength responding to

the vibration caused by C-H and C-C bonds stretching and bending (Schwartz

et al., 2011). However, Wu et al. (2010) showed that while there is no direct

spectral response of HM within the NIR range, Vis-NIRS can detect HM due to

vibrations of -OH bonds as a result of their association with Fe oxides, clays

and organic matter. Therefore most of the trace elements can be easily

detected at very high concentrations (i.e. Cr and Cu at >4000 mg/kg; (Wu,

2007) and with reasonable accuracy at low levels (O’Rourke et al., 2016).

In the past five years, several studies have shown that Vis-NIR can successfully

predict in soil both total concentration of HM (Gholizadeh et al., 2015; Horta et

al., 2015; Kemper and Sommer, 2002; Siebielec and McCarty, 2004; Todorova

et al., 2014) and total concentration of PHC (Chakraborty et al., 2015; Douglas

et al., 2018). However none have yet investigated the feasibility of using Vis-

NIR as a RMT to predict on site the bioavailable concentration of HM and PHC,

simultaneously.

In this study, the performance of Vis-NIR spectroscopy coupled to RF

regression was therefore assessed for predicting the total and the bioavailable

concentrations of heavy metals/metalloids and petroleum hydrocarbons

mixtures in five genuinely-contaminated soils.

4.2. Materials and methods

4.2.1. Sample collection and preparation

Three genuinely contaminated soils, denoted as Soil 1, Soil 2, and Soil 3, were

collected from a treatment site located in the United Kingdom. Two additional

soil types were collected from a rural site contaminated by diesel (Soil 4), and

mineral oil (Soil 5). Information regarding original location of the soil samples

collected, and specific details regarding the treatment applied, were not

disclosed by the treatment facility to maintain anonymity and confidentiality. All

samples were collected randomly from the soil layer down to a depth of 30 cm

and immediately stored at 4°C to minimise biological transformation and other
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chemical reactions. A total of 21 samples were collected for each soil type (e.g.,

for the 5 soil types a total of 105 samples) and split into five sub-samples; one

of them was used for spectroscopic measurements and the other four for

chemical analytical determinations of total and bioavailable (HM/metalloids and

PHC) contents. An outline of experimental and analytical procedures used is

presented in Figure 4.1.

Figure 4.1: Illustrative block diagram showing the different steps for the

estimation of complex chemical mixtures of total and bioavailable

concentrations in soils using chemical methods and Vis-NIRS coupled with

Random Forest (RF).

DCM: dichloromethane; Hex: hexane; HP-β-CD: hydroxypropyl-β-cyclodextrin; PHC: 

petroleum hydrocarbons compounds; HM: heavy metals; PAH: polycyclic aromatic

hydrocarbons; ALK: alkanes; Al: aluminium; Cr: chromium, Cd: cadmium; Ni: nickel,

Zn: zinc; Se: selenium, Cu: copper; Fe: iron; As: arsenic; Pb :lead, ML: machine

learning; r2:coefficient of determination; RMSEP : root mean square error of prediction;

RPD: ratio of prediction deviation; RPIQ: ratio of the performance to interquartile

distance.
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4.2.2. Extraction and quantification of total and bioavailable

PHC and HM and metalloids

The method used to determine total petroleum hydrocarbons compounds,

including PAH and ALK fractions in soil, was adapted from the procedure

described by Risdon et al. (2008). Briefly, PHC were extracted using solvent

ultra-sonication from 2.5 g of soil mixed with 15 mL of a mixture of 1:1

dichloromethane: hexane. The bioavailable hydrocarbons content was instead

extracted using 20 mL of a 50 mM solution of hydroxypropyl-β-cyclodextrin (HP-

β-CD) as described by Cipullo et al. (2018 b). Extraction, identification, and 

quantification of total and bioavailable PHC, PAH, and ALK were performed by

gas chromatography-mass spectrometry (GC-MS) as described by Cipullo et al.

(2018 a, b).

The pseudo-total element digestion was performed according to the ISO 11047

method with aqua regia (ISO 11047:1998). The bioavailable heavy metals and

metalloids content were determined using a modified procedure of the

sequential extraction method of Cave et al. (2004). Briefly soil samples (2 g)

were consecutively extracted by addition of 10 mL of a nitric acid solution of

increasing concentration from 0 to 5 M. All total and sequential extracts were

analysed by inductively coupled plasma mass spectrometry (NexION® 350D

ICP-MS, Perkin Elmer) as described by Cipullo et al. (2018 a). In this work the

HM bioavailable fraction was considered to be the amount of elements

associated with pore water phase (readily available or bioavailable), and

carbonates phases (potentially available with time).

4.2.3. Soil spectra analysis

4.2.3.1. Spectra collection

Soil samples were air-dried and sieved (2 mm) to get the fine earth and

separate large particles like plant parts (roots, stem, and leave), cobbles, and

pebbles (Roy et al., 2014). The fine earth was mixed well, before three sub-

samples were made from each soil sample and packed into three plastic Petri

dishes (1 cm height, and 5.6 cm in diameter). The sample surface was

smoothened gently with a spatula to obtain optimal diffuse reflection, and

hence, a good signal-to-noise ratio (Mouazen et al., 2005). The diffuse
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reflectance spectra of the soil samples were measured using an ASD 

LabSpec2500® VIS–NIR spectrophotometer (350 – 2500 nm). The spectral

resolution varied from 3 nm in 700 nm and 6 nm in 1400-1200 nm (Analytical

Spectral Devices Inc., CO, USA). A high-intensity probe that has a built-in light

source made of a quartz-halogen bulb of 2727°K was placed in contact with soil

sample to collect the spectra. Measurement was done under dark conditions, to

control the artificial illumination and reduce the effects of stray light. Before

scanning the ASD instrument was first warmed-up for at least 30 min, and then

calibrated by a white Spectralon® disc (Diffuse Reflectance Standards,

Labsphere, INC, US) of almost 99% reflectance. For each sample, 3 successive

spectra were acquired at three equidistant positions approximately 120° apart

and these were averaged in one representative spectrum of a soil sample.

4.2.3.2. Spectra pre-treatment

The raw average spectra of the 105 samples were subjected to pre-treatment

including successively, noise cut, maximum normalization, first derivative and

smoothing using Prospectr-R package (Stevens and Ramirez Lopez, 2014,

2013) in RStudio (Version 1.1.423 – © 2009-2018 RStudio, Inc.). Maximum

normalisation was implemented to align all spectra to the same scale and to

obtain even distribution of the variances and average values. Spectra were then

subjected to first derivation using Gap–segment derivative (gapDer) algorithm

(Norris, 2001) with a second-order polynomial approximation. Finally, the

Savitzky-Golay (SG) algorithm with a window size of 11 and polynomial of order

2 was carried out to remove noise from spectra (Douglas et al., 2018 a).

4.2.4. Random forest regression analysis

4.2.4.1. Selection of Input variables

A two-dimensional data matrix was created by combining the reference values

of chemical analyses of PHC, PAH, ALK, and HM/metalloids contents

(dependent variables) and pre-treated spectra (independent variables) of 105

soil samples. Removal of outliers for each data set was based on principal

components analysis (PCA). PCA was followed by randomly splitting the
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dataset into 70% for calibration (74 samples) and 30% for prediction (31

samples) (Figure 4.1).

4.2.4.2. Model calibration

The hyper-parameter optimisation and calibration of the model was done

through leave-one-out cross-validation (LOOCV) (Reyna et al., 2017). For the

calibration dataset of n = 74 samples, LOOCV means that n-1 samples are

used to calibrate the model and 1 sample is used to assess the accuracy; this is

repeated n times for each single sample in the calibration dataset (Niazi et al.,

2015). Model accuracy (predicted vs measured PHC, PAH, ALK and HM

contents) was evaluated using the coefficient of determination (r2), the root

mean square error of prediction (RMSEP), and the ratio of prediction deviation

(RPD) (standard deviation of measured values divided by RMSEP) and the ratio

of the performance to interquartile distance (RPIQ). In general, a good model

prediction should correspond to high r2, RPD and RPIQ, and low RMSEP

values. In particular, model classification criterion adopted in this study were

based on RPD values, which were divided into six classes: of excellent (RPD >

2.5), very good (RPD = 2.5 – 2.0), good (RPD = 2.0 – 1.8), fair (RPD = 1.8 –

1.4), poor (RPD = 1.4 – 1.0), and very poor model (RPD < 1.0) (Viscarra Rossel

et al., 2006). The model hyper-parameters optimised during the LOOCV are the

number of trees to be grown (ntree), number of predictor variables used to split

the nodes at each partitioning (mtry), and the minimum size of the leaf (node

size). The hyper-parameter optimization returned ntree = 500, mtry = 2 and note

size = 3. All PHC, PAH, ALK, and HM models of both the total and bioavailable

contents were developed with Random Forest-R package (Liaw and Wiener,

2015), utilising the Breiman and Cutler's Fortran code (Breiman, 2001).

4.2.4.3. Prediction

The calibrated models were then validated using the prediction data sets (31

samples) for both the total and bioavailable contents of PHC, PAH, ALK and

each individual HM. Once again the accuracy of the prediction (predicted vs

measured) was evaluated by r2, RMSEP, RPD, RMSEP, and RPIQ and the

outcome classified according to the criteria of Viscarra et al. (2006) as

described above.
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4.3. Results and discussions

4.3.1. Total and bioavailable PHC and HM contents in soils

The industrial soils (Soil 1 and 2) had the highest concentrations of total PHC

with average of 445 mg/kg of which about 40% was found to be bioavailable

(Figure 4.2). The PHC distribution was dominated by the EC21-35 PAH fraction

which represented between 45% and 55% of the total PHC. The dominant ALK

were within the EC16-35 fraction. These profiles are typical of aged

contamination. The average HM content for both soils was 350 mg/kg and the

bioavailable content was low (< 30%) especially for Al, Zn, Fe and Pb.

The other industrial contaminated soil (Soil 3) had an average concentration of

HM 8 times higher (2800 mg/kg) and the PHC concentration was 3 times lower

than Soil 1 and 2 (Figure 4.2). The EC21-35 PAH fraction contributes over 20% of

the total PHC content. In contrast the bioavailable concentration were high for

Zn and Pb (≥ 90, 70%), low for Cu and Se (29 and 33%), and very low for Al 

(6%), Fe (1%) and Cr (3%) (data not shown).

In the rural contaminated soils (Soil 4 and 5) the total average PHC content was

two times lower compared to the industrial soils ranging between 230 and 180

mg/kg, of which about 50% was found to be bioavailable (Figure 4.2). As per

the contaminated industrial soils, the PHC distribution was dominated by the

EC21-35 PAH fraction and the ALK fraction EC16-35.

The total average HM contents (< 200 mg/kg) were also 2 times lower than

those found in the industrial contaminated soils (Figure 4.2). The average

bioavailable concentrations of metals for rural soil samples were high for Cd

only (≥ 90%), low for Cu and Se (38%, and 12%), and very low for Al, Fe, Pb 

and Cr (< 1%) in Soil 4. In Soil 5 HM were more available, in particular

concentrations were high for Cu, Se, Cd and Pb (≥ 90%), medium for Zn and Ni 

(66% and 43%), and low for Al (8%), Fe (6%) and Cr (2%) in Soil 5.
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Figure 4.2: Total and bioavailable concentrations (mg/kg) of heavy

metals/metalloids (HM) (left) and petroleum hydrocarbons compounds (PHC)

(right) across the five soil types (n=105).

4.3.2. Model calibration and performance

Data obtained from soil spectral analysis and chemical analysis (total and

bioavailable PHC, PAH, ALK and HM concentrations) were used in the

calibration of the RF regression model; descriptive statistics of data used at this

step are provided in Table 4.1.

The results of LOOCV of the ML model for total and bioavailability organic

compounds are shown in Table 4.2 and Figure 4.5 (Appendix). The LOOCV

results for both the total (r2 = 0.88, RPD = 2.81, RPIQ = 5.04, and RMSEcv =

52.47 mg/kg) and bioavailable (r2 = 0.82, RPD = 2.38, RPIQ = 3.62, and

RMSEcv = 33.62) PAH were better than those for total and bioavailable PHC

and ALK (Table 4.2 and Figure 4.5). The lowest accuracy was observed for

ALK; however the LOOCV results of the total concentration were slightly better

than those of the bioavailable concentration; r2, RPD, RPIQ, and RMSEcv
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values of 0.82 and 0.77, 2.42 and 2.10, 1.75 and 1.62, and 30.74 and 18.74

mg/kg, respectively (Table 4.2).

As for the organics, the LOOCV results for HM were better for the total than for

the bioavailable concentration. Descriptive statistics of HM concentrations used

in calibration step are presented in Table 4.1, and parameters used to establish

goodness of the model are presented in Table 4.2 and Figure 4.6 (Appendix).

The highest LOOCV performance for the total concentration was obtained for Al

(r2 = 0.93, RPD = 4.05, RPIQ = 5.17, and RMSEcv = 2194.5 mg/kg) followed by

Cr, Fe, Ni, and Cd, whereas the worst performance is obtained for Se (r2 = 0.88,

RPD = 2.99, RPIQ = 4.16, and RMSEcv = 0.36 mg/kg), followed by Pb, As, Zn

and Cu (Table 4.2 and Figure 4.6). The models developed for the bioavailable

concentration showed some similarities to those of the total concentrations, for

the calibration model. Again Al model for bioavailable concentration was the

highest performing in LOOCV (r2 = 0.92, RPD = 3.77, RPIQ = 4.99, and

RMSEcv = 96.67 mg/kg), followed by Cr, Cu, Cd and Fe, whereas the lowest

performance was obtained for the Zn model (r2 = 0.82, RPD = 2.41, RPIQ = 1.3,

and RMSEcv = 257.87 mg/kg), followed by Se, As, Pb, Ni (Table 4.2 and Figure

4.6).
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Table 4.1: Descriptive statistics of the calibration datasets of total and bioavailable contents of PHC, PAH, ALK and

HM/metalloids used for the Random Forest (RF) modelling.

No Min 1st Q Median Mean 3rd Q Max SD

O
rg

a
n
ic

s Total
(mg/kg)

PHC 74 79 137 241 285 389 1049 188
PAH 73 0.3 2.1 102 145 267 553 160
ALK 73 49 109 126 146 163 496 74

Bioavailable
(mg/kg)

PHC 73 14 48 109 127 159 548 107
PAH 73 0.2 1.2 60 76 131 326 82
ALK 73 7.3 32 47 55 62 263 39

In
o
rg

a
n
ic

s

Total
(mg/kg)

Al 74 2375 7289 12301 14409 18808 46195 9605
Cr 73 5 17 25 29 37 85 16
Cd 72 0.1 0.2 0.3 0.4 0.6 2 0.4
Ni 74 2 11 15 18 26 49 10
Zn 73 15 64 108 244 164 1964 393
Se 72 0.4 1 2 2 3 6 1
Cu 73 4 12 27 33 40 128 25
Fe 74 787 10857 15300 17969 20955 57669 10822
As 73 1 7 10 11 13 34 6
Pb 74 9 31 61 288 131 2864 600

Bioavailable
(mg/kg)

Al 72 1 8 234 339 685 1037 355
Cr 73 0.1 0.3 1 1 1 2 1
Cd 73 0.1 0.2 0.2 0.3 0.2 2 0.4
Ni 74 1 1 3 3 4 12 2
Zn 72 4 9 15 314 26 1911 624
Se 72 0.1 0.5 1 1 1 2 0.4
Cu 72 0.2 2 6 7 12 18 6
Fe 73 5 8 98 171 159 928 244
As 72 0.3 0.5 1 1 1 1 0.2
Pb 74 0.1 0.3 5 295 54 2463 690

PHC: petroleum hydrocarbons compounds; PAH: polycyclic aromatic hydrocarbons; ALK: alkanes; HM: heavy metals; Al: aluminium; Cr: chromium, Cd:
cadmium; Ni: nickel, Zn: zinc; Se: selenium, Cu: copper; Fe: iron; As: arsenic; Pb :lead, Q: quartile, SD: standard deviation.
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Table 4.2: Random Forest (RF) outputs for the calibration of the total and bioavailable concentrations of PHC, PAH, ALK and

HM/metalloids in the contaminated soil samples.

Compound No r2 RMSE(mg/kg) RPD RPIQ

O
rg

a
n
ic

s Total
(mg/kg)

PHC 74 0.83 78.2 2.4 3.2
PAH 73 0.88 52.5 2.8 5.1
ALK 74 0.82 30.7 2.4 1.8

Bioavailable
(mg/kg)

PHC 74 0.80 48.5 2.3 2.5
PAH 73 0.82 33.6 2.4 3.6
ALK 74 0.77 18.7 2.1 1.6

In
o
rg

a
n
ic

s

Total
(mg/kg)

Al 73 0.93 2195 4.1 5.2
Cr 73 0.93 4 3.7 4.8
Cd 72 0.92 0.1 3.5 5.2
Ni 74 0.92 3 3.6 5.6
Zn 73 0.9 121 3.3 1.8
Se 72 0.88 0.4 3 4.2
Cu 73 0.9 8 3.3 3.5
Fe 74 0.92 2967 3.6 3.4
As 73 0.89 2 3.1 3.2
Pb 74 0.88 198 3 2.6

Bioavailable (mg/kg)

Al 72 0.92 97 3.8 5
Cr 73 0.92 0.1 3.7 5.3
Cd 73 0.91 0.1 3.3 3.4
Ni 74 0.77 0.9 3.1 3.6
Zn 72 0.82 258 2.4 1.3
Se 72 0.86 0.1 2.7 3.2
Cu 72 0.89 1.5 3.7 6.5
Fe 73 0.89 78 3.1 1.9
As 72 0.86 0.07 2.8 3.1
Pb 74 0.86 199 2.8 2.8

PHC: petroleum hydrocarbons compounds; PAH: polycyclic aromatic hydrocarbons; ALK: alkanes; HM: heavy metals; Al: aluminium; Cr: chromium, Cd:
cadmium; Ni: nickel, Zn: zinc; Se: selenium, Cu: copper; Fe: iron; As: arsenic; Pb: lead, r

2
:coefficient of determination; RMSEP : root mean square error

of prediction; RPD: ratio of prediction deviation; RPIQ: ratio of the performance to interquartile distance.
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4.3.3. Model prediction: Estimation of total and bioavailable

concentrations of complex chemical mixtures using RF

regression

The RF calibration model developed was further validated using the prediction

sets (30% of the data) of total and bioavailable complex chemical mixtures

concentration. The descriptive statistics are provided in Table 4.3.

4.3.3.1. Prediction of total and bioavailable PHC

Based on the Viscarra et al. (2006) classification of RPD classes, the RF

prediction performance trend for the total and bioavailable concentrations was

PAH > PHC > ALK very good and fair for total and bioavailable PAH, good and

fair for total and bioavailable PHC and fair and poor for total and bioavailable

ALK (Table 4.4). The prediction of the total concentration of PAH was of better

performance (r2 = 0.75, RPD = 2.02, RPIQ = 3.49, and RMSEP = 79.81 mg/kg)

than that for the bioavailable concentration (r2 = 0.65, RPD = 1.72, RPIQ = 2.12,

and RMSEP = 51.85 mg/kg) (Table 4.4 and Figure 4.3). Our prediction results

are slightly better than the results reported by Douglas et al. (2018 a) for total

PAH (r2 = 0.71, RPD = 1.99, and RMSEP = 0.99 mg/kg), and comparable to

those results reported by Okparanma et al. (2014) using partial least squares

regression (PLSR) for oil contaminated soil samples collected from the Niger

delta, Nigeria. The difference of results can be attributed to variation in the

concentration range as well as the standard deviation (SD) between our study

(range from 0.30 to 533 mg/kg, SD = 160) and those reported by Douglas et al.

(2018 b) (range from 0.52 to 312.28 mg/kg, SD = 40.20). Statistical similarity

between the calibration and prediction sets including the range as well as SD

can be observed indicating positive impact of the models performance (Kuang

and Mouazen, 2011).
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Figure 4.3: Scatter plots of the prediction datasets of total (A) and bioavailable

(B) total petroleum hydrocarbons (PHC), aromatic (PAH), and alkanes (ALK),

respectively.
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4.3.3.2. Prediction of total and bioavailable HM/metalloids

Results of the prediction set (for 31 samples, descriptive statistics provided in

Table 4.3) for HM/metalloids total concentration were rated as follow Pb > Al >

Ni> Cr > Cd, where the highest performance was obtained for Pb (r2 = 0.81,

RPD = 2.35, RPIQ = 2.30, and RMSEP = 216.62 mg/kg). The lowest prediction

performance is obtained for Cu (r2 = 0.60, RPD = 1.59, RPIQ = 1.93, and

RMSEP = 14.54 mg/kg), followed by Se, Zn, As and Fe (Table 4.4 and Figure

4.4). On the basis of the RPD values, predictions of the total content of Pb

(RPD = 2.35) was the best, and can be classified as very good, as well as the

prediction of Al, Ni, Cr, and Cd with RPD values of 2.21, 2.13, 2.10, 2.10,

respectively; whereas the prediction of Fe, As, and Zn can be classified as good

with RPD values of 1.95, 1.92, 1.89, respectively. The Se and Cu can be

classified as fair predictions with RPD values of 1.77 and 1.59, respectively.

The prediction models developed for the bioavailable concentration showed the

highest performance for Al (r2 = 0.77, RPD = 2.13, RPIQ = 3.89, and RMSEP =

154.22 mg/kg), followed by Pb, Cr, Cd, and Ni, whereas the worst prediction

was for As (r2 = 0.45, RPD = 1.37, RPIQ = 1.74, and RMSEP = 0.15 mg/kg),

followed by Se, Zn, Fe, and Cu (Table 4.4 and Figure 4.4). The prediction of the

bioavailable concentrations shows differences of prediction quality, where Al,

Pb, Cr, and Cd predictions are classified as very good with RPD values of 2.13,

2.10, 2.05, and 2.05, respectively. The prediction of Ni, Cu, Fe, Zn, and Se can

be classified as fair with RPD values of 1.73, 1.63, 1.58, 1.55, and 1.44,

respectively, whereas As prediction is of the worst accuracy (RPD = 1.37) and

can be classified as poor. It can be confirmed that Al and Pb models showed

the highest prediction performance for both the total and bioavailable

concentrations, but with relatively high RMSEP values of 4101.3, and 154.2

mg/kg for Al, and 216.6 and 343.1 mg/kg for Pb, for total and bioavailable

concentration, respectively.
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Figure 4.4: Scatter plots of the prediction datasets of total (A) and bioavailable

(B) contents of HM/metalloids (Al, Cr, Cd, Ni, Zn, Se, Cu, Fe, As, and Pb).
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Table 4.3: Descriptive statistics of the prediction datasets of total and bioavailable PHC, PAH, ALK and HM/metalloids used

for the Random Forest (RF) modelling.

Compound No Min 1st Q Median Mean 3rd Q Max SD

O
rg

a
n
ic

s Total
(mg/kg)

PHC 31 92 127 285 308 411 890 210
PAH 31 0.6 2.9 190 172 285 522 160
ALK 31 58 102 120 149 150 477 88

Bioavailable
(mg/kg)

PHC 31 42 58 130 131 177 374 80
PAH 31 0.3 3.8 70 76 102 292 81
ALK 31 35 13 54 65 82 206 38

In
o
rg

a
n
ic

s

Total
(mg/kg)

Al 31 1543 5222 8920 12677 18772 33055 9113
Cr 31 3 11 18 23 31 59 15
Cd 31 0.1 0.1 0.2 0.4 0.4 1 0.4
Ni 31 4 9 14 16 22 36 10
Zn 31 30 66 105 303 320 1827 446
Se 31 1 1 2 2 3 4 1
Cu 31 6 12 21 27 25 103 23
Fe 31 1109 5647 11825 15774 21352 40529 11672
As 31 3 8 10 13 17 25 6
Pb 31 11 40 106 314 291 2349 519

Bioavailable
(mg/kg)

Al 31 1 2 263 344 603 906 329
Cr 31 0.1 0.4 1 1 1 1 0.4
Cd 31 0.1 0.2 0.2 1 1 2 1
Ni 31 1 2 3 4 5 8 2
Zn 31 5 12 18 147 24 1176 343
Se 31 0.2 1 1 1 1 1 0.4
Cu 31 0.3 3 5 7 13 18 5
Fe 31 6 18 142 252 426 816 290
As 31 0.4 1 1 1 1 1 0
Pb 31 0.1 0.3 5 577 1511 2408 888

PHC: petroleum hydrocarbons compounds; PAH: polycyclic aromatic hydrocarbons; ALK: alkanes; HM: heavy metals; Al: aluminium; Cr: chromium, Cd:
cadmium; Ni: nickel, Zn: zinc; Se: selenium, Cu: copper; Fe: iron; As: arsenic; Pb: lead, Q: quartile, SD: standard deviation.
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Table 4.4: Random Forest (RF) outputs for the prediction for total and bioavailable concentrations of PHC, PAH, ALK and

HM/metalloids in contaminated soils.

Compound No r2 RMSE(mg/kg) RPD RPIQ

O
rg

a
n
ic

s Total
(mg/kg)

PHC 31 0.69 117.8 1.8 2.4
PAH 31 0.75 79.8 2.0 3.5
ALK 31 0.57 56.6 1.6 1.6

Bioavailable
(mg/kg)

PHC 31 0.62 63.9 1.7 1.9
PAH 31 0.65 51.9 1.7 2.1
ALK 31 0.40 35.4 1.3 1.1

In
o
rg

a
n
ic

s

Total
(mg/kg)

Al 31 0.79 4101 2.2 3.3
Cr 31 0.76 7 2.1 2.6
Cd 31 0.76 0.2 2.1 2.3
Ni 31 0.77 5 2.1 2.8
Zn 31 0.71 235 1.9 1.7
Se 31 0.67 0.6 1.8 2.9
Cu 31 0.6 15 1.6 1.9
Fe 31 0.72 5997 1.9 2.6
As 31 0.72 3 1.9 2.8
Pb 31 0.81 217 2.4 2.3

Bioavailable
(mg/kg)

Al 31 0.77 154 2.1 3.9
Cr 31 0.75 0.2 2.0 3.4
Cd 31 0.76 0.2 2.0 2.2
Ni 31 0.65 1.3 1.7 2.3
Zn 31 0.56 222 1.6 1.2
Se 31 0.5 0.2 1.4 1.6
Cu 31 0.6 3 1.6 3
Fe 31 0.58 183 1.6 2.2
As 31 0.45 0.2 1.4 1.7
Pb 31 0.75 343 2.1 2.1

PHC: petroleum hydrocarbons compounds; PAH: polycyclic aromatic hydrocarbons; ALK: alkanes; HM: heavy metals; Al: aluminium; Cr: chromium, Cd:

cadmium; Ni: nickel, Zn: zinc; Se: selenium, Cu: copper; Fe: iron; As: arsenic; Pb: lead, r
2
:coefficient of determination; RMSEP : root mean square error

of prediction; RPD: ratio of prediction deviation; RPIQ: ratio of the performance to interquartile distance.
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4.3.4. Applicability of Vis–NIRS to predict bioavailability of

complex chemical mixtures

Although there are to date no other studies that used Vis-NIRS to predict

bioavailable concentrations of complex chemical mixtures of hydrocarbons and

HM in soils, some comparison can be drawn with previous studies. For

example, Cave et al. (2015) showed that PAH bioaccessibility in soil samples

can be successfully predicted using a combination of soil properties (measured

by NIR and MIR spectra) and physico-chemical properties of the PAH. The

accuracy (measured vs predicted bioaccessible PAH fraction (BPF)) of the RF

model used in this study was found to be good (RMSEP = 0.038 mg/kg) and

precise (normalised RMSEP < 15%). This confirms our findings that RF models

which use infrared techniques in combination with organic contaminants and

soil physico-chemical properties can be used to predict bioaccessible and

bioavailable fractions with reasonable accuracy and precision.

Similarly, Chodak et al. (2007) used Vis–NIRS coupled with PLSR to determine

the total and exchangeable concentrations of Zn and Pb in forest soil samples.

However PLSR was found to be unsatisfactory for the prediction of both the

total and exchangeable concentrations due to low RPD values (ranging

between 1.1 - 1.3) and a tendency of underestimating both the total and the

exchangeable HM at high concentrations. In contrast in our study, both the r2

and RPD values for the bioavailable HM were much higher (Zn r2 = 0.56 and

RPD = 1.6; Pb r2 = 0.75 and RDP = 1.6; average for all HM r2 = 0.64 and RPD =

1.75) indicating that the RF model was better at predicting Pb bioavailable

concentrations.

In another study, Li et al. (2011) showed a good prediction for the determination

of metal ions in water samples using a pre-concentration step on a high

capacity adsorbent material followed by NIR diffuse reflectance spectroscopy

analysis. The r2 values of the PLSR model were 0.92, 0.96, and 0.99 for Hg, Pb,

and Cd, respectively. These values are higher than the one obtained in our

study (r 2= n.a (Hg), r 2= 0.75 (Pb), r 2= 0.76 (Cd)). This could be attributed to (1) 

the use of a sorbent material rather than soil samples, (2) the homogeneous

range of concentration obtained in the pre-concentration step where elements
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were uptaken from the aqueous solutions and transferred to the high capacity

adsorbent (concentration range Hg = 4.3–50.4 mg/l, Pb = 4.93 – 48.8 mg/l and

Cd = 5.9 – 48.8 mg/l). In contrast in our study genuine contaminated soil

samples from 5 different locations have been used, creating a more

heterogeneous dataset with different soil characteristics and different

concentrations (Hg below detection limit; Pb = 0.03- 2463.4 mg/kg; Cd = 0.03 -

6.79 mg/kg).

4.4. Conclusion

This study demonstrated that Vis-NIRS can be used as a rapid measurement

tool for discriminating and estimating complex chemical mixtures of heavy

metals, metalloids and petroleum hydrocarbons in soils. The predictions for the

total concentrations of the chemical mixtures were very good especially for the

PAH and elements including Pb, Al, Cr, Cd, Fe, Ni, and Zn; good to fair for the

PHC, As and Se and fair to poor for the ALK and Cu. In contrast the predictions

of the bioavailable concentrations of both PHC and HM were generally weaker

than the total concentrations probably due to the small data set used for the

calibration and prediction and overall lower concentrations values (≤50% of the 

total concentration value). Nevertheless, the results are promising and better

than other studies focusing only on total concentrations. Overall this study

confirmed that coupling Vis-NIRS to machine learning model offers a promising

way forward to speed-up site investigation, identify and discriminate

contaminant (i.e. hydrocarbons vs heavy metals) and predict not only the total

concentration of the chemical of concern but also the concentration likely to

pose significant risk (bioavailable) and therefore inform the risk assessment and

decision making for contaminated sites in a timely fashion.
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4.6. Appendix

Figure 4.5: Scatter plots of the calibration datasets of total (A) and bioavailable

(B) contents of petroleum hydrocarbon compounds (PHC), polycyclic aromatic

hydrocarbon (PAH), and alkanes (ALK).
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Figure 4.6: Scatter plots of the calibration datasets of total (A) and bioavailable

(B) contents of HM/metalloids (Al, Cr, Cd, Ni, Zn, Se, Cu, Fe, As, and Pb).
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5. Linking bioavailability and toxicity changes of

complex chemicals mixture to support decision making

for remediation endpoint of contaminated soils

Cipullo S.1, Negrin I. 1, Claveau L. 1, Snapir B. 1, Tardif, S. 2, Pulleyblank C.1,3,

Prpich G.4, Campo P. 1, Coulon F. 1

1Cranfield University, School of Water, Energy and Environment, Cranfield, UK
2University of Copenhagen, Department of Plant and Environmental Sciences

Microbial Ecology and Biotechnology, Denmark
3 Dublin City University, School of Chemical Sciences, Ireland
4University of Virginia, Department of Chemical Engineering, USA

Abstract: A six-month laboratory scale study was carried out to investigate the

effect of biochar and compost amendments on complex chemical mixtures of

tar, heavy metals and metalloids in two genuine contaminated soils. An

integrated approach, where organic and inorganic contaminants bioavailability

and distribution changes, along with a range of microbiological indicators and

ecotoxicological bioassays, was used to provide multiple lines of evidence to

support the risk characterisation and assess the remediation end-point. Both

compost and biochar amendment (p = 0.005) as well as incubation time (p =

0.001) significantly affected the total and bioavailable concentrations of the total

petroleum hydrocarbons compounds (PHC) in the two soils. Specifically, PHC

concentration decreased by 46% and 30% in Soil 1 and Soil 2 amended with

compost. These decreases were accompanied by a reduction of 78% (Soil 1)

and 6% (Soil 2) of the bioavailable hydrocarbons and the most significant

decrease was observed for the medium to long chain aliphatic compounds

(EC16-35) and medium molecular weight aromatic compounds (EC16-21).

Compost amendment enhanced the degradation of both the aliphatic and

aromatic fractions in the two soils, while biochar contributed to lock the

hydrocarbons in the contaminated soils. Neither compost nor biochar affected

the distribution and behaviour of the heavy metals (HM) and metalloids in the

different soil phases, suggesting that the co-presence of heavy metals and

metalloids posed a low risk. Strong negative correlations were observed

between the bioavailable hydrocarbon fractions and the ecotoxicological assays
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suggesting that when bioavailable concentrations decreased, the toxicity also

decreased. This study showed that adopting a combined diagnostic approach

can significantly help to identify optimal remediation strategies and contribute to

change the over-conservative nature of the current risk assessments thus

reducing the costs associated with remediation endpoint.

Keywords : contaminated soils, mixtures, bioavailability, bioremediation,

toxicity.
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5.1. Introduction

Anthropogenic activities are the main cause of release of potentially toxic

compounds in soil, among which heavy metals, metalloids, and petroleum

hydrocarbon products are the ones mostly found at contaminated sites (Hou

and Al-tabbaa, 2014). Remediation approaches at contaminated sites are

promising strategies to mitigate the risks posed by the pollutants; in particular

bio-stimulation and bio-addition are common practices aiming at improving soil

quality; adding organic matter, delivering nutrients, balancing pH, and

increasing water holding capacity, thus enhancing the degradation process

(Wang et al., 2017). Commonly used amendment for soil remediation include

composted agricultural by-products and coal combustion products (e.g.

biochars) (U.S. Environmental Protection Agency, 2007), which have been

widely studied due to their sustainable, efficient, and cost-effective approach

(Ahmad et al., 2014). Compost amendment is a common remediation strategy

where organic materials, such as manure or decomposed organic matter, are

added to contaminated soil to stimulate soil microorganisms and thus promoting

transformation of hydrocarbons into less toxic compounds (Davie-Martin et al.,

2017). Apart from providing a carbon source for the existing pool of bacteria,

compost addition can also introduce new microorganisms presenting different

catabolic activities that could potentially enhance the remediation of polluted

soils (Baldantoni et al., 2017).

Another common amendment strategy is adding biochar, a carbon-rich material

obtained from the decomposition of biomass in absence (or low exposure) of

oxygen (Liu et al., 2015). Due to its highly porous structure and alkaline nature,

biochar is able to immobilise soil contaminants, hence its frequent usage in soil

remediation (Egene et al., 2018). When added to the soil, biochar causes the

release of carbonates, phosphates, and hydroxyl ions because of its alkaline pH

value of 7–10, thus favouring metal stabilisation. Both electrostatic (surface

adsorption) and non-electrostatic (functional groups complexation) interactions

are responsible for a decrease in metals mobility and bioavailability (Van

Poucke et al., 2018).
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While organic amendments have been shown to effectively improve

degradation of pollutants in soil, remediation success has often been defined by

reduction of total contaminant concentration (Kuppusamy et al., 2017) rather

than bioavailable concentrations. However, the extent to which contaminants

are bioavailable has significant implications for the clean-up targets and risk

assessment, as receptors respond to the fraction of contaminant that is

bioavailable rather than the total fraction (National Research Council, 2003).

Bioavailability, the freely available fraction of contaminants in soil (Semple et al.,

2003), is nowadays regarded as an important feature to integrate in risk

assessment as it can help to explain contaminants partitioning and degradation

in the environment (Ortega-Calvo et al., 2015). In this regard, soil bioassays

have been largely used to determine the ecological effects of complex

chemicals or mixtures in environmental samples, since they provide a rapid

characterization of the contaminants’ bioavailable fraction (Mazzeo et al., 2014).

There is a need to find a pragmatic and practical integrated approach where

biological and chemical measures of bioavailability are correlated rather than

developed independently, supporting the necessity of several lines of evidence

for robust and informed risk assessment (British Standards Institution, 2017).

Ecotoxicological methods along with bioavailability have the potential to offer a

cost-saving approach to contaminated land by applying relatively cheap

bioassays to evaluate the potential effects of contaminants of concern, and to

demonstrate that a contaminated site may not require further actions (Kim et al.,

2014; Sarsby and Meggyes, 2009; Udovic et al., 2013). However, the majority

of these approaches focus often on single contaminant rather than mixtures.

Thus, assessing and implementing bioavailability of complex chemical mixtures

in order to reduce conservativisms of the traditional chemical-based approach,

remains a challenge (Cachada et al., 2016; Kienzler et al., 2016).

Therefore in the present study, we investigated the effect of soil amendments

(compost or biochar) on the behaviour and bioavailability of a complex tar

mixture containing aromatics, aliphatics, heavy metals, and metalloids. This

work aims at assessing the relevance of a different range of biological indicators

to understand the implications for risk assessment and identifying the end-point
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remediation. Moreover, bioavailability-proxy and the toxicity data were further

correlated to provide the necessary evidence that these tools may be suitable

for predicting site-specific bioavailability of complex chemical mixtures.

5.2. Materials and methods

5.2.1. Sample collection, physico-chemical characterisation

Two soils were collected from two UK brownfield sites occupied by former

gasworks in Kent (51° 18' 39" N 0° 43' 17" E, Soil 1) and Northamptonshire (52°

20' 23" N 0° 39' 17" W, Soil 2). Prior analysis, soil samples were homogenised

through 2 mm sieve to separate large particles such as plant parts (roots,

stems, and leaves), cobbles and pebbles. Each soil samples was divided and

processed for analysis, individual air-dried samples were used for: Soil pH

analysis (10 mL), particle size distribution (10 mL), loss of ignition (5 g), total

nitrogen (TN) and total carbon (TC) (0.001 mg), total phosphorous (TP) and

available phosphorous (AP) (5 g). Additionally, fresh soil samples were used for

dry matter and water content analysis (5 g).

TN and TC in soil material were determined by combustion at approximately

900°C in the presence of oxygen; the amount of nitrogen and carbon was then

measured by a thermal conductivity detector (TCD) (BS EN 13654-2 2001)

using a vario EL III Element Analyser (Elementar Analysensysteme GmbH,DE).

Total phosphorous was measured with a hydrochloric/nitric acid mixture

extraction and the phosphorus content was determined by a spectrometric

measurement in solution (ISO 11047:1998) with a Spectronic Helios Gamma

(Thermo Electron Corporation, UK). Available phosphorous was measured by

treating the soil with a 0.5 mol/L sodium hydrogen carbonate solution at pH 8.5,

the extract was then analysed by spectrometry (ISO 11263:1994). Ammonium-

N, nitrate-N and were extracted from soil using a 2 mol/L solution of potassium

chloride, the extract was analysed by spectrometry (Method 53 of the MAFF

Reference Book RB427 1986).

Dry matter and water content in soil samples were measured by drying at 105°C

± 5°C for 24 h. The difference in mass of an amount of soil before and after the

drying procedure was used to calculate the dry matter and water contents on a

mass basis (ISO 11465:1993). Soil pH was measured with 1 part of soil per 5
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parts of water after shaking for 60 min and subsequent equilibration period of 30

min (ISO 10390:2005). The soil organic content was determined by loss of

ignition (LOI): air-dried soil was dehydrated at 105°C for 24 h then ashed at

450°C for 5 h and ignition loss was expressed as a percentage of the

dehydrated sample (BS EN 13039:2000). Particle size distribution was

determined by the sieving and sedimentation method. In short, soil organic

matter was decomposed with hydrogen peroxide and the resulting slurry

dispersed with a buffered sodium hexametaphosphate solution, then the

different particle size fractions were determined by a combination of sieving and

sedimentation (ISO 11277:2009). The corresponding soil texture classes were

identified by using a soil texture calculator (Natural England Technical

Information Note TIN037 2008).

To obtain the mass fraction, the compost and biochar samples were oven dried

at 60°C for 24 hours to remove any residual water absorbed during storage

(López et al., 2002). The samples were then sieved using a series of five sieves

with mesh widths of 20 mm, 10 mm, coarse (0.6 - 2 mm), medium (0.2 – 0.6

mm), and fine (0.06 - 0.2 mm). The contribution of each mass fraction was

expressed as percentage of the total.

5.2.2. Mesocosms experimental design

For each soil, duplicate mesocosms (i.e. 10-L polypropylene buckets)

containing 5 kg of soil amended either with 15% w/w compost (Soil + Compost),

with 5% w/w biochar (Soil + Biochar), or without amendment (Soil) were

prepared. The biochar used in this study was a commercial enriched biochar

purchased from Carbon Gold (UK). The 5% biochar to soil ratio was selected,

as it is often reported as the most efficient application rate to reduce leachable

contaminant concentrations in contaminated soils. For instance, in these

studies, biochar was applied (loading rates at 5% w/w) and significantly reduced

bioavailability (Wang et al., 2017) and leachability of HM concentrations, for

both genuinely contaminated (Novak et al., 2018) and spiked (Park and

Choppala, 2011) soils. Compost used in this study was multi-purpose enriched

peat-based compost with nutrients purchased from Westland Horticulture Ltd

(UK). Similarly, 15% compost to soil ratio was selected as a best criteria based
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on previous studies (Singh and Ward, 2004; Taccari et al., 2012; Adams et al.,

2015; Speight and El-Gendy, 2017).

All the mesocosms were manually mixed to obtain homogenous samples and

stored outdoor for the whole duration of the experiment. Samples were

collected from each mesocosm at 0, 30, 90 and 180 days for chemical,

microbiological, and toxicological analysis. All samples were collected randomly

by disturbing the top 30 cm of the mesocosm’ s content and immediately stored

at 4°C to minimise biological transformation or other chemical reactions.

Biological and ecotoxicological analyses were always carried out within 3 days

of sampling.

5.2.3. Chemical analysis

5.2.3.1. Total and bioavailable PHC extraction

A modification of the method reported by Risdon et al. (2008) was used to

determine total, readily-available, and bioavailable petroleum hydrocarbons

including both aliphatic and aromatic fractions (See Table 5.1 for the fractions

and PHC content). Briefly, 2.5 g of soil were mixed with either (i) 15 mL of 1:1

dichloromethane: hexane, (ii) 15 mL of methanol, or (iii) 20 mL of 4:1 mixture of

hydroxypropyl-β-cyclodextrin (HP-β-CD): water solution to extract the total, 

readily-available, and bioavailable petroleum hydrocarbons content,

respectively. For the estimation of the total and readily-available hydrocarbon

content, the samples were sonicated for 20 min at room temperature, and

shaken at 150 rpm for 16 h. On the following day, samples were again

sonicated for 20 min at room temperature and centrifuged (2000 g for 10 min).

The supernatant was then cleaned onto a 6 mL SPE DSC-Si silica tubes. From

the 15 mL, 0.5 mL of sample was taken and mixed with 0.5 mL of internal

standards comprised of a deuterated alkanes mix (C10d22, C19d40, and C30 d62)

and deuterated polycyclic aromatic hydrocarbons mix (1,4-dichlorobenzene d4
,

naphthalened8, anthracened10, chrysened12 and perylened12) at 10 µg/mL each,

respectively.

For the estimation of the bioavailable hydrocarbon content, samples were mixed

with HP-β-CD : water solution according to Reid et al. (2000). Following 20 h 

mixing, the samples were centrifuged at 2000 g for 30 min. The supernatant
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was discarded and the soil pellets were resuspended in 1:1 dichloromethane:

hexane (exhaustive solvent extraction) to assess the residual amount of organic

compound as described by Risdon et al. (2008). The compounds uptaken by

the cyclodextrin molecule was then measured subtracting the residual amount

of organic compound extracted by dichloromethane: hexane after the initial HP-

β-CD wash, against the total amount extracted by dichloromethane: hexane 

(Papadopoulos et al., 2007).

Concentration of petroleum hydrocarbons were identified and quantified by gas

chromatography-mass spectrometry (GC-MS) using an Agilent gas

chromatograph coupled to a Turbomass Gold mass spectrometer operated at

70 eV in positive ion mode. The column used was a Restek fused silica capillary

column (30 x 0.25 mm internal diameter) coated with RTX®-5MS (0.25 µm film

thickness). Splitless injection with a sample volume of 1 µL was applied. The

oven temperature was increased from 60°C to 220°C at 20°C/min then to 310°C

at 6°C/min and held at this temperature for 15 min; for a total run time of 38 min.

The mass spectrometer was operated using the full scan mode (range m/z 50-

500) for quantitative analysis of target aliphatic and aromatic hydrocarbons. For

each compound, quantification was performed by integrating the peak at

specific m/z. External multilevel calibrations were carried out using alkane

(standard solution (C8-C40) Sigma Aldrich, Dorset, UK) and PAH (EPA 525 PAH

Mix A; Sigma Aldrich, Dorset, UK) standards, the concentration of which ranged

from 2.5 to 50 µg/mL respectively. For quality control, blank controls and a 500

µg/mL diesel standard solution (ASTM C12-C60 quantitative, Supelco) were

analyzed every 20 samples. The variation of the reproducibility of extraction and

quantification of soil samples were determined by successive injections (n= 7)

of the same sample and estimated to ± 8%. In addition, duplicate reagent

control and reference material were systematically used. The reagent control

was treated following the same procedure as the samples without adding soil

sample. The reference material was an uncontaminated soil of known

characteristics, and was spiked with a diesel and mineral oil standard at a

concentration equivalent to 16,000 mg/kg. The relative standard deviation

(RSD) value for all the soils was < 10%.
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5.2.3.2. Pseudo-total metal and CISED sequential extractions

Pseudo-total metal digestion was performed according to the ISO 11047

method with aqua regia (ISO 11047:1998). Briefly, 0.5 g of air-dried and 2 mm

sieved soil was extracted with 8 mL hydrochloric/nitric acid mixture in a

microwave digestion system. The extract was then filtered through 0.45 μm 

nylon syringe filters and diluted to 50 mL with deionised water. A modification of

the method reported by Cave et al. (2004) was used for the sequential

extraction; approximately 2 g of soil was consecutively extracted each time with

10 mL of solutions with increasing concentrations of nitric acid from (0 to 5 M)

and H2O2 (Cipullo et al., 2018).

All pseudo-total and sequential extracts were diluted 4 times with 1% HNO3

before analysis using a NexION® 350D ICP-MS (Perkin Elmer) calibrated with a

mixture of both major (Ca, Fe, K, Mg, Mn, Na, S, Si, P) and trace (Al, As, Ba,

Cd, Co, Cr, Cu, Hg, Li, Mo, Ni, Pb, Sb, Se, Sr, V, Zn) elements ranging between

1 and 40 μg/mL and 0.01 and 2 μg/mL, respectively. In both cases, working 

standards were prepared in matching sample matrix solutions (nitric acid 1%).

Calibration standards and samples extracts were spiked with the following mix

of four internal standards: Sc, Ge, Rh, and Bi. ICP–MS was calibrated after

each sample (14 sequential extracts) and the limit of detection was defined as

concentration three times larger than the standard deviation of the acid blank.

Additionally, acid blanks (1% nitric acid), digestion blank, and guidance

materials (BGS102) were analysed every batch of 7 samples along with an

adequate rinse time programmed in between samples; to monitor blank

contamination, sensitivity, operating conditions, and extraction’s accuracy.

Mean repeatability of BGS102 (expressed as relative standard deviation%) was

lower than 6 and 8% for sequential and aqua regia digestion respectively. All

elements’ concentrations have been converted into mg/kg extracted from the

soil-solid matrix.

Data obtained from sequential extraction were used in a chemometric self-

modelling algorithm known as the Chemometric Identification of Substrates and

Element Distributions (CISED). The CISED was performed with MatLab®

(Version R2015a, 8.5.0.197613, 64-bit, Academic Licence) following the
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protocol developed by Cave et al. (2004) and Denys et al. (2012), and was used

to derive information on the partitioning and bioavailable concentrations of HM

and metalloids in soil. The self-modelling mixture resolution (SMMR) algorithm

produced three key outputs (1) profile output: contains the modelled soil

component with similar physical-chemical properties (mg/kg), (2) distribution

output: contains the concentration of each element across the identified soil

components (mg/kg), (3) composition output: contains element concentration in

the identified component (expressed as percentage). Modelled soil components

and element distribution data, obtained from the MatLab® algorithm, have been

post-processed in RStudio® (Version 1.1.423 – © 2009-2018 RStudio, Inc.) to

create a matrix, which has been further categorised using a clustering

methodology, and visualised in a heatmap as previously described by Wragg et

al. (2014) and Cox et al. (2013) (Appendix Figure 5.9). More details on the

sequential extraction data processing and heatmap visualisationare provided in

paragraph 3.7 Annex. Both profile and clustering outputs were then used to

calculate HM/metalloids concentration and distribution in: (1) pore water

fraction: HM/metalloids easily extractable with DI water, 0.01 and 0.05 M nitric

acid, therefore highly mobile and potentially bioavailable (Giller et al., 2009;

Ogundiran and Osibanjo, 2009), (2) exchangeable fraction: HM/metalloids

associated with carbonates that can become available with time (Karbassi and

Shankar, 2005; Sundaray et al., 2011), and (3) non-exchangeable fraction:

HM/metalloids bounded with oxides therefore non-available and unlikely to pose

risk for receptors (Hodson et al., 2011; Kim et al., 2015) (Appendix Figure 5.10).

5.2.4. Microbiological analysis

5.2.4.1. Determination of total bacteria count

Determination of culturable bacteria was performed according to Coulon et al.

(2010). Briefly, 1 g of soil was weighed into a 50-mL centrifuge tube and 10 mL

of Ringer’s solution (1/4 strength) added. Tubes were then vortexed for 30 s

and sonicated twice for 30 s and allowed to stand for a further 2 min. A 1-mL

aliquot of soil suspension was removed and serially diluted in Ringer’s solution

to the appropriate dilution factor (10-6). An aliquot sample of 100 μL of each 

dilution series was added in triplicate to Tryptone Soya Agar (TSA) medium for
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incubation at 25ºC for 24 - 48 h. Subsequently, colony-forming units (CFU) were

enumerated.

5.2.4.2. Basal respiration

Two replicates (5 g) of each soil were placed in a 24 mL sterilised vial and

sealed. An empty vial, with an ambient air sample from the laboratory was taken

and analysed to account for background conditions. Vials were left to equilibrate

for 5 h, incubated for 24 h at 20ºC, and the headspace analysed for CO2 content

(Paton et al., 2006). The composition of the headspace produced was recorded

by CSi 200 Series GC (Cambridge Scientific Instruments Ltd., Witchford, UK),

using helium as carrier gas at 20 psi (138 kPa). The Gas Chromatography with

Thermal Conductivity Detector (GC-TCD) was equipped with a CTR1 concentric

packed column (Alltech, USA). The column oven and injector temperature were

110ºC and 125ºC, respectively. The instrument was calibrated with CO2

calibration standards (STG of CalgazTM, UK) in the range 1- 5% CO2 balanced

with N2.

5.2.4.3. Phospholipid Fatty Acid Analysis (PLFA)

Phospholipid fatty acid (PLFA) analysis was used to identify and assess the

community structure as reported by Frostegård et al. (1993). Phospholipids in

approximately 7 g of freeze dried soil were extracted with chloroform, methanol

and citrate buffer (1:2:0.8 by volume), separated by solid-phase extraction and

then derivatised by mild alkaline methanolysis. Fatty acid methyl esters were

analysed by Gas Chromatography with Flame Ionisation Detector (GC-FID)

(Agilent Technologies 6890N) fitted with a HP-5 fused silica capillary column

(30 m length, 0.32 mm ID, 0.25 µm film). Helium was used as a carrier gas at 1

mL/min flow rate. The initial oven temperature was 50°C hold for 1 min (splitless

mode) and subsequently ramped to 160°C at 25°C/min, 240°C at 2°C/min and

310°C at 25°C/min. Three injection volumes were 1 µL and the injector

temperature was set at 310°C. A total of 34 different PLFA were detected

according to Pawlett et al. (2013) and Tunlid (1992). The relative abundance of

individual PLFA was expressed as a percentage of the total of the target

responses of all identified PLFA peaks and calculated from the subtraction
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between peak response of the sample and blank (solvent) response. PLFA

containing fewer than 14 or more than 20 carbons were excluded, as this range

is considered to be typical of microbial cellular membranes from the domains of

bacteria and fungi (Quideau et al., 2016).

5.2.5. Ecotoxicological bioassays

5.2.5.1. Seeds germination assay

Mustard (B. alba), rye grass (L. perenne), and pea (P. sativum) species were

used in the seed germination assays (Dawson et al., 2007). Five mustard, five

rye grass, and three pea seeds were added separately in glass jars (triplicates)

containing 20 g of soil re-wetted to 70% moisture. Lids were loosely screwed on

to reduce evaporation but allowing aeration. Seeds were left to germinate in a

controlled temperature chamber in the dark at 25°C and 70% humidity. A clean

uncontaminated soil (control) was used to take into account the germination

rate of the seeds. Germination incidence of above 90% was recorded in the

uncontaminated soil for all seeds at all sampling times over the experimental

period. When > 70% seeds in the uncontaminated soil germinated, the number

of seeds germinated in all soil samples was recorded; this was after 4, 6, or 7

days exposure.

5.2.5.2. Earthworms acute toxicity assay

Tiger worm (E. fetida) was used to assess lethality and sub-lethal effects in

earthworm acute toxicity assay. Adult worms, maintained in uncontaminated

compost, weighing between 0.5 and 1.5 g were washed in tap water and

depuriated overnight. Individual earthworms were placed in a pot containing 50

g of soil re-wetted to 70% moisture (Dawson et al., 2007). Five replicates were

used for each soil sample. Lids were screwed onto the pot and perforated to

allow aeration, but prevent water loss and worm escape. Pots were incubated at

room temperature for 14 d. Specimens were examined on days 3, 7, and 14 for

lethality and assigned a score (0, 1, or 2) from a Condition Index (CI) (Langdon

et al., 1999). To assess sub-lethal effects worms were again washed with tap

water on day 14, re-weighed on day 15 and the change in weight calculated.



159

5.2.5.3. Microtox® Basic Solid Phase Test

Each of the soil samples (Soil, Soil + Compost, and Soil + Biochar) were

collected at 0, 30, 90, and 180 days and used to evaluate soil toxicity to

bioluminescent bacteria (Vibrio fischeri) with Microtox® assay (Modern Water).

The Basic Solid Phase Test procedure (BSPT) tested a sample at 12 dilutions

with 99,000 mgsoil/Ldiluent being the highest concentration for highly contaminated

soil (Soil 1), and at 5 dilutions with 396,000 mgsoil/Ldiluent being the highest

concentration for low-contaminated soil (Soil 2). Briefly 3.5 g sample were

mixed with either 17.5 mL (Soil 1) or 4 mL (Soil 2) of diluent respectively,

shaken for 10 minutes, centrifuged 3 min at 1000 g and analysed according to

Microtox® BSPT assay. The bacterial reagent is sensitive to pH, therefore

samples with pH higher than 8.00 were adjusted using small aliquots of HCl

(200 μL at 0.25 M). A 100 g/L zinc sulphate standard solution was used to 

check the performance of both operator and analytical system and the 95%

confidence range was maintained below 15% variation throughout the study.

The soil dilution that inhibits 50% (EC50) of the light output relative to was

calculated for each sample, note that Microtox® EC50 values decline as toxicity

increases.

5.2.6. Data analysis

Data analysis was performed on independent mesocosms duplicates for each

amendment at the time points described (0, 30, 90, and 180 days). Aromatic

fractions were grouped as EC10-EC12, EC12-EC16, EC16-EC21, and EC21-EC35,

aliphatic fractions were grouped as EC10-EC12, EC12-EC16, EC16-EC35, and

EC35-C40 according to Coulon et al. (2010). The overall aromatic (Ʃ PAH), 

overall aliphatic (Ʃ ALK) and total petroleum hydrocarbon compounds (ƩPHC) 

contents were also calculated (Table 5.1).

Repeated-measures ANOVA test was used to investigate the significance and

relationship between soil amendment (biochar, compost, or un-amended) and

incubation time on the toxicological response in model organisms (for uni-

variate datasets, e.g. bacteria count, soil respiration, Microtox®). Permutational

Multivariate Analysis of Variance (PERMANOVA) was used was used for multi-

variate datasets, to investigate the significance and relationship between soil
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amendment (biochar, compost, or un-amended) and incubation time on: (1) the

bioavailable and readily available fraction (organic contaminants) or the pore

water and exchangeable fraction of inorganic contaminants (heavy

metals/metalloids), (2) toxicological response in model organisms for multi-

variate datasets (e.g. seeds germination, earthworm lethality, PLFA profiles).

Both Repeated-measures ANOVA and PERMANOVA were performed in R

Studio using the “aov” and “adonis” function of the vegan library respectively

(Oksanen et al., 2011).

To establish correlation between the bioavailable fraction measured by

chemical means and the toxicity response of the bioassays, univariate

regression analysis was used by applying the “corrplot” package (Oksanen et

al., 2011). Further to this, multivariate analyses were used to examine the

combined relationships between bioavailable concentrations and each toxicity

dataset. The Mantel test for dissimilarity matrices was used to evaluate the

correlation between the overall bioavailable concentrations (multivariate

dataset, e.g. whole bioavailable concentration of organic compounds) and the

toxicological response in multiple bioassays. Mantel tests were performed on

scaled matrix by using either Euclidean (all data) or Bray-Curtis distance (for

community composition comparisons e.g. PLFA (Legendre and Legendre,

2012)) calculated with the “vegdist” function. Significance levels of each

relationship were determined from the p value and recognised as significant

where p < 0.05. All tests were computed with R Studio (Version 1.1.423 – ©

2009-2018 RStudio, Inc.).

5.3. Results and discussion

5.3.1. Soil characteristics

The soil physicochemical properties of the two samples used in this study are

summarised in Table 5.1. Textural soil analysis showed that Soil 1 was a coarse

sand soil type while Soil 2 was fine-sandy-loam. The ammonium and nitrate

were relatively low in Soil 1 and high in Soil 2. The phosphate concentration

was similar in both soils, and C: N: P ratio was 254:5:1 and 78:3:1 for Soil 1 and

Soil 2 respectively; where the ratio varied by orders of magnitude in particular in

relation to TC content. Indeed C: N unbalanced ratio and nutrients deficiencies
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are often found in petroleum-contaminated soils along with a high carbon-to-

nitrogen ratio (Saum et al., 2018). Available P was within the range 16 - 45

mg/kg established by soil quality UK framework (Griffiths et al., 2018) for both

soil samples, as well as TN; which even though measured quite low, was in the

range 0.14 - 0.70 mg/kg measured by Bhogal et al. (2015) across seven

experimental sites in the UK.

The pH content of Soil 1 was alkaline (pH > 8), while for Soil 2 pH ranged

between 5.5 - 7.9 which is similar to a previous study evaluating physical

properties of nine UK soils (Mcgeough et al., 2016), and within the average

range of 5.50 - 6.49 of over 200,000 UK arable and grassland soils as

measured by the Soil Analysis Report of Professional Agricultural Analysis

Group (PAAG, UK) (2016) and Goulding and Systems (2016). These conditions

suggest that Soil 1 in particular could benefit from biostimulation with addition of

compost. According to US EPA (2002) the appropriate C: N: P ratio for an

active microbial population able to successfully bio remediate a contaminated

soil is 100:10:1. The compost exhibited the following physicochemical

composition and characteristics: 1.0% TN, 328 mg/kg available phosphorous,

300 mg-N/kg nitrate, and pH 6. The biochar nutrient content was 0.9% TN, 74

mg/kg available phosphorous, and pH 10. The overall PHC content of Soil 1

was 5 times higher than Soil 2. The GC-MS fingerprint was typical of weathered

PHC with a predominance of low to medium chain aliphatic compounds (EC16-

35) and low to medium molecular weight aromatic compounds (EC16-21) (Table

5.1). Other relevant soil and amendment properties are shown Table 5.1.



162

Table 5.1: Physicochemical characteristics of the genuine contaminated soil samples collected in Kent (Soil 1) and

Northamptonshire (Soil 2) UK, and the biochar (Carbon Gold UK) and compost (Westland Horticulture Ltd UK) treatment

materials used in the mesocosms setup.

Characteristics Analysis Soil 1 Soil 2 Biochar Compost

Elements

Total N (%) 0.4 0.2 0.9 1

Total C (%) 18.3 5.8 59 40.2

Total P (%) 0.07 0.07 n.a n.a

C:N:P 254:05:01 78:03:01 n.a n.a

C:N 49.6 23.7 64.7 42.3

Total P (mg/kg) 727.5 750.1 n.a n.a

Available P (mg/kg) 35 33.7 74.1 328.1

Ammonium (mg-N/kg) 9.5 71 0 0

Nitrate (mg-N/kg) 2 18 0 310

Physical properties
Dry matter content Wdm (%) 93.2 85.4 79.4 31.3

Water content (%) 7.3 17.2 25.9 219.3

Chemical properties
pH 9.8 7.4 10 6

LOI (%) 19.1 8.8 76 78.7

Particle size

Organic fractions:

% 10 - 20 mm n.a n.a 22.8 54.5

% 2 - 10 mm n.a n.a 22.2 24.7

% 0.6 - 2 mm (Coarse) n.a n.a 15.5 7.5

% 0.2 – 0.6 mm (Medium) n.a n.a 37.7 9.0

% 0.06 - 0.2 mm (Fine) n.a n.a 1.7 4.5

Mineral fractions:

% 0.6 - 2 mm (Coarse sand) 46 7.8 n.a n.a

% 0.2 – 0.6 mm (Medium sand) 26.7 21.7 n.a n.a

% 0.06 - 0.2 mm (Fine sand) 15.4 23.2 n.a n.a
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Characteristics Analysis Soil 1 Soil 2 Biochar Compost

% 0.002 mm - 0.06 mm (Silt) 11 32.8 n.a n.a

% < 0.002 mm (Clay) 1 14.6 n.a n.a

Soil type Coarse Sand Fine Sandy Loam n.a n.a

Average* heavy metals and metalloids
content (mg/kg)

As 29.6 ± 2.6 47.8±5.9 n.a n.a

Cd <d.l <d.l n.a n.a

Cr 29.6 ± 2.0 48.2±1.7 n.a n.a

Cu 54.2 ± 3.1 17.8±2.2 n.a n.a

Hg <d.l <d.l n.a n.a

Ni 28.2 ± 6.9 20.7±5.3 n.a n.a

Pb 78.5 ± 0.6 188.8±26.1 n.a n.a

Se 4.1 ± 0.2 4.2±0.7 n.a n.a

Zn 243.9 ± 37.8 162.2±10.3 n.a n.a

Average* petroleum hydrocarbons
content (mg/kg)

EC10-12 23.9±8.3 15.2±1.2 n.a n.a

EC12-16 86.1±3.0 24.4±2.3 n.a n.a

EC16-35 1002.0±18.3 21.3±1.5 n.a n.a

EC35-40 <d.l <d.l n.a n.a

Ʃ ALK 1112.4±52.9 95.9±6.3 n.a n.a

EC10-12 <d.l <d.l n.a n.a

EC12-16 599±20.09 717.2±4.7 n.a n.a

EC16-21 4249.1±135.4 1026.6±70.3 n.a n.a

EC21-35 3201.9±69.8 61.2±2.8 n.a n.a

Ʃ PAH 8050.2±226.1 1839.7±81.3 n.a n.a

Ʃ PHC 9162.7±278.9 1900.9±78.5 n.a n.a

N: nitrogen, C: carbon, P: phosphorous, Wdm: dry matter, LOI: loss of ignition, n.a: not available, d.l: detection limit, ALK: alkanes, PAH:
polycyclic aromatic hydrocarbons; PHC: petroleum hydrocarbons compounds.
*Values for heavy metals/metalloids and petroleum hydrocarbons are provided based on average of duplicate measurement ± standard
deviation.
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5.3.2. Chemical mixture fractions behaviour and distribution

changes overtime

5.3.2.1. Extractable total, bioavailable and readily available

PHC concentrations

After 180 days incubation the PHC total content decreased on average by 46

and 30% in Soil 1 + Compost and Soil 2 + Compost. The decrease can be

explained by biodegradation, as the readily available and bioavailable PHC

contents significantly decreased overtime (Figure 5.1 and Figure 5.2, and

Appendix Figure 5.7 and Figure 5.8). The most significant changes were

observed for the aromatics EC16-21 and aliphatic EC16-35 fractions where their

total concentration decreased by 60% and 48% in Soil 1 + Compost, and by

28% and 70% in (Soil 2 + Compost). The bioavailable concentrations of the

aromatics EC16-21, and the aliphatic EC16-35 fractions decreased by 92% and

27%, respectively in Soil 1 + Compost, and by 59% and 62% in Soil 2 +

Compost. The degradation of the medium and long chain aliphatic compounds

(EC16-35) and medium molecular weight aromatic compounds (EC16-21) could be

attributed to the biological activity which is supported by an increase in the

viable microbial abundance and higher respiration rate (see section 5.3.3).

In contrast, in soils amended with biochar, PHC total content decreased by 18%

in both samples, along with a decrease in PHC bioavailable concentration of 24

and 28% in Soil 1 and Soil 2 respectively. Additionally, in biochar amended

soils, the PHC concentration was found to be 15-10% lower compared to un-

amended soil samples, confirming that biochar was able to effectively lock the

organic contaminants. Comparable to previous studies, compost addition was

overall more efficient in promoting biodegradation than biochar (Cai et al., 2010;

Han et al., 2016; Zhang et al., 2010). After amendment, the most prominent

residual hydrocarbon fractions were the high molecular weight aromatic

fractions (EC21-35) for both soils. This recalcitrant behaviour is often observed for

larger molecules in aged contaminated soils, where residual petroleum

hydrocarbons compounds tend to bind tightly to the soil matrix, forming soil

aggregates able to entrap and retain the compounds and therefore limiting their

bioavailability (Huesemann et al., 2004).
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Aromatic EC10-12 and aliphatic EC35-40 fractions are not shown (below detection limit for all soil samples). p-value for total and bioavailable concentrations,

statistically significant at p > 0.05 (ANOVA test). Error bars correspond to the standard deviation across replicates for each grouped compound.

Figure 5.1: Soil 1, total (light grey) and bioavailable from hydroxypropyl-β-cyclodextrin extraction (dark grey) concentrations 

(expressed in mg/kg) of aromatics (EC12-16, EC16-21, and EC21-35) and aliphatics (EC10-12, EC12-16, and EC16-35) across the

sampling time (0, 30, 90, and 180 days).
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Aromatic EC10-12 and aliphatic EC35-40 are not shown (below detection limit for all soil samples). p-value for total and bioavailable concentrations,

statistically significant at p > 0.05 (ANOVA test). Error bars correspond to the standard deviation across replicates for each grouped compound.

Figure 5.2: Soil 2, total (light grey) and bioavailable from hydroxypropyl-β-cyclodextrin extraction (dark grey) concentrations 

(expressed in mg/kg) of aromatics (EC12-16, EC16-21, and EC21-35) and aliphatics (EC10-12, EC12-16, and EC16-35) across the

sampling time (0, 30, 90, and 180 days).
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5.3.2.2. HM and metalloids pseudo-total content, solid phase

distribution, and availability

HM and metalloids were almost entirely found in the non-exchangeable fraction

(Appendix Figure 5.9), and no major changes in their distribution were observed

with incubation time (time effect p> 0.05), suggesting that these HM are unlikely

to become available with time (Appendix Figure 5.10). The most mobilised

elements were Cu > As > Cr > Zn > Ni > Pb for Soil 1 and Zn > Ni > Pb > As >

Cr > Cu for Soil 2, suggesting a common anthropogenic source for these

elements. Cu, As, Cr, Zn, Ni and Pb are often found at gaswork site, as a result

of the manufacturing process (CL:AIRE, 2015). The principal waste types at

gasworks sites responsible for HM/metalloids contaminations includes: residual

spent oxides from gas purification, by-products of carbonisation (ash, clinker

residues), furnace residues (coke, cokebreeze), and residuals from batteries,

pipelines, and paint (CL:AIRE, 2015; Wong, 2012). Additionally the pseudo-total

concentrations of these elements was relatively low (Table 5.1 and Appendix

Table 5.4, Table 5.5), where only As, Pb, and Zn (Soil 2) and Zn (Soil 1) were

found to exceed guideline values (As = 32 mg/kg, Pb = 450 mg/kg, Zn = 150-

200 mg/kg) (UK CLEA Soil Guideline Values, 2009; EC Directive 86/278/EEC,

1986).

5.3.3. Indices of hydrocarbon fractions biodegradation

5.3.3.1. Microbial counts and respiration rate

Changes in microbial community, biomass, and CO2 production can be used as

indices of degradation rates (Chi and Hieu, 2017). In this study the positive

effect of compost amendment on the microbial community was observed for

both soils, while the effect of biochar addition was limited (Figure 5.3). This

finding supports the idea that besides supplying nutrients, compost can provide

additional microorganisms able to enhance the biodegradation process

(Gandolfi et al., 2010). In addition, the higher specific surface area, associated

with compost amendment (Table 5.1), provided a greater surface for interaction,

thus potentially increasing the number of microorganisms attached to it, which

may also lead to a higher degree of degradation (Ge et al., 2015).
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Such effect seems to be more pronounced where initial nutrients level was low,

and soil microbial activity and communities were initially distressed by high

contaminants concentrations, as in Soil 1. Both incubation time (p = 0.0004)

and amendment (p = 0.0007) significantly influenced soil respiration rate in Soil

1, while only Soil 2 + Compost was found to be highly significant (p = 0.00002)

(Figure 5.3).

At the onset Soil 1 had no measurable CO2 production (below detection limits)

for most samples. Over the 90 days monitoring Soil 1 + Compost increased by

two orders of magnitude the numbers of culturable bacteria (data not shown)

compared to Soil 1 un-amended, this translated into enhanced CO2 production

with a steady increase in net mineralized CO2 (Figure 5.3). The positive effect of

compost addition on the total number of culturable microorganisms has been

previously observed in soil contaminated with diesel oil (Gandolfi et al., 2010)

and heavy crude oil (Trejo-Hernández et al., 2007). Similar findings showed that

bioavailable and readily available concentrations may be reduced when

applying compost amendment without hindering biodegradation (Bielská et al.,

2017; Marchal et al., 2013). The beneficial effect observed for compost-

amended soil can be attributed to (1) the increase in nutrients content, (2) the

enrichment of the microbial community, (3) a positive effect of pH adjustment

(slightly acidic pH of compost) towards a more neutral pH value (Kästner and

Miltner, 2016).

Soil 2 demonstrated a slight decrease in net mineralized CO2 rate during the

first 30 days, followed by an increase over the next 60 days (Figure 5.3);

however compost and biochar amendments did not significantly affect the

numbers of culturable bacteria (data not shown). Soil 2 + Biochar showed a

lower CO2 production, compared to Soil 2 + Compost, and a similar trend to un-

amended soil, suggesting that the addition of biochar did not produce a

significant advantage for the microbial community, in the sample with lower

PHC contamination. While many studies demonstrated the ability of biochar

amendment to increase the population of microorganisms (Douds et al., 2014;

Hua et al., 2011; Yoshizawa et al., 2005; Zhang and Sun, 2014), no significant

increase of the number of culturable bacteria was observed in this study. In
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particular, all the above mentioned studies involve the use of a primary source

of nutrients (green waste or sludge) along with biochar addition. Thus biochar

used in combination with traditional composting can increase the quality of

treatment (increasing particle-size distribution, creating free air space,

improving cation exchange capacity); however, when applied on its own, it does

not bring any benefit for the bacterial and fungal community. Moreover, the

ineffectiveness of biochar in regards of reducing toxicity for microorganisms can

have multiple explanations including: (1) biochar, may still contains PAH due to

the pyrolysis (Hale et al., 2012) causing toxicity for the microorganisms

(Oleszczuk et al., 2012; Quilliam et al., 2013); (2) biochar strong sorption

capacity (Joseph et al., 2010) may reduce nutrients availability (Oleszczuk et

al., 2013); (3) the lack of nutrients in the soil sample, was addressed in

compost- amended mesocosms but not in biochar-amended ones.

Figure 5.3: Soil respiration expressed as CO2 production (mg CO2 /g soil)

for treated with compost, biochar, or un-amended (Soil 1 and Soil 2), tested

at 0, 30, 90 and 180 days. Error bars correspond to the standard deviation

across replicates.
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5.3.3.2. Phospholipid-derived fatty acids analysis

As previously highlighted, compost amendment consistently generated an

increase in viable microbial community and CO2 production for both soils; this

finding was also supported by a significant shift in the microbial community

composition over time, thus clearly differentiating compost amendment from un-

amended soils (Figure 5.4). For Soil 1 and Soil 1 + Biochar, a threefold increase

of Gram negative and a net decrease of fungi (over 70%) were observed

between T0 (onset) and T180. Previous studies correlated petroleum

hydrocarbons loss and PLFA specific for the total bacterial community of Gram-

negative bacteria, and soil fungi (Al-Hawash et al., 2018; Bell et al., 2013;

Margesin et al., 2007).

For the least contaminated soil, the microbial community composition for Soil 2

and Soil 2 + Biochar was more subjected to changes during incubation,

compared to Soil 2 + Compost. We hypothesised that, in this soil sample, the

biodiversity of indigenous microorganisms (provided by compost amendment)

may have acted as a barrier to exogenous microorganisms (Kennedy et al.,

2002) reducing population shifts. Both incubation time (p = 0.001) and

amendment applied (p = 0.002) were found to be equally significantly affecting

microbial community composition in both soil samples.
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Figure 5.4: Classification of PLFA identified in soil treated with compost,

biochar, or un-amended (Soil 1 and Soil 2) comparing onset (0 days) and end of

incubation period (180 days). The relative abundance of individual PLFA was

expressed as a percentage of the total of the target responses.
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5.3.4. Soil ecotoxicology

5.3.4.1. Seeds germination

Both soils amended with compost had the highest percentage of seeds

germination (> 90%), indicating that the toxic effect was lower compared to un-

amended and biochar amended samples (Appendix Figure 5.11). For Soil 1

both incubation time and soil amendment applied were found to significantly

affect germination rate (p = 0.001). Although a significant increase (> 40%) in

seed germination was still recorded for Soil 1 and Soil 1 + Biochar in peas (after

30 days Appendix Figure 5.11 C) mustard and rye grass (after 90 days

Appendix Figure 5.11 A and B), the rate and degree of growth were slower

compared to uncontaminated soil (control), suggesting some time lag

ecotoxicological effect.

In Soil 2 and Soil 2 + Biochar the germination rate decreased at day 30, but

remained constant for Soil 2 + Compost. This can be explained by the fact that

Soil 2 amended with compost relied on an established and a more stable

microbial community (as previously highlighted in PLFA composition), which

was able to degrade organic contaminations, along with a significant reduction

in bioavailability, thus reducing toxicity. On the contrary Soil 2 and Soil 2 +

Biochar had a more dynamic microbial population along with a less effective

microbial degradation (decrease in net mineralized CO2); therefore changes in

contaminant concentration were likely to be mainly depending on

sorption/desorption processes rather than microbial degradation. Indeed,

changes in sorption-desorption equilibrium can drive the release of organic

contaminants which were previously encapsulated in soil aggregates (Jiang et

al., 2016), hence increasing compounds bioavailability and toxicity. This was

observed for Soil 2 where bioavailable concentrations of EC16-21 and EC21-35

were higher at 30 days compared to the onset of the experiment (Figure 5.2)

along with a lower germination rate recorded for mustard, rye grass, and pea

seeds at 30 days (Appendix Figure 5.11 A, B, and C).
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5.3.4.2. Earthworms lethality

Earthworm acute toxicity assay was more sensitive compared to seed

germination, as both dermal absorption and feeding can impact E. fetida (Korte,

2003; Vijver et al., 2003). Condition index (CI) for Soil 1 and Soil 1 + Biochar

remained 0 (mortality) at all sampling points, along with a significant decrease in

weight (on average up to 50% reduction) (Table 5.2). In Soil 1 + Compost, the

CI consistently increased across the sampling time. E. fetida was also less

affected by changes in weight loss. Similar to the other bioassays, Soil 2 was

seen as having a lower impact on E. fetida (Table 5.2). Neither amendment

applied nor mesocosms incubation time were significantly affecting condition

index in Soil 2 (p > 0.05). This can be explained by the fact that Soil 2 was

overall less contaminated, and perhaps this specific ecotoxicological test may

not be adequate (low sensitivity) to highlight the relationship between the two

variables (toxicity/contamination). In this case the use of a chronic test, such as

inhibition of earthworm reproduction, (OECD, 2004) could have provided a more

ecologically relevant endpoint rather than acute toxicity (Lionetto et al., 2012).



174

Table 5.2: Average Condition Index (CI) of E. Fetida and weight loss (percentages) in earthworm acute toxicity bioassay, at

the four sampling times (0,30 ,90, and 180 days) for Soil 1 and Soil 2 treated with compost, biochar, or un-amended. Condition

index ranged from 0-2, where 0= mortality.

Compost Biochar Un-amended

Soil 1

0 30 90 180 0 30 90 180 0 30 90 180

CI 3 days 0.0 0.3 1.5 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

CI 7 days 0.0 0.0 1.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

CI 14 days 0.0 0.0 1.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
% weight
loss/gain

-34.9 -20.1 -14.3 7.4 -53.0 -50.3 -64.0 -50.0 -55.5 -37.0 -57.1 -50.0

stdev 2.0 40.5 54.5 4.2 6.2 1.8 23.4 0.0 1.1 0.4 4.0 0.0

Compost Biochar Un-amended

Soil 2

0 30 90 180 0 30 90 180 0 30 90 180

CI 3 days 1.4 2.0 2.0 1.8 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0

CI 7 days 1.5 1.8 1.3 1.8 1.3 1.8 2.0 2.0 2.0 2.0 2.0 2.0

CI 14 days 1.4 1.8 1.5 1.7 1.9 1.8 1.7 1.7 1.8 2.0 2.0 2.0

% weight
loss/gain

-1.4 22.5 46.2 11.9 19.0 34.7 2.2 22.5 14.1 12.9 5.4 25.5

stdev 36.0 0.1 1.9 7.6 3.8 0.8 3.0 5.9 9.6 4.4 7.7 4.8

CI : condition index, stdev : standard deviation
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5.3.4.3. Microtox® Basic Solid Phase Test

The use of Microtox® bioassay, in combination with the other ecotoxicological

tests, provide a supplementary tool for a real-time assessment of toxicity

associated not only with the presence of contaminants in a mixture, but also with

their potential mutual interactions (Kuczyńska et al., 2005). Previous findings 

highlight the positive effect of bioremediation in reducing toxicity of organic

contaminants to V. fischeri (Khan et al., 2012, 2013; Macken et al., 2008). At the

onset of the experiment, the toxicity levels were similar for all samples due to the

co-presence of organic and inorganic pollutants, however after 180 days the

overall acute toxicity significantly decreased (EC50 increase), in particular for Soil 1

+ Compost (Figure 5.5). In comparison for Soil 2 changes in toxicity to V. fischeri

were limited, as this sample was overall less contaminated. In particular in Soil +

Biochar toxicity was halved due to a combination of bonding between

contaminants and organic sorbent (biochar), and a reduction of the compounds

bioavailability. This can provide an explanation for the difference observed in

toxicity among the samples studied in spite of similar levels of PHC. Amendment

alone (p = 0.00004), incubation time (p = 0.004) and combined effect of time and

amendment (p = 0.003) were found to be significantly affecting changes in EC50

for Soil 1 and Soil 2.
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Figure 5.5: Microtox® Basic Solid phase Test (BSPT) assay average results

expressed as EC50 concentration (mg/L) (y-axis in log scale) for light decrease

values at the onset and after 30, 90, and 180 days for treated with compost,

biochar, or un-amended (Soil 1 and Soil 2). Error bars indicate standard error of

the repeated measures (toxicity decreases when the EC50 value increases).

5.3.5. Correlation between bioavailable fraction and bioassays

The bioavailable (HP-β-CD extracted) and readily-available (methanol extracted) 

concentrations of the main hydrocarbon groups, and HM/metalloids fractions were

plotted along with the toxicological responses of the multiple bioassays (Figure

5.6). The strength of the correlations between the bioavailability-proxy and the

toxicity data can provide an indication of which technique is more suitable for

predicting site-specific bioavailability of complex chemical mixtures. Strong

negative correlations were observed between bioavailable/readily available

aromatic and aliphatic concentrations and the ecotoxicological assays (e.g.

bacteria count, soil respiration, seeds germination, and condition index) in

particular in Soil 1 + Compost and Soil 2 + Compost (Figure 5.6 c-f). Results

indicate that when bioavailable/readily available concentrations decrease, the

toxicity also decrease, thus diversity of microbial community increase along with

soil respiration, condition index, and EC50 (Figure 5.6).
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x rows = all values equal, no correlation
x columns = all values below detection limits

Pw: pore water, Ex: exchangeable, ALI: aliphatics hydrocarbons, ARO: aromatics hydrocarbons,
PHC: petroleum hydrocarbons compounds, Bio: bioavailable, Readav: readily available,
Bact.Count: bacteria count, Resp: respiration, Bacillus.Arthr.: Bacillus or Arthrobacter, Gen.Bac
:general bacteria, Gram.Pos: gram positive, Cianobact: cyanobacteria, Gram Neg.: gram negative,
Other Bac: other bacteria, EC50: Microtox

®
EC50 values, Germ: germination, CI: condition index (at

3, 7, and 14 days).

Figure 5.6: Correlation (based on Spearman coefficient) between organic and

inorganic bioavailable concentrations and toxicological responses in multiple
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bioassays. Soil 1 (a), Soil 1+ Biochar (b), Soil 1 + Compost (c), Soil 2 (d), Soil 2 +

Biochar (e), and Soil 2 + Compost (f). Positive correlations were displayed in blue

and negative correlations in red colour, were intensity were proportional to the

correlation coefficients (scale).

Even though, for both soils, un-amended and biochar amended samples often

displayed a similar pattern in their biological responses for microbial count, soil

respiration, PLFA profile, seeds germination and earthworm lethality, the

correlation between bioavailability and ecotoxicology was different (Figure 5.6 a

and b). Less correlation was observed in Soil 1 + Biochar highlighting that toxicity

changes can be driven by multiple factors (combined effects) which may not be

accounted for in univariate linear regression analysis (correlation).

Interestingly, for both Soil 1 and Soil 2, the HM/metalloids pore water

concentrations were often found to be positively correlated (dark blue); meaning

that when bioavailable concentrations is high, toxicity is low for the microbial

bioassays (bacteria count, respiration, and in some cases PLFA). Indeed

moderate concentrations of HM have previously been reported to have a beneficial

effect to microbial growth (Chen et al., 2015).

Multivariate analyses (Table 5.3) highlighted a statistical significant relationship (p

= 0.008, p = 0.007) between bioavailable concentrations of complex mixtures of

PHC and seed germination assay, microbial growth (CFU), in Soil 1 + Compost

and Soil 1 + Biochar. No significant relationships identified through the Mantel test

were observed for the low contaminated soil (Soil 2) where the overall, readily

available and bioavailable PHC concentrations were not strongly correlated (r2 <

0.75 and p > 0.05) with the bioassays. As previously highlighted the effect of HM,

in particular the dissolved elements present in the pore water fraction, was

significant for the bacterial count in Soil 1 + Compost (p = 0.028) and Soil 2 +

Biochar (p = 0.049).

In this study we observed that toxicity can be highly variable in relation to the type

of assay applied, suggesting that toxic effect can be driven by multiple different

sources. This is consistent with the fact that various organisms, used for the

ecotoxicological assays, are characterised by various levels of sensitivity to
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complex chemical mixtures (Isidori et al., 2003). Other studies also highlighted the

challenge of establishing direct relationship between organics content and

ecotoxicity parameters (Oleszczuk et al., 2014). For example Buss and Mašek

(2014) show the significant effect of volatile organic compounds rather than

bioavailable PAH concentrations on seed germination assay. However, the

significant uni- and multivariate relationships (p < 0.05) observed between the

bioavailability-proxy and the toxicity data provides the necessary evidence that this

integrated approach is suitable for predicting site-specific bioavailability of complex

chemical mixtures and could potentially be implemented with confidence in a

stepwise tiered approach.
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Table 5.3: Multivariate analyses between bioavailable concentrations of organic compounds (hydroxypropyl-β-cyclodextrin 

extractions), readily available (methanol extractions), heavy metals and metalloids bioavailable concentrations (pore water and

exchangeable fraction), and toxicological response in multiple bioassays performed with Mantel test for dissimilarity matrices.

Treatment Soil Bioassay
PHC

bioavailable
(HP-β-CD) 

PHC
readily available

(MeOH)

HM
pore
water

HM
exchange

able
All

r p-value r p-value r p-value r p-value r p-value

C
o
m

p
o
s
t

S
o
il

1

bact. count -0.272 0.837 -0.260 0.766 0.790 0.028 -0.071 0.385 -0.116 0.495

soil resp. 0.050 0.375 -0.027 0.524 0.357 0.095 0.616 0.007 0.052 0.368

PLFA 0.386 0.090 0.289 0.217 -0.104 0.608 0.287 0.123 0.309 0.186

seeds 0.789 0.008 0.635 0.030 0.141 0.267 -0.105 0.712 0.752 0.009

worms 0.405 0.028 0.420 0.010 -0.151 0.816 0.240 0.152 0.421 0.010

EC50 0.224 0.059 0.047 0.271 -0.192 0.720 0.170 0.141 0.098 0.241

C
o
m

p
o
s
t

S
o
il

2

bact. count 0.037 0.575 0.136 0.314 -0.105 0.710 -0.076 0.556 0.155 0.281

soil resp. -0.065 0.630 0.203 0.217 -0.028 0.535 -0.087 0.632 0.159 0.240

PLFA -0.353 0.729 0.171 0.363 0.046 0.189 -0.124 0.477 -0.211 0.460

seeds 0.042 0.583 0.271 0.167 0.204 0.083 0.374 0.229 0.338 0.104

worms 0.214 0.333 -0.05 0.611 0.120 0.250 -0.036 0.604 0.349 0.094

EC50 0.382 0.026 0.054 0.432 0.324 0.109 -0.125 0.682 0.412 0.010

B
io

c
h
a
r

S
o
il

1

bact. count 0.750 0.007 0.013 0.484 -0.106 0.622 0.301 0.064 0.272 0.281

soil resp. -0.095 0.587 0.176 0.160 0.008 0.434 0.132 0.274 0.131 0.247

PLFA 0.096 0.313 0.236 0.224 0.144 0.248 0.015 0.467 0.217 0.236

seeds 0.775 0.017 0.176 0.222 -0.157 0.740 0.471 0.045 0.480 0.003

worms n.a n.a n.a n.a n.a n.a n.a n.a n.a n.a

EC50 0.257 0.099 0.159 0.184 0.290 0.108 0.130 0.250 0.247 0.115
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Treatment Soil Bioassay
PHC

bioavailable
(HP-β-CD) 

PHC
readily available

(MeOH)

HM
pore
water

HM
exchange

able
All

r p-value r p-value r p-value r p-value r p-value

B
io

c
h
a
r

S
o
il

2
bact. count -0.140 0.384 0.591 0.014 0.871 0.049 0.328 0.314 0.387 0.019

soil resp. -0.020 0.526 0.454 0.007 0.245 0.130 0.209 0.139 0.553 0.012

PLFA -0.011 0.821 0.003 0.436 -0.278 0.868 -0.081 0.349 -0.076 0.833

seeds 0.050 0.972 0.153 0.175 -0.202 0.679 -0.305 0.622 0.073 0.689

worms 0.224 0.510 0.153 0.175 0.088 0.094 -0.185 0.500 0.151 0.396

EC50 0.320 0.045 0.211 0.201 0.759 0.005 -0.120 0.738 0.510 0.019

U
n
-a

m
e
n
d
e
d

S
o
il

1

bact. count 0.109 0.306 -0.118 0.606 0.521 0.023 0.061 0.411 0.062 0.363

soil resp. 0.203 0.104 0.449 0.003 0.117 0.231 0.199 0.106 0.449 0.002

PLFA 0.247 0.167 0.497 0.017 -0.247 0.892 0.185 0.220 0.428 0.036

seeds 0.279 0.193 0.333 0.080 0.039 0.392 0.693 0.007 0.320 0.064

worms n.a n.a n.a n.a n.a n.a n.a n.a n.a n.a

EC50 -0.149 0.833 0.127 0.149 -0.019 0.563 0.276 0.063 -0.045 0.594

U
n
-a

m
e
n
d
e
d

S
o
il

2

bact. count -0.279 0.955 0.502 0.052 0.005 0.524 0.003 0.488 0.115 0.307

soil resp. -0.293 0.873 0.511 0.050 0.015 0.333 -0.376 0.917 0.148 0.149

PLFA -0.229 0.892 0.589 0.026 0.125 0.253 -0.100 0.597 0.347 0.076

seeds -0.068 0.576 -0.169 0.701 0.478 0.021 -0.356 0.972 0.001 0.465

worms -0.057 0.635 0.378 0.165 0.265 0.146 -0.254 0.747 0.371 0.146

EC50 0.123 0.236 0.284 0.042 0.764 0.038 0.150 0.226 0.466 0.010
PHC: petroleum hydrocarbons compounds, HP-β-CD: hydroxypropyl-β-cyclodextrin, HM: heavy metals (and metalloids), all: bioavailable measures 
combined (bioavailable, readily available pore water, and exchangeable), bact count: bacteria count (CFU), soil resp: respiration (mg CO2/ g soil),
PLFAs: phospholipid fatty acids analysis, seeds: seed germination assay (% germinated/total), worms: earthworm acute toxicity assay (condition index),
EC50: Microtox® EC50 values. Statistically significant at p-value > 0.05. Spearman correlation coefficient (r >0.75).
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5.4. Conclusion

In this study the effect of compost and biochar addition on two soils

contaminated with complex chemical mixtures was evaluated with a particular

attention to their influence on the chemical behaviour, bioavailability, and

degradation of the chemical mixtures. In parallel the effect of bioavailability of

complex chemical mixtures on the microbial community composition and soil

ecotoxicology were assessed. The addition of compost was effective in

enhancing PHC degradation with a reduction of ≥ 30%, and reducing

significantly soil toxicity (e.g. EC50 increased 60 and 7 times in Soil 1 and Soil 2,

respectively). While biochar amendment was less effective in reducing total

PHC (≤ 19% decrease), the PHC concentration was still 15 - 10% lower

compared to un-amended samples suggesting that biochar was able to

effectively lock organic contaminants in soil. This was evidenced by a significant

decrease in bioavailability of the aromatic EC16-21 and aliphatic EC16-35

compounds in both amended soils (≥ 80%); yet the high molecular weight

(HMW) aromatic compounds were not posing any risk, as none of the fractions

were found to be significantly bioavailable in any of the soil samples tested.

Heavy metals and metalloids were almost entirely found in the non-

exchangeable fraction, and no major changes in their distribution were

observed with incubation time, suggesting that there HM are unlikely to become

available with time, thus not posing risk. In our study, the soil pH for both

samples was found to be neutral or alkaline; this condition is responsible for

reducing HM and metalloids mobility due to adsorption, desorption, and co-

precipitation processes. This study shows that the concentration of low to

medium chain aliphatic compounds and low to medium molecular weight

aromatic compounds can be effectively reduced through degradation by

compost amendment and to a lower extend stabilised by biochar amendment.

Thus, these fractions should be considered and monitored when defining

remediation end-points, as they are easily degraded by microorganisms and

potentially constitute the drivers for toxicity reduction. Since a valid

ecotoxicological assessment should reflect the changes of contaminant
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concentrations, toxicity, and bioavailability of the complex mixtures; in this study

we attempted to combine the complexity of the biological indicators with the

chemical analysis. The bioassays were selected based on ease of execution

and environmental relevance, and were used to provide information on

remediation effectiveness. Overall, this study highlighted that there was a

significant relationship (p < 0.05) between the bioavailable/readily available

fraction of the chemical mixtures and the ecotoxicological bioassays. E. fetida

(CI at 14 days), and the seed germination assay were the best at discriminating

between the amended and un-amended soils (in particular for Soil 1). These

assays are expected to be more reliable to be used in the risk assessment, and

could significantly help to identify optimal remediation strategies, and contribute

to change the over-conservative nature of the current risk assessments.
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5.6. Appendix

Aromatic EC10-12 and aliphatic EC35-40, fractions are not shown (below detection limit for all soil samples). Error bars correspond to std. deviation.

Figure 5.7: Soil 1, total (light grey) and bioavailable from methanol extraction (dark grey) concentrations (expressed in mg/kg)

of aromatics (EC12-16, EC16-21, and EC21-35) and aliphatics (EC10-12, EC12-16, and EC16-35) across the sampling time (0, 30, 90,

and 180 days), p-value significance p> 0.05 (ANOVA Test).
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Aromatic EC10-12 and aliphatic EC35-40 fractions are not shown (below detection limit for all soil samples). Error bars correspond to std. deviation.

Figure 5.8: Soil 2, total (light grey) and bioavailable from methanol extraction (dark grey) concentrations (expressed in mg/kg)

of aromatics (EC12-16, EC16-21, and EC21-35) and aliphatics (EC10-12, EC12-16, and EC16-35) across the sampling time (0, 30, 90,

and 180 days), p-value significance p> 0.05 (ANOVA Test).



194

Table 5.4: Pseudo-total elements concentration (aqua regia extraction), for Soil 1 treated with compost, biochar, or un-amended.

Values are expressed in mg/kg and averaged across sampling times.

Element Soil1+Compost Soil1+ Biochar Soil 1

Min. Max. Median Min. Max. Median Min. Max. Median

Al 6146.94 - 12460.33 10000.56 1609.58 - 12975.65 10648.62 2794.92 - 12896.52 10844.83

As 15.41 - 34.85 26.69 12.42 - 46.29 31.09 27.03 - 39.87 32.54

Ba 91.08 - 167.01 156.74 95.97 - 197.99 161.20 155.05 - 207.05 171.08

Ca 17186.74 - 37755.48 33665.62 22088.72 - 40643.36 37304.06 19851.48 - 40367.05 37475.94

Cd 0.78 - 2.11 0.81 0.73 - 2.57 0.86 0.92 - 3.17 1.04

Co 4.62 - 13.49 6.48 4.16 - 12.61 7.11 3.54 - 14.29 7.50

Cr 17.97 - 42.82 22.75 22.32 - 38.78 25.92 23.36 - 41.97 28.62

Cu 31.88 - 58.46 47.44 37.68 - 59.79 52.07 51.02 - 62.19 56.79

Fe 11275.80 - 31248.09 18790.43 9459.48 - 28517.16 21154.18 15622.58 - 30092.68 19650.83

Hg 0.07 - 0.43 0.23 0.07 - 0.40 0.15 0.07 - 0.67 0.23

K 1865.34 - 3610.84 2717.94 961.67 - 3504.76 2474.43 2099.33 - 3119.73 2509.84

Li 10.37 - 15.08 11.63 4.59 - 15.63 13.03 13.23 - 16.49 14.58

Mg 1350.69 - 2272.04 1834.62 945.59 - 2189.44 1785.87 1183.37 - 2233.06 1849.72

Mn 181.85 - 338.23 281.97 196.23 - 316.48 273.35 200.68 - 350.03 303.87

Mo 0.77 - 1.53 1.02 0.20 - 1.60 1.11 0.32 - 1.80 1.20

Na 388.00 - 615.45 456.15 382.75 - 605.93 414.27 345.00 - 453.18 411.87

Ni 11.79 - 33.39 21.40 9.59 - 28.81 21.77 17.90 - 35.10 24.02

P 476.84 - 1265.03 802.10 353.69 - 1173.00 793.70 404.29 - 1012.59 755.82

Pb 38.59 - 87.04 60.67 45.64 - 122.52 77.05 45.47 - 79.11 62.00

S 4380.49 - 7813.52 6715.96 3706.56 - 8867.50 7040.18 2398.27 - 7869.69 6474.71

Sb 1.76 - 2.89 2.41 0.09 - 3.16 2.57 0.21 - 3.68 2.90

Se 2.34 - 4.23 3.70 0.99 - 4.07 3.88 1.46 - 4.39 3.84

Si 595.45 - 1584.63 1367.55 94.81 - 1294.14 1013.08 137.09 - 1148.71 884.69

Sr 63.36 - 112.38 103.92 75.41 - 125.55 112.40 103.69 - 124.64 107.17

V 20.17 - 35.15 28.56 2.28 - 40.20 31.16 28.98 - 40.79 32.72

Zn 119.77 - 225.88 167.31 155.67 - 247.82 191.08 113.47 - 281.67 202.83
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Table 5.5: Pseudo-total elements concentration (aqua regia extraction), for Soil 2 treated with compost, biochar, or un-amended.

Values are expressed in mg/kg and averaged across sampling times.

Element Soil2+Compost Soil2+Biochar Soil2

Min. Max. Median Min. Max. Median Min. Max. Median

Al 18456.86 - 22020.17 20636.38 19445.05 - 26004.06 23268.89 4979.88 - 25555.68 22382.98

As 40.60 - 60.61 48.77 43.19 - 67.66 56.06 41.95 - 66.03 58.02

Ba 94.80 - 230.29 118.87 109.82 - 132.32 128.61 84.39 - 157.15 132.52

Ca 14272.25 - 23481.43 18753.55 16684.37 - 25273.96 21207.72 17097.67 - 24528.51 20349.74

Cd 0.16 - 0.60 0.21 0.16 - 0.38 0.17 0.15 - 0.22 0.19

Co 8.55 - 15.36 11.90 9.31 - 15.67 12.51 10.21 - 16.99 12.27

Cr 44.51 - 69.19 58.77 44.31 - 74.30 57.67 46.48 - 75.85 63.32

Cu 14.23 - 27.34 19.98 18.52 - 27.88 23.53 15.57 - 27.23 23.84

Fe 37574.01 - 59631.47 49589.09 43487.70 - 67169.16 53936.24 31614.50 - 68257.18 57294.26

Hg 0.06 - 0.39 0.31 0.06 - 0.49 0.35 0.06 - 0.40 0.35

K 3350.01 - 4585.49 3922.12 3449.97 - 4987.05 4304.63 1564.07 - 5090.93 4151.42

Li 24.37 - 31.85 28.28 26.17 - 37.83 32.29 10.20 - 38.23 31.42

Mg 1812.92 - 2451.26 2107.87 1821.60 - 2446.65 2254.30 1354.14 - 2442.97 2163.91

Mn 379.02 - 863.46 475.30 379.79 - 606.31 471.69 373.28 - 563.74 507.11

Mo 0.73 - 1.26 1.18 0.88 - 1.46 1.17 0.17 - 2.78 1.33

Na 328.22 - 472.02 419.01 297.66 - 509.63 404.58 176.03 - 452.05 381.29

Ni 20.44 - 34.63 26.69 22.65 - 34.43 28.41 15.37 - 33.44 30.44

P 781.12 - 1087.28 876.32 680.12 - 1095.66 1045.18 337.06 - 1098.17 954.72

Pb 49.92 - 455.62 75.00 67.47 - 167.88 82.73 71.03 - 214.95 76.92

S 5344.44 - 8583.54 6308.99 5240.50 - 10146.32 7518.39 4765.50 - 8624.88 7883.46

Sb 0.40 - 1.84 1.21 0.94 - 3.09 1.41 0.04 - 2.96 1.48

Se 5.09 - 8.70 5.83 5.19 - 10.15 6.18 3.50 - 11.62 6.33

Si 553.29 - 946.11 725.54 434.27 - 1044.67 753.57 89.12 - 1066.08 640.46

Sr 43.02 - 65.99 52.59 44.69 - 65.48 62.20 44.08 - 63.06 53.76

V 75.78 - 109.99 84.47 78.05 - 116.16 91.66 81.19 - 114.80 101.17

Zn 144.45 - 481.76 200.25 147.42 - 255.94 195.80 151.98 - 278.97 201.92
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Figure 5.9: Heatmap and associated clustergram for CISED extraction data for the Soil 1 (top) and Soil 2 (bottom) treated

with compost, biochar, or un-amended. On the left side the elements composition (e.g. Na, Mg, Al) on the right side the

extraction number data (E1 to E14). The heatmap colour gradient represents the mean-centered concentrations. Cd, Hg, and

Se were removed as concentration values were below detection limits.



197

Figure 5.10: Heavy metals and metalloids distribution expressed as

percentage (pore water, exchangeable, and non-exchangeable), for both soils

(Soil1 and Soil 2) treated with compost, biochar, or un-amended, at 0, 30, 90

and 180 days. Cd, Hg, and Se were removed as concentration values were

below detection limits.
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C: compost, B: biochar

Figure 5.11: Seed germination assay for (A) Mustard (B. alba), (B) rye grass (L.

perenne), and (C) pea (P. sativum) seeds. Germination rate (expressed as a

percentage of the total) at the four sampling time (onset, 30, 90, and 180 days)

for Soil 1 and Soil 2 treated with compost, biochar, or un-amended.
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6. Prediction of bioavailability and toxicity of
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models
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2University of Virginia, Department of Chemical Engineering, USA

Abstract: Empirical data from a 6-month mesocosms experiment were used to

assess the ability and performance of two machine learning (ML) models,

including artificial neural network (NN) and random forest (RF), to predict

temporal bioavailability changes of complex chemical mixtures in contaminated

soils amended with compost or biochar. From the predicted bioavailability data,

toxicity response for relevant ecological receptors was then forecasted to

establish environmental risk implications and determine acceptable end-point

remediation. The dataset corresponds to replicate samples collected over 180

days and analysed for total and bioavailable petroleum hydrocarbons and heavy

metals/metalloids content. Further to this, a range of biological indicators

including bacteria count, soil respiration, microbial community fingerprint, seeds

germination, earthworm’s lethality, and bioluminescent bacteria were evaluated

to inform the environmental risk assessment. Parameters such as soil type,

amendment (biochar and compost), initial concentration of individual

compounds, and incubation time were used as inputs of the ML models. The

relative importance of the input variables was also analysed to better

understand the drivers of temporal changes in bioavailability and toxicity. It

showed that toxicity changes can be driven by multiple factors (combined

effects), which may not be accounted for in classical linear regression analysis

(correlation). The use of ML models could improve our understanding of rate-

limiting processes affecting the freely available fraction (bioavailable) of

contaminants in soil, therefore contributing to mitigate potential risks and to

inform appropriate response and recovery methods.

Keywords: risk assessment; machine learning; bioavailability; complex

chemical mixtures; compost; biochar.
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6.1. Introduction

Contaminants in the environment are found as a combination of multiple

chemicals, often including both organic and inorganic compounds, such as

petroleum hydrocarbons and heavy metals/metalloids (European Environment

Agency, 2012). The contaminants’ fraction potentially available to receptors

(bioavailable fraction) depends on both chemical properties of pollutants and

soil properties (Semple et al., 2003), and is a better proxy than the total

concentration of contaminant (Guo et al., 2016) when predicting the actual

exposure to organisms and the ecosystem (Gourlay-Francé and Tusseau-

Vuillemin, 2013). Bioavailability provides a basis to make robust decision

regarding appropriate risk assessment, predicting contaminants’ fate, transport,

and potential environmental impact (Lehmann and Joseph, 2015). While greater

attention has been given to the role of bioavailability of complex contaminants in

regard to remediation end points (Brand et al., 2012; Harmsen and Naidu, 2013;

Kördel et al., 2013; Ortega-Calvo et al., 2015) as well as its implication for

regulatory frameworks (Umeh et al., 2017), its recognition and effective

application by European-based environmental regulators is still limited

(Harmsen and Naidu, 2013).

The recent shift toward sustainable remediation approaches is spawning a

growing interest towards biological amendments such as composting, land

farming, bioventing, and biopiling (Bardos et al., 2011). Biochar and compost

amendments have been largely applied as effective bioremediation approaches

for enhancing recovery of soil contaminated with petroleum hydrocarbons and

heavy metals (Lyu et al., 2016; Wu et al., 2014). Even though bioremediation is

regarded as a sustainable and economical approach, with minimal disruption on

site (often applicable in-situ) and great public acceptance, it has some

limitations (Boopathy, 2000). For instance, some chemicals may not be

degradable, or their degradation may yield by-products, such as oxy-PAH,

which can exhibit greater toxicity than the parent compounds (Hu et al., 2012)

and therefore slow down the degradation and reduce remediation efficiency.

Because of these challenges, our mechanistic understanding of complex
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chemical mixtures degradation, the associated toxicity, and the subsequent

implication for risk assessment and remediation end-point are still limited.

Accurately monitoring the bioremediation process and supporting risk

evaluation and degradation assessment often involve long-term experiments

with multiple soil sampling which are labour intensive, time consuming, and

expensive. Therefore, the use of machine learning (ML) methods trained on

empirical data could be advantageous to make predictions on the potential

degradation and reduction in toxicity occurring during remediation. ML models

are able to learn the relationships between input variables (e.g. soil

amendment, soil type) and output variables (e.g. long term changes in

contaminants’ bioavailability) from a training dataset, these relationships can

then be generalised to make informed decisions in new cases (Wu et al., 2013).

The application of ML to environmental issues, such as waste recovery and

degradation studies, have been widely investigated in the literature (Abbasi and

El Hanandeh, 2016; Heshmati et al., 2014; Khamforoush et al., 2011; Mason,

2006; Petric and Selimbašić, 2008; Wu et al., 2013), however their 

implementation is still limited, as often these methods are data-specific, or even

variable-specific and their performance depends on many factors (Li et al.,

2011). In particular, previous research highlighted the potential of ML to

determine remediation end-points based on bioavailability predictions (Wu et

al., 2013) and showed that a better understanding of the impacts of

bioavailability is necessary to fully comprehend the extent of efficacy of

bioremediation and manage the associated risks.

Therefore, in this study, we use ML to predict bioavailability but also the actual

toxicity of tar-contaminated soils from two former manufactured-gas plant sites

before and after lab-based bioremediation with biochar and compost

amendments. Specifically, the objectives were to use empirical data from a

bioremediation experiment to predict (1) change of complex chemical mixtures

bioavailability, (2) change in the associated toxicity, and (3) to assess the input

variables which are the most important for the estimation of toxicity.
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6.2. Material and methods

6.2.1. Mesocosms setup ad data collection

A 6-month mesocosms experiment was carried out using two contaminated

soils collected from two former gasworks sites (Soil 1 and 2) located in the

United Kingdom (UK). The soil physicochemical properties of the two samples

used in this study are discussed and summarised elsewhere (Chapter 5,

Paragraph 5.3.1,Table 5.1). Briefly, the soils were amended in duplicate with

either 5% w/w biochar (Soil + Biochar) or 15% w/w compost (Soil + Compost). A

set of duplicate samples were also left with no physical remedial action (Soil).

All samples were stored outdoor for 180 days. Soil samples were collected at

day 0, 30, 90, and 180 and subsequently processed for chemical,

microbiological, and toxicological analysis. For the chemical analysis, total and

bioavailable petroleum hydrocarbons and heavy metals were extracted and

analysed for both soil samples at the 4 sampling times. Details of extraction

technique are provided in paragraph 6.2.2.

A battery of biological and eco-toxicological indicators, representing different

trophic levels, has been used to assess the ecological health change of the

soils undergoing bioremediation treatments (Coulon et al., 2004). The indicators

included soil respiration as described previously by Paton et al. (2006),

phospholipid fatty acids analysis (PLFA) as per Frostegård et al. (1993) , seeds

germination (mustard, rye grass, and pea), earthworm’s lethality as described

by Dawson et al. (2007) and Coulon et al. (2010), and Microtox® basic soil

phase assay as described by Coulon et al. (2004). Information on the

determination of the toxicological responses of the model organisms are

summarised in Table 6.4 (Appendix).

6.2.2. Chemical analysis

A modification of the method reported by Risdon et al. (2008) was used for the

analysis of the total PHC concentration using a dichloromethane: hexane

mixture as explained below. For the estimation of the bioavailable concentration

of organic compounds soil subsamples were extracted with mild solvent

(methanol) as this has been previously found to be a good representation of the
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bioavailable fraction, and has been correlated with both the accessibility to

earth-worms and bacterial mineralization assays (Kelsey et al., 1997;

Reichenberg and Mayer, 2006; Yu et al., 2011; Wu and Zhu, 2016).

Briefly, 2.5 g of soil were mixed with either 15 mL of 1:1 dichloromethane:

hexane (for total content) or 15 mL of methanol (for bioavailable content),

sonicated for 20 min at room temperature, and shaken at 150 g for 16h. On the

following day, samples were again sonicated for 20 min at room temperature

and centrifuged (2000 g for 10 min). The supernatant was then cleaned onto a 6

mL SPE DSC-Si silica tubes, and 0.5 mL of sample was taken and mixed with

0.5 mL of internal standards and analysed by gas chromatography-mass

spectrometry (GC-MS) as described by Cipullo et al. (2018 a). For the data

analysis aromatic fractions were grouped as EC10-EC12, EC12-EC16, EC16-EC21,

and EC21-EC35, and aliphatic fractions were grouped as EC10-EC12, EC12-EC16,

EC16-EC35, and EC35-EC40 according to Coulon et al. (2010 a) to provide a

summary of the contaminant composition. The overall aromatic (Ʃ Aromatics), 

overall aliphatic (Ʃ Aliphatics) and total petroleum hydrocarbon compounds (Ʃ 

PHC) contents were also calculated and are presented in Table 6.2 (Appendix).

The pseudo-total and bioavailable heavy metals and metalloids content were

determined using either aqua regia extraction (ISO 11047:1998) or a modified

procedure for sequential extraction as described in Cave et.al. (2004). Briefly,

for pseudo-total content 0.5 g of soil was extracted with 8 mL hydrochloric/nitric

acid mixture in a microwave digestion system then diluted to 50 mL with DI

water. For bioavailable heavy metals and metalloids content 2 g of soil samples

were consecutively extracted by addition of 10 mL of an extraction solution

which contained an increasing concentration of nitric acid and hydrogen

peroxide (i.e. from 0 to 5 M, and 100 volumes). All total and sequential solutions

extracted were filtered with 0.45 μm 25 mm nylon syringe filters and diluted 4 

times with 1% HNO3 before analysis by inductively coupled plasma mass

spectrometry (NexION® 350D ICP-MS, Perkin Elmer). Data from the sequential

extraction were then analysed using MatLab® (Version R2015a) and R Studio

(Version 1.1.423 – © 2009-2018 RStudio, Inc.) as described by Cipullo et al.
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(2018) to derive information on the partitioning and bioavailable concentrations

of HM and metalloids in soil. Summary of the soils chemical concentrations are

shown in Table 6.2 and Table 6.3.

6.2.3. Modelling methods and variables input

The ML prediction of soil toxicity for a given time t is done in two stages (Figure

6.1); (a) first we use ML to predict the bioavailable concentration of some

hydrocarbons at time t, then (b) we use these predictions to estimate the toxicity

at time t. Our implementation relies on scikit-learn, a machine learning library for

Python (Pedregosa et al., 2011). We tested Neural Network (NN) and Random

Forest (RF) which are two ML techniques often used to model complex and

nonlinear environmental problems (Rajaee et al., 2009; Sahoo et al., 2006; Wu

et al., 2013).

Figure 6.1: Two-stage approach to predict soil toxicity. (a) A machine learning

(ML) algorithm is used to predict the bioavailable concentration of hydrocarbons

and heavy metals/metalloids at time t. (b) The predicted concentrations are

used as inputs of a second ML algorithm to predict soil toxicity.

For both the NN and RF methods, each input feature was first scaled by

removing its average value and dividing by its standard deviation. This was

done to avoid features with large values to dominate in the training phase. For
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the NN, we used a Multi-Layer Perceptron (MLP) which is a category of NN with

at least three layers of neurons fully connected (an input layer, an output layer,

and one or more hidden layers). NN models require several hyper-parameters

to be tuned (Table 6.1), and are often criticised for being black boxes, as their

behaviour cannot easily be explained by inspecting their internal structure

(Sturm et al., 2016). That is why Random Forest (RF) is also used in this study.

RF can be considered as a grey box (Prasad et al., 2006), because it allows

exploring the relative importance of the different input features. RF also has

fewer hyper-parameters than NN (mainly the number of trees and the maximum

depth of a tree; Table 6.1). More information on the behaviour of NN and RF

can be found in the Appendix (Paragraph 6.6.1).

Table 6.1: Hyper-parameters of the artificial neural network (NN) and random

forest (RF) models.

NN model RF model

Hyper-parameters Values
Hyper-
parameters

Values

Activation function Identity, Relu
Number of
trees

20,30,40

Number of hidden layers
and neurons

3 layers with 100 neurons,
Maximum
depth

20,30,40

4 layers with 100 neurons,
5 layers with 100 neurons

Regularisation term 0.0001, 0.001, 0.01, 0.1, 1, 10
Learning rate (constant) 0.001,0.01,0.1
Relu: rectified linear unit

6.2.4. Hyper-parameters optimisation of ML models

For both models, the tuning of the hyper-parameters was done automatically

using an exhaustive grid search where all the combinations of hyper-

parameters are tested to find the best combination. The best combination is

found through a 4-fold cross-validation. The dataset is split into 4 subsets. Then

for each of the 4 folds, the model is trained using 3 of the folds and tested on

the 4th fold. The performance of the regression is measured as the mean r2

value obtained across the 4 folds. After finding the best set of hyper-parameters

(Table 6.5 and Table 6.6), the model is retrained on the whole dataset.
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6.2.5. Estimation of bioavailable concentrations and toxicity

ML algorithms were trained and tested for each metal (As, Cd, Cr, Cu, Hg, Ni,

Pb, Se, and Zn) and each of the following hydrocarbon: (1) aliphatic fraction

including all individual compounds in the range of EC10 to EC40, (2) aromatic

fraction including: Acenapthene (AE), Fluorene (F), Anthracene (A),

Phenantrene (P), Pyrene (PY), Chrysene (C), Benzo(a)anthracene (BA),

Benzo(a)pyrene (BaP), Benzo(b)fluoranthrene (BB), Benzo(k)fluoranthrene

(BK), Dibenzo(a,h)anthracene (DA), Benzo[g,h,i]perylene (BP), and

Indeno[1,2,3-c,d]pyrene (IP). To estimate the concentration of a

hydrocarbon/metal at time t, the inputs of the ML models were the soil type (Soil

1 or Soil 2), the amendment (un-amended, biochar, or compost), and the initial

(t=0) total concentration of the hydrocarbon/metal. After training/testing via the

4-fold cross-validation, the NN models with r2 > 0.7 (good model fitting) were

selected to generate the inputs for the estimation of the toxicity (Figure 6.1, b).

Using models with a lower r2 may generate inaccurate inputs which would

confuse the estimation of the toxicity.

NN was used instead of RF, because RF provides a discrete output dictated by

the finite number of split points in each tree as explained in paragraph 6.2.3.

Since measurements are only available at time t=0, 30, 60, and 180 days, the

RF output does not vary continuously in between these data points which may

lead to unrealistic variations in bioavailable concentrations. Here, RF is mainly

used (i) as a benchmark against NN for which finding an appropriate

combination of hyper-parameters is less straightforward, and (ii) because it

provides access to the relative importance of the input variables.

6.2.6. Estimation of toxicity

NN and RF algorithms were then trained and tested for each biological and eco-

toxicological indicators listed in Table 6.4 (Appendix). To estimate a given

indicator at time t, the ML models take again as inputs the soil type (Soil 1 or

Soil 2), the amendment (un-amended, biochar, or compost), but also the

bioavailable concentration of the hydrocarbons/metals predicted with NN having

r2>0.7. The latter is anticipated to be a valuable input for the toxicity estimation,
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as bioavailable concentration is reported to be a good proxy for toxicity

estimation (Gourlay-Francé and Tusseau-Vuillemin, 2013).

6.2.7. Drivers of bioavailability and toxicity

To investigate which of the input features are driving the estimation of the

bioavailability/toxicity variables, we rely on the RF model which can output the

relative importance of each input feature. To do so, the skicit-learn library

implements the method based on the Mean Decrease in Impurity (MDI)

described by Breiman (1984). In a decision tree, every node corresponds to a

logical if-then condition on a single input feature, which splits the input dataset

into 2 subsets. The choice of the feature and its splitting condition is based on a

measure called impurity. For regression trees, the impurity in the data is

quantified by the variance, and the training phase corresponds to finding the

splits which lead to the greatest reduction in variance. To reflect the feature

importance, the MDI accounts for the number of times a feature is selected to

split the data and how many data samples it splits (i.e. the importance of the

splits). In practice, an input feature is important if it is often used by the trees to

make decisions and if these decisions are concerning many data samples.

6.3. Results and discussion

6.3.1. Prediction of bioavailable concentration of PHC and HM

The accuracy of the ML models (r2 value) for the prediction of bioavailability is

shown in Figure 6.2. A thorough inspection of the data revealed that noisy

measurements, i.e. when two replicates are different from each other, are one

of the main reasons for the lower r2 values obtained for some hydrocarbons and

elements. The corresponding combinations of hyper-parameters returned by the

grid search are shown in Table 6.5 (Appendix). The models with high r2 can be

used to estimate bioavailability at any time step. For example, Figure 6.3 shows

the predicted bioavailable concentration of Fluorene (F) (Figure 6.3, a and b),

benzo[a]anthracene (BA) (Figure 6.3, c and d), benzo[a]pyrene (BaP) (Figure

6.3, e and f), and Copper (Cu) (Figure 6.3, g and h) with RF and NN,

respectively. The corresponding r2 values obtained from prediction were r2 =
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0.93 (RF) and r2 = 0.89 (NN) for F, r2 = 0.97 (RF) and r2 = 0.91 (NN) for BA, r2 =

0.96 (RF) and r2 = 0.90 (NN) for BaP, and values of r2 = 0.96 (both RF and NN)

for Cu.

As explained in the methodology section, RF generates an output with discrete

values which may lead to unrealistic variations due to the measurements being

available only at a few time steps. In comparison, NN generates a continuous

output which can be used to estimate the concentration at intermediate time

steps, but also to forecast the potential evolution of the concentration for time

steps beyond 180 days. Therefore, in the next section, we use NN, and not RF,

to generate the estimated bioavailable concentrations used as inputs of the

toxicity models. The selected hydrocarbons are EC12, EC14, EC16, EC17, EC19,

EC21, EC23, EC25, EC26, AE, F, A, P, PY, C, BA, BaP, BB, BK, BP, DA, IP, P,

and the selected elements are As, Cd, Cr, Cu, Hg, Ni, Se, Pb, and Zn (Figure

6.2; NN r2 > 0.7).

Figure 6.2: Prediction accuracy (r2) for the bioavailable concentration of

hydrocarbons and heavy metals/metalloids using neural network (black) and

random forest (grey).

In this mesocosms experimental setup the decrease in hydrocarbons

bioavailable concentration was 2 times higher in Soil 1 (high contamination)

than in Soil 2 (low contamination). The most significant changes were observed

for the aromatics EC16-21 and aliphatic EC16-35 fractions; where readily

available/bioavailable (methanol extracted) concentration decreased by 71,
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58% (Soil 1 + Compost) and by 11, 91% (Soil 2 + Compost). Fewer changes in

bioavailable concentration were observed in Soil 2, which overall had lower

concentrations of contaminants. This is clearly highlighted in Figure 6.3 where

Fluorene (F) was plotted as representative aromatic compound for the EC16-

EC21 fraction. The concentration of F significantly decreased after 180 days

incubation for Soil 1 + Compost. It was also clear that the soils amended with

compost had F concentration 10 times lower than the non-treated (Soil 1) soil at

the end of the simulation period.

(a) (b)

(c) (d)

(e) (f)
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(g) (h)

Figure 6.3: Prediction of the bioavailable concentration (mg/kg) of Fluorene (F),

benzo[a]anthracene (BA), benzo[a]pyrene (BaP), and Copper (Cu) using

random forest (left) and neural network (right). The continuous lines are the

predicted concentrations for the different soils (Soil 1 and Soil 2), amendments

(biochar, compost) and un-amended. The dots are the available measurements

after averaging the replicates. The error bars are the standard deviation across

the replicates.

The relative feature importance when estimating bioavailability with RF for

compounds modelled with r2> 0.7 is presented in Figure 6.7 (Appendix). The

bar chart shows that for each compound different features (time, soil, or

amendment) dominate. For example, the prediction of the AE, P, PY, BA, BaP,

and DA were mainly driven by soil properties and the total concentration of the

compounds at onset. The importance of the soil feature reflects the differences

observed in bioavailable concentrations between Soil 1 (heavily contaminated)

and Soil 2 (low contamination). For most of the HMs/metalloids (As, Cd, Cr, Cu,

Ni, Zn) time (ageing) and amendment (compost or biochar) were not important

variables influencing bioavailability prediction (Figure 6.7, Appendix). Indeed

HMs/metalloids bioavailable concentration did not change significantly over

incubation time.

6.3.2. Prediction of the toxicity

Overall, RF performed slightly better than NN to predict the toxicity (Figure 6.4),

and was particularly good at predicting seed germination, condition index, and

EC50. Lower r2 values were obtained for the PLFA, which can be explained by

different factors including: (1) the use of quantitative data (concentrations) over

qualitative data (relative abundance of individual PLFA) could have provided a



211

better input for r2 estimation; (2) it was not possible to conclusively attribute

these PLFA changes based on the input parameters of this model as there are

multiple factors (or additional factors) affecting community composition. Further

to this, we did not evaluate the effects of other chemicals (e.g. metabolites)

which may have impacted the microbial community at early experimental stages

(e.g. 2, 5, 10, 20 days), thus sampling regime established (30, 90, 180 days)

was not significant for assessing smaller but significant toxic effects on the

microbial community. The corresponding combinations of hyper-parameters

returned by the grid search are shown in Table 6.6 (Appendix).

Figure 6.4: Prediction accuracy for the toxicity using neural network (NN)

(black) and random forest (RF) (grey).

Germ: germination, CI: condition index, EC50: Half maximal effective concentration,

resp: soil respiration (mg CO2/g soil).

As done for the hydrocarbons, metals and metalloids, ML models with r2 > 0.7

were successfully used to predict the toxicity at intermediate time step; for

example Figure 6.5 shows the NN prediction obtained for (a) mustard

germination and (b) the earthworm toxicity assay (14-day condition index CI).

Good predictions were also obtained for CI 3 days (r2 = 0.95), CI 7 days (r2 =

0.83), CI 14 days (r2 = 0.76), mustard germination (r2 = 0.91), ryegrass

germination (r2 = 0.95), and soil respiration (r2 = 0.77).
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(a) (b)

Figure 6.5: Prediction of (a) mustard seeds germination (r2 = 0.91) and (b)

earthworms 14-day condition index (r2 = 0.75) using neural network. The

continuous lines are the predicted values for the different soils and

amendments, the dots are the available measurements after averaging the

replicates. The error bars are the standard deviation across the replicates. The

minimum value allowed is 0, and the maximum values allowed are 100 and 2

for mustard germination and condition index, respectively.

Empirical data, obtained from the mesocosms experimental setup showed that

Soil 1 had a greater toxic effect on mustard seed germination than Soil 2, likely

because concentration of contaminants was 4 times lower in Soil 2 (PHC >

2000 mg/kg) compared to Soil 1 (PHC > 8000 mg/kg). Interestingly, seed

germination showed a good ecological recovery for Soil 1 + Compost and even

for Soil 1 which reached similar recovery after 180 days. The model predictions

highlighted the potential for all soil samples to achieve 100% germination after

250 days (Figure 6.5, a).

Similar ecological recovery for Soil 1 was observed from empirical data

obtained for earthworm lethality assay (E fetida); while the CI was similar at the

onset of the experiment (CI = 0, mortality), and only Soil 1 + Compost showed

greater ecological recovery (CI was 2 times higher than biochar and un-

amended conditions). The predicted ecotoxicity of Soil 1 + Biochar and Soil 1

significantly decreased after 250 days (CI = 0.4 - 1) (Figure 6.5, b). The

progressive positive effect of Soil 1 + Compost was also reflected by the

prediction where at 250 days the sample ceased to be lethal (CI = 2) to

earthworms assay. For the less contaminated samples, a higher CI was

recorded during the experimental setup for both Soil 2 + Biochar and Soil 2 +
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Compost compared with Soil 2 (Figure 6.5, b). The earthworms in Soil 2 +

Compost and Soil 2 + Biochar remained in the healthiest condition throughout

the 14 days assay as no significant differences were observed in the empirical

data which was also reflected by the model.

6.3.3. Drivers for toxicity

The most important input features for the estimation of the toxicity are shown in

Figure 6.6. They were identified by looking at the relative feature importance

from the RF model with r2 > 0.7. This allows assessing the influence of each

feature on the prediction.

Figure 6.6: Relative feature importance when estimating toxicity with random

forest. The heatmap shows the relative feature importance for all the toxicity

variables which were modelled with an r2 value above 0.7. The top graph shows

the relative feature importance averaged across the toxicity variables.

The heatmap shows that, for each toxicity variable, different features dominate.

For example, the prediction of the CI (earthworm acute toxicity) was mainly

driven by EC17-EC19, AE, F, A, P, and PY. A previous study highlighted the key

role of the mid-chain length aliphatic compounds in toxicity to earthworms (Dorn

and Salanitro, 2000). In particular, these compounds are the most volatile,

soluble, and biodegradable constituents of the tar fraction remaining after the

initial removal of the more soluble/volatile components (e.g. low molecular

weight compounds). Thus, mid-chain length aliphatic compounds can be a

valuable indicator of acute toxicity to soil dwelling organisms (e.g., earthworms).
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Furthermore, this fraction, along with small aromatic compounds such as P and

AE, represented the least aged fraction (more bioavailable) with the highest

toxicity potential, and should therefore be of special concern with respect to

remediation/natural attenuation monitoring (Yang et al., 2016).

In comparison, the heatmap suggests that bacterial respiration was mainly

related to arsenic (As) and soil amendment (biochar or compost). Toxicity to As

is caused by its ability to inhibit basic cellular functions, and disrupt microbial

metabolism (Walker et al., 2000). A number of studies previously highlighted the

adverse effects of As contamination on microbial biomass C and respiration

rates (Edvantoro et al., 2003; Van Zwieten et al., 2003) and in particular

bioavailable arsenic exerted greater inhibitory effect rather than total arsenic

concentration (Ghosh et al., 2004). On the opposite, the model showed that

EC15-EC20, Cd, Cr, Cu, Ni, Se, and Zn ranked among the least important

features for respiration. Overall, Time, soil type, amendment (biochar and

compost) were not identified as important features. This is probably because

these features were already used as inputs of the ML models to estimate the

bioavailable compounds, thus their effects may be embedded in the variations

of bioavailable hydrocarbons and metals. In summary, these findings reinforce

the idea that the bioavailability of multiple hydrocarbons and metals drives the

soil toxicity.

6.3.4. Implications and limitations of machine learning for risk

assessment and remediation end-point evaluation

The two ML models used in this study were trained using a limited dataset. The

models are a piori only valid for the values of the input variables which are

captured by the training dataset. For example, the models may not accurately

predict the toxicity for soils which are too different from Soil 1 and Soil 2.

Similarly, the accuracy of the models may decrease when predicting toxicity at

time steps larger than 180 days. This remark also applies to the analysis of

feature importance. For example, our results suggest that the bioavailable

concentration of arsenic is important to predict respiration. Although, this is true

for our dataset, applying our method to a different soil type and contamination

may suggest that other variables are also driving changes in respiration.
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Nonetheless, our study indicates that ML models can help us understand

complex chemical mixtures fate, and identify the key variables affecting their

behaviour and the environmental risks posed by the various pools of

contaminants. Future studies should indeed investigate the importance of other

input variables such as pH, soil organic matter, and dissolved organic carbon on

contaminant bioavailability and toxicity changes. Additionally, to provide a

modelling tool suitable for multiple stake-holders, future work should also focus

on (1) giving easier access to national datasets (e.g. national repository of

ground investigation, geological maps, contamination record, former site

investigation reports, and site-specific historical data), (2) increasing awareness

and enhance understanding and utility of ML among non-specialists, via the

development of ML tools with accessible graphical interfaces.

6.4. Conclusions

Empirical data from a 6-month mesocosms experiment were used to assess the

ability and performance of two ML models to predict temporal bioavailability

changes of polycyclic aromatic hydrocarbons, aliphatic hydrocarbons, and

heavy metals/metalloids in contaminated soils amended with compost or

biochar. In addition, ML was used to predict the toxicity changes, mainly based

on the knowledge of some of the bioavailable concentrations. Results obtained

showed that both NN and RF were able to model the bioavailability of various

contaminants and should be used in combination as: NN model provides a

realistic continuous output, while RF can explain which input measurements are

actually important to predict the toxicity. This study suggests that ML models

are good candidate tools to support remediation monitoring of multi-

contaminated sites, in a cost-effective manner. ML capabilities should be further

investigated with larger datasets encompassing a representative range of soil

types and contaminations.
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6.6. Appendix

6.6.1. Neural network and random forest

Multi-Layer Perceptron (MLP) is a category of NN with at least three layers of

neurons fully connected (an input layer, an output layer, and one or more

hidden layers). Each neuron in the hidden layers does the same operation: (i) it

computes the weighted sum of all its inputs and adds a bias, then (ii) the result

goes through an activation function which maps the weighted sum to a standard

output value (Grus, 2015). The value of the weights and bias of each neuron is

learnt during the training step. The number of hidden layers, the number

neurons in each hidden layer, and the type of activation function are among the

hyper-parameters of the model which need to be tuned (Table 6.1). NN are

often criticised for being black boxes, because inspecting all the internal weights

and bias does not provide much understanding of how NN predicts the output

(Sturm et al., 2016).

In comparison, RF can be considered as a grey box (Prasad et al., 2006),

because it allows exploring the relative importance of the different input

features. RF also has fewer hyper-parameters than NN (mainly the number of

trees and the maximum depth of a tree; see Table 6.1). The regression trees

which form the RF are constructed using the training dataset as follows. The

first node of the tree splits the data samples into two subsets, based on a logical

if-then condition on one input variable (Hastie et al., 2001). This partitioning is

repeated until there is less than a given number of data sample at each final

node, or until the maximum depth of tree has been reached. The predicted

output at each final node corresponds to a simple constant model equal to the

mean of the output samples in that node. RF provides discrete output values

because the final prediction is given by a constant model and because of the

finite number of splitting nodes. In comparison, the output neuron of the NN

provides the predicted output as a continuous value.
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Table 6.2: Descriptive statistics for aliphatic (ALK) and aromatic (PAH) total (dichloromethane:hexane) and bioavailable

(methanol extracted) concentrations expressed in mg/kg in Soil 1 and Soil 2 (un-amended, compost, and biochar).

Aliphatic Aromatic

EC10-12 EC12-16 EC16-35 EC35-40 ƩALK EC10-12 EC12-16 EC16-21 EC21-35 ƩPAH 

Total
concentration
(mg/kg)

Min. 3.8 0.9 4.5 < d.l 14.9 < d.l 57.9 435.4 550.1 1050.6

Max. 32.3 149.1 1053.8 < d.l 1166.8 < d.l 620.1 4384.5 3413.2 8276.3

Median 10.9 10.6 109.0 < d.l 134.6 < d.l 133.4 957.7 1438.9 2562.6

Bioavailable
concentration
(mg/kg)

Min. 0.0 0.1 0.1 < d.l 0.3 < d.l 36.4 300.4 275.3 640.6

Max. 23.6 44.5 428.3 < d.l 449.1 < d.l 488.8 3194.0 2341.1 5772.0

Median 0.7 1.5 20.4 < d.l 23.4 < d.l 115.1 586.5 752.0 1577.1

d.l: detection limit

Table 6.3: Descriptive statistics for heavy metals and metalloids (HM), total (aqua regia extraction) and bioavailable

(sequential extraction) concentrations expressed in mg/kg in Soil 1 and Soil 2 (un-amended, compost, and biochar).

As Cd Cr Cu Hg Ni Pb Se Zn

Total
concentration
(mg/kg)

Min. 12.4 0.2 18.0 14.2 0.1 9.6 38.6 1.0 113.5

Max. 67.7 3.2 75.9 62.2 0.7 35.1 455.6 11.6 481.8

Median 41.3 0.7 43.6 29.9 0.3 26.6 74.9 4.4 199.6

Bioavailable
concentration
(mg/kg)

Min. 0.2 0.1 <d.l 0.2 <d.l 0.3 4.5 0.1 9.9

Max. 4.9 0.2 1.3 13.2 <d.l 1.4 13.0 0.8 32.9

Median 1.2 0.1 0.3 2.3 <d.l 0.8 7.9 0.5 20.8

d.l: detection limit
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Table 6.4: Overview of the biological and eco-toxicological parameters used in the experimental study.

Microbiological analysis Eco-toxicological analysis

Experimental
parameters

Basal respiration
Phospholipid Fatty
Acid Analysis (PLFA)

Seeds germination
assay

Earthworms acute
toxicity assay

Biosensor assay

Species
Multiple species present in
the soil

Multiple species (bacillus
or arthrobacter, fungi,
general bacteria, gram+,
cyanobacteria,
fungi/gram+, gram- ,
unknown-unclassified)

Pea (P. Sativum)
Mustard (B. Alba)
Rye (L. Perenne)

E. Fetida Vibrio fischeri

Mean of
assessment

Soil replicates were
incubated for 24 h at 20ºC,
and the headspace
analysed for CO2

concentration with Gas
Chromatography with
Thermal Conductivity
Detector ( GC-TCD)

Soil replicates were
freeze dried and solvent
extracted, then and
analysed By Gas
Chromatography with
Flame Ionisation
Detector (GC-FID)

Replicate of seeds
were exposed to
contaminated soil
and germination
incidence assessed
after 4-day
exposure

Replicates
specimens were
exposed to
contaminated soil
and examined for
mortality on days 3,
7, and 14

Soil replicates were
mixed with 4 mL of
diluent and
bioluminescent
bacteria and analysed
with Microtox® assay
(Modern Water)

Unity of
measure

Expressed as mg of CO2 /g
soil

Relative abundance of
individual PLFAs
expressed as a
percentage of the total

Germination
incidence 0-100%

condition index (CI)
expressed as a
score from 0 to 2
where:
0 = mortality,
1= affected,
2=non-affected

EC50: Soil dilution that
inhibits 50% of the
light output relative to
control soil calculated
for each sample

Reference (Paton et al., 2006) (Frostegård et al., 1993)
(Dawson et al.,
2007)

(Langdon et al.,
1999)

(Jiang et al., 2016)
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Table 6.5:: Values of the hyper-parameters found for the bioavailability estimation models with r2 >0.7. Empty cells (n.a)

correspond to r2 values below 0.7.

Neural Network Random Forest
Activation Hidden layer sizes Learning rate Alpha Max depth N trees

EC12 relu (100, 100, 100, 100, 100) 0.001 10 40 20
EC13 relu (100, 100, 100, 100, 100) 0.001 1 30 20
EC14 relu (100, 100, 100, 100) 0.001 0.0001 20 30
EC15 relu (100, 100, 100, 100) 0.01 1 20 30
EC16 relu (100, 100, 100, 100) 0.01 0.1 30 40
EC17 relu (100, 100, 100, 100) 0.001 1 30 40
PHY relu (100, 100, 100) 0.01 0.1 40 40
EC19 relu (100, 100, 100) 0.001 10 40 30
EC20 relu (100, 100, 100, 100, 100) 0.001 0.0001 40 40
EC21 relu (100, 100, 100) 0.001 0.01 20 20
EC22 relu (100, 100, 100, 100, 100) 0.001 10 30 20
EC23 relu (100, 100, 100, 100, 100) 0.001 0.01 20 40
EC24 relu (100, 100, 100) 0.001 0.0001 20 30
EC25 relu 100 0.1 10 40 40
EC26 n.a n.a n.a n.a 20 40
EC27 relu (100, 100, 100) 0.001 0.1 30 30
AE relu 100 0.01 0.001 20 30
F identity (100, 100, 100, 100) 0.001 1 40 20
A relu 100 0.01 10 30 40
P relu (100, 100, 100) 0.001 0.1 30 40

PY relu 100 0.01 0.0001 40 40
C relu 100 0.01 1 30 40

BA relu 100 0.01 0.01 20 20
BaP relu 100 0.01 0.0001 20 40
BB relu 100 0.01 1 30 20
BK relu 100 0.01 0.0001 20 30
BP relu (100, 100, 100) 0.01 0.001 20 40
DA relu (100, 100, 100, 100) 0.01 10 20 30
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Neural Network Random Forest
Activation Hidden layer sizes Learning rate Alpha Max depth N trees

IP relu 100 0.01 1 20 30
PHC relu (100, 100, 100) 0.001 0.0001 40 20
As relu (100, 100, 100, 100) 0.01 0.1 30 20
Cd relu (100, 100, 100) 0.001 0.1 40 40
Cr relu (100, 100, 100, 100, 100) 0.001 0.1 40 40
Cu relu (100, 100, 100, 100) 0.01 1 20 20
Hg identity (100, 100, 100) 0.01 0.0001 20 20
Ni relu (100, 100, 100, 100) 0.01 10 40 30
Pb n.a n.a n.a n.a 40 40
Se relu (100, 100, 100, 100, 100) 0.01 0.1 30 30
Zn identity 100 0.01 0.1 20 30

Relu: rectified linear unit
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Figure 6.7: Relative feature importance (time, soil, amendment, and initial

individual contaminant concentration) when estimating bioavailability with

random forest, for all the compounds modelled with an r2 value above 0.7.

Time: (0, 30, 90, 180 days); soil (Soil 1, Soil 2); amendment: compost, biochar

or un-amended; total: total concentration of the compound at onset (t=0).
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Table 6.6: Values of the hyper-parameters found for the toxicity estimation models with r2 >0.7. Empty cells (n.a) correspond

to r2 values below 0.7.

Neural Network Random Forest

Activation Hidden layer sizes Learning rate init Alpha Max depth N trees

Pea.germ n.a n.a n.a n.a 30 40

Rye.germ identity (100, 100) 0.001 0.0001 20 40

Must.germ identity (100, 100) 0.001 0.001 20 20

CI.3days identity 100 0.001 0.0001 20 40

CI.7days relu 100 0.001 0.01 20 30

CI.14days identity (100, 100) 0.001 0.001 40 20

EC50 n.a n.a n.a n.a 40 20

Resp relu (100, 100) 0.001 0.0001 40 40

Bacillus, Arthrobacter n.a n.a n.a n.a 20 30

Gram-positive n.a n.a n.a n.a 30 30

Cianobacteria n.a n.a n.a n.a 20 40

Gram-negative n.a n.a n.a n.a 40 20

Relu: rectified linear unit
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7. Overall discussion and implications of the PhD

study findings

7.1. Introduction

This PhD research addressed a complex issue such as understanding

bioavailability of chemical mixtures, with the aim of integrating this information it

in the current framework to support and inform risk-based contaminated land

management.

To achieve this aim, two laboratory studies were designed to (i) investigate the

influence of the physico-chemical factors on the bioavailability of complex

mixtures of petroleum hydrocarbons, heavy metals and metalloids, and to

(ii) link bioavailability measuraments to toxicity changes. In addition, two

modelling studies were implemented using the empirical data obtained from the

two mesocosm studies to (i) assess the ability of Visible and Near Infrared

spectroscopy (Vis-NIRS) to predict total and bioavailable concentrations of

PHC, HM and metalloids in soils and to (ii) evaluate the performance of

machine learning (ML) tools to predict changes of complex chemical mixtures

bioavailability and the associated toxicity. This chapter provides a summary of

the key findings, and an overview of how the different objectives contributed to

achieve the aim of the PhD study (Figure 7.1).

Overall, this research provided valuable knowledge concerning distribution,

behaviour and ageing of complex chemical mixtures in soil on a range of

conditions not previously investigated (Chapter 3). Further findings (Chapter 5)

can support the understanding of the likely effects of exposure (toxicity) to multi-

contaminated environments by providing multiple lines of evidence and

highlighting the need for a successful integration of effective analytical

techniques. Moreover, the use of rapid-measurement tools, such as Vis-NIRS

(Chapter 4), and the implementation of ML models (Chapter 6) can further

improve site investigation and assessment by providing real-time information on

contaminants fate and behaviour therefore allowing the establishment of

realistic and achievable remediation end-points and speeding up decision

making. Such findings can be implemented in the current framework (see 7.3
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research implication, Figure 7.2) and will lead to a more accurate and rapid

assessment of risk, and cost-effective land management.

Figure 7.1: Schematic interrelations between the objectives (1 to 5) of the study

and overall impact on the land remediation sector.

7.2. Key findings and knowledge gaps filled by this research

As the European Union aims to develop a common framework for the

management of contaminated sites (Pérez and Sánchez, 2015), increasing our

understanding of complex chemical mixtures behaviour and its implication for

bioavailability can provide a better assessment of risk, thus delivering more

sustainable remedial solutions (Bardos et al., 2018; Breure et al., 2018).

Chapter 1 identified the research gaps that motivated the aim and objectives of

this study, In particular it highlighted the need for: (1) improving understanding

of the science underpinning complex chemical mixtures bioavailability; (2)

promoting a better implementation of multidisciplinary approaches to

contaminated land risk-based management; (3) developing reliable rapid
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measurement tools for on-site assessment and contaminant’s fate and

behaviour modelling.

Based on the critical review of the current literature, Chapter 2 discusses the

challenges of assessing complex chemical mixtures bioavailability and its

implementation in the contaminated land risk assessment framework. At

present there is no general concept or unified method able to estimate

accurately the risk of complex chemical mixtures, and integrate the

bioavailability in the risk assessment process (Naidu et al., 2015). While a

number of physical, chemical and biological techniques to estimate bioavailable

fraction have been developed (Kuppusamy et al., 2017), and successfully

applied on case-by-case scenarios (Ortega-Calvo et al., 2015), doubts have

been casted on their applicability, due to lack of standardisation (Cipullo et al.,

2018). The review highlighted the role of biotic and abiotic factors affecting

bioavailability measurament, and how different mechanisms, partitioning, can

affect the risk estimation (Objective 1). Moreover this review provided an in-

depth evaluation of advantages and disadvantages of different extraction

techniques. Thus, in order to provide increased confidence for applying

bioavailability concepts into risk assessment more information are needed on

the influence and interactions of multi-factors on bioavailability and how these

affect the toxicity response in ecological receptors.

In Chapter 3, we applied a sequential extraction technique to five genuine-

multi-contaminated soil samples in order to evaluate the spatial distribution and

bioavailability of heavy metals (HM) and metalloids. Metal partitioning was

assessed through the non-specific sequential extraction and Chemometric

Identification of Substrates and Element Distributions (CISED) using MatLab®

(Version R2015a) following the protocol developed by Cave et al. (2004).

Further the study assessed the influence of different physico-chemical factors

on HM/metalloids solid phase distribution and bioavailability, and also evaluated

the effect of co-occurrence of petroleum hydrocarbons (Objective 2). Different

temperature conditions were simulated by storing samples in controlled

temperature rooms at 20°C and 4°C, or placed outside and subject to seasonal
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UK temperature variations. Soil samples were amended with a mixture of

sulphuric acid and water to achieve different pH conditions. Moisture content

was maintained by adding deionized water up to 20 and 70% of the soils’

maximum water holding capacity (WHC) and moisture content was re-assessed

bi-monthly.

This 12-month lab-based study showed that while for some of the soils

investigated, the pseudo-total metal concentrations of Pb and Zn exceeded 8

times and 4 times the UK Soil Guideline Values (SGVs) and the European

Directive 86/278/EE; only a negligible fraction of these elements were dissolved

in pore water, confirming that these metals were not readily-available and risk

was low. Thus potential of re-using soil that has been treated or remediated is a

viable and sustainable strategy (Mehta et al., 2018). Moreover, no significant

effects of total petroleum hydrocarbons compounds (PHC) on HM bioavailable

fraction were observed for most of the soil samples under investigation. Lastly

re-partitioning among soil phases did not occur during the 12-month weathering

and under the different physico-chemical treatment applied. HM/metalloids

showed little or no difference in distribution across the three sampling events

(T0, T6, and T12). The novelty of this study lies in the fact that it highlights the

importance of considering the effects of a range of environmental simulated

stressors (pH, moisture, and temperature), along with ageing (incubation time)

on bioavailability of complex chemical mixtures. This study highlights that

sequential extraction can allow site specific assessment criteria providing a

better estimate of the HM/metalloids potential bioavailable concentration in

multi-contaminated soil.

In Chapter 4 the empirical data obtained from the 12-month lab-based study

(Chapter 3) were used in combination with spectra obtained from visible and

near infrared spectroscopy (Vis-NIRS). A number of studies have previously

investigated the application of Vis-NIRS to on-site investigations; however

assessment of bioavailable concentrations of complex chemical mixtures

remains unexplored. In this study we showed that random forest (RF) has a

potential to predict the total and bioavailable concentrations of petroleum

hydrocarbons compounds (PHC) and heavy metals/metalloids (HM) in genuine
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multi-contaminated soil samples. The RF models developed could be used for

fast screening of PHC, (including polycyclic aromatic hydrocarbons and

alkanes), and HM/metalloids concentrations with appreciable accuracy. Results

showed that RF model of total concentration outperformed those of bioavailable

concentration in cross-validation and prediction.

Results showed that the predictions of the total concentrations of PAH, PHC,

and ALK were very good, good and fair, with residual prediction deviation (RPD)

values of 2.02, 1.80, and 1.56, respectively; whereas the bioavailable models

predictions were of less accuracy of fair (RPD = 1.72 and 1.66), for PAH and

PHC, and poor (RPD = 1.31) for ALK. The prediction results of the total HM

were also better than those of the bioavailable concentration. The best results

were obtained for the total Pb (RPD = 2.35) followed by Al, Ni, Cr, and Cd,

whereas the best prediction for bioavailable was for Al (RPD = 2.13) followed by

Pb, Cr, Cd, and Ni, whereas the poorest prediction was for As (RPD = 1.37).

Most notably a large number of trace elements (Pb, Al, Ni, Cr, Cd, Fe, and Zn)

were predicted with very good or good accuracy with RF model. Results

obtained indicate that the Vis-NIR spectroscopy coupled with RF algorithm can

be a promising approach for screening of complex chemical mixture in genuine-

contaminated soil.

In Chapter 5, a 6-month laboratory scale study was carried out to investigate

the effect of biochar and compost amendments on complex chemical mixtures

of tar, heavy metals and metalloids in two genuine contaminated soils. The

overall PHC content of Soil 1 was 5 times higher than Soil 2. The GC-MS

fingerprint was typical of weathered PHC with a predominance of low to medium

chain aliphatic compounds (EC16-35) and low to medium molecular weight

aromatic compounds (EC16-21). For each soil, duplicate mesocosms containing

5 kg of soil amended either with 15% w/w compost (Soil + Compost), with 5%

w/w biochar (Soil + Biochar), or without amendment (Soil) were prepared. An

integrated approach, where complex chemical mixtures bioavailability along

with a range of microbiological indicators and ecotoxicological bioassays, were

used to provide multiple lines of evidence to support the risk characterisation

and assess the remediation end-point.
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In this lab-based setup, both compost and biochar amendment (p = 0.005) as

well as incubation time (p = 0.001) significantly affected the total and

bioavailable concentrations of the petroleum hydrocarbons in the two soils. The

total petroleum hydrocarbons (PHC) concentration decreased by 46 and 30% in

Soil 1 and Soil 2 amended with compost. This decrease was accompanied by a

reduction of 78% (Soil 1) and 68% (Soil 2) of the bioavailable hydrocarbons;

where the most significant decrease was observed for low to medium chain

aliphatic compounds (EC16-35) and low to medium molecular weight aromatic

compounds (EC16-21). HM and metalloids were almost entirely found in the non-

exchangeable fraction, with no changes during incubation time, thus posing low

risk.

Toxicity to bioassays was reduced due to both the addition of compost, which

was effective in enhancing PHC degradation, and the addition of biochar which

was able to stabilise contaminants in the soil. Lastly a significant relationship (p

< 0.05) between the bioavailable fraction of the chemical mixtures and the

ecotoxicological bioassays was found. Strong negative correlations were

observed between bioavailable/readily available aromatic and aliphatic

concentrations and the ecotoxicological assays (e.g. bacteria count, soil

respiration, seeds germination, and condition index) in particular in Soil 1 +

Compost and Soil 2 + Compost. Results indicates that when bioavailable/readily

available concentrations decrease, the toxicity also decrease, thus diversity of

microbial community increases along with soil respiration, and other relevant

parameters (condition index and EC50). This work suggests that a combined

diagnostic approach is fundamental to identify optimal remediation strategies

and contribute to change the over-conservative nature of the current risk

assessments.

In Chapter 6 the empirical chemical and toxicological data obtained from the 6-

month lab-based study (Chapter 5) were used to assess the ability and

performance of two machine learning (ML) models, namely artificial neural

network (NN) and random forest (RF), to predict temporal bioavailability

changes of complex chemical mixtures and toxicity. Parameters such as soil

type, amendment (biochar and compost), initial concentration of individual
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compounds, and incubation time were used as inputs of the ML models. The

relative importance of the input variables was also analysed to better

understand the drivers of temporal changes in bioavailability and toxicity.

Results showed that both ML models were able to model the bioavailability of

various contaminants. In particular r2 values above 0.7 were obtained with NN

for the following hydrocarbons EC12, EC14, EC16, EC17, EC19, EC21, EC23, EC25,

EC26, AE, F, A, P, PY, C, BA, BaP, BB, BK, BP, DA, IP, P, and the following

elements As, Cd, Cr, Cu, Hg, Ni, Se, Pb, and Zn, and therefore bioavailability

could be estimated at un-known time steps. Bioavailable data were then used

as input to predict toxicity. RF performed slightly better than NN to predict the

toxicity, and was particularly good at predicting seed germination, condition

index, and EC50. Lower r2 values were obtained for the PLFA. This chapter

highlights the potential of ML tools to reduce costs associated with chemical

analysis to support decision making and for remediation monitoring of multi-

contaminated sites.

7.3. Research implications

The presented framework relates to an integrated and harmonized approach

where the bioavailability of complex chemical mixtures is taken into account in

the tiered risk approach adapted from UK CLR11 (Environment Agency, 2004)

and ISO 19204:2017 (Figure 7.2). In this work, a number of techniques have

been identified and utilised to provide a transparent and scientifically-sound

evaluation of contaminated site risk-characterisation and support the

establishment of sustainable clean-up objectives.
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RISK MANAGEMENT

RISK ASSESSMENT

Potential Contaminated Site
Building a Conceptual Site Model (CSM) based on

(i) initial information gathered
(ii) historical maps and land use

Tier 1: Generic Quantitative
Risk Assessment (GQRA)

Preliminary site investigation to refine CSM:
Collect appropriate samples (define relevant sampling strategy)
Perform conventional laboratory analysis (e.g total extractable
concentration) and compare with generic assessment criteria (GAC)

Option appraisal

Implementation of
remediation strategy

Tier 2: Detailed Quantitative
Risk Assessment (DQRA)

Estimate bioavailable concentrations (standardisation of techniques
to assess bioavailability of complex chemical mixtures)
Perform relevant biological tests (standardisation of bioassays)

Tier 3: Site Specific Risk
Assessment (SSRA)

Compare with site-specific contamination threshold
Include fate and transport studies (including bioavailability)
Include biodiversity/ecological studies

Use of cost-effective and rapid measurement
tools as Visible and Near Infrared

Spectroscopy (VisNIRS) to support site
investigation of multi-contaminated sites

Understand the science underpinning complex
chemical mixtures bioavailability and

behaviour in the soil environment; to support
DQRA and decision-making process

Application of an integrated approach, where
bioavailability is used in combination with

relevant ecological indicators; to support the
SSRA and assess remediation end-points

Use of Machine Learning (ML) tools to process
empirical data to make predictions on long-term

changes in contaminants bioavailability and
toxicity in a cost-effective manner

No further action

Define context and set the objectives
Design plan and ensure stakeholders agreement
Implement remediation plan and adjust/revised based on objectives
Provide long-term monitoring and maintenance

Define context and set the objectives, include further data collection
Identify feasible remediation strategies and provide detailed
evaluation of each option (consider resources, costs, stakeholders)

Risk No Risk

Figure 7.2: Proposed framework for including bioavailability in risk assessment based on UK CLR11 (Environment Agency, 2004)

and adapted from ISO 19204:2017 and Ortega-Calvo et al. (2015). Yellow boxes represent research contribution to the framework.
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In the initial step (Tier 1), a preliminary site investigation is performed to gather

information to support the initial risk-evaluation based on the conceptual site

model (CSM) (Umeh et al., 2017). While on-site data collection at this stage is

critical to address uncertainties, it is often challenging to obtain sufficient and

representative samples due to heterogeneity of the soil matrix, the potential

presence of un-identified hot-spots, and the limited accessibility to the sampling

locations (Ajmone-Marsan and Biasioli, 2010; Liu et al., 2010). Additionally,

costs associated with laboratory analytical measurements are often prohibitive

for large sites, thus the need to balance between reasonable accuracy and

affordable costs implies that often estimates for un-sampled locations are

generalised through statistical models (Horta et al., 2015). Such limitations

could be overcome by improving the quality and quantity of information obtained

at this step of the RA, with the implementation of Vis-NIRS measurements

(Chapter 4). Vis-NIRS has been previously used successfully to predict

petroleum-derived compounds (Okparanma and Mouazen, 2013) and heavy

metals (Shi et al., 2014) concentrations in soil. Vis-NIRS has also found

application in the discrimination of weathered contaminated soils (Douglas et

al., 2018). Further, this technique has the advantage of being relatively cheap,

portable, easy, and ready-to-use in the field requiring minimal sample

preparation (Conforti et al., 2015). Therefore, data obtained during the

preliminary site investigation can speed up the decision-making process and

help to prioritise swiftly site/location posing a significant risk during risk-

assessment and remediation planning.

Moving along the tiered-approach, after each tier, a decision is made whether

risk is still present for the receptors and further investigation is still required. At

the initial stage (Tier 1), bulk contaminant concentration (total) in soil is

measured and compared with the available environmental quality standards

(e.g. Generic Assessment Criteria (GAC) or Soil Screening Levels (SSL))

(Ortega-Calvo et al., 2015). While this approach is currently applied by several

European countries such as the Netherlands, UK, Denmark, and Spain

(Cachada et al., 2016), it has been recognised that it can underestimate or

overestimate risks of complex contaminants (Cipullo et al., 2018). Moreover the
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comparison of field-data with such guidelines present other limitations, as often

the GAC are: (a) based on freshly spiked soils (with higher bioavailability

compared with weathered samples), (b) derived for single chemicals or using

single-species toxicity data, (c) lacking information on complex mixture effects,

(e) un-related to relevant soil properties; thus their application and

generalisation may be limited.

In this regards, bioavailability measurements could be included at a higher-tier

to provide further information and refine the detailed quantitative risk

assessment (DQRA) (Ortega-Calvo et al., 2015). The inclusion of bioavailability

of complex chemical mixtures in higher-tier risk evaluation (Figure 7.2, Tier 2)

provides an opportunity to develop a more detailed assessment addressing

barriers associated with uncertainty, risk perception, and lack of transparency.

Further implementations suggested in the TRIAD approach (ISO 19204:2017)

include the use, in this tier, of a range of simple ecological assays which can

provide information on biological activity of the soils (e.g. microbial biomass, soil

respiration, and phospholipid-derived fatty acids (PLFA) profile) (Jensen and

Mesman, 2006) (Figure 7.2, Tier 2).

The knowledge provided by the literature review on bioavailability of complex

chemical mixtures (Chapter 2) and our lab-based studies (Chapter 3, and

Chapter 5) further support the proposed implementation. However, to produce

reliable guidelines and to effectively implement bioavailability, it is necessary to

standardise and validate the techniques to assess both bioavailability and

toxicity (bioassays) (see Paragraph 7.5, further research recommendations).

Following the detailed quantitative risk assessment, if a significant risk is still

present, further tests can be performed in Tier 3, to obtain more detailed and

case-specific evaluation (Figure 7.2, Tier 3). At this step, in-situ bioassays can

be used (Lourenço et al., 2012) including monitoring of biodiversity, and

implementing site-specific chemical fate modelling (incorporating bioavailability).

The proposed approach (Chapter 5) applied multi-disciplinary techniques

(linking chemistry with eco-toxicology) developing new intra-disciplinary fields

for site investigations and risk assessment.
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At the end of the risk assessment evaluation if the risk is deemed unacceptable,

then risk management approaches (e.g., remedial actions) are implemented

(Figure 7.2, risk management). At this stage, aligning risk assessment with risk

management is fundamental in order to maximize benefits (e.g. matching the

established clean-up requirement), while at the same time minimizing costs

associated with the remediation. It is often the case that a detailed evaluation of

feasible remedial options is performed prior the application of field-scale

treatments. Thus, lab-based study or on-site mesocosms are often used to

establish efficacy and the approximate time-scale of the selected technology

(Kuppusamy et al., 2017). At this stage the use of Machine Learning tools (ML)

can be fundamental to predict the results of bioavailability and consequently

toxicity in order to define the most appropriate remedial action for a particular

contaminated site. ML techniques can learn and recognise the patterns among

empirical data (Mitchell, 1997) during ‘training’, and applying it (generalisation)

to un-known (independent) data sets. As highlighted in Chapter 6 there is

potential to capture the non-linear relationship between multiple variables and

forecast complex contaminants’ bioavailability changes. However, for use and

implementation of ML models in the contaminated land community, further work

is required to make these models more user-friendly and easy to generalise for

different soil type and different applications (see 7.5 further research

recommendations).
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7.4. Limitations of the research

• The soil samples obtained for the first experimental study (Chapter 3)

were provided anonymously from a treatment facility and no further

information on the geology, location or origins of the contamination were

provided; thus limiting our understanding of the effects of geogenic or

(anthropogenic) contribution on HM/metalloids bioavailability. Additionally

no information were available on the type of cement stabiliser used in

Soil 2 (post-treatment), therefore it was not possible to draw further

conclusion on the mechanism dominating the fixation of HM/metalloids

for this particular soil sample.

• The data sets used in the calibration and prediction, obtained from the

12-month lab-based study and Vis-NIR spectra (Chapter 4) were

relatively small ( ̴ 100 samples); thus it might have affected the prediction 

performance of the developed models.

• The results of correlation between bioavailable fraction and toxicity

response (Chapter 5) were based on a single study where only a small

number of substances have been considered. It should therefore be

treated with a degree of caution; as any apparent observed toxicity could

be also caused by other substances, or degradation by-products that

have not been measured in our study, or by compounds that occurred

below the analytical detection limit.

• The two ML models used in this study (Chapter 6) were trained using

site-specific data (e.g. soil type). Therefore, these models can be applied

with confidence only for the range of the values of the inputs which are

captured by the training dataset.

General comments on limitations associated with modelling:

• Despite the large amount of information that sequential extraction can

provide (Chapter 3), the method of Chemometric Identification of

Substrates and Element Distributions (CISED) requires considerable

amount of multiple expertise (analytical chemistry, geochemistry, data

analysis and modelling). In addition the significant amount of personal
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judgment required in order to make assumptions about metal-soil phase

association, and the case-by-case approach are the main factor

potentially limiting its standardisation and applicability in the framework.

• In order to make predictions with ML models on total and bioavailable

multi-contaminants concentrations (Chapter 4 and Chapter 6), it is

necessary to explore correlation among input/output data: (1) chemical

data and soil reflectance spectra obtained with Vis–NIR reflectance

spectroscopy, or (2) chemical data and remediation treatment applied

(biochar, compost). In both cases the application of chemometrics

techniques and multivariate analysis require complex mathematical

analysis, such as principal components analysis (PCA), artificial neural

networks (NN), and random forest (RF), which require expert and highly-

qualified operators.

7.5. Further research recommendations

While methodologies for assessing bioavailability and the combination effects of

chemicals are being developed and used by scientists and regulators in specific

circumstances, as yet there is no systematic, comprehensive and integrated

approach. Future work should focus on:

• Defining relevant and standardised sampling strategies, and providing

field-measurement tools to support on-site investigation producing more

reliable and accurate information, thus reducing uncertainties.

• Providing convincing evidence that contaminants left behind in the soil

do not pose a risk (low bioavailability = low harm), through establishment

of standardised techniques (in vivo and in vitro methods) to assess

bioavailability of complex mixtures.

• Investigating a methodology to assess bioavailability of petroleum

hydrocarbon degradation by-products (metabolites) generated during

remediation, and their potential toxic effect to receptors.
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• Considering toxicity implications of complex chemical mixtures vs. single

contaminants for the estimation and application of revised environmental

quality standards.

• Promoting better and more coordinated effort to implement

multidisciplinary approach to contaminated land risk-based

management; where different lines of evidence (chemistry, toxicology,

and ecology) are combined rather than developed independently.

• Increasing ML models robustness and capability of being generalised,

using larger data sets (increase sample number), and wider soil

variability (different soil type) and concentration ranges.
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