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Abstract 

Experimental results are reported on the assessment of steady and pulsed air jet 

vortex generators (AJVGs) for the suppression of dynamic stall on a sinusoidal 

pitching RAE9645 aerofoil model. Tests at Rec of 1 million, at reduced pitching 

frequencies between 0.01 and 0.10 were performed with and without steady and 

pulsed AJVG blowing. The effect of jet momentum coefficient (0.0003 < C < 

0.0046), jet duty cycle (0.25 < DC < 1) and jet pulsing frequency (0.29 < F+ < 2.93) 

were investigated. Pulsed air jet blowing with F+ in the range 0.5 – 1.0 and with a 

duty cycle in the range 0.4 – 0.5, was found to be the most effective to achieve full 

suppression of dynamic stall vortex formation. 
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Nomenclature 

a = damping coefficient (computed with angles in radians) 

b = model span, m  

c = chord length, m 

CN = normal force coefficient based on model planform area 

CM = quarter chord pitching moment coefficient based on model planform area 

Cp = pressure coefficient 

C = jet momentum coefficient, 𝑚̇Uj /q∞ cb 

Cw = work coefficient (computed with angles in radians) 

d = jet orifice diameter, mm 

 = local boundary layer height, mm 

DC = jet duty cycle (from 0 to 1) 

f = jet blowing frequency, Hz 

F+ = nondimensional jet blowing frequency; f xTE /U∞ 

k = nondimensional aerofoil pitching frequency, c /2U∞ 

𝑚̇ = jet mass flow rate, kg/s 

p = air jet vortex generator plenum pressure, Pa 

p∞ = wind tunnel freestream pressure, Pa 

q∞ = freestream dynamic pressure, Pa 

Rec = Reynolds number based on chord 

U∞ = wind tunnel freestream speed, m/s 

Uj = jet velocity, m/s 

VR = jet to freestream velocity ratio 

x = chordwise distance, m 

xTE = chordwise distance from the jet orifice to the trailing edge, m 

y = distance normal to the aerofoil chord, m 

 = aerofoil angle of attack, deg 

𝛼̅ = mean (collective) aerofoil angle of attack during sinusoidal pitch motion, deg  

𝛼̂ = cyclic (half amplitude) aerofoil angle of attack, deg 

 = aerofoil sinusoidal pitching frequency, rad/s 
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1. Introduction 

The phenomenon of dynamic stall considerably restricts the safe flight envelope of 

conventional helicopters. On the retreating blades of the main rotor cyclic pitch imposes a 

relatively large angle of attack. Here, when the blade is also experiencing its lowest 

oncoming flow speed, the rotor blade will undergo low speed separation which often results 

in dynamic stall. This is the extremely rapid process by which the separation front jumps 

forward, usually when the rotor is experiencing its rapid pitch down motion, all the way to 

the leading edge causing the formation of a very strong stall vortex. While this vortex is 

rapidly shed, the suction from its strong core momentarily causes very high lift and drag 

forces and pitching moments, which are detrimental to the aircraft performance and fatigue 

life of the rotor system. The process is described in detail in references 1and 2. 

This paper presents the findings of an experimental study to assess how blowing using 

air jets may be used to control dynamic stall in low speed incompressible flow conditions. 

In particular the aim is to investigate the effect of pulsed and steady air jet vortex generators 

and to characterise the effect of blowing momentum, duty cycle and pulsing frequency at 

different aerofoil pitching rates. The results are publicly available, 

(https://doi.org/10.17862/cranfield.rd.5001947), for the computational simulation 

community for the purposes of code validation for this highly challenging unsteady flow 

phenomena. 

2. Dynamic Stall Suppression Using Air Jet Blowing 

The application of jets of air, blown into a boundary layer to promote turbulent mixing 

and re-energisation to suppress flow separation and subsequent stall, was first reported by 
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Wallis (Ref. 3) in 1952. Since then many studies have been performed and different steady 

and periodic blowing actuation concepts developed. Air jet vortex generators (AJVGs) 

involve blowing a directed jet through a narrow orifice skewed at an angle to the oncoming 

flow and set to a pitch angle relative to the local surface tangent. 

A number of studies (Refs. 4 – 10) reported that the maximum vorticity, and thereby 

mixing intensity, generated within a boundary layer is achieved with an air jet skew angle 

in the range 45o – 60o to the oncoming flow, and with a pitch angle of between 30o and 45o. 

AJVGs act in exactly the same way as the more conventional vane vortex generator, 

promoting mixing by the development of boundary layer embedded streamwise vortices 

that entrain high energy air from the outer regions of the boundary layer and sweep it down 

into the lower layers. They have been shown to achieve a delay in static stall angle similar 

to those achieved using vane vortex generators, but with the advantage that they do not 

impose a permanent and significant excrescence drag as they can be deactivated when not 

needed.  

In the early 1970s, Oyler and Palmer (Ref. 11) undertook one of the first studies of the 

effect of periodic blowing into a boundary layer. They investigated the effect of unsteady 

tangential blowing on a trailing edge flap and demonstrated a significant improvement in 

stall suppression and maximum lift capability over and above that delivered with steady 

blowing with the equivalent mass flow. Since then many investigators have confirmed that 

oscillatory or pulsed blowing for the suppression of boundary layer separation is more 

effective than steady blowing, with the added benefit of reduced mass flow requirements 

(Refs. 12 – 28). 
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Seifert et al. (Ref. 12) applied unsteady blowing, through slots, to a NACA 0012 wing 

section with trailing edge flap. The experiments, performed at Reynolds number based on 

chord of between 105 and 106, measured the aerodynamic characteristics under quasi-

steady pitch conditions. Unsteady blowing was shown to achieve equivalent stall 

suppression capability as steady blowing but for an order of magnitude less total mass flow 

and power consumption. McManus et al. (Refs. 13 & 14) demonstrated the ability of 

unsteady, oscillatory blowing, AJVGs to supress the separation of a turbulent boundary 

layer from a 20o ramp diffuser section. In this case the Reynolds number was relatively 

low, being 2300 based on the local undisturbed boundary layer thickness, , at the plane of 

the jet orifices, some 8 upstream of the ramp edge. Pulsed laser sheet illumination with 

acetone vapour seeding revealed that each air jet pulse created a large-scale coherent 

vortical structure embedded in the boundary layer. These features convected downstream 

within the boundary layer enhancing the mixing in a manner completely different to that, 

involving strong continuous streamwise vortices, with steady AJVG blowing. It was also 

shown that, for a given total mass flow rate, oscillatory AJVGs are more effective in 

suppressing turbulent boundary layer separation than equivalent steady blowing. 

A further study investigating unsteady slot blowing by Seifert et al. (Ref. 15) involved 

the periodic blowing from the upper surface of a trailing edge flap mounted on the rear of 

four different aerofoil main elements. This set of experiments, performed at Rec in the range 

0.15 – 1.2x106, revealed the importance of the frequency of jet pulsing. The results showed 

that the most effective reduced pulsing frequency, F+, was around 1.0.  

McManus et al. (Refs. 16 & 17) demonstrated the importance of the jet to freestream 

velocity ratio, VR, in experiments to suppress stall using pulsed AJVGs on a stylized 
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aerofoil section. The model comprised two flat plate sections, the leading edge section 

having a length of ~21% of the model chord and being deflected down relative to the rear 

section by 15o. The single circular orifice air jet was located close to the corner edge and 

was pitched and skewed at 45o and 90o to the freestream flow direction respectively. Tests 

were performed at a constant Rec of 0.5x106, with the air jet pulsed in the frequency range 

10 – 100 Hz and at jet to freestream velocity ratios in the range 1.5 – 6.0. The results 

demonstrated that pulsed AJVG blowing suppressed stall from 12o angle of attack to 16o, 

while increasing VR and mass flow rate improved AJVG performance. A parametric study 

showed that the optimum pulsing frequency was dependent upon the value of VR. For VR 

≤ 2, it was found that optimum F+ ≈ 0.5, while for VR > 2 optimum F+ reduced to around 

0.4. A link was also suggested between the optimum pulsing frequency and the natural 

shedding frequency of the eddies in the separated flow. 

The importance of jet VR was further demonstrated in the experiments of McManus 

and Magill (Refs. 18 & 19) involving the control of the flow around a NACA 4412 main 

section aerofoil with a leading edge slat of chord 20% of the overall model chord. For Mach 

numbers between 0.1 and 0.5 the tests demonstrated improved performance with increasing 

VR, while an optimum reduced pulsing frequency of F+ ≈0.6 was found. The difference in 

optimum F+ between this study and McManus et al.’s earlier results suggest that the effect 

of pulsing frequency is sensitive to geometry or pressure gradient. Greenblatt et al. (Refs. 

20, 24 & 25) undertook a number of experimental studies into the effect of pulsed blowing. 

These studies showed that the most effective location for a pulsed air jet array is in the 

vicinity of the separation front, and that optimum F+ was in the range 0.5 – 1.0. Scholz et 

al. (Ref. 21) investigated the capability of an array of pulsed air jets located near the leading 
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edge of an aerofoil model to suppress abrupt leading edge separation. These experiments 

were performed at Rec of 1.3x106, with an array of 80 rectangular air jet orifices skewed at 

45o to the freestream flow. It was found that the array of jets, located on the upper surface 

only 1% of chord from the leading edge, could not prevent separation but were found to 

increase normal force coefficient above the prestall value. Pulsing frequency was not found 

to have a significant effect in this case but the aerodynamic characteristics were found to 

be sensitive to jet duty cycle, the best results being obtain with duty cycle in the range 0.12 

– 0.25. 

Ortmanns et al. (Ref. 22) used phase locked stereoscopic PIV to track the coherent 

turbulent structures generated within a turbulent boundary layer on a flat plate model in a 

water tunnel. In this study the jet VR and pulsing duty cycle was varied with a fixed pulsing 

frequency of 1Hz. A velocity overshoot was seen to occur at the beginning of each pulse 

with the result that enhanced mixing was observed with larger and stronger vortical 

structures. This start-up effect, which was sensitive to VR but not to duty cycle, was found 

to be an important factor in the study of Prince et al. (Ref. 28) who implemented a velocity 

overshoot in the air jet velocity profile in their study of the effect of pulsing AJVGs for 

low speed stall suppression. In this study a RAE 9645 aerofoil section model was fitted 

with an array of pulsed air injectors that could be operated in steady blowing mode or at 

pulsing frequencies up to 300Hz. A parametric study of the effect of air jet to freestream 

velocity ratio, pulsing duty cycle and reduced pulsing frequency was performed with Rec 

of 1.1x106. This study also demonstrated the significantly improved effectiveness of 

pulsing AJVGs over steady blowing ones in the suppression of trailing edge separation and 

subsequent stall. A correlation was found between the measured aerofoil trailing-edge 
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shedding frequency and the maximum normal force enhancement. The maximum normal 

force coefficient was achieved at a reduced pulsing frequency of F+≈0.6, corresponding 

with the natural shedding frequency of the stalled aerofoil. Surface tuft visualisation was 

used to reveal what looked like periodic wavelike motions of the separation front 

downstream of the air jet orifices for the case of low frequency pulsing. This suggested that 

the advance and retreat of the separation front was synchronised with the pulsing of the air 

jets. 

For the case of AJVGs applied to aerofoils in pitching motion, a much more limited 

body of data is available. Greenblatt et al. (Refs. 24 & 25) showed that in order to ensure a 

train of many coherent vortical structures exist at any moment during the pitch up motion, 

much higher frequencies (typically higher than 200Hz) are necessary for dynamic stall 

suppression than for static stall suppression. A threshold value of VR was found beyond 

which increases did not result in further improvements in lift enhancement. In this case this 

was found to be around VR ≈ 4. In addition, the duty cycle was not found to be as sensitive 

in these series of experiments under dynamic pitching conditions. Weaver et al. (Ref. 26) 

undertook tests of tangential blowing from the quarter chord location on a Boeing Vertol 

VR-7 aerofoil during sinusoidal pitching conditions in a water tunnel at Rec of 1x105. With 

blowing rates between C = 0.16 and 0.66, steady blowing at the higher blowing rate was 

sometimes found to suppress the bursting of the leading edge separation bubble responsible 

for stall vortex formation. In general the steady blowing was found to reduce the load 

hysteresis characteristics. Pulsed blowing was also investigated where the optimum 

reduced pulsing frequency was found to be F+≈0.9. Gardner et al. (Ref. 27) compared 

pulsed air jet blowing with steady blowing on an OA209 aerofoil, where an array of 42 
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orifices at 10% chord location on the upper surface was employed, each of 1% chord 

diameter. They found that at Mach 0.3, and Reynolds number 530,000 light stall could be 

almost completely suppressed with constant blowing at C =0.08. In deep stall conditions 

steady blowing was found to be able to reduce peak pitching moment by 65%. Pulsed 

blowing at high frequencies (between 100 – 500 Hz) with the same mass flux was found 

to be as effective at suppressing dynamic stall as constant blowing. Müller-Vahl et al. (Ref. 

28) developed what they called “adaptive blowing”, which involved the active sensing and 

optimisation of the unsteady blowing profile to best minimize lift force excursions. This 

was applied to a NACA 0018 model and tested at Rec in the range 1.5 – 5.0x105. Blowing 

was applied to the upper surface near the leading edge and was tested with the model 

undergoing pitch oscillations as well as with fixed pitch with rapid freestream oscillations. 

The investigators were successful in fully suppressing dynamic stall and in achieving 

almost constant phase averaged lift. 

3. Experimental Details 

The test model developed for the experiments used the RAE9645 aerofoil profile, 

representative of a modern helicopter rotor section, and was constructed with a chord 

length of 0.5m. The effective span of the model, between the end plates, was 1.1m. Oval 

end plates were fitted to maintain quasi-2D spanwise flow behaviour. The model was 

constructed out of moulded fibre glass upper and lower surface sections with internal insert 

sections to provide support. The internal pressure regulated plenum chamber used to feed 

the air jets was constructed from a high pressure plastic pipe, installed inside the model 

with the air being fed in at the same pressure at both ends. The air jet orifices, located in 
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an array of 20 at 12% chord on the upper surface, were set with a spacing, between each 

one, of 45mm. Each orifice had a circular cross-sectional area of 18mm2. They were 

pitched at 30o from the surface tangent and skewed at 60o with respect to the free-stream 

direction, to match the experimental arrangement of reference 28,. The pitch and skew 

angles used at the jet exits were arranged to induce co-rotating streamwise vortices over 

the aerofoil upper surface for the steady blowing cases, the settings being those which the 

literature suggests are optimum for the generation of maximum vorticity in the downstream 

boundary layer. The geometrical orientation, shape and individual spacing of the AJVGs 

installed on the model were based on design guidelines outlined by previous researchers 

(Refs. 9 -14). 

The internal AJVG actuator / ducting system consisted of the plenum pipe which fed 

all of the 20 jets and was pressure regulated, small tubes which connected it to the pulsed 

air injectors and a specially designed jet nozzle module, as shown in figure 2a) with a short, 

constant circular cross sectional area, duct delivering the air jet to the surface. The air jet 

nozzle modules were designed as a plastic insert to link the air injectors with the upper 

surface orifices in such a way as to ensure the correct orifice pitch and skew angle while 

maintaining a smooth and continuous upper surface profile.  

The Synerject pulsed air injector, shown in figure 2b), is based on IC engine solenoid 

fuel injector technology and was chosen as the pulsed air jet actuator since it was found to 

satisfy the required mass flow, pulsing characteristics and geometrical size requirements. 

The air jet / injector / plenum assembly was isolated from the model structure, as much as 

possible, with vibration dampening material in an effort to reduce the vibrational noise 



AHS Log No. xxxx 11 

emitted from the injectors affecting the pressure sensors. Figure 3 presents a typical air jet 

exit pressure trace, for a square wave input signal. 

The model was instrumented with a total of 39 dynamic pressure transducers, flush 

mounted in surface pressure tappings, positioned at centre-span along the chordline. These 

transducers were rated at 34kPa range, and their chordwise locations are plotted in figure 

1, along with the location of the AJVG array. An additional 10 dynamic pressure 

transducers were mounted on the upper surface a spanwise distance 8.5mm to one side of 

the main transducer array. These were used primarily as a mean to verify the measurements 

on the main transducer array. The resulting pressure distributions were then integrated to 

calculate the aerodynamic forces and moments, neglecting the effects of surface skin 

friction. The plenum chamber pressure was measured by use of a differential pressure 

transducer mounted centrally inside the pipe wall. 

Output signals from these transducers were processed by a specially designed signal-

conditioning unit with an internal control board. The control board automatically removed 

all offsets and adjusted the gains as necessary. This was done, during a typical test, by 

computer sampling the maximum and minimum of each transducer output and adjusting 

the gains to improve the data acquisition resolution. The data acquisition was carried out 

by a PC interfaced with proprietary Bakker Electronics BE256 modules that provided the 

analogue to digital conversion. The TEAM 256 software was used for data acquisition. 

The measurement system had a capability of measuring up to 200 channels, with each 

Analogue-Digital channel having a maximum sampling rate of 50kHz. Such a high 

sampling rate was required to capture the fine detail of the high speed dynamic stall 

process, especially at the highest oscillatory frequencies or pitch rates. The surface data for 
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the oscillatory pitching tests was acquired in four blocks of data, totalling 32000 samples. 

The sampling rate was set according to the pitching frequency, and the four blocks of data 

were averaged to give the final results. Data acquisition commenced after a minimum of 

five pitch cycles, with recording taking place over the next five cycles. The data were then 

phase averaged over these five cycles. Close scrutiny of the instantaneous data showed that 

cycle to cycle variation was minor, amounting to Cp of no more than ±0.04. 

The difference between the static pressure in the working section, 1.2m upstream of 

the leading edge, and the static pressure in the settling chamber was measured by a 

FURNESS FC012 micromanometer for the purposes of calibrating the working section and 

model measurement systems. 

An angular displacement transducer geared to the shaft of the rotating model measured 

the instantaneous angle of attack of the aerofoil section model. The signal voltage from the 

transducer was fed into an amplifier/splitter to produce three signals for the following 

purposes: 

 Connection to the multiplexer for the high speed recording of the aerofoil angle 

of attack, 

 Connection to the Schmitt trigger for initiation of data sampling when a preset 

angle (voltage) was reached, and 

 A feedback signal to the hydraulic actuator controller. 

The experiments were performed in the Glasgow University Handley-Page low speed, 

closed circuit, wind tunnel. The RAE 9645 model was mounted vertically in the octagonal 

2.13m x 1.61m working section, being pivoted about two tubular steel shafts connected, 

via two self-aligning bearings, to the support frame, as shown in figure 4. The steel shafts, 



AHS Log No. xxxx 13 

which act as the axis of pitch rotation of the model, were fixed through the model quarter 

chord axis. The weight of the model was carried through a thrust bearing on the upper 

support beam, while the aerodynamic loads were borne by both the upper and lower support 

beams, connected to the steel tunnel frame. 

The oscillatory motion of the model was achieved using a UNIDYNE 907/1 hydraulic 

linear actuator mounted on the support frame underneath the working section and 

connected, via a crank mechanism, to the model mounting shafts.  The UNIDYNE actuator, 

rated with a normal dynamic thrust of 6.1kN, was driven by a 7.0MPa supply pressure and 

controlled via a MOOG 76 series 450 servo-valve and UNIDYNE servo controller unit. 

Displacement measurement and feedback signal for the actuator controller was provided 

by a precision linear angular displacement transducer mounted on the lower support beam 

and geared to the model mounting shaft, as shown in figure 4, which provided 

instantaneous angle of attack to an accuracy of ±0.1o. 

The accuracy of the surface pressure measurements is estimated to be Cp = ±0.02 at 

the 30m/s freestream airspeed used in these tests. The integrated normal force and pitching 

moments are estimated to be within 5% of those measured by a force balance at zero angle 

of attack, improving to within 1% at high angle of attack, based on the findings from the 

analysis of a similar test (Ref. 23). Air jet momentum coefficient, C, was determined by 

the measurement of the plenum pressure during the experiments, to obtain mass flow rate 

of the feed air, calibrated using an airflow meter. The jet velocity was obtained using a fine 

pitot probe which was traversed through the exit jet, normal to the jet axis, some 2mm from 

the jet orifice. The velocity was then averaged across the jet. 
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 Pulsed jet momentum coefficient was estimated by factoring by the pulsed waveform 

duty cycle, so that the correct averaged mass flow is used. The accuracy of the C 

measurements is estimated to be ±0.00001. 

4. Results 

4.1 The Effect of Steady and Pulsed Air Jet Blowing 

The upper surface Cp variation with angle of attack for the RAE 9645 aerofoil section 

model undergoing oscillatory, 12.38rad/s (k = 0.103), 8 degree amplitude pitching was 

compared for the cases of 241kPa steady air jet blowing (C =0.0026), 172kPa, 71Hz 

pulsed air jet blowing (C=0.00075, F+= 1.04, DC=0.5) and the clean aerofoil across the 

mean angle of attack range 6o to 20o. Figure 5 presents carpet plots of the upper surface Cp 

over one complete cycle for these conditions for the sample cases  𝛼̅=12o and 20o. Up to a 

mean angle of attack of 10o, there is negligible difference between the upper surface Cp 

carpets for the three cases. This is to be expected for the lowest mean angles of attack since, 

based on the quasi-static results, trailing edge separation occurs at =11o and viscous 

effects only begin to take effect after about =15-16o. At 𝛼̅=12o the first evidence of a 

dynamic stall vortex trace exists in the upper surface pressure carpet. This appears as a 

ripple like feature that begins as a weak disturbance near the leading edge at about ~20o 

(the beginning of the downstroke) and is shed from the trailing edge at ~15o. This ripple 

is in fact the suction trace of the dynamic stall vortex core on the upper surface, which is 

shed from the leading edge and very rapidly convects over the upper surface and past the 
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trailing edge, as described in previous work (Refs. 29 & 30). The formation, migration and 

shedding of the stall vortex is seen to occur on a very fast time scale, the event taking place 

within about 2o angle of attack at the start of the downstroke movement. At the oscillation 

frequency of 12.38rad/s (k = 0.103), this equates to an event that takes just less than 10ms. 

The feature is completely absent in the upper surface Cp carpet with steady 241kPa (C 

=0.0026) air jet blowing, suggesting that for this oscillatory pitching condition, steady air 

jet blowing can be completely effective in suppressing the formation and shedding of a 

dynamic stall vortex. This agrees with previous findings (Refs. 29 & 30). The upper surface 

Cp carpet for the pulsed air jet blowing case appears to be almost identical to that for steady 

blowing, with no clear trace of dynamic stall vortex suction, except the appearance of some 

oscillations at the trailing edge. These small oscillations do not appear to resemble the 

ripple ridges that one would expect of a dynamic stall trace, and are much more likely to 

be due to model vibration and/or noise from the pulse jet actuators inside the model. It can 

therefore be concluded that for this oscillatory motion, pulsed air jets also appear to be 

effective in completely suppressing the formation and shedding of the dynamic stall vortex, 

with much less than half of the total air mass flow than that used for the steady air jet 

blowing. 

For the 𝛼̅=14o case, a strong dynamic stall was seen with no air blowing, with a sharp 

leading edge suction peak followed by an abrupt drop in –Cp. A strong suction ridge was 

then visible stretching across the pressure plateau to the trailing edge. With 241kPa (C 

=0.0026) steady blowing a weak trace of a stall vortex was visible together with a much 

weaker, and later collapse in, leading edge suction. The leading edge suction peak was seen 

to be much broader / less sharp, indicating a more benign dynamic stall event. The 
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corresponding suction trace is very weak, indicating that while steady blowing at 241kPa 

has not prevented the occurrence of dynamic stall, and the migration and shedding of a stall 

vortex, it has delayed the formation and reduced considerably the strength of the stall 

vortex. With 172kPa, 71Hz, (C=0.00075, F+= 1.04) pulsed air jet blowing the leading 

edge suction peak remained very rounded, as would be expected without any strong stall 

taking place. Small oscillations on the top of this suction peak would suggest an incipient 

stall event, and the small oscillations in the pressure plateau region towards the trailing 

edge are more extensive than for 𝛼̅=12o which might be evidence of an extremely weak 

stall vortex, but this is certainly not conclusive. What can be said with certainty is that the 

172kPa pulsed air jet blowing has been more successful in suppressing dynamic stall for 

this case than 241kPa steady blowing.  

For the more severe cases of 𝛼̅ =16o and above the Cp carpets followed similar trends 

and are represented in figure 5 by results for the extreme case of 𝛼̅ =20o. Now a strong 

dynamic stall vortex suction ridge is observed for all three cases. In fact there appears to 

be evidence of two suction ridges – a primary and a weaker secondary stall vortex. For the 

𝛼̅=16o case steady blowing at 241kPa suppressed the secondary stall vortex suction ridge, 

and a secondary leading edge suction peak is observed that does not exist in the case of the 

clean aerofoil. This indicates that the steady blowing is acting to promote the reattachment 

of the upper surface boundary layer close to the leading edge, and thereby promote 

recovery of leading edge suction, in the post stall period during the downstroke. Pulsed, 

172kPa air jet blowing at 71Hz pulsing frequency was also seen to suppress the formation 

of the secondary stall vortex suction ridge, indicating that this secondary vortex is not 
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generated in this case. Both modes of air jet blowing were still found to improve the overall 

aerodynamic performance at this more severe mean angle of attack. 

For the next highest mean angle of attack of 18o, and for the highest 20o case, 

reproduced in figure 5, AJVG blowing, both 241kPa steady and 172kPa pulsed, did not 

appear to affect the upper surface Cp response carpets. For all three cases a very sharp full 

stall event takes place at around =24o, with no post stall primary vortex recovery until 

nearly 10o angle of attack on the downstroke. For both cases, air jet blowing appeared to 

increase the peak leading edge suction from Cp ≈ -12 to -13. For these most severe, highest 

𝛼̅ cases, the effects of air jet blowing appeared to be negligible. 

In summary, the analysis of the upper surface Cp versus  carpets shows that AJVG 

blowing with C =0.0026  at x/c~10% for M=0.1 and Rec=1.0x106, can be effective in 

delaying the onset of dynamic stall, and improving the post stall aerodynamic 

characteristics for oscillatory pitching with moderate maximum angle of attack (max = 18-

20o). In particular, C=0.00075, F+= 1.04 pulsed air jet blowing is seen to better suppress 

the secondary stall vortex formation. For very severe oscillatory pitching cases with 

maximum  above about 20o, the data suggests that air jet blowing (both steady and pulsed) 

has little effect in improving the aerodynamic characteristics. 

Figure 6 presents the comparison of the results for the three cases - clean aerofoil, 

steady 241kPa (C =0.0026) blowing and 172kPa pulsed (C=0.00075, F+= 1.04)  blowing 

for CN, and CM respectively. The graphs are plotted for each mean angle of attack, the 

oscillation amplitude being constant at 𝛼̂8o.  The curves for CN are plotted on the left of 

the figure. At the lowest mean angle of attack, 𝛼̅=6o, there is no evidence of any occurrence 

of stall or the subsequent hysteresis between the upstroke and downstroke normal force. 
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This is to be expected as the maximum angle of attack of 14o is below the  =15-16o at 

which the quasi-static pitching results indicate that the forward movement of the separation 

line from the trailing edge begins. 

A very small degree (CN < 0.1) of hysteresis between the upstoke curve and the 

downstroke curves is seen for 𝛼̅=8o in the clean aerofoil case but this is suppressed 

completely by both steady 241kPa and pulsed 172kPa AJVG blowing. This corresponds 

with the results of the quasi-static pitching tests which repeatedly showed, for the same 

freestream conditions, that incipient trailing edge separation could be effectively delayed  

to =13o by both steady and pulsed blowing at moderate blowing pressures, and that the 

onset of the effects of viscosity could be likewise delayed by about two degrees angle of 

attack. Increasing 𝛼̅ to 10o results in a more pronounced hysteresis loop in CN curve, where 

the CN level at a given angle of attack on the downstroke is less than the corresponding 

level on the upstroke, in the range 12o <  < 18o, with steady blowing. For the clean aerofoil 

case the hysteresis “loop” is seen to be considerably larger, and extends on the downstroke 

all the way to a recovery at =10o. With pulsed 172kPa AJVG blowing, the hysteresis 

loop is smaller than that seen with 241kPa steady blowing, indicating improved 

suppression of the forward movement of the upper surface separation line which was also 

seen under quasi-static pitching (Ref. 23).  

With 𝛼̅=12o the downstroke recovery occurs at =7o for the unblown model, but at 

=10o with both steady 241kPa and pulsed 172kPa AJVG blowing. The maximum 

hysteresis between the upstroke and downstroke CN magnitude at a given angle of attack 

is CN ≈0.5 with no AJVG blowing, CN ≈0.3 with 241kPa steady blowing and CN ≈0.2 

with 172kPa, 71Hz pulsed blowing. A higher average normal force can therefore be 
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sustained on the downstroke with the application of AJVG blowing. In addition, pulsed 

blowing at 71Hz can be seen to provide improved post stall CN capability with much less 

mass flow requirement than steady blowing at the higher plenum pressure. A similar 

situation is found with 𝛼̅=14o Here the downstroke recovery occurs again at =7o for the 

unblown model, but at =9o with steady 241kPa and pulsed 172kPa AJVG blowing. The 

maximum hysteresis between the upstroke and downstroke CN magnitude at a given angle 

of attack is CN ≈0.8 with no AJVG blowing, CN ≈0.6 with 241kPa steady blowing and 

CN ≈0.3 with 172kPa, 71Hz pulsed blowing. 

For 𝛼̅ >14o much less benefit is seen with the application of either the steady or the 

pulsed AJVG blowing, with downstroke recovery occurring at about the same location in 

the motion for all three cases, and the hysteresis loops being, within the accuracy of the 

experimental instrumentation and pressure integration procedure, broadly equivalent. With 

𝛼̅=16o both steady and pulsed blowing appears to prevent the large depression in CN that 

occurs with no AJVG blowing between  =22 – 10o on the downstroke. In addition pulsed 

blowing appears to be able to suppress the sharp rise in CN, and the corresponding peak, 

associated with the high level of suction on the upper surface near the leading edge due to 

the formation of a dynamic stall vortex, approaching maximum  on the upstroke. These 

peaks which are seen to occur, for both the clean model and with steady 241kPa AJVG 

blowing, for 𝛼̅=18o and 20o, are not present in the corresponding CN curves with 172kPa, 

71Hz, pulsed blowing. 

The corresponding comparison for pitching moment coefficient is plotted on the right 

hand side of figure 6. It is noted that a small degree (CM ~0.02) of hysteresis is observed, 

between the pitching moment on the upstroke and downstroke, even for the lowest, 𝛼̅=6o 
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mean angle of attack. The level of hysteresis between upstroke and downstroke pitching 

moment during the attached flow periods of the oscillation is practically constant for all 

the mean  cases, and is probably due to the inability, at the  =12.38rad/s (k = 0.103) 

pitching speed, for the freestream flow on the downstroke to completely return to unstalled 

conditions. It was noticed that this phenomenon did not appear in the CM data for low 

oscillation frequencies. For 𝛼̅=12o both steady and pulsed air jet blowing are seen to have 

completely suppressed moment stall, and the subsequent period of relatively large negative 

(nose down) pitching moments attributed to the passage of the dynamic stall vortex as seen 

in the unblown model data. For the higher 𝛼̅=14o case, the large spike in negative CM seen 

in the curve with no AJVG blowing is supressed by the action of steady 241kPa blowing, 

but a region of high negative CM on the early downstroke is no longer suppressed. The 

maximum negative CM of -0.15 is seen to be reduced to CM =-0.1 with pulsed AJVG 

blowing.  For 𝛼̅>14o there is much less of a beneficial effect of AJVG blowing on the high 

levels of nose down pitching moment associated with the formation, convection and 

shedding of the dynamic stall vortex. 

One further beneficial effect of pulsed air jet blowing, indicated in the data, may be 

that it is capable of suppressing the period of nose up pitching moment that occurs with 

both steady air jet blowing and also with no blowing, in the middle of the downstroke 

motion. This momentary nose-up pitching moment is associated with the recovery of strong 

leading edge suction when much of the upper surface boundary layer still remains 

separated. While the levels of the nose-up pitching moment are only small, the suppression 

of this event will, at least, help reduce the associated fatigue on the rotor hub assembly. 
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4.2 The Effect of Aerofoil Pitching Rate,  

The effect of aerofoil model pitching frequency is analysed in figure 7 where surface 

pressure data for sinusoidal, 𝛼̅ = 16o𝛼̂ = 8o pitching at  = 1.21rad/s and 18.1rad/s are 

presented. First for the case of the lowest model pitching frequency of 1.21rad/s (k = 0.010), 

with no air jet blowing the leading edge suction peaks at about Cp =-7 at ~18o followed 

by a plateau until about ~20o when recovery occurs.  

Full stall, with a complete loss of leading edge suction does not occur. A weak 

pressure ridge is evident on the rearward pressure distribution soon after primary stall. This 

occurs in the vicinity where a smooth drop in Cp associated with trailing edge separation is 

expected, the ridge may be indicative of a weak dynamic stall vortex, but there is no 

evidence of any strong dynamic stall vortex. With steady 241kPa (C = 0.0026, F+=1.04) 

AJVG blowing the leading edge suction peaks at about Cp =-9 at ~20o and is followed by 

a weak recovery at ~23o. Pulsed AJVG blowing (C = 0.00075) results in a further 

increase in peak leading edge Cp to about -10 at ~22o. An earlier (~20o) and stronger 

recovery occurred on the downstroke with pulsed AJVG blowing. No ridge in Cp towards 

the trailing edge is visible in either pressure carpet for AJVG blowing. 

For the highest model pitching frequency of 18.1rad/s (k = 0.151) a strong dynamic 

stall vortex suction ridge is seen in the instantaneous pressure carpet with no blowing, 

forming at about ~23o on the upstroke and being shed at the trailing edge at ~22o on the 

downstroke. A similar feature is observed in the carpet for the steady 241kPa blowing case, 

but this is less sharp / more diffuse, indicating a weaker stall vortex. No trace of a secondary 
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stall vortex is evident in either pressure carpet, and in both cases the post stall leading edge 

Cp characteristics are practically identical, with very little suction present. With pulsed 

AJVG blowing the loss of leading edge suction during the stall event is not quite as abrupt 

as seen in the steady blowing, and inactive jet cases, and the dynamic stall vortex suction 

ridge is very weak indeed. Clearly pulsed AJVG blowing at the lower blowing pressure 

delivers a better improvement in the overall aerodynamic characteristics at this higher 

model pitching frequency of 18.1rad/s. 

The integrated force and moment data, not presented here, suggests that the speed of 

the oscillatory pitching moment does not significantly affect the capability of pulsed air jet 

blowing to provide enhanced aerodynamic characteristics on the downstroke, whereas it 

can be said that as the model pitching frequency is increased, steady air jet blowing 

becomes less effective in enhancing the downstroke characteristics. Both steady and pulsed 

air jet blowing appears to be more effective on improving CNmax at the lower model pitching 

frequencies, the improvements becoming less the higher the pitching frequency. 

 

4.3 The Effect of Air Jet Blowing Momentum Coefficient, C 

The effect of blowing pressure / blowing momentum with steady and pulsed (f =71Hz, 

F+ =1.04) air jet blowing is compared for =12.38rad/s (k = 0.103), sinusoidal, 𝛼̅ = 16o𝛼̂= 

8o pitching, in figures 8 and 9. The instantaneous upper surface pressure carpets are 

presented and compared in figure 8. With no air jet blowing at all, a strong dynamic stall 

event is clearly evident in the surface pressure response, with a strong primary dynamic 

stall vortex suction ridge followed by a weaker secondary suction ridge. The effect of 

steady AJVG blowing at 241kPa (C = 0.0026) is seen to be the near, if not complete, 
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suppression of the secondary stall vortex and the prevention of the complete loss of leading 

edge suction on the downstroke – a secondary suction peak being clearly evident. 71Hz 

pulsed blowing at 241kPa (C = 0.0013) was found to provide a similar result but with a 

weaker, more dissipated, primary stall vortex suction ridge, and no evidence of any 

secondary suction ridge at all.  

With steady blowing at 328kPa (C = 0.0046) a primary stall vortex suction ridge is 

still evident, though it is seen to be very weak, but with 71Hz pulsing at 310kPa (C = 

0.00205, F+=1.04) there does not appear to be any evidence at all of any stall event. The 

leading edge suction undergoes the sinusoidal variation expected of a near inviscid flow, 

and no suction stall vortex ridge is seen at all. This is a remarkable result since this almost 

complete stall suppression is achieved with less than half of the total mass flow rate of the 

steady 328kPa blowing case. This sinusoidal pitching case with 𝛼̅ = 16o𝛼̂ = 8o, is a 

relatively severe case with a maximum angle of attack of 24o, but pulsed AJVG blowing 

has been shown capable of practically suppressing dynamic stall. 

In figure 9 the curves of the behaviour of CN and CM during the pitch cycle are 

presented for both steady and pulsed blowing at different blowing momentum coefficients. 

For the steady air jet blowing cases, a blowing pressure of 145kPa (C = 0.0011) is seen to 

significantly reduce but not completely suppress the occurrence of the CN peak due to the 

contribution of the dynamic stall vortex suction at the end of the upstroke. With no air jet 

blowing, the nonlinear rise in CN due to the formation of the stall vortex is seen to begin at 

=23o on the upstroke. With 145kPa steady air jet blowing, this is delayed until just prior 

to the beginning of the downstroke at  =24o. Steady blowing at an increased 248kPa (C 

= 0.0028) achieves the same result, but a further increase in blowing pressure to 328kPa 
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(C = 0.0046) is seen to completely suppress this CN peak suggesting that in this case the 

dynamic stall vortex is significantly weakened, or even completely suppressed. Steady 

145kPa blowing was also found to increase the CN level on the latter period of the 

downstroke ( =18-10o) compared with that obtained with inactive air jets. In the early 

period of the downstroke, however, the CN levels were found to be slightly below those 

calculated for the inactive air jet case. The small recovery in CN observed in the inactive 

air jet case for  =23-22o, which is possibly associated with the formation of a secondary 

stall vortex which creates suction lift as it proceeds downstream over the upper surface, is 

also seen with 145kPa steady blowing, but beginning at a lower CN level. With 248kPa 

steady air jet blowing this CN recovery begins later at some 2o angle of attack further into 

the downstroke before the CN curve plateaus out at a level ~10% higher than that seen with 

the lower blowing pressure. With 328kPa blowing pressure the primary stall event, which 

now takes place on the commencement of the downstroke movement, becomes much more 

benign, with no abrupt loss of normal force but a gradual reduction followed by a plateau 

at the same level as that seen with 248kPa blowing pressure. 

Clearly an increase in steady blowing pressure, and thereby the blowing momentum 

coefficient, results in a beneficial improvement in the CN characteristics, especially on the 

downstroke, where up to 40% increased normal force can be sustained over and above the 

levels maintained without air jet blowing. The corresponding result for pulsed AJVG 

blowing at a constant 71Hz (F+ = 1.04) pulsing frequency, 50% duty cycle condition, is 

presented in figure 9b). Here a very similar result is found, but the sensitivity with blowing 

pressure is seen to be much enhanced. A comparison between the CN curves for steady 

blowing at 328kPa, and pulsed blowing at the lower 310kPa, shows that pulsing at 71Hz, 
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with a mass flow rate of just less than half, results in significantly improved CN levels on 

the downstroke – with levels up to twice those seen with no air jet blowing. From this it is 

clear that a further significant improvement in CN characteristics is achieved with pulsed 

blowing, with at least a halving of the mass flow requirement, and that this benefit is seen 

to be greater the higher the average blowing pressure and associated value of C. 

The corresponding plots of the pitching moment characteristics reveal that steady 

blowing is seen to promote a later, but more severe moment stall. However, a blowing 

pressure of 248kPa is seen to have slightly reduced the maximum pitch down moment, 

while an increase to 328kPa results in a further dramatic reduction, with a peak negative 

pitching moment coefficient of 40% of that seen without any air jet blowing. In addition 

steady air jet blowing, at all blowing pressures investigated, was seen to promote an earlier 

recovery on the downstroke, compared with the clean aerofoil case. Also, while the period 

during which a small positive (nose up) pitching moment is experienced on the latter stages 

of the downstroke is extended with steady air jet blowing, it is seen that with the highest 

328kPa blowing pressure, the maximum level has been suppressed. With pulsed blowing, 

a blowing pressure of 172kPa is seen to have significantly reduced the peak nose down 

pitching moment on the commencement of the downstroke, compared with no effect with 

97kPa steady blowing. Further increases in blowing pressure are seen to have further 

reduced this peak negative pitching moment coefficient until, with 310kPa there does not 

appear to be any significant trace of a strong moment stall at the onset of the downstroke, 

and through a large extent of the downstroke the CM level is reduced to nearly zero. The 

pitching moment data therefore also shows that worthwhile aerodynamic benefits can be 
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achieved by pulsing the air jets as long as the blowing pressure is not too low (in this case 

below about 138kPa). 

 

4.4 The Effect of Air Jet Pulsing Frequency, f 

The effect of pulsing frequency is analysed in figure 10 for this same 𝛼̅ =16o, 𝛼̂8o 

case with a nominal plenum pressure of 172kPa giving C = 0.0015, or an effective C of 

0.00075 for a pulsed jet duty cycle of 50%. For this case the instantaneous upper surface 

pressure carpets, showed that 20Hz, F+=0.29, pulsing was not effective in suppressing even 

the secondary stall vortex suction ridge. Increasing the pulsing frequency to 50Hz, 

F+=0.73, resulted in the effective suppression of the secondary suction ridge, while the 

primary suction ridge was marginally weakened. Further increasing the pulsing frequency 

was found not to further improve the upper surface pressure response, the primary suction 

ridge still being clearly evident with the highest pulsing frequency of 200Hz, F+=2.93. 

Close inspection of the normal force curves, presented in figure 10, shows that pulsed 

AJVGs are effective in suppressing the non-linear “spike” in normal force at the top of the 

upstroke due to the suction of the forming dynamic stall vortex. With no air jet blowing, 

and with steady AJVG blowing a secondary suction peak is seen to occur in the early stages 

of the downstroke, due to a secondary stall vortex formation. This feature is also seen, but 

at a later stage in the downstroke, in the curve for pulsed blowing at 20Hz (F+=0.29), but 

with higher pulsing frequencies this secondary feature is suppressed. 

Inspection of the all the curves for CN, and CM shows that there is a big difference 

between the results achieved with 20Hz pulsing and with 50Hz, F+=0.73, and higher. With 

50Hz, F+=0.73, pulsing or above, the aerodynamic improvements are at least as good, if 
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not considerably better than the equivalent steady blowing, while 20Hz is not as effective. 

This is in good agreement with the finding of an earlier study on this model (Ref. 23) which 

showed that, for quasi-static pitching, pulsed jets need to be run at 35Hz or higher 

(corresponding with the measured trailing edge natural shedding frequency) to achieve 

their full aerodynamic effectiveness. From the results presented in figure 11, it is not clear 

which pulsing frequency – 50Hz or above, is most effective in maximising CN, for a given 

angle of attack, while limiting the level of CM divergence. Pulsing in the frequency range 

50Hz-140Hz, (F+=0.73 – 2.05) appears to achieve very similar results, while the results for 

the highest 200Hz, F+=2.93 pulsing on the later period of the downstroke do not appear to 

be quite as good. With the limited results obtained, pulsing in the range F+=0.5 – 1.00 

therefore seems to be the most optimum setting for enhanced aerodynamic performance 

with 172kPa blowing pressure (C = 0.00075). 

 

4.5 The Effect of Air Jet Duty Cycle, DC 

The effect of pulsed jet duty cycle, DC, (the percentage of time during a pulse cycle, 

during which the jet is active) was investigated for the 𝛼̅ =16o and 𝛼̂8o case with a 

nominal 172kPa plenum pressure (C = 0.0015) and constant 71Hz pulsing frequency (F+ 

= 1.04). Close inspection of the computed CN and CM characteristics showed that, for the 

different duty cycle cases investigated, there was no obvious benefit in pulsing with duty 

cycle higher than the 50%. Interestingly there was no large degradation in performance in 

operating the pulsed air jets with duty cycle settings as low as 25%.  

These results suggest that there is some benefit in reducing the duty cycle from 50% 

to somewhere in the region of 30-40%, since the overall mass flow requirement can be 
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significantly reduced without significantly impacting on the aerodynamic performance 

enhancements. 

 

4.6 Overall Comparisons 

To properly compare the relative benefits of pulsed air jet blowing versus purely steady 

blowing, figure 11 plots, for the case of a constant cyclic pitch of 8o, the variations with 

collective pitch, 𝛼̅, of the maximum normal force achieved during the cycle, the 

corresponding minimum pitching moment and the damping coefficient for the unblown 

and for steady (C = 0.0026) and pulsed blowing (C = 0.00075) cases. The damping 

coefficient, a, is defined as: 

𝑎 =
−𝐶𝑤

𝜋𝛼̂2
 

where Cw is the work coefficient, given by: 

𝐶𝑤 = ∮ 𝐶𝑀(𝛼)𝑑𝛼 

where angles are expressed in radians, and is a measure of the work done per cycle by the 

pitching moment. Air jet blowing should, ideally, reduce the maximum normal force 

caused by the stall vortex suction peak, and the corresponding minimum pitching moment 

which are both responsible for excessive fatigue loading of the blade and its hub. 

Up to 10o collective pitch the action of air jet blowing does not affect the maximum normal 

force or the minimum pitching moment. At 𝛼̅ = 12o  the jump in minimum pitching moment 

that occurs in the baseline case is suppressed by both steady and pulsed air jet blowing. At 

14o collective pitch and higher, the pulsed blowing is seen to significantly reduce (by up to 

10%) the maximum normal force below that experienced by the baseline model, while 
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steady blowing at over three times C , can only match this performance at 𝛼̅ = 14o  and 

cannot provide any improvement at the highest collective pitch angles. At these angles this 

much weaker air jet pulsing is also seen to be able to better reduce the minimum pitching 

moment compared with the more powerful steady blowing.  

Positive cycle damping is desirable, and while a clockwise portion of a CM~ cycle is 

negatively damped a positive net cycle damping is possible. Negative damping is 

potentially adverse, however, as it may lead to stall flutter, and is known to be a 

consequence of a deep dynamic stall (Ref 31). The damping coefficient usefully 

summarises the net effect within a CM~ cycle in a particularly meaningful way. All the 

cases show positive damping at the lowest mean angle of 𝛼̅ = 14o  . The unblown case 

shows negative damping at all the higher mean angles. Steady blowing delays the onset of 

negative damping to just beyond 𝛼̅ = 14o  , and pulsed blowing shows low but still positive 

damping at 𝛼̅ = 14o  . In each case this is associated with the attenuation of the dynamic 

stall due to the blowing. 

This study further confirms the findings of others, that pulsed air jet vortex generators offer 

significant performance improvement over purely steady blowing. This work demonstrates 

that this can be achieved with considerably reduced values of C, and corresponding mass 

flow. Since these effects are known to be achieved by the enhanced mixing within the 

boundary layer, and not by any disturbance of the external outer flow which would, in fact 

be detrimental. This is why very low momentum blowing designed to maximize the 

production of vorticity deep within the boundary layer can be very effective. 
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Conclusions 

The present experiments on a sinusoidal pitching RAE9645 aerofoil section model have 

demonstrated that steady air jet blowing tended to increase CNmax, reduce peak negative 

pitching moment and delay the occurrence of primary and full stall to a higher angle of 

attack as well as incipient drag rise. Increasing the blowing pressure, and thereby the jet to 

freestream velocity ratio, was found to accentuate these beneficial effects. Pulsed air jet 

blowing in the pulsing frequency range F+ = 0.5 – 1.0 was found to further increase CNmax 

and further delayed the occurrence of primary and full stall over and above that achieved 

with corresponding steady air jet blowing. An effective duty cycle range of 0.4 - 0.75 was 

recorded. This means that similar aerodynamic improvements as obtained with steady air 

jet blowing can be achieved with pulsed blowing but with considerably reduced air mass 

flow rate requirements. For moderate mean angles of attack cases where dynamic stall 

occurred at the higher angles of attack of the cycle, steady blowing was found capable of 

suppressing the formation of the dynamic stall vortex, preventing the occurrence of the 

non-linear rise in CN linked with dynamic stall vortex suction. Pulsed AJVGs were found 

to be even more effective, achieving the improved performance with considerably reduced 

air mass flow requirement, and were found capable of reducing, and even suppressing, the 

vortex suction ridge in the instantaneous upper surface Cp carpets, over and above the 

capability of steady air jet blowing at the same blowing pressure.  Pulsed blowing was also 

found to be more effective in maintaining residual levels of leading edge suction, and 

therefore the CN levels, during the downstroke. Pulsed air jet blowing was found to be 

optimum in the range F+ = 0.5 – 1.0 with DC=0.4 - 0.5. 
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Fig. 1. Chordwise profile of the RAE9645 aerofoil section with AJVG array and pressure 

transducer locations (indicated by symbols). 
 

 

 

 

 
 

a) AJVG nozzle insert          b) The Synerject air injector 

 

Fig. 2. Details of the air injector implementation. 
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Fig. 3. Example of the fluctuating jet exit pressure versus time, for a square wave input 

pulsing wave form with zero freestream velocity. 

 

 

 

 

 

 
 

Fig. 4. Schematic of the Glasgow University Dynamic Stall Rig. 
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a) No air jet blowing, 𝛼̅=12o                                        b) No air jet blowing, 𝛼̅=20o 

 

                

         

                  c)  Steady air jet blowing at 241kPa,                          d) Steady air jet blowing at 241kPa, 

                          C=0.0026, VR=1.4, 𝛼̅=12o                                        C=0.0026, VR=1.4, 𝛼̅=20o 

 

 

        
 

         e) Pulsed air jet blowing at 172kPa, C=0.00075,    f) Pulsed air jet blowing at 172kPa, C=0.00075, 

             VR=1.2, 𝛼̅=12o, f=71Hz, F+= 1.04, DC=0.5                   VR=1.2, 𝛼̅=20o, f=71Hz, F+= 1.04, DC=0.5 

 

Fig. 5. Comparison between upper surface pressure distribution versus  for mean pitch 

angles of 12o and 20o with and without air jet blowing, 𝛼̂=8o, =12.38rad/s, k=0.103 

pitching, U∞=30m/s, Rec=1.0x106. 

-Cp 
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a) No air jet blowing 

 

        
 

b) Steady air jet blowing at 241kPa, C=0.0026, VR = 1.4 

 

       
 

c) Pulsed air jet blowing at 172kPa, C=0.00075, VR=1.2,  f=71Hz, F+=1.04, DC=0.5 

 
 

Fig. 6. CN and CM characteristics for 𝛼̂=8o, =12.38rad/s (k=0.103) sinusoidal 

pitching, with varying mean pitch angle. U∞=30m/s, Rec=1.0x106 
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a) No air jet blowing, =1.21rad/s                             b) No air jet blowing, =18.1rad/s 

 

       
 

        c) Steady air jet blowing at 241kPa, C =0.0026,       d) Steady air jet blowing at 241kPa, C =0.0026,  

VR=1.4,=1.21rad/s                                                                             VR=1.4,  =18.1rad/s 
 

       
 

      e) Pulsed air jet blowing at 172kPa, C =0.00075,       f) Pulsed air jet blowing at 172kPa, C =0.00075 

                VR=1.2, f=71Hz, DC=0.5, =1.21rad/s                      VR=1.2, f=71Hz, DC=0.5, =18.1rad/s  

 

Fig 7. Comparison of upper surface Cp distributions, 𝛼̅=16o, 𝛼̂=8o, pitching at 

frequencies of  =1.21rad/s (k=0.01) and 18.1rad/s (k=0.151), U∞=30m/s, Rec=1.0x106 

-Cp 
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a) No air jet blowing 
 

       
 

                     b) Steady air jet blowing at 328kPa                          c) Steady air jet blowing at 241kPa 

                            (C = 0.0046, VR=1.9)                                                 (C = 0.0026, VR=1.4) 
 

       
 

                       d) Pulsed air jet blowing at 310kPa                       e) Pulsed air jet blowing at 241kPa  

                            (C = 0.00205, VR=1.75)                                           (C = 0.0013, VR=1.4) 
 

Fig 8. Comparison between upper surface pressure distribution versus  for steady and 

pulsed (f=71Hz, F+ =1.04) air jet blowing at ~310kPa and ~241kPa, 𝛼̅=16o, 𝛼̂=8o,  

=12.38rad/s (k =0.103) pitching, U∞=30m/s, Rec=1.0x106 

-Cp 
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a) Steady air jet blowing 

 

         
b) Pulsed air jet blowing, f=71Hz, DC=0.5 

 

Fig. 9. CN and CM characteristics for steady and pulsed air jet blowing at different 

blowing pressures. Sinusoidal, 𝛼̅=16o, 𝛼̂=8o, =12.38rad/s (k=0.103) pitching, 

U∞=30m/s, Rec=1.0x106 

 

 

        
 

Fig. 10. CN and CM characteristics for pulsed air jets with varying pulsing frequency. 

𝛼̅=16o, 𝛼̂=8o, =12.38rad/s (k = 0.103) pitching, p=172kPa (C = 0.0015, VR=1.2 for 

steady blowing),U∞=30m/s, Rec=1.0x106 
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a) Maximum normal force 

 

 
 

b) Minimum pitching moment 

 

 
 

c) Damping coefficient 

 

Fig. 11. Variation of the maximum normal force, minimum pitching moment and the 

damping coefficient with collective pitch setting for 𝛼̂=8o, =12.38rad/s (k = 0.103) 

pitching, U∞=30m/s, Rec=1.0x106 
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