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Abstract: To explore the effect of CO on the transformation of arsenic species, the reaction 

mechanism of homogeneous and heterogeneous reactions for arsenic oxides (AsO2 and As2O3) 

with CO were investigated via density functional theory (DFT). The geometries of reactants, 

intermediates, transition states and products for each reaction were optimized by using the B3LYP 

method in conjunction with the 6-31G(d) basis set, and the single-point energy of each structure 

was calculated at the B2PLYP/Def2-TZVP level. Also, thermodynamic and kinetic analyses were 

conducted to determine the reaction process. The results showed that the homogeneous reaction of 

AsO2 and CO has two channels and a transition state is found in each case. The homogeneous 

reaction process of As2O3 and CO undergoes two transition states and, finally, As2O3 is reduced to 

sub-oxides by CO. Char has a strong adsorption affinity for AsO2 and As2O3 in the presence of 

CO, and the adsorption mode of the AsO2 molecule on the char surface has a great influence on its 

reduction. The activation energy of the homogeneous reduction of As2O3 (75.9 kJ·mol-1) is lower 

than the heterogeneous reduction (94.2 kJ·mol-1), which suggests that As2O3 is more likely to react 

with CO in the flue gas. The calculation results revealed the mechanism for the influence of CO 

on arsenic behavior by density functional theory. These results are helpful for a molecular-level 

understanding of the transformation of arsenic species, which in turn provides a theoretical 

foundation for the emission and control of arsenic. 

Key words: CO; transformation of arsenic species; thermodynamic; kinetic; density functional 

theory

1. Introduction

Arsenic is a common element in coal, and all types of arsenic species are toxic except for the 

elemental form [1, 2]. Most of the arsenic in coal first evaporates in the flame zone during coal 

combustion. It subsequently, condenses on the surface of particulate matter as the flue gas cools 

down, and part of the arsenic finally escapes to the atmosphere [3-5]. Arsenic-bearing flue gas and 

solid waste from coal-fired power plants pose a serious problem for human health and the 

environment. Understanding the transformation of arsenic species during coal combustion will 

contribute much to the capture and disposal of arsenic via air pollution control devices.

In the coal combustion process, many flue gas arsenic species are possible [6-8]. In the 

research of Frandsen et al. [9], thermodynamic equilibrium calculations were performed to 

determine the transformation of arsenic species under different combustion atmospheres. It was 

found that AsO(g) is the stable species above 900K in an oxidizing atmosphere, while in a 

e805814
Text Box
Energy, Volume 187, November 2019, Article number 116024
DOI: 10.1016/j.energy.2019.116024


e805814
Text Box
Published by Elsevier. This is the Author Accepted Manuscript issued with: Creative Commons Attribution Non-Commercial No Derivatives License (CC:BY:NC:ND 4.0).  
The final published version (version of record) is available online at DOI:10.1016/j.energy.2019.116024. Please refer to any applicable publisher terms of use.





Journal Pre-proof

 

 

 

reducing atmosphere, As2(g) is a probable species in the temperature range of 550K to 950K. As 

the temperature further increases AsO(g) is the only product. Contreras et al. [10] theoretically 

investigated the speciation of arsenic during oxy-fuel combustion, and found that AsO2(g) and 

AsO(g) are the most probable species at temperatures higher than 1073K. Miller et al. [11] studied 

the effect of HCl and SO2 on the emission characteristics of arsenic during biomass combustion, 

and found that there are several possible species in the flue gas, such as AsO(g), AsO2(g). Chen et 

al. [12] and Jadhav et al. [13] pointed out that As2O3(g) is the most common form of arsenic oxide. 

However, while the transformation of arsenic compounds has been studied in detail by means of 

thermodynamic equilibrium calculations, the kinetics of such transformations have been largely 

neglected.

Once released from coal, gaseous arsenic can react with other gas components in the flue gas. 

Urban and Wilcox [14] studied the reaction path of As and hydrogen chloride employing density 

functional theory and a broad range of ab initio methods, and the reaction rate constant was 

calculated by means of conventional transition state theory (TST) and collision theory. The 

research of Monahan-Pendergast et al. [15] predicted the arsenic species under atmospheric 

conditions by means of theoretical calculations, and possible reaction mechanisms of gaseous 

arsenic and radical species (OH, HO2) were obtained. In our previous work, the reactions between 

As and nitrogen oxides were studied by density functional theory, and kinetic analysis was 

conducted to further elucidate the reaction mechanisms [16]. These studies showed that the 

transformation behavior of arsenic can be influenced significantly by the flue gas components.

Oxy-fuel combustion is considered to be an important technology for controlling 

anthropogenic CO2 emissions [17-19]. During oxy-fuel combustion, thee are high concentration of 

CO2 present which can react with char to produce a high concentration of CO [20, 21], which is 

strongly reducing [22]. Many researchers have studied the release and transformation of arsenic 

during oxy-fuel combustion [23-25], and pointed out that any refractory arsenic oxide would be 

reduced to the sub-oxides in a reducing atmosphere [26]. Experimentally, Zou et al. [27] 

investigated the volatilization characteristics of arsenic during isothermal oxy-fuel combustion, 

and found that the release of arsenic was suppressed compared to that in air combustion. The 

reason for this behavior is that CO generated by gasification between CO2 and char affects the 

release and transformation of arsenic. However, the reaction mechanism between CO and arsenic 

oxides is unclear at present. Unfortunately, further understanding is limited by current arsenic 

measuring methods and it is difficult to experimentally investigate the reaction mechanism. 

Quantum chemistry offers a reliable method to study the reaction mechanism [28, 29], in order to  

gain a better understanding of the release behavior of arsenic oxides during coal combustion.

To date, recent experimental work has, in a preliminary fashion, explored the transformation 

characteristics of arsenic and pointed out that CO shows a strong reducing effect on arsenic oxides. 

However, the transformation mechanism for arsenic have not been developed to a satisfactory 

level due to a lack of theoretical calculations. Therefore, in this work, two typical arsenic oxide 

species, AsO2(g) and As2O3(g) were employed to study the effect of CO on the transformation of 

arsenic species using density functional theory (DFT). Thermodynamic and kinetic parameters 

were analyzed to further study the reaction mechanism and the Multiwfn wavefunction analysis 

program [30] elucidated the relation between the reaction properties and electronic structures.

2. Computational methods
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Density functional theory is widely used to study chemical reaction mechanisms because of 

its high accuracy and efficiency [31]. The choice of calculation method and basis set determines 

the computational efficiency and accuracy. B3LYP/6-31G(d) has been confirmed to be a good 

option for geometry optimizations [32]. Thus, in this work, geometry optimizations and frequency 

calculations of reactants, intermediates, transition states and products for each reaction were 

conducted with the B3LYP method in conjunction with the 6-31G(d) basis set. The values of 

frequency are all positive for reactants, intermediates and products, while there is only one 

negative value (imaginary frequency) for a transition state. Moreover, the intrinsic reaction 

coordinate (IRC) was calculated to confirm the transition state which connects the reactants and 

products. To obtain a more accurate result for energy, the single-point energy of each structure 

was calculated at the B2PLYP/Def2-TZVP level [33]. The zero-point energy (ZPE), obtained by 

frequency calculation, was used to revise the energy of each structure. All calculations in this 

work were performed by the Gaussian 16 software package [34], which can be used to study the 

molecular properties, including energy and structure of molecules, molecular orbitals, dipole 

moment, multipole moment, atomic charge, vibration frequency, Raman spectra, thermodynamic 

properties, reaction paths, etc.

The reaction rate constants were calculated at 298.15-1800K via the conventional transition 

state theory [35], and the formula is as follows:

   (1)exp( )TS aB
T

A B

Q Ek T
k k

h Q Q RT


   

where kT is the Wigner tunneling correction factor; kB is the Boltzmann constant, J·K-1; h is the 

Planck constant, J·s; QTS is the partial function of the transition state; QA and QB are the partial 

functions of reactants A and B, respectively; Ea is the activation energy, kJ·mol-1; R is the molar 

gas constant, J·mol-1·K-1; and T is the thermodynamic temperature, K. The tunneling correction 

factor is calculated as follows:

      (2)21
1 ( ) ( )
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m
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Here, vm accounts for the imaginary frequency of the transition state, cm-1; and c is the velocity of 

light, m·s-1.

The equilibrium constant is calculated by the following formula [36]:

    (3)lnB AG G G RT K    

where GA and GB are the Gibbs free energy of reactants and products, respectively, kJ·mol-1; and 

K is the equilibrium constant.

3. Results and discussion

3.1. Homogeneous reaction

Fig. 1 shows the homogeneous reaction process of CO and arsenic oxides (AsO2 and As2O3); 

the major bond lengths and angles of reactants, intermediates, transition states and products are 

listed.
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Fig. 1. Diagram of reaction between arsenic oxides and CO. The numbers are the bond lengths in nm.

Fig. 1(a) shows that there are two channels for the reaction of AsO2 and CO. An intermediate 

and a transition state were found in each channel. For channel I, the C atom of CO is attached to 

the O(1) atom of AsO2, forming the intermediate IM-I, then IM-I breaks down into AsO and CO2 

through the transition state TS-I. In this reaction process, the distance between the C atom of CO 

and the O(1) atom of AsO2 decreases gradually (∞→0.136 nm→0.133 nm→0.117 nm, where ∞ 

means that the distance exceeds the bonding range), and the distance between As and O(1) 

increases gradually (0.165 nm→0.185 nm→0.186 nm→∞). For channel II, a CO molecule 

approaches the AsO2 and forms the intermediate IM-II. There is a trend that the C atom gets close 

to the O(1) atom of AsO2 as the distance between the two molecules decreases gradually. 

Subsequently, the IM-II undergoes an oxygen transfer and forms the AsO and CO2 via the 

transition state TS-II.

In Fig. 1(b), the homogeneous reaction between As2O3 and CO is more complicated 

compared with the reaction between AsO2 and CO. There are two transition states and two 

intermediates in the reaction process and, finally, As2O3 is reduced to the sub-oxides by CO. First, 
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CO is close to As2O3 and IM1 forms, and the distance between the C atom of CO and the O(1) 

atom of As2O3 decreases gradually as: ∞(R)→0.322 nm (IM1)→0.300 nm (TS1)→0.136 nm 

(IM2). A ring structure of IM2 is formed due to the combination of C-O(1) and C-As(4) bonds. 

Afterwards, with the rupture of C-As(4) and O(1)-As(5) bonds, IM2 transforms into CO2 and 

As2O2.

Table 1 lists the calculated geometries of reactants and products at B3LYP/6-31G(d), and 

available experimental values, which shows that the B3LYP theoretical level along with the 

6-31G(d) basis set is a favorable method for calculating structural properties.

Table 1. Calculated and experimental bond lengths (in nm) and bond angles (in deg)

Species Bond length (r, nm)

Bond angle (θ, deg)

Calculated Experimental

CO r(C-O) 0.114 0.113 [37]

AsO2 r(As-O) 0.165 0.172 [38]

θ(As-O-As) 124.5 122.2 [38]

AsO r(As-O) 0.164 0.162 [15]

CO2 r(C-O) 0.117 0.116 [37]

θ(O-C-O) 180.0 180.0 [37]

As2O3 r(As-O) 0.185 0.184 [39]

r(As-As) 0.239 0.238 [39]

As2O2 r(As-O) 0.181 0.187 [38]

θ(O-As-O) 81.8 79.5 [38]

The energies of each stationary structure relative to the reactants for the homogeneous 

reactions are shown in Fig. 2.
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Fig. 2. Surface potential energy of the homogeneous reactions.

According to the transition state theory, activation energy is defined as the energy difference 

between transition state and reactant (or intermediate). As shown in Fig. 2, the activation energies 

of the homogeneous reaction between AsO2 and CO are 11.4 kJ·mol-1 (for channel I) and 98.8 

kJ·mol-1 (for channel II), respectively. These values show that AsO2 and CO tend to form the 

intermediate IM-I, and finally generate AsO and CO2. For the homogeneous reaction between 

As2O3 and CO, there are two transition states. The energy barrier is 60.7 kJ·mol-1 for the process 
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of IM1→IM2, and 75.9 kJ·mol-1 for the process of IM2→P2, indicating that the disengagement of 

CO2 is the rate-determining step for the homogeneous reaction.

3.2. Heterogeneous reaction

In the process of coal combustion, gaseous arsenic tends to condense on fly ash particles as 

the temperature decreases [5]. Fly ash consists mainly of metal oxides and some unburned carbon, 

which serves as a good sorbent for gaseous arsenic [40]. Many researchers used char models to 

study heterogeneous reaction, and have found that char can provide active sites for reaction [21, 

28, 32].

3.2.1. Model of char surface

In general, the carbonaceous surface is modeled by a single-layer graphite structure 

composed of several benzene rings, for which zigzag carbon bonding is an ideal model for 

quantum computation [41, 42]. Zhou et al. [43] studied the heterogeneous reduction mechanism of 

NO by the zigzag carbon bond model. In addition, the zigzag model has been employed to study 

the adsorption of hazardous elements by many other researchers [40, 44, 45]. Thus, the zigzag 

model with five benzene rings was chosen to explore the effect of CO on the transformation of 

arsenic species in this work. The char model is shown in Fig. 3.

Fig. 3. Model of char surface.

On the char surface, three unsaturated C atoms on the upper side act as the active sites, and 

other C atoms at the edge are terminated with H atoms. All atoms of the model are coplanar, 

showing that the carbonaceous surface is modeled by a single-layer graphite structure. In this 

model, the average C-C bond length is 0.141 nm, and the average C-H bond length is 0.109 nm. 

These calculation results are close to the values reported in previous research [41], which indicates 

that the model here is reasonable.

3.2.2. Reaction process

The optimized structures of reactants, intermediates, transition states and products during the 

heterogeneous reactions of arsenic oxides (AsO2 and As2O3) with CO are presented in Fig. 4, and 

the major bond lengths and angles of each molecular structure are given.
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Fig. 4. Optimized structures for the heterogeneous reaction process. The numbers are the bond lengths in nm. 

For reaction 1, the As atom and the O(4) atom of AsO2 molecule are close to the char surface, 

and form O(4)-C(2) and As-C(3) bonds. The O(4) atom gradually approaches the C atom of CO, 

and finally forms the product (P-1). For reaction 2, a six-membered ring forms as the two O atoms 

of the AsO2 molecule are attached to the surface of char. Subsequently, the ring structure breaks, 

and the length of the As-O(4) bond increases from 0.181 nm (IM-2) to 0.224 nm (TS-2). Fig. 4, 

shows that the products of reaction 1 and 2, P-1 and P-2 are CO2 and AsO absorbed on the char 

surface. At the same time, the As-C(3) bond forms in P-1, and O(5)-C(3) bond in P-2. The reason 

is that the adsorption mode of the AsO2 molecule on the char surface is different between R-1 and 

R-2. For reaction 3, an As2O3 molecule is absorbed on the char, becoming the intermediate IM-3 

with a five-membered ring. There is a trend of the O(4) atom of As2O3 on the char surface 

associating with the C atom of CO as the distance gradually decreases. Finally, the intermediate 

IM-3 transfers into P-3 across the transition state TS-3.

The energies of each stationary structure relative to the reactants for the heterogeneous 

reactions are presented in Fig. 5.
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Fig. 5 shows that an AsO2 or As2O3 molecule is adsorbed on the surface of char, and the 

intermediates (IM-1, IM-2, and IM-3) are formed with a decrease of energy. According to 

adsorption theory, the adsorption energy (Eads) is defined as the energy difference between the 

system before and after adsorption [46]. A reaction is divided into physical absorption (-30~-10 

kJ·mol-1) and chemical adsorption (-960~-50 kJ·mol-1) according to the value of Eads [40, 47, 48]. 

For the three heterogeneous reactions, the adsorption steps belong to chemical adsorption. The 

adsorption energy for the As2O3 molecule is 793.1 kJ·mol-1 during the R-3→IM-3 process. The 

energy of intermediate IM-2 (-900.8 kJ·mol-1) is lower than that of IM-1 (-871.0 kJ·mol-1), which 

indicates that the adsorption mode of AsO2 molecule in reaction 2 is more stable.

For reaction 1, the activation energy of the process IM-1→P-1 is only 0.8 kJ·mol-1, which 

means that this reaction takes place easily. The six-membered ring in IM-2 undergoes the 

dissociation of As-O(4) and the product P-2 (a five-membered ring) forms with the formation of  

the O(4)-C (the C atom of CO) bond. This process is endothermic and must overcome an energy 

barrier of 109.7 kJ·mol-1. For reaction 3, the O(4) atom of As2O3 moves away from the As(5) and 

gradually approaches the C atom of CO. In this process, the intermediate IM-3 transforms into the 

product P-3 after crossing an energy barrier of 94.2 kJ·mol-1.

3.3. Thermodynamic analysis

Thermodynamic parameters are helpful for further understanding the reaction process. 

Thermodynamic parameters of the homogeneous reaction between arsenic oxides (AsO2 and 

As2O3) and CO are calculated at 298.15~1800 K, and results are listed in Table 2.

Table 2 Thermodynamic parameters at different temperatures

AsO2 and CO As2O3 and COTemperature

(K) H, kJmol-1 S, Jmol-1K-1 G, kJmol-1 H, kJmol-1 S, Jmol-1K-1 G, kJmol-1

298.15 -174.39 -106.38 -142.67 -47.15 -116.59 -12.38

600 -173.00 -103.35 -110.99 -47.81 -118.24 23.13

900 -170.64 -100.19 -80.47 -47.78 -118.21 58.62

1200 -167.77 -97.45 -50.83 -47.30 -117.77 94.02
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1500 -164.62 -95.11 -21.96 -46.59 -117.24 129.27

1800 -161.31 -93.10 6.26 -45.73 -116.72 164.36

From Table 2, it can be found that the enthalpy difference (H) of the homogeneous 

reactions between arsenic oxides (AsO2 and As2O3) and CO are negative. This confirms that the 

homogeneous reduction reaction of arsenic oxides is an exothermic process. Moreover, the 

released heat of the AsO2/CO reaction is about four times as large as that for the As2O3/CO 

reaction. The Gibbs free energy difference (G) gradually increases from -142.67 to 6.26 kJmol-1 

for the AsO2 and CO reaction, and from -12.38 to 164.36 kJmol-1 for the As2O3 and CO reaction 

when the temperature rises from 298.15 K to 1800 K. According to the Gibbs free energy 

principle, G<0 means that the reaction can occur spontaneously. Therefore, the “spontaneity” of 

AsO2 and CO reaction decreases with increasing temperature, and the reaction cannot occur 

spontaneously over a certain temperature. As shown in Table 2, the values of G are positive 

except for the -12.38 kJmol-1 value at 298.15 K for the As2O3 and CO reaction, suggesting that 

the reaction cannot take place spontaneously during coal combustion in a furnace.

In addition, the equilibrium constant is also an important thermodynamic parameter, which 

can determine the degree of the reaction. Equilibrium constants at different temperatures were 

calculated using the data of Table 2, and results are shown in Fig. 6.
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Fig. 6. Equilibrium constants at different temperatures.

In Fig. 6, it can be shown that the equilibrium constant decreases with temperature for the 

arsenic oxides (AsO2 and As2O3) and CO reactions. For the AsO2 and CO homogeneous reaction, 

the equilibrium constant is higher than 105 at a low temperature (about <900 K), indicating that 

the reaction process goes to completion and take place irreversibly [32]. With the increase of 

temperature, the degree of the chemical reaction is reduced and for the homogeneous reaction 

between As2O3 and CO, the equilibrium constant is always lower than 103 over the temperature 

range between 298.15~1800 K, suggesting that the reaction will not go to completion.

3.4. Kinetic analysis

Kinetic parameters, such as reaction rate constant, pre-exponential factor and activation 

energy, were calculated by the conventional transition state theory in the temperature range of 

298.15-1800 K, as shown in Fig. 7.
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Fig. 7. Reaction rate constants of all rate-determining steps at 298.15 K-1800 K.

From Fig. 7, it can be seen that the reaction rate constants increase with temperature, and 

there is a strong linear relation between lnk and 1000/T for all reactions. Table 3 gives the 

pre-exponential factor and activation energy obtained from this data.

Table 3. Reaction kinetic parameters

Reaction Pre-exponential factor A Activation energy EA (kJmol-1) Arrhenius equation

Homogeneous-AsO2-I 2.92×1012 12.49 k=2.92×1012exp(-1502.52/T)

Homogeneous-AsO2-II 1.21×1010 96.05 k=1.21×1010exp(-11552.8/T)

Homogeneous-As2O3 1.26×1014 79.89 k=1.26×1014exp(-9609.09/T)

Heterogeneous-AsO2-1 3.91×1012 1.41 k=3.91×1012exp(-169.59/T)

Heterogeneous-AsO2-2 1.05×1012 109.48 k=1.05×1012exp(-13168.15/T)

Heterogeneous- 

As2O3-3
6.25×1011 95.61 k=6.25×1011exp(-11499.88/T)

As shown in Table 3, for the homogeneous reaction of AsO2 and CO, the pre-exponential 

factor of channel I is two orders of magnitudes larger than that of channel II, and the activation 

energy of channel I is much lower than for channel II. This suggests that AsO2 tends to react with 

CO via channel I. For the heterogeneous reaction of AsO2 and CO, the activation energies of 

reaction 1 and reaction 2 are 1.41 kJmol-1 and 109.48 kJmol-1, respectively, meaning that 
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compared with the homogeneous reaction of AsO2 and CO, char has a positive effect on AsO2 

reduction for the heterogeneous reaction 1, while energy barrier of AsO2 reduction would increase 

for the heterogeneous reaction 2. In addition, the activation energy of the As2O3 homogeneous 

reduction is lower than that of the heterogeneous reduction, indicating that As2O3 is more likely to 

react with CO in flue gas.

3.5. Electron density analysis

The essence of any chemical reaction is the rearrangement of atoms, including the transfer of 

electrons. Electron density differences of transition states for the reactions were calculated to 

explore the transfer of electrons during the reaction process, and the results are shown in Fig. 8.

(a) TS-I                        (b) TS-II

(c) TS1                         (d) TS2

 (e) TS-1                    (f) TS-2                  (g) TS-3

Fig. 8. The contour maps of electron density differences of each transition state

In the graph, solid lines and dashed lines correspond to the regions where electron density is 

increased and decreased, respectively. The contour map of electron density clearly shows variation 

of electron density distribution for the reactions. For example, it shows that the electron density 

between O and As decreases while the electron density between O and C increases in Fig. 8(d). It 
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also shows that a stable chemical bond between an O atom of As2O3 and C atom would be formed 

to obtain a CO2 molecule. This observation is in line with the homogeneous reaction mechanism 

of As2O3 and CO.

4. Conclusions

In recent years, numerous researchers have experimentally investigated the release and 

transformation characteristics of arsenic during coal combustion. However, little theoretical 

research effort has been made on arsenic behavior in the coal combustion process. To explore the 

transformation mechanism of arsenic, density functional theory (DFT) was employed to study the 

homogeneous and heterogeneous reaction processes of arsenic oxides (AsO2 and As2O3) with CO. 

In addition, thermodynamic and kinetics parameters were calculated to reveal the reaction 

mechanism. The main conclusions are summarized as follows:

(1) There are two channels for the homogeneous reaction of AsO2 and CO, and a transition state 

was found in each channel. The homogeneous reaction between As2O3 and CO undergoes 

two transition states and two intermediates, and finally As2O3 is reduced to the sub-oxides by 

CO.

(2) For the three heterogeneous reactions, char possesses a strong adsorption ability towards 

AsO2 and As2O3 in the presence of CO, and the intermediates experience a transition state to 

generate the corresponding products.

(3) The adsorption mode of AsO2 molecule on the char surface has a great influence on its 

reduction. The activation energy for the reaction of the two O atoms of the AsO2 molecule 

being absorbed on the surface of char is 109.7 kJ·mol-1, while it is only 0.8 kJ·mol-1 for the 

reaction of the As atom and O atom of the AsO2 molecule absorbed on the surface.

(4) The activation energy of the homogeneous reduction of As2O3 (75.9 kJ·mol-1) is lower than 

the heterogeneous reduction (94.2 kJ·mol-1), which suggests that As2O3 is more likely to 

react with CO in the flue gas.
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Nomenclature

AsO arsenic monoxide

AsO2 arsenic dioxide

As2O3 arsenic trioxide

TST conventional transition state theory

CO2 carbon dioxide

CO carbon monoxide

DFT density functional theory

IRC intrinsic reaction coordinate

ZPE zero-point energy
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k reaction rate constant

kT Wigner tunneling correction factor

kB Boltzmann constant (J·K-1)

h Planck constant (J·s)

QTS partial function of transition state

QA partial functions of reactant A

QB partial functions of reactant B

Ea the calculated DFT activation energy (kJ·mol-1)

R molar gas constant (J·mol-1·K-1)

T thermodynamic temperature (K)

vm imaginary frequency of the transition state (cm-1)

c velocity of light (m·s-1)

K equilibrium constant

G Gibbs free energy difference (kJ·mol-1)

GA Gibbs free energy of reactant A (kJ·mol-1)

GB Gibbs free energy of product B (kJ·mol-1)

P product

TS transition state

EA apparent activation energy (kJ·mol-1)

A pre-exponential factor

H  enthalpy difference (kJ·mol-1)

S  entropy difference (J·mol-1·K-1)
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Highlights

Reaction mechanism of homogeneous and heterogeneous reactions of arsenic oxides with CO were 

revealed via density functional theory.

The adsorption mode of AsO2 molecule on the char surface has a great influence on its reduction.

As2O3 homogeneous reduction with CO is more likely to take place compared to the heterogeneous 

reduction.


