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Abstract. The experimental acquisition of large vibrations presents various technical 

difficulties. Especially in the case of geometric nonlinearities, dealing with very flexible, very 

light structures causes minimal variations in mass or stiffness to affect severely the dynamical 

response. Thus, sensors' added masses change the behaviour of the structure with respect to the 

unloaded condition. Moreover, the most common tools regularly employed for acquisition in 

vibration analysis - that is to say, laser vibrometers and accelerometers - are often designed 

with small amplitudes in mind. Their recordings are known to lack accuracy when the 

investigated structure undergoes large or very large motions, due to geometrical reasons.  

Image-based measurement techniques offer a valid solution to this problem. Here, an ensemble 

of three video processing techniques are benchmarked against each other and tested as viable 

options for the non-contact dynamic characterisation of slender beam-like structures. The 

methods have been applied to the case study of an aluminium spar for a highly-flexible airwing 

prototype and compared to the measurements recorded by a laser velocimeter and several 

Raspberry PI Inertial Measurement Units (IMUs), which also proved to be minimally invasive. 

1. Introduction 

Large oscillations are known to exceed the structure’s range of transverse displacement, here referred 

to as the linear limit of w. Once this threshold is crossed, their dynamic behaviour cannot be described 

by the linear theory of vibrations, and nonlinearities due to higher-order geometric effects are 

introduced. Since decades, the nonlinear dynamics of such phenomena have been deeply investigated, 

also experimentally (see e.g. [1]) and a wide literature exists for the topic (for instance, see [2]). In 

recent years, the research for accurate dynamic models for the large displacement problem has 

experienced a great revival, particularly for the need to exploit the beneficial properties of such 

nonlinearities [3] in what are commonly known as compliant mechanisms. However, if one is 

interested in using these nonlinear terms to build a predictive model and run a simulation of it, even 

small errors in the model cause the estimation error to constantly sum up timestep after timestep until 

the model becomes rapidly unreliable. This is a well-known issue, particularly evident for nonlinear 

dynamics. Yet these geometry-related higher-order nonlinear terms of strain are extremely sensitive to 

even slight changes in the system properties, i.e., mass and stiffness. Thus, the presence itself of 

physically-attached sensors, which is the most common procedure for experimental acquisitions, may 

causes not-negligible local variations in the structure-sensors ensemble mass due to their own weight. 

The effects of these influences on the nonlinear behaviour of the inspected structure have been largely 
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overlooked so far. Also, other well-established non-contact measurement techniques fail to follow 

properly the curvilinear trajectories of such large motions. 

 

To overcome this practical issue, three distinct non-contact, image-based strategies are proposed here 

to optically investigate the large vibrations of highly-flexible beam-like cantilevered structures. 

Specifically, one technique for the estimation of instantaneous frequency and two approaches for the 

estimation of both instantaneous frequency and amplitude are presented. These are, in the same order, 

an edge detection-based method for the definition of zero crossings along the spar whole resting 

configuration (referred to hereinafter as the Video Zero Crossing (V0C) method), a Marker Detection 

(MD) and tracking routine, and an algorithm for pixels’ brightness peak picking applied on a thin 

vertical slice of the video frame – here named Video Virtual Vibrometer (VVV). Also, a minimally-

invasive strategy, based on low-cost and low-weight accelerometers, is presented as a further option. 

 

The large deflections of a beam-like spar for a prototype high-aspect-ratio (HAR) wing [4] have been 

studied. Indeed, recent developments in the aeronautical industry are leading to more flexible air 

wings, which require a better understanding of the nonlinear components of motion [5] and more and 

more research effort has been given to the topic in last years (e.g. [6]). All the tests were performed on 

the spar alone, as, according to the project main goal [7], the skin should transfer all the aerodynamic 

load to it and maintain its desired aerodynamic shape unaltered. 

 

The rest of the paper is organised as follow. In Section 2, the most widely used hardware options for 

the dynamic analysis of the geometric nonlinear (accelerometers, laser Doppler and video acquisition) 

are presented. In Section 3, the wing spar being studied, and the experimental setup are presented in 

detail. Section 4 describes the three image-based proposals for dynamic investigation and Section 5 

reports the experimental results. Finally, in Section 6 conclusions are made. 

 

2. Measurement Strategies for Large Deflections 

Deflections can be directly measured as displacements or estimated by velocity or acceleration time 

histories (THs), integrating numerically along time once or twice. In the latter case, laser velocimeter 

and physically-attached accelerometers are often the default choices. Both strategies are widely used 

every day in common practice. Nevertheless, some differences in terms of precision do subsist and 

numerical integration and derivation procedures, while extremely common and widely spread, are not 

exempt from technical issues; it is well-known [8] that displacement THs obtained from numerical 

integration generally suffers from both high and (especially) low-frequency spurious contents.  No 

universal nor principled simple procedure is currently established to define the cut-off frequency for 

the necessary filtering. Selecting a cut-off frequency too low will result in still corrupted data, while 

too high values would remove actual data along with the numerical errors. The other alternative is 

nonlinear detrending, by removing a polynomial of order n  fitted on the data; this can be proven to be 

equivalent to the high-pass filtering procedure [8] but it is again case specific and difficult to 

generalise. Obviously, it must be added that integrated results present a linear drift, which becomes 

quadratic if the integration process is performed twice to obtain displacements from accelerations, as 

the constant of integration is not known a priori and can only be estimated. This implies two additional 

steps for linear detrending to obtain the transverse displacements and velocities. All these procedures 

can easily be performed in a number of ways to reach good results but, again, may reduce the 

estimation accuracy. In conclusion, it can be stated that the accuracy of the processed data depends on 

the accuracy of the integration/derivation procedure and of the filtering and it is obviously lower or at 

best equal to the one from directly-acquired displacements. The acquisition technologies and their 

limitations are even more crucial for the exact assessment of large deflections.  

2.1. Physically-attached accelerometers 

For small deflections, the regime of the spar is linear, and the vertical component of displacement can 

be safely approximated to the whole displacement.  However, in the case of large flapwise deflections, 
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the actual motion cannot be anymore assumed as a straight vertical line and its curvature must be 

accounted for. When the spar beam is sufficiently rotated and displaced, the loading conditions are 

significantly altered, thus causing the insurgence of geometric nonlinearities. Yet, the angle formed by 

the restoring force with the beam profile at any point at any given instant can be assumed as time-

independent (figure 1); hence, the acceleration as measured by attached accelerometers is always 

implicitly correct; the main problem is that extrapolating the vertical displacement from the recorded 

time history is not straightforward. 

 

 

Figure 1. Accelerometer’s local 2-

dimensional reference system {O,y’,z’} on 

the focal plane of the camera. Note that z’ is 

not parallel to the vertical direction (except at 

some specific time instants) but is always 

consistent with the direction of the restoring 

force. 

 

Other practical issues include that physical sensors need also to remain constrained to the structure all 

along the test. For very large oscillations, this can mean or to risk having the sensors detaching 

(especially if they are only glued), or to resort to fixing them, screwing through the beam and thus 

altering locally not only the mass but also its bending stiffness. 

2.2. Laser Doppler Velocimeter 

The Laser Doppler Velocimeter (or Vibrometer, according to if the transverse displacement w  or its 

time derivative w  is measured) (LDV) is a widespread mean for the contactless direct measure of 

speed [9], commonly used for dynamic and modal analyses (see, for instance, [10]); by numerically 

integrating the velocity THs once, an  estimation of the displacements can be produced. Unfortunately, 

the laser is by definition only sensitive to its direction of application, a straight line ( which is, in this 

case, applied vertically) passing through an arbitrary point; hence, it is only that component of velocity 

that is read by the apparatus. For large deflections, the main problem arises from the sliding of the 

point of application, as can be noticed from the motions depicted in figure  2.d from P to P’. Due to 

this effect, the laser velocimeter overestimates the true vertical displacement of point P. No hints 

about horizontal displacement can be obtained, and therefore the reconstruction of the true curvilinear 

motion of P is impossible. Thus, a laser approach is unsuitable for the measurements of large 

deflections when these transverse displacements exceed a certain range (which is not necessarily the 

linear limit of transverse deflection). 

 

 A suitable option would be to resort to tracking laser Doppler vibrometers (TLDVs) [11], to measure 

local vibrations at a fixed point while the whole surface on which it is contained moves; yet this 

technique requires a certain knowledge of the expected kinematics of the target point to be tracked and 

its accuracy depends on the fitness of this mechanical model and the definition of a proper model is 

not straightforward for the large oscillations problem. 
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(a) (b) (c) 

 
(d) 

Figure 2. Pictorial schematisation of the large deflection issue for non-tracking lasers (side views of 

the whole spar length (a) and zoom around two of the four markers (b – c)). The actual curvilinear 

motion starts to differ clearly from the vertical line tangent to the rest condition at relatively low levels 

of input excitation, due to the spar high flexibility. (d) shows how the cross-section pointed by the 

laser in the rest condition does not correspond to the one pointed at the extrema (minima and maxima) 

of deflection. 

 

2.3. Video Acquisitions  

Recently, a renewed interest in video camera-based acquisition has grown, especially thanks to the 

new developments in video magnification of small, imperceptible oscillations [12], which have been 

promptly used as ‘virtual’ accelerometers [13] and to perform linear modal analysis of simply 

structures [14]. For larger oscillations, a plethora of vision-based techniques exists and has been 

applied, e.g., for the Structural Health Monitoring of bridges and other structures; see [15] for 

instance. A complete review of them will be a paramount task; a review can be found in [16].   

3. Experimental Setup and Case Study 

 

The beam-like spar comes from the XB-1 prototype studied in [4]. Actually, it can be assumed as a 

simplified structure for the whole air wing, as it absorbs all the aerodynamic load applied to the wing 

and, differently from what expected from a standard longeron, it also undergoes torsional rotation 

around its main axis. Several configurations of sensors and markers were tried; the one of interest is 

depicted in figure 3. 

 



XXVI AIVELA National Meeting

IOP Conf. Series: Journal of Physics: Conf. Series 1249 (2019) 012004

IOP Publishing

doi:10.1088/1742-6596/1249/1/012004

5

 
 
 
 
 
 

 
(a) 

 
(b) 

Figure 3. (a) top view of the four IMUs sensors for the loaded condition and of the several markers 

(both attached on the top surface and on the spar profile). (b) Markers M1 and M4 were removed 

during tests with IMUs attached. The light blue star indicates the point of application of the laser in 

resting condition. The light green arrow indicates the camera point of view (trailing edge). 

 

Experimental data were collected via a Polytec® OFV-505 single point Laser Velocimeter (pointed to 

the position marked by the light blue start in figure 3.a), four Raspberry Pi ® Inertial Measurement 

Units (IMUs) and an Olympus ® I-speed 3™ high-speed camera. The Olympus® camera features a 

global exposure shutter with an exposure time of 1 𝜇s and a maximum frame rate of 150000 frames 

per second (fps). The resulting videos were exported in .hsv format.   

7 markers were considered for the video-based target tracking routine: 3 small ones (m2.1, m2.2 and 

m2.3) attached on the wing profile and 4 larger ones attached on its extrados (M1, M2, M3 and M4). 

Their design was purposely differentiated to test the effect on accuracy. M1, not reported in figure 3.b, 

has the same design as M4 (solid circle) but on a red background. Graph paper was attached in two 

distinct tracts of the profile for calibration purposes. As it can be seen in (figure 3.a, green arrow), the 

trailing edge was left in the foreground for video recording, as its motions are less apt than the ones of 

the leading edge to be approximated to be planar and contained in the focal plane. The results proved 

to have the same accuracy for all the inspected cases. It must be remarked that the study focused on 

the first normal mode of the air wing, which is purely flexural; hence, no relevant torsion was 

produced, and the two edges suffered very small or no differential displacements, moving almost at 

unison.  
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Two configurations were investigated: with sensors and markers (from hereinafter, the loaded 

condition) or with the markers only (unloaded condition). Being data from laser, video and 

accelerometer acquisitions all coming in different features, with different sampling frequencies and 

accuracies, sensor fusion was needed in order to compare them. All experiments were carried at 

Cranfield Space Dynamics Laboratory with a Data Physiscs® Signal Force™ modal shaker and its 

own DP760 close-loop control software.  

3.1. Non-contact measurements: LDV and high-speed camera 

As it can be seen in Figure 2, the zero crossings of the transverse large vibrations always happen at the 

same spot at which the laser was initially pointed at in rest configuration. Since an area around of the 

zero can always be linearised (as exploited by the classic ‘small displacements’ approximation), it is 

possible to use the laser to measure the frequency of the vibration at the application point, and thus for 

calling the phase resonance, when input and output signals lag of 90°. This was indeed used to define 

when to switch on the camera, to start recording while dwelling at resonance or the free decay from 

resonance (switching the modal shaker off).  

 

Memory capacity is a strong technical issue, as due to this limitation of the camera, any increase in the 

frame rate (i.e., the number of frames per second fps) is inversely proportional to the maximum 

duration of the video; the camera has an internal memory capacity limited to 4897 frames, for  a 1280 

x 1024 pixels wide frame (width x height). Nyquist criterion requires the sampling frequency to be at 

least the double of the upper bound of the frequency range investigated. More strictly, a common "rule 

of thumb" is that at least four points per period are necessary to reconstruct faithfully a harmonic 

oscillation. However, to have a smooth variation of the signal from a sample point to the next one, 

generally, ten times the highest frequency of interest is needed. This is particularly true for the decay 

from resonance, where one is interested in obtaining the instantaneous values of both frequency and 

amplitude, as lower values of sampling frequency 
videosf −

 may miss the amplitude's peaks. Several 

tests were run; here, only results for 1000 fps are reported. This is almost 10 times higher than the 

sampling frequency of the IMUs, 
IMUsf −

. Hence, only a few seconds per test were recorded.  

A solid red background was used during all recordings. An open-faced lighting fixture with tungsten 

light source was pointed to it to assure near perfect colour rendition and to avoid any possibility of 

flickering due to AC fluorescent lights. Regarding the clutter of cables and other attachments in the 

video, the methods proved to be unaffected by these unrelated movements; nevertheless, it may be 

misleading if included in the image selected for marker tracking, and cause errors in the other two 

methodologies. 

3.2. Minimally-invasive measurements: Raspberry Pi ® IMUs 

The four IMUs at disposal have been used both to benchmark the video processing results on the 

sensor-loaded spar and to test the accelerometers’ masses effect on the dynamic response of the same 

structure, which proved to be minimal, thanks to their very small weight. Their suitability as a low-

cost alternative to low weight accelerometers was proved in previous tests and further confirmed here. 

Since IMUs will short-out if applied directly on a metallic surface, they cannot be mounted with glue 

or wax; they have rather been applied with a commercial double-sided tape, which proved both to be 

resistant enough at relatively large accelerations and to not affect the recordings in a perceptible way. 

The data were then transferred over wi-fi to a Raspberry Pi 2 Model B board. Due to the Raspberry Pi 
2I C bus limitation on bit rate, only data sampled at 100 Hz could be sent. This limited the inspectable 

range of frequency to a maximum of 50 Hz, according to Nyquist’s criterion, to avoid aliasing. Mainly 

for this reason, the whole experiment was limited to the first normal mode of the spar and to its 

continuation as a nonlinear normal mode for large displacements. 

 

In more detail, IMU breakout boards with Invensense MPU-6050 sensors were used. They provide 
2I C  interface with internal clock and feature a triple-axis accelerometer and gyroscope, for a total of 

6 DoFs per IMU. Thanks to chip configurability, different scales and precision levels can be set for the 
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gyroscope and accelerometer. They are also equipped with a blinking led, which turned out to be 

useful for synchronisation with video recorded data during sensor fusion in post-processing. However, 

being only two 2I C  addresses available for MPU-6050 sensors, a second line was needed to collect 

data simultaneously from all the four chips. 

3.2.1. Effects of the added masses 

It is crucial to remark that, due to gravity, the spar in its rest configuration is not naturally undeflected 

but starts with an initial curvature 
0B  under its own weight. This is even increased when sensors are 

attached to it (figures 4.a and 4.b). As a mean of comparison, the experimental values of the first 

(linear) natural frequency are reported in Table 1 for some configurations (all data obtained through 

LDV). ‘Black’ sensors (figure 4.c) weigh 7 gr each. ‘Yellow’ ones weigh 24 gr each. Raspberry PI 

IMUs weigh 2 gr each; the whole apparatus, with 4 IMUs, tape, cables and everything, is slightly less 

than 11 grams, or less than half a single ‘Yellow’ accelerometer. Larger markers’ weight (figure 3) is 

almost non-existent, i.e. circa 0.07 gr, all the attachments in the ‘unloaded’ configuration being 

slightly less than one and a half the IMUs’ weight and scattered all along the spar extrados’ surface. 

 
  

Table 1. first natural frequency for several loading conditions. 

 First natural frequency (Hz) 

(as a percentage of unloaded condition) 

No sensor attached 

(unloaded) 

5.40 Hz (100%) 

Raspberry PI ® 

 4 IMUs + cables, tape 

5.36 Hz (99.3%) 

1 ‘black’ sensor  5.23 Hz (96.9%) 

2 ‘black’ sensors (same 

distance from the clamped end) 

5.20 Hz (96.3%) 

2 ‘black’ sensors + ‘2 ‘yellow’ 

sensors  (as depicted in fig. 4) 

4.84 Hz (89.6%) 

 

It can be easily inferred that, as for damage-related stiffness reduction, the placement of the sensors 

changes globally the natural frequency of the structure and slightly variates locally the eigenshape of 

the deflection. 

 

Other relatively low-weight alternatives to accelerometers exist; e.g., strain gauges can be a viable 

option, but they also do not record directly the vertical displacement; the conversion from strain to 

displacement may become difficult if, for very large deflections, the nonlinear expression of the 

curvature from the fixed end becomes necessary [17]. This cannot be rigorously defined a priori, and 

some sort of double check on the measurements would be therefore needed. Same applies for fibre 

optics gauges (i.e.  Fiber Bragg Grating sensors). While not directly tested, results would most likely 

confirm what found here for the accelerometers. 
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(a) 

 
(b) 

 

 

 

(c) 

Figure 4. (a) unloaded spar with the edges detected from the same structure loaded with 4 IMUs 

superimposed. The natural deflection in the resting configuration is practically identical.  (b) 

Unloaded spar with the edges detected from the same structure loaded with 4 heavier accelerometers 

superimposed. The static configuration under the resulting weight is significantly different.  (c) Top 

view of the two kinds of accelerometers considered: ‘Yellow’ (left) and ‘Black’ (right). 

4. Proposed Video-Based Methods 

Out of the three approaches presented here for the task of directly measuring the instantaneous 

frequency and/or amplitude (pixel-wise) of one or more interest point(s) along the spar trailing edge, 

Two are Lagrangian, in the sense that they follow a specific feature of a given point along a space (2-

D for Marker Detection, 1-D for Virtual Video Vibrometer), and the remaining one is Eulerian, in the 

sense that it bookkeeps the passages of a feature on a given target position. In all cases, the features 

are related to image brightness, in different ways. All the methods were implemented in MatLab ®. 

4.1. Marker Detection (MD) Routine 

The problem presented here is one of multi-target short-term tracking, data-driven (i.e. not model-

based), with a single high-speed, high-resolution camera. Some of the most updated advances in the 

field (as of late 2018) can be found in [18]. To apply the MD algorithm, imperfect, hand-drawn 

markers were used. In all cases, being the targets relatively far from frame borders, lens distortions 

were neglected. The process of the Marker Detection routine used here can be briefly defined in 4 

simple steps: 
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1. A frame is (arbitrary) chosen; 

2.  the machine is presented with a cropped pixel area, large as desired, surrounding the target(s) of 

interest; 

3. Most prominent target features, extracted according to the Speeded-Up Robust Features (SURF) 

algorithm [19], are automatically enlisted; the selected one(s) are searched for frame-by-

frame; 

4. Matching points are saved and stored for post-processing. 

 

To speed up the procedure, which can become time-consuming due to the high density of pixels per 

frame, only a circumscribed area around the position localised in the previous frame was considered 

for target matching. This is equivalent to assume the interframe movement to be included in that 

neighbourhood of its previous position. This both reduced dramatically the computational cost of the 

process and excluded the possibility of blunders, also allowing to use similar and even identical 

markers, if placed far enough from each other.  

 

Other alternatives were tested on some benchmark video recordings. Specifically, the Binary Robust 

Invariant Scalable Keypoints (BRISK) [20], the Fusing Points and Lines for High Performance 

Tracking (FAST) [21], the Harris–Stephens [22], the minimum eigenvalue [23], and the Maximally 

Stable Extremal Regions (MSER) [24] algorithms were the candidates. In all cases, SURF performed 

much better than any other feature. The only one slightly comparable were features extracted from 

MSER, yet they returned much less accurate time histories. 

 

Without going too much into details, the complete algorithm needed to collect the SURF features from 

a cropped region of the reference frame can be seen as a two-steps approach, based on the Haar 

wavelet. Firstly, a circular neighbourhood around the point (x,y) of interest in the image I is exploited 

to identify a reproducible orientation for that point, in order to make the feature detection process 

invariant (or at least robust) to image rotation. Secondly, a square region, aligned with this dominant 

direction and centred on the point of interest, is built; the SURF descriptor is then extracted from this 

region. The size of this square is 20s, being s the Haar Wavelet filter scale at which the point of 

interest has been detected. The descriptor vectors are then defined by convolving two Haar wavelet 

filters of length 2𝑠 along the x- and y- directions for each one of a certain number of smaller square 

subregions (by default, 4s x 4s windows are used), as 4-dimensional vectors 

( , , , )x y x yv d d d d=     . Thus, the whole descriptor can be summarised as a collection of 

directional derivatives of the image’s brightness; this leads also to sub-pixel accuracy, which was very 

useful for the aim of this research [25]. 

 

The accuracy of the target tracking algorithm depends on several factors, such as (i) the size of the 

marker, (ii) the marker design, (iii) the spatial resolution (in pixels) of the frame, and (iv) the frame 

rate, which are identical for the cases reported here.  Other parameters of the experimental setup, that 

is to say, (vi) the exact inclination of the lights (vii) the exact angle and distance of the camera, also 

suffered minor changes due to having performed the recordings on multiple days. Regarding the 

reference frame, the resting configuration and the two extrema of deflection of the spar, while 

dwelling at the first natural frequency, were tested; a detailed discussion is postponed to the 

Conclusions.  

 

It must be remarked that the invariance to orientation, which is generally utilised to make the 

algorithm able to recognise the same features from pictures taken from different angles and points of 

view, is here exploited to recognise the markers when greatly rotated respect to the shape in the target 

frame. However, in their original paper [19], the authors demonstrated experimentally that the 

orientation-invariant characteristic of this feature cannot exceed a certain angle. This poses a practical 

limitation to the amplitude of the marker rotation, hence to the maximum deflection which can be 

studied. Theoretically, the directional Haar Wavelet Transform guarantees also lighting and contrast 
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invariance; similar to what experimentally found for the rotational invariance, the algorithm proved to 

be robust to changes in lighting rather than truly unaffected by them. Having performed the MD 

algorithm on all frames (figure 5), plotting the target(s) location throughout them it is possible to 

define the displacement time histories in terms of pixels and then to convert them to millimetres.  

4.2. Virtual Video Vibrometer (VVV) 

The concept behind the Video Virtual Vibrometer is to exploit the thinness of the air wing profile, 

reproducing a video-based approach similar to the Laser Doppler Vibrometer and resorting to sharp 

changes in pixel brightness along a given curve. The curve is here assumed as a vertical straight line, 

similar to the one actually produced by the laser.  

 

Firstly, the original video frames are converted to 8-bit unsigned integers, that is to say, to grayscale 

images. Thanks to the sharp contrasts between the background solid red panel and both the upper and 

lower edges and between the edges themselves and the spar thin profile, a clear M-shaped region 

arises (figure 5.b). The trend of the pixel brightness reproduced is a mean value over the six columns 

included into the selected frame slice (green lines in figure 5.a). Following its local minimum allows 

targeting the 2-mm-thick spar profile enclosed between the two edges. However, the effect of direct 

illumination on the background panel (which can be easily noticed in figure 5.a) needs to be 

depurated. Nonlinear detrending can be performed to this aim with any suitable technique. For this 

particular study, a Savitzky-Golay sliding polynomial filter [26] of order 3 and window width 27 fitted 

well all the cases investigated (figure 5.c); any other valid alternative applies.  

The unsigned integer value of an 8-bit data can range 80 2− , that is to say, is upper bound to 256 and 

cannot assume a negative value. After detrending, a brightness index is here introduced. This value is 

intended as the negative of the deviation of the brightness from the nonlinear trend applied. The 

negative is just needed to have the local brightness minimum reverted to a local maximum, for 

simplicity. It can also be seen from figure 5 how the presence of other non-moving objects, such as the 

LDV tripod, can be easily filtered out from the results. 

As for the MD algorithm, applying the VVV to all frames produces vertical displacement THs for 

virtually any cross-section of the wing profile. The accuracy of the measurements is inherently non-

sub-pixel. 
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(a) 

  
(b) (c) 

Figure 5. (a) Contour plot of pixel brightness in the image frame. The green lines represent the y 

coordinates of the six-pixel-wide tract of application of the VVV algorithm. (b). The nonlinear trend 

of pixels’ brightness. The local minimum belongs to the 2-mm-thick beam profile enclosed in between 

the spar extrados and intrados; the global minimum is due to the tripod being included in the vertical 

slice. (c) same mean pixel brightness after automatic nonlinear detrending; peak picking correctly 

locates the y position of the beam profile. 

4.3. Virtual Zero Crossing (V0C) 

Canny edge detection [27] is at the base of the Virtual Zero Crossing approach. Some other edge 

detection options were tried, such as Sobel’,  Prewitt’ and Roberts’ algorithms, to name a few, but 

Canny algorithm performed always better, as expected from Literature [28]. As for VVV, this 

technique exploits the thin geometry of the profile on the focal plane. Given a reference frame 

corresponding to the rest configuration of the spar, only one of the two edges (either the upper or the 

lower one, with no significant differences) was selected, to have a one-pixel-thick approximation of 

0B (figure 6). Afterwards, the algorithm simply bookkeeps, for each pixel considered separately, any 

frame during which the brightness at that fixed point exceeds an arbitrary threshold. Being the spar 

more than one pixel thick, the time localisation of zero crossings may be not accurate to the single 
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frame, as the same passage through the zero could be registered in subsequent frames. Nevertheless, 

with crossing velocities large enough and an fps rate high enough, the algorithm provided quite good 

estimations. 

 

 
Figure 6. The tract of interest the upper edge of the spar (pixels 100 to 700 along the width direction), 

highlighted and superposed to the reference frame (corresponding to the rest condition of the spar). 

5. Results and Comparison 

Several tests were performed, both inspecting the forced response while dwelling at resonance (for the 

first natural frequency) and the free decay from this condition. In all cases, phase resonance was called 

in real-time when the phases of the output (recorded by the laser vibrometer at its point of application) 

and of the input (recorded by a feedback accelerometer placed on the clamp) were in quadrature; the 

condition was reached by applying a stepped sweep sine. Data Physics® DP760™ closed-loop control 

software was used, setting steps of 1 mHz and the automatic settling time option between subsequent 

steps. 

5.1. Comparison between the MD routine and the Raspberry PI acquisitions 

Regarding the Marker Detection Algorithm, results for the large markers were overall satisfactory 

(figure 7), while the smaller ones, painted on the spar profile, gave more mixed results; the quality of 

the TH extracted from them varied greatly from video to video. All the following discussions will be 

focused on the larger markers. Some imperfections were still encountered in the THs extracted from 

them, mainly due to misplaced target detection on some frames. Subpixel fluctuations were also 

found, resulting in noisy measurements. Overestimation and underestimation divergences were found 

respect to the THs estimated from the IMUs acquisitions. This can be due to difficulties in locating 

with high accuracy the larger deflections, where the markers are mostly distorted from their original 

shape on which the machine has been targeted; it may also be due to the actual different location of 

markers and sensors (see figure 3.a).  Also, IMUs’ estimations, while overall reliable, do not match the 

quality of standard (more expensive) accelerometers; numerical integration of their acceleration THs 

may amplify these effects.  
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Figure 7. Comparison of displacement time histories close to the beam tip dwelling at first natural 

frequency: Marker M4 (blue line) versus IMU #4 (orange). Note that the frame per second rate of the 

video camera was ten times larger than the Raspberry PI sampling frequency. Imperfection due to 

misplaced target detection and underestimation of peak value respect to the TH estimated from IMU 

recordings are shown in the zoom boxes. This latter effect may also be due to the sensor being closer 

to the actual beam tip. Measurement noise is also clearly visible in the zoomed tracts. 

It was also noticed that the impact of Raspberry PI IMUs’ masses on the linear dynamic response of 

the air wing spar was very limited if not totally negligible. If one accepts such a limited error, then 

Raspberry PI represents a low-cost option for minimally invasive investigation. The effect of the same 

masses, however, seems to afflict much more the nonlinear behaviour of the same structure, and this is 

currently an object of research for the Authors. 

5.2. Comparison between the MD routine and the VVV algorithm 

The Virtual Video Vibrometer technique showed encouraging results (figure 8). While confounding 

vertical and curvilinear displacements is theoretically incorrect, this approximation seems to fit quite 

well for the levels of amplitude here investigated. For small deflections, transversal displacements are 

almost coincident to their vertical components; at larger amplitudes, they were supposed to diverge 

more than what encountered; instead, ( ')w y  and ( ')v y  seem to remain very similar even for 

deflections large enough to exceed the linear limit. This may be due to the error for sliding point effect 

(pictorially described in figure 2.d ) somehow compensating for the error in approximating the 

curvilinear motion from 0( )P t  to ( )P t  with the distance between 0( )P t  and '( )P t . However, further 

investigations are needed in this sense. 

To compare MD and VVV it was also necessary to compensate for the distance between the selected 

feature (on the marker surface) and the spar extrados, in
, which was find empirically to remain 

constant along the whole recording and to be not affected by local motions. From experimental results, 

the error was always less than 1 mm for deflections up to circa 200 mm, and always in the order of 

some millimetres for the other larger deflections inspected. 
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Figure 8. Comparison of displacement time histories at the marker M2 in free decay. The specific 

feature is highlighted in the box in the top right corner. VVV was performed slightly on the right to 

avoid any interference with the marker.  

5.3. Comparison between the VVV and the V0C algorithms  

Overall. the measurement of instantaneous frequency through V0C was found to be still very noisy, 

due to the vibrations too small often triggering the V0C algorithm and causing false alarms. Thus, 

reliable data (i.e., with accuracy up to one decimal point) are only available for points located far 

enough from the clamped section, where the deflections are larger and the zero crossings better 

defined. Nevertheless, the method gives a large amount of information in a relatively compact way, 

and results, while noisy, are consistent with the ones from the other techniques (figure 10). Moreover, 

it seems not to be influenced negatively by the presence of the attachments on the extrados. 
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Figure 10. (a) Edge Detection-based 

Video Zero Crossing algorithm run 

over the pixels of the selected tract 

depicted in figure 6 (on the y-axis) for 

a constant dwelling time history. The 

x-axis reports the video length in 

terms of frames (0 to 4897). Yellow 

dots represent a recorded zero 

crossing; blue means no crossing. (b) 

results from the VVV algorithm 

applied to the y coordinates of the six-

pixel-wide tract included into the two 

green lines in (a). Results (showed 

here in terms of pixels and frames) 

were found to be perfectly consistent 

in terms of frequency. 

 

(a) 

 
(b) 

6. Conclusions 

 

Results show that, under appropriate conditions and using proper arrangements, good quality time 

histories can be extracted from video recordings by using the techniques here proposed. In particular, 

it was shown by experimental results that the Marker Detection (MD) and tracking routine is 

successfully able to locate several targets applied to the spar frame-by-frame, returning their respective 

2-dimensional time histories of displacements, or at least their projection on the focal plane. The sub-

pixel accuracy of the method depends on several environmental conditions and on the specific setup 

deployed but reached acceptable levels for most practical uses.  

Some technical considerations regarding the experimental setup were also found. For instance, the 

solid circle marker design (M1 and M4) performed much better than the chequered and the X-shaped 

ones, independently from the marker colour. While this can be a fortuitous chance, it may be probably 

due to the circular design, the shape of which grants strong and similar directional gradients in all 

directions (not only along x- and y-axes) and is rotation-invariant. However, the optical tracking 

algorithm proved to be quite sensitive to the chosen target frame and the exact size and position of the 

target window. Thus, the technique performs better when the target frame is selected so that the beam-

like structure is close to its initial configuration.  

 

Both the other benchmarked techniques, proposed respectively for the acquisition of 1-dimensional 

displacements (VVV) and for the definition of the instantaneous frequency along all the structure’s 

points at once (V0C), performed well for their intended purpose, but with some caveats. If directly 

compared to the LDV, VVV has pixel-limited accuracy, hence it is much coarser. On the other hand, 

the VVV algorithm is not hampered by clipping issues, which arises in laser measurements for large 
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motions as the ones here investigated.  It also directly measures displacements, avoiding the need to 

numerically integrate velocities.  

The V0C accuracy increases proportionally to the displacement’s amplitude but is unreliable for small 

vibrations and unsuited for subpixel measurements; its results are also very noisy. Nevertheless, they 

are consistent with time histories obtained through all the other methods and are able to compute the 

frequency of the vibration at any instant and at any position with a very small computational cost. 

 

Some comparison between the three techniques were also drawn. For small displacements, VVV and 

MD are basically interchangeable, and VVV algorithm is more robust and does not need attached 

targets. For larger displacements, when the linear limit is exceeded, VVV is still viable if the level of 

accuracy required is not too strict and some percentage of error is accepted. For very large deflections 

or in the case where high accuracy is required, MD should be preferred instead, as it gives great 

insight into the actual curve motion of the point of interest. VVV intrinsic limitation to one direction 

makes it unsuited for curvilinear motions of a cantilevered beam undergoing very large oscillations; 

this is the same limitation of the laser Doppler velocimeter. However, this phenomenon, neglected for 

small amplitudes, seems to remain little even for some moderately larger deflections. Nevertheless, 

this aspect needs further investigation before being fully confirmed; if proved correct, this estimation 

error could be low enough to be acceptable for some uses for moderately large oscillations. 

 

Overall, the major practical issues of using video processing to extract displacements time histories are 

the high number of fps required (in particular to avoid motion blunder, which is very deleterious for 

marker detection), and the accuracy resolution, which is generally lower than for other common 

techniques. Results depend heavily on the lighting conditions at recording; moreover, Marker 

Detection algorithm requires attached markers and depends strongly on their size and shape; its 

performance is also influenced by the selection of a proper reference frame. All the algorithms 

proposed can be furtherly improved in different ways. For instance, bit-plane slicing, or other image 

processing techniques, can be used to remove useless information from grayscale frames. 

 

Finally, Raspberry Pi IMUs proved to be a good low-cost solution for minimally invasive 

measurements, as their alteration of the spar linear dynamics is almost negligible for common practical 

use. Effects on nonlinear dynamics, which are much more sensible, are more evident, yet significantly 

smaller than the ones from heavier alternatives. Therefore, they can be considered as a suitable low-

cost substitute for other more expensive lightweight accelerometers, when the non-contact 

measurement of flexible structures is impossible or unpractical. 
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