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A B S T R A C T

Polyvinyl Chloride (PVC) based surfaces present a relatively low coefficient of friction (COF), but this can be
improved if silicon carbide (SiC) is dispersed on the surface. In the present paper an experimental investigation is
presented for assessing the efficiency of the use of SiC aggregates for this purpose. FTIR and DSC methods were
used for assessing the curing of the composite surfaces. Optical microscopy was used for assessing the geome-
trical characteristics of the SiC aggregates. The surface roughness of the composite surfaces was also measured
and corelated to COF. The COF was measured using scratch test and an industry specific test. The friction
mechanisms due to the use of the aggregates are discussed.

1. Introduction

The understanding of the impact of surface topography on the
coefficient of friction (COF) is important for the design of new tribo-
logical surfaces with the desired properties [1]. In fact the field entitled
“surface texturing” accounts for more than 400 papers since 1965 [2]
and has created new dimensions in controlling friction mimicking
natural analogues [3]. COF of composite polymeric surfaces is of special
interest [4] as they are used in everyday surfaces from trains and buses
to hospitals and schools [5,6]. In those applications, the highest
achievable COF is essential for the safe human locomotion [7] and thus
a rigorous understanding of the friction mechanisms allow for a better
control of the manufacturing process and the final frictional behaviour
[8]. New directions in tribology that demand the use of low [9] or high
temperatures [10], require the multiscale understanding of tribology
[11] and most importantly the understanding of the origins of friction
for low modulus materials [12].

COF is attributed in the case of polymers to two main mechanisms;
friction and adhesion [13]. The tribology of polymers, being in most
cases composites of a main matrix with fillers and additives such as
coloring agents [14], flame retardants [15] and other additives pro-
viding a wide range of functions [16], was found to depend strongly on
the chemical composition of the final polymeric composite [17]. The
friction forces of polymers, likewise to metals and ceramics, are ex-
plained from the contacting asperities theory and their plastic de-
formation during friction [18]. Many studies have focused on single
asperity models for understanding the contact area and stresses

between a counterface and a polymer [19] and some have successfully
generated numerical models for predicting the COF [20]. However the
problem of friction mechanism was proved to include multiple con-
tacting asperities that deform elastically and plastically [21].

Despite the impact of the different hardness of polymers to ceramics
and metals on the COF [22], the main friction due to the mechanical
interlocking [23] is separated here from the adhesive/plastic part of
friction. In the case of mechanical friction, the friction forces are ap-
plied on the asperities generated by the surface topography that is
controlled on the one hand by the surface finish [24], and on the other
hand by the molecular packing [25]. The so-called tribological tuning
of a surface regarding mechanical friction and adhesion has been in-
vestigated for PDMS and was proved to be achievable at surfaces from
the level of microscale using ordered surface patterns [26]. In addition,
recent research on polymer-steel systems has revealed the importance
of the testing conditions for the friction and the crucial impact of load
and designed polymer surface for the understanding of the controlling
factor for friction [27]. The tuning of a polymeric surface as a tribo-
logical surface has been shown to happen at the stage of manufacturing
like in polymer brush polymers with controlled wetting properties and
thus lubrication performance [28]. Macroscopically, the asperities for
the mechanical interlocking can be from coarse aggregates to very fine
particles and their microstructure has been found to control the COF for
asphalt mixtures [29]. Despite the plethora of research in the governing
factors of friction in hard materials like asphalt [30], ceramics [31] and
metals [32], little is known for the friction in polymers when aggregates
are added in order to achieve a certain COF.
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Regarding the adhesion part of friction, the adhesion forces are due
to the van der Waals forces [33], that occur in the temporary contact of
two surfaces and are more evident in elastically deformed surfaces due
to the higher contact surface areas [34]. The adhesion in polymers
happens mainly due their compressible nature. When two polymeric
surfaces are in stationary contact for a sufficient duration those forces
increase leading to the definition of the static friction due to the ab-
sence of sliding [35]. The adhesive part of friction can be expressed
either by elastic deformation and recovery [36] or by plastic de-
formation and removal of material [13]. The adhesive control over
friction is, in most cases, a strong phenomenon in flat surfaces or sur-
faces whose microstructures are brought into contact eliminating elas-
tically or plastically the various asperities [37]. Adhesion and me-
chanical friction have been found to be competitive phenomena and to
depend on both the properties of the two contacting surfaces and the
speed of sliding [38]. In the current study the adhesive forces of the
sliding rubber of the British pendulum on the examined surfaces are not
studied, but are explained in the concept of the leakage of liquid film
between the contacting surfaces [39] when mechanical friction is
deemed unable to explain the measured COF. That phenomenon, has
been investigated previously [40], and has been found to be particu-
larly associated with the class of polymer based surfaces that have al-
tering “physical contact areas” both spatially and timely [41].

The aim of the present paper is the investigation of the impact of the
presence and microstructure of the Silicon Carbide (SiC) aggregates on
the COF for Polyvinyl Chloride (PVC) surfaces. The major topics dis-
cussed include be the correlation of the amount of SiC placed at the
surface of the surfaces on the COF, the understanding of the main
geometrical parameters that govern wet friction and finally the impact
of the surface topography due to the variable quantities of SiC –in-
corporated at the surface of an elastic material-on the COF.

2. Methods and materials

2.1. Methods

The methods used to understand the impact of the different quan-
tities of surface SiC on the COF are given below. First of all, chemical
methods were used to assess the stability of the curing in the production
of the PVC composite samples. Secondly, microscopic images were used
to characterise the aggregates’ geometrical parameters before and after
incorporating the SiC aggregates at the surfaces of the samples. To
continue with, surface roughness was measured to assess the topo-
graphical parameters of each surface and correlation with the geome-
trical parameters of the SiC aggregates. Finally, two tribological tech-
niques were used to compare the COF as given from the British
pendulum with the results from the scratch testing machine.

2.1.1. PVC chemistry
The chemistry of the PVC surfaces was examined in order to verify

that the differences in the COF are due to the impact of the aggregates

and not the differences in chemistry that would have resulted in dif-
ferent wetting properties [42]. Any difference in the wetting properties
would have caused different behaviour of the thin water film [43] ac-
cording to the squeeze film theory, altering the sliding of the rubber of
the British pendulum and thus would not have allowed comparisons in
friction due to the aggregates.

The curing of the PVC plastisol was measured by means of FTIR and
DSC. The FTIR was used for the identification of the various molecular
arrangements of the PVC based on the characteristic wavenumbers
during the absorption of the infrared radiation. The model Spectrum
One FT-IR Spectrometer from PerkinElmer was used from 4000 cm−1 to
650 cm−1 based on the major frequencies during IR absorption by PVC
[44]. For each sample at least three positions were analysed away from
the SiC aggregates and the identification of the characteristic wave-
numbers was done using the automatic selection from the software
supplied by PerkinElmer.

The DSC was undertaken using a DSC Q2000 unit by TA instruments
in order to check that the degree of curing was the same for all the
samples. The DSC analyses were done in a nitrogen atmosphere at a
purging rate of 50ml/min from 25°C to 200°C at a heating rate of 10°C.

2.1.2. Aggregates analysis
For the calculation of the impact of the aggregates’ geometry on the

COF, various parameters like aggregates number, circularity, aspect
ratio and Feret number were measured with observation methods that
allowed the statistical analysis of the random scattering of the ag-
gregates.

2.1.2.1. Gravimetric method – Volumetric analysis of aggregates. The
simplest way of measuring the aggregates number is by weighing
pure PVC samples and compare that with the weight of PVC samples
with dispersed SiC. The net weight (wi) of the accumulated SiC
aggregates can thus be calculated. The number of the particles ai for
each one of the samples i is calculated as per the following equation:

=
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3
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where: i is the sequence number of the samples with =i 0
corresponding to the PVC with no aggregates; ai is the number of
particles per sample; wi is the weight of the aggregates per sample; r is
the mean radius of the particles and ρ is the density of the SiC (g/cm3).
In this case with ai is symbolized the total number of particles that can
be placed on the surface with no or negligible penetration of the
aggregates at the bulk volume of the PVC matrix.

2.1.2.2. Surface analysis. Alternatively, optical microscopy images can
be used for the calculation of the number of surface aggregates and
their geometrical parameters like circularity, roundness, Feret
(minimum, maximum, average), aspect ratio and solidity. These
geometrical variables were measured using the commercially
available imaging processing software, ImageJ. The number of the

Fig. 1. The procedure for calculation of the number of aggregates using ImageJ. (A) The original image from the microscope; (B) the image corrected for the
brightness, contrast and filtered for the unevenness of the grey level; (C) the final thresholded image for clear delineation of the aggregates from the PVC matrix.
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particles was calculated by the optical microscope used, which was a
Hirox 3D Digital Microscope RH-2000.

Fig. 1-A shows an image taken with the microscope in the automatic
2D-tilling method in order to capture an area with the same, statisti-
cally, number of SiC aggregates per unit area. The tiling method was
essential so as to capture an area big enough, that would give the same
number of SiC aggregates per unit area irrespectively of the sampling
area. Fig. 2 shows that the choice of an area 1 cm×1 cm gives statis-
tically constant number of SiC aggregates per unit area and constant %
area, which is the percent of the area enclosed at the perimeter of the
aggregate. That perimeter is in fact the interfacial zone between the
part of the aggregate, which exceeds from the PVC matrix, and the PVC
surface.

The confirmation of the number of the aggregates from the image
analysis with the number from the automatic method of the microscope
was essential for the validity of the geometrical parameters.

2.1.3. Roughness
The roughness of all the surfaces was measured as an indication of

the topographical changes from the addition of the aggregates. For the
measurement of the roughness a Mitutoyo Surftest SJ-310 Portable
Surface Roughness Tester was used. The measurement of the roughness
took place across lines of length 12.5mm each for at least four different
locations of the surface with the same content of aggregates. The
roughness parameters tested were the centre mean average Ra, the ten
point height average Rz, the total roughness at the extreme points of the
roughness profile Rt and the Rsk and Rku that represent the skewness
and kurtosis, respectively. For the roughness measurement the ISO
protocol was used, that specified a sampling cut-offwavelength equal to
2.5 mm. That cut-off value was used since it was found to be more
realistic since it appeared to have better correlation with the true
roughness parameters [45].

2.1.4. Coefficient of friction (CoF)
2.1.4.1. British pendulum. The CoF was measured using two
independent methods. The first one was the British pendulum device
that allowed the measurement of a pendulum test value (PTV) and the
calculation of the COF from an empirical equation as given by Ref. [46].
The calculation of the PTV is done via the sliding of a rubber slider of
orthogonal shape, which upon sliding on a surface loses energy due to
friction. That energy loss is transferred to a system of springs that adjust
the position of an indicator in relation to that amount of lost energy due
to the sliding. Two different sliders were used for the measurement of
the PTV with shore A hardness 96 and 55. The conditioning of the
sliders and the testing of the wet PTV was done in accordance with the
relevant standard [47]. The main purpose of the two different sliders
was to capture the impact of the different peak heights due to the
aggregates on the CoF (see Fig. 3). In fact the a priori hypothesis for the
contact behaviour of the two rubbers as proposed in Fig. 3, represents

the real contact between asperities of a rubber substrate with a harder
material [48]. The measurement of the PTV was done in wet conditions
using tap water on the basis of the much better understanding of the
frictional behaviour of a surface under wet conditions in comparison to
the dry friction [49].

The use of wet conditions for the British pendulum was justified
from the increased wear of both rubber sliders at dry conditions that
was giving constantly changing BPN for the same surface. The sliders’
wear was providing very deviant BPN as the aggregates spatial density
increased, a fact well known in British pendulum testing in surfaces
with coarse texture [50]. In most conditions wet friction is the most
important area to focus due to increased accidents in wet conditions
rather than dry [51].However, the multiple variables in the study of the
sliding between two elastic surfaces especially in wet conditions [52]
requires the generation of a great number of case studies that makes the
need of understanding the inherent friction of the surface imperative
using a counterface with no severe deformations like the scratches of
the sliders. In the wet condition using the british pendulum, it is as-
sumed the formation of a liquid film according to the squeeze film
theory.

2.1.4.2. Single pass scratch test under constant load. For the second
measurement of the COF, a single pass scratch test under constant
load was implemented for normal loads 10 N, 20 N and 40 N. The
measurement of the friction force for a travelling distance 40mm
allowed for the calculation of the COF by dividing the friction force to
the normal load for each case. The linear velocity was 20mm/min and
the indenter a chrome steel ball with diameter 5mm. For the scratch
test the model ST30 was used supplied by Teer Coatings LTD. The test
was conducted in dry conditions owning to the instrument's limitations.
The use of a rubber ball at the size of the steel ball was deemed
inappropriate due to on the one hand the severe wear of the rubber at
that size, the difficulty of preparation of an ideally rubber ball
(similarly to the ideal shape of the steel ball) and on the other hand
the alteration of the instrument's preexisted list of sliders with known
physical characteristics and calibration standards. The latter would
have required the calibration of the rubber ball when sliding over
standard surfaces [53] and the production of rubber balls according to
the standard and certified procedure of production of the steel balls
[54].

The use of a scratch testing using a different –non elastic-counter-
face meant that the measured COF was due to the measured surface
alone. In other words, the COF using the steel ball was depended solely
on the PVC surface and the density of the aggregates. The use of con-
stantly increasing normal load in the scratch test would have caused
inconsistencies due to the random position of the aggregates and the
uncertainties for the homogeneity of the friction force at each ag-
gregate. In fact the use of the scratch test under normal load allows the
detection of any heterogeneity that could emanate from the mounting
of an aggregate in the PVC matrix. The dry scratch test also prevented
the existence of a non-uniform water film on the surface, and particu-
larly around aggregates, a film with a thickness difficult to be con-
trolled.

2.2. Materials

Nine PVC surfaces were prepared with different percentages of SiC
aggregates (see Table 1).One surface contained no aggregates, as a re-
ference sample, so as to measure the clear impact of the aggregates
addition on the coefficient of friction. The target was to prepare the
PVC surfaces with various surface coverage percentages of the ag-
gregates, ideally from a small percent (e.g. 2–3% per area) to full cov-
erage of the surface (e.g. 95% per area). The main hypothesis was that
the increase in the number of the aggregates would have led to the
increase in the COF. The choice of the eight surfaces with aggregates
was done so as to cover the most of the range of the coverage area

Fig. 2. Analysis of the surfaces for the detection of the representative surface
area for the calculation of the true spatial density of the PVC – aggregate
composite surfaces.
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(0%100%), targeting both at the extreme values and also to detect, with
the used controlled meshes, any correlation between the addition of the
aggregates with the COF. In fact the upper limit close to 100% was
chosen based on safety reasons from the provision used for the scat-
tering and also on the visual inspection of the corresponding surfaces
that appeared to be fully covered. The experimental investigation that
followed is shown in Fig. 4.

The PVC plastisol was supplied by Vinnolit GmbH & Co. KG and had
a viscosity of 42,000 cP. The SiC was supplied by Washington Mills and
was according to the FEPA classification (Federation of European
Producers of Abrasives) of size F30 or 600 μm. The plastisol was poured
into square moulds with size 10 cm*10 cm with the attention not to
include any air bubble that could introduce errors in the measurement
of friction. Then the scattering of the aggregates took place randomly
using a lab scale provision with a series of controlled meshes. The
randomness refers to the position of the SiC aggregates on the surface
that had no symmetry or pattern. Just after the aggregates addition, the
samples were placed at an oven with the temperature of the curing to be
165°C for 90 s, in order to allow the full immobilization of the PVC
chains that happens at 150°C as found from the literature [55]. Fig. 5
presents two representative surfaces developed for the present experi-
mental investigation.

3. Results

3.1. Compositional analysis

Fig. 6 presents characteristic FTIR graphs for two PVC samples. FTIR
analysis of all samples presented almost identical graphs with minute
differences primarily with regards to the transmittance values, but with
the peaks to have identical wavelength numbers. The main overarching
structure of the PVC is –CH2-CH-Cl so the main wavenumbers expected
were those from the alkane group. From 4000 cm−1 to 1500 cm−1 the
general area of the graphs gave peaks at 2959 cm−1 and 2927 cm−1

that correspond to the C–H and C–H2 stretching modes, respectively,
due to the presence of the main alkane structure of the PVC. However at
1718 cm−1 was detected a C=O stretching bond a fact that could be
justified from the reaction of the PVC with the atmospheric oxygen
whilst in the curing stage.

In the characteristic fingerprint region from 1500 cm−1 to

500 cm−1, all the possible movements of the various structural units
were detected from the FTIR spectrum. The absorption peaks of the
individual groups were found for CH2 in phase bending (1425 cm−1),
CH out of phase bending (1334 cm−1), CH rocking (1267 cm−1;
1252 cm−1) and C–Cl stretching (690 cm−1). From 1102 cm−1 to
874 cm−1 the absorption bands correspond to the stretches of the main
chains in parallel or perpendicularly to the plane of the chains [23]. The
peak at 731 cm−1 was found to emanate from the rocking of the C–Cl
bonds [56].

3.2. Calculation of the aggregates shape descriptors

The first variable under investigation was the minimum size of the
aggregate as expressed by the minimum Feret dimension (see Table 2).
In fact, the choice of the minimum Feret to assess the aggregates was
justified from the separation of the aggregates at the stage of their
production; only aggregates with maximum size equal to the minimum
Feret number could pass from the openings of the F30 mesh. Aggregates
that were bigger than the opening of the separation mesh during their
production could still have passed from the mesh provided that their
biggest dimension was equal or less than 600 μm. The measured
minimum Feret number was shown to be in line with the values from
the specifications and followed a normal distribution. The normal dis-
tribution was verified to be valid for the description of the aggregates
according to Ref. [57].

Despite the a priori information for the size of the SiC aggregates
from the supplier, their further analysis before their incorporation into
the PVC was necessary, in order to quantify the rest of the geometrical
variables (in addition to the average aggregate mean size). The reason
for this analysis was to monitor that the inclusion of the aggregates into
the PVC matrix, resulting into differences only in the spatial density of
the aggregates and the %area of the aggregates.

In Fig. 7 the four techniques that were used for the measurement of
the spatial densities of the aggregates are compared. The best method
seemed to be the processing of the images with the ImageJ with no
watershed. All the other techniques gave similar values up to 50 ag-
gregates/cm2 and then appeared to deviate for several reasons. Those
reasons are explained below and varied depending on the mechanism of
separation of the aggregates from the PVC.

More analytically, the use of ImageJ with watershed overestimated
the spatial densities, on the one hand due to separation of aggregates
that are not very close and on the other hand due to their shape that
satisfied the mathematical conditions for watershed. More analytically
the aggregates that are close enough appeared to produce a con-
tinuously bigger aggregate, after the thresholding, which was an arte-
fact. In Fig. 7 that artefact was observed also in the microscopic cal-
culation of the spatial densities, as it was unable to separate adjacent
aggregates. The same overestimation is discussed also in other

Fig. 3. The proposed hypothesis for the effect of the
different hardness rubbers in measuring the friction
coefficient at different contact levels for the same
surface.

Table 1
The nine manufactured PVC− SiC aggregate composite surfaces with their
planned coverage surface areas by the aggregates and the analytical plan for
identification of the critical factor(s) affecting friction.

Sample number 0 1 2 3 4 5 6 7 8
Projected coverage area % 0 12.5 25 37.5 50 62.5 75 87.5 100

Fig. 4. Experimental investigation plan.
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applications where the segmentation of digital images is necessary [58].
On the other hand the choice of the spatial densities from the

gravimetric analysis seemed to make the final choice of the number of
aggregates, according to the ImageJ method without watershed, more
justifiable. The gravimetric analysis used the mean average size of the
aggregates, as expressed by the average Feret number, and corrected for
the circularity of the aggregates. The latter two variables were calcu-
lated from the ImageJ after the watershed was applied.

The circularity of the aggregates in all samples appeared to be
consistent, i.e. 0.75 ± 0.11 - (see Table 2), and to follow the smallest
extreme value distribution (EVD). That distribution appeared to justify
better the presence of a small percent (long tail) of very elongated
aggregates and a high frequency of more circular aggregates towards
skewed towards the right. The smallest EVD was justified from the
control of the minimum size of the aggregates on the circularity. The
circularity was appeared not to be influenced by the watershed method
providing evidence for similar mechanisms of incorporation of the ag-
gregates during the curing of the PVC - composite surfaces.

Other studies have found that the effect of watershed can lead to
erroneous description of the boundaries of the aggregates due to the
difficulty of the image processing techniques to separate the shadowing
effect from aggregates that are very close to each other [59]. However,
the stability of the circularity for the surfaces with the low spatial
densities of the aggregates, along with the same distributions describing
the circularity supported further the argument of the similar mounting
mechanisms of the aggregates on the PVC that led to a specific or-
ientation of the aggregates. The stability of the aspect ratio (AR) and
roundness (R) (see Table 2) added further support to the mounting
mechanism of the aggregates.

The impact of circularity and spatial density of the aggregates is

given in Fig. 8. In this figure, the theoretical % areas of the aggregates,
as calculated from the gravimetric method, are compared with the real
% areas as calculated from the ImageJ without the watershed. Those
areas consist the vertical projections of each aggregate and not the real
surfaces areas as would have calculated from a 3D topographic analysis.
From Fig. 8, it is obvious that the maximum % area achieved was 37%,
even for the surfaces with the greatest spatial density in aggregates. In
the figure are presented the two extreme values of circularity according
to the values of Table 2, with the more circular the aggregate was, the
more surface area it occupied. The % areas as measured with the Im-
ageJ without the application of the watershed algorithm were the same,
despite the slightly greater number of aggregates than the theoretically
calculated. The previous analysis of the increasing surface area with
increasing circularity is validated from other studies on particle mor-
phological studies [60].

Finally, with reference to the size of the aggregates, it can be shown
in Table 2 a decrease in the size of the aggregates when more ag-
gregates are added (see Fig. 9). In Fig. 9 the addition of more aggregates
(up to 180 aggregates/cm2 or equivalently 24%wt.) seemed to have led
to a twofold or threefold reduction of the size of the aggregates. This
was expected due to the segmentation of the aggregates from the wa-
tershed method. That cause had a small impact on the size from close
inspection of the images before analysed and after the application of the
watershed algorithm. On the other hand, the increase in weight per area
of the aggregates was attributed to cause a decrease in the size of the
aggregates due to increased displacement of the PVC paste before
curing. That displacement seemed to have caused greater immersion of
the aggregates, a fact that was further supported by the literature [61].

Fig. 5. Two representative PVC surfaces with the
lowest (left) and the highest (right) surface percen-
tages of SiC aggregates. The early correction of the
surfaces high spatial aggregate densities, for a much
brighter background from the acquisition from the
microscope, was a necessity in order to use the
ImageJ for a much clear delineation of the ag-
gregates. The rectangle patterns emanate from the
lighting effect of the microscope and had no effect in
the image processing.

Fig. 6. FTIR graphs for two characteristic PVC samples.
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3.3. Roughness analysis

Fig. 10 shows the impact of the number of aggregates on the ex-
amined roughness parameters. The impact of the increasing spatial
densities of aggregates seemed to have no impact on the skewness and
kurtosis of the roughness profiles (see Fig. 10C and D). The positive Rsk
suggested that the domination of peaks in the roughness profile ema-
nating from the SiC aggregates. The similar values of Rsk in all samples
suggested that the addition of aggregates did not seem to change the
distribution of the peaks. The shape of those peaks was given by the
Rku values (greater than 3) that suggested the domination of sharp
peaks with less round shape. The values of the roundness presented in
Table 1 justify the shape of the peaks according to the Rku. Previous
research on the shape of the aggregates has shown that values of
roundness around 0.7 would have given Rku less than 3 with less sharp
peaks [62]. However, close inspection of the distribution of the
roundness at the embedded aggregates in the PVC matrix revealed
angular particles from 0.4 to 0.5 that justifies the sharpness of the
peaks.

On the other hand, the increased number of aggregates and the %
coverage area of the aggregates seemed to correlate well with the Ra
and Rt with less correlations with the Rz (see Fig. 10A and B). The
values of the overall roughness as expressed by Ra appeared to have
values up to 23 μm, the Rz up to 150 μm and the Rt up to 250 μm. For
the nine surfaces examined in this paper the Ra and Rz values seemed to
correlate to each other. The main reason for this was the smoothness of

Table 2
The calculated geometrical parameters of the aggregates in the PVC - aggregate composite surfaces, as calculated with the ImageJ using the watershed method. 3.
Note: the %Area corresponds to the projected area of the aggregates in the horizontal plane of the main PVC matrix and not the area of the exposed volume of the
aggregate.

ai
/cm2

%Area C R Solidity AR Major Minor Feret

Min. x‾

Raw ag. – 0.77
± 0.07

0.78
± 0.12

0.94
± 0.03

1.31
± 0.23

812
±136

566
±112

587
±110

859
±124

1 19 ± 3 4 ± 1 0.75
± 0.12

0.71
± 0.15

0.87
± 0.08

1.48
± 0.37

666
±136

408
±137

442
±154

707
±218

2 27 ± 2 8 ± 1 0.71
± 0.15

0.70
± 0.16

0.91
± 0.06

1.47
± 0.34

731
±315

455
±155

521
±232

751
±191

3 49 ± 6 13 ± 2 0.73
± 0.16

0.70
± 0.16

0.91
± 0.06

1.54
± 0.44

624
±187

432
±139

454
±143

688
±160

4 214
±10

31 ± 1 0.71
± 0.09

0.69
± 0.15

0.93
± 0.03

1.37
± 0.27

458
±272

314
±198

335
±211

496
±296

5 202
±15

27 ± 1 0.73
± 0.09

0.68
± 0.15

0.93
± 0.03

1.38
± 0.28

297
±215

199
±149

213
±160

322
±233

6 332
±30

34 ± 5 0.72
± 0.11

0.68
± 0.15

0.89
± 0.06

1.38
± 0.28

251
±183

168
±125

180
±135

273
±199

7 225
±5

37 ± 3 0.79
± 0.10

0.76
± 0.13

0.93
± 0.03

1.37
± 0.27

374
±228

250
±154

268
±167

405
±248

8 235 ± 3 35 ± 1 0.74
± 0.11

0.69
± 0.15

0.93
± 0.04

1.37
± 0.28

330
±220

220
±148

236
±160

357
±238

Fig. 7. Comparison of the three techniques (gravimetric, microscopic, ImageJ
with and without watershed) for measuring the aggregates spatial density; The
triangle represents the number of aggregates measured with ImageJ with no
watershed to spate it from the ImageJ processing with watershed.

Fig. 8. Comparison of the two techniques (gravimetric, ImageJ without wa-
tershed) for measuring the aggregates coverage area.

Fig. 9. The sizes of aggregates in the various PVC – aggregate composite sur-
faces in different measuring directions.
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the surface created by the PVC matrix and the fact that the roughness
was controlled mainly by the peaks of the deposited SiC aggregates.

More analytically, the attachment of the aggregates to the PVC
appeared not to have any distinct valleys from close inspection of their
interfaces; fact that was reflected at the Rku values. Thus, the main
mechanism of altering the roughness Ra was the addition of more ag-
gregates that increased the centre line average (CLA) up to 23 μm (see
Fig. 10A). The CLA appeared to increase mainly due to the increase of
the main line of definition of the CLA towards the peaks of the ag-
gregates, i.e. the equation of the surface areas below and above a hor-
izontal line across the roughness profile [63]. A much more rigorous
analysis of Ra, Rz and Rt from Fig. 10A demonstrated their linear
correlation, and thus their indiscriminate usage for the particular PVC-
aggregate composite surfaces (see Fig. 11).

3.4. Coefficient of friction

The COF was measured with the techniques of british pendulum in
wet conditions and scratch testing in dry conditions for the nine PVC-
aggregate composite surfaces. The pendulum test values (PTV) were
measured per surface. Thus based on the PTV and the equation pre-
sented by Ref. [46], the COF was calculated. The PTV was measured
only in surfaces that were covered with water since the dry measure-
ments would have resulted to severe degradation of the rubber of the
slider and thus erroneous results towards the more dense surfaces. The
degradation, on the one hand meant more sliders to be used and one the
other hand, more importantly, big differences in the measurements
even for the same surface.

The results of the COF from the PTV values are presented in Fig. 12

Fig. 10. The correlation of the Ra, Rz and Rt with the spatial densities (A) and coverage areas (B) of the aggregates; the correlation of the (C) Rsk and (D) Rku with
the number of aggregates.

Fig. 11. The correlation between the roughness parameters Ra, Rz and Rt.

K. Giannoukos and K. Salonitis Tribology International 141 (2020) 105906

7



as a function of the Ra. The COF was shown to depend not only on
roughness but also on the type of rubber. The COF, for the hardest
rubber 96, appeared to be a function of the logarithm of Ra, while the
COF for the softest, 55, appeared to follow a linear trend with Ra.

The dependence of the COF on the type of rubber is a documented
fact [64]. Thus the observed increased values of COF using the hardest
rubber, for each surface, in comparison to the rubber 55 are well jus-
tifiable (see Fig. 12). It is evident that the hardest the rubber, therefore
the less compressible will be the rubber and thus the contact points
between the rubber and the examined surface will be mostly the peaks
of the aggregates. In addition, due to the increase in the number of the
spatial density of the aggregates, the contact asperities with the rubber
will be limited to the aggregate peaks and not to the entire PVC-ag-
gregate surface area.

That contact of the rubber with the top of the aggregates was found
in the literature to be a well-established phenomenon in the friction of a
harder with an softer solid [65]. That phenomenon gave rise to the non-
linear correlation between the COF and Ra in the present study. That
non-linear correlation was justified on the basis of the interaction of the
harder rubber (see Fig. 12), with the representation of the counter
surface with the roughness to be represented by a power spectrum
correlation [48]. That power spectrum correlation for polymers was
found to be logarithmic when the friction and normal forces are ex-
pressed in the form of shear stress and shear rate, owning to the equi-
librium barrier that is formed in the case of prolonged static contact of
two polymers [66].

The logarithmic relationship between the COF from pendulum
testing and Ra was documented from the literature [67]. In other words
expressing the logarithmic trend-line (Fig. 12) as exponential

=
−R ea

COF( 0.14)/0.24.
Due to the representation of the power spectrum of the surface to-

pography by Ra and the equilibrium energy barrier for sliding, due to
the asperities interlocking due to static conditions, by the COF then the
exponential form of Ra with COF is an Arrhenius type equation well
known to describe the friction of polymer-like surfaces [68]. On the
other hand, the linear correlation between the rubber 55 COF and Ra
appeared to be in line with the Coulomb–Amonton's law [69], i.e. the
COF increased linearly by increasing the roughness Ra, with no other
obvious dependence of the COF on the surface area of the aggregates
but only on the number of them.

With reference to the calculation of the COF from the scratch test
under constant load and dry conditions, Fig. 13 summarizes the pro-
cedure for the measurement of the friction forces. From Fig. 13, it ap-
peared that the friction forces depend on the normal load and that by
increasing the normal forces the associated heterogeneities of the PVC
were magnified. Fig. 13 gives exactly the same procedure that was used
to calculate the mean friction force for each PVC-aggregate composite
surface. The relation between the mean friction forces in dry conditions
and the normal forces is given in Fig. 14-A, and appeared to be linear
with the gradient to be equal to the COF. Despite the phenomenological

overlapping of the data, there were observed clear differences of the
COF for each PVC-aggregates as given in Table 3. It is notable the fact
that while those COF range from 0.38 to 0.45, the COF from the pen-
dulum ranged from 0.25 to 0.81 for rubber 96 and from 0.14 to 0.64 for
rubber 55.

Fig. 14-B gives the relationship between the COF calculated with the
scratch testing device in dry conditions and the british pendulum in wet
conditions. A first observation is the very good linear fitting between
two independent techniques. After extrapolation of the trendlines for
very low COF from the pendulum, the corresponding COF from the
scratch testing is found to be 0.34 and 0.36 for rubbers 96 and 55 re-
spectively. These values from pendulum can be assigned to the inherent
friction due to the mechanical friction that occurs even in lubricated
conditions that give rise to the effective friction [70]. In other words the
two surfaces, even covered with a liquid film, still have an inherent
friction due to the asperities; that friction however is depressed from
the low spatial density of the aggregates that are unable to inhibit the
losses of friction towards lower COFs than that calculated from the
scratch testing provision.

Additionally, Fig. 14-B shows the overestimation of the COF from
the British pendulum for values greater than 0.4 and the under-
estimation of the COF for x values less than 0.4. That phenomenon was
explained from the lack of 1-1 correspondence of the values of the COF
and can be justified from the mechanisms of measurement of the two
methods. On the one hand, the pendulum under wet conditions pro-
vides the COF during: (1) sliding of the rubber on a hydrodynamic
water film and (2) plastic deformation of the slider. On the other hand
the scratch testing measures the mechanical friction with no wear of the
measuring medium of friction force. In other words, the small spatial
densities of the aggregates seemed to enhance the hydrodynamic lu-
brication upon rubber sliding, fact that suggests the underestimation of
the COF. While at low spatial densities, it would have been anticipated
COF greater than 0.38 according to the scratch testing, in fact the im-
pact of surface chemistry seemed to have decreased the mechanical
COF by enhancing the lubrication.

On the other hand, the overestimation of the COF from the pen-
dulum in comparison to the scratch testing suggested either: (1) a
possible impact of the wear of the slider in the course of the measure-
ment, or (2) more effective pathways of removal of the wet film due to
the increased roughness of the surface. Fig. 14-B shows that the re-
ported values of the COF using the harder slider are higher than those of
the softer for the same mechanical COF. That fact reinforces the hy-
pothesis of Fig. 3, according to which the hardest rubber develops
friction with the peaks of the aggregates and less with the main PVC
matrix. In the case of the softest rubber, its penetration into the space
among the aggregates seemed to have created compression zones that

Fig. 12. The relationship between the COF, as calculated from the PTV for the
two rubbers used, with Ra.

Fig. 13. The friction force measurement versus the linear displacement during
the dry sliding of the chrome steel ball on the pure PVC surfaces with no ag-
gregates; for all the other surfaces the same procedure was implemented.

K. Giannoukos and K. Salonitis Tribology International 141 (2020) 105906

8



have slid onto the water film and reduced the overall COF. The surfaces
in all cases appeared will less friction in the case of the softer rubber,
highly possibly due to the lack of effective removal of the squeeze film
owning to the inherent wetness of the surface that was also observed
elsewhere [71]. Hence the mechanical friction must be taken into
consideration in order to understand the impact of the adhesive friction
[72] in materials that are mechanically instable due to viscoelasticity
[73].

No bias in the values of COF can be assigned to the measurement of
the COF using a soft (rubber) and a hard (steel) counterface. As seen in
Fig. 14-B the measurement of the COF from the pendulum seems to
cause the lack of 1-1 matching when water is present. In other words,
the design of the produced PVC-aggregate composite surfaces, appear to
have a wide range of COF (0.16–0.80) that corresponds to a small range
of friction (0.37–0.45) when measured with the scratching method.

During the friction coefficient measurement with the stylus method,
the steel ball experiences micro-scratches during the measurement
across a surface due to the aggregates. However, the replacement of the
steel ball with a new for each surface, certifies that the friction mea-
surement is done with no effects of a used steel ball to the next surface.
The impact of high loads up to 40 N seemed to have had no impact for
both steel ball and measured surface.

The lack of adhesion of the rubber sliders with the PVC matric was
evident. If adhesion was significant then at low spatial densities of the
aggregates, the COF from the pendulum testing would have been close
to the line segment (0,0),(1,1). However, since the rubbers slider reach
the surface at a certain speed, with the presence of water and they were
not in contact for a long time allowing enough van der Waals forces to
be developed, adhesion was assigned to be negligent in comparison to
the friction force due to asperities contact as found previously [74].

The use of the scratch testing for measurement the COF in the ex-
amined surfaces has never been attempted before, to the best of the
knowledge of the authors. Despite the phenomenological different
mechanisms of measurement, in fact the two techniques provide com-
plementary information for the friction mechanism verifying previous
research [75]. First of all, there was proved to be a linear relation be-
tween methods that measure COF in terms of a single asperity (stylus)
and multiple asperities (slider). This scaling-up problem from single to
multiple asperities has been identified as the key for understanding the
friction mechanism [76,77]. Secondly, it was shown that below
COF=0.4 the multiple asperities are unable to provide additional

energy to provide mechanical friction with values similar to the single
asperity and thus the values of COF reach very low values
(COF=0.16). Above COF=0.4, it seemed that the presence of mul-
tiple asperities inhibit effectively the liquid film formation and provide
a surplus of frictional energy above the requirements for friction at a
single asperity. That observation agrees with previous research for the
dependence of the friction coefficient on the size of the friction mea-
suring device [78]. Also the existence of a threshold above witch ad-
hesion does not enhance friction, but the roughness and asperities
govern friction [79], is highly promising in commercially available
surfaces with controlled COF from their nanostructure [54].

The two methods for measuring the friction coefficient, despite their
differences in the contact surface area, in fact represent the similar
effects of the number of aggregates on the friction. Whether friction is
measured from a stylus (point analysis) or a slider (surface analysis), it
is presumed that the positioning of the aggregates, from their random
scattering, to have similar effect on the friction coefficient measure-
ment despite the surface area. In other words, the sliding of the stylus
was assumed to depend on the number of the aggregates the same way
that the rubber slider depended upon during sliding. The previous
statement in fact assumes that the scattering of the aggregates is iso-
tropic both in the direction of the stylus movement, as in the perpen-
dicular direction of the sliding of the rubber slider. Whereas the slider
measures the COF of multiple aggregates simultaneously, the stylus
method measures the friction coefficient across a line of those ag-
gregates, but based on their increased spatial density over the mea-
surement line.

The calculated friction coefficient from the pendulum testing was
found to depend on the hardness of the counterface of the slider. In fact,
the friction coefficient between two rubber materials depends on mul-
tiple factors like surface chemistry, surface finish, time of contact and
speed of sliding that makes imperative the use of a method, which keeps
the properties of the measuring material almost unchanged. Thus the
use of a stylus method has provided the friction coefficient due to the
mechanical barriers of the interlocking of the stylus ball with the ag-
gregates. The constant friction coefficient for a constant normal load
proved that each aggregate had a similar interlocking mechanism de-
spite its random orientation. Complementary to that, the friction coef-
ficient as calculated from the frictional-normal load graph provides a
different perspective of the coefficient, than that calculated from the
pendulum. In fact the friction coefficient from the stylus measurements,
can act as a baseline for comparing the different counterfaces i.e.
whether the lubrication lowers the stylus measured friction or the ad-
hesive or ploughing effects increase the stylus measured friction.

4. Conclusions

In the present paper, the tribological characteristics of PVC surfaces
when dispersing SiC aggregates were investigated. Both the measuring

Fig. 14. The calculation of the COF for each surface from the graph of friction versus normal forces (A); the comparison of the COF as calculated from the scratch test
under constant load and the british pendulum (the dotted line is the (0,0)-(1,1) line).

Table 3
The calculated COF from Fig. 14-A as the gradient of the friction-to-normal
forces for each PVC and PVC-aggregate composite surface.

PVC (0) 1 2 3 4 5 6

COF 0.38 0.39 0.40 0.41 0.43 0.44 0.45
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methods adopted and tested, as well the findings of the measurements
were discussed. For such surfaces, the optimum 2D imaging analysis
method for the calculation of the geometry of the aggregates on the
PVC-aggregate composite surfaces was proposed. According to the au-
thors’ knowledge this is the first time that such a study has been pre-
sented. PVC− SiC aggregate composite surfaces were manufactured up
to 235 aggregates per cm2 and 35% surface coverage area.

The main findings of the experimental investigation are:

1. The incorporation mechanism of the SiC aggregates on the surfaces
appeared to be the same. That mechanism consisted of the surface
exposure of the sharpest edges of the aggregates as evidenced from
the roughness Rsk and Rku.

2. The analysis of the COF for the PVC-aggregates composite surfaces
demonstrated the dependence of the COF on the counterface. For
the first time, two experimental techniques for measurement of COF
in a particular case of tribological surfaces, the one based on single
asperity measurements (steel ball stylus) and the other on multiple
asperity (pendulum), were found to have a linear correlation.

3. The mechanism of friction for a rubber as counterface was explained
from the presence of the hydrodynamic liquid film and the multiple
asperities (mechanical part of friction) appeared unable to prevent
the friction losses below 27 ± 2 SiC aggregates/cm2.

4. The translation of the COF, that is measured with a rubber coun-
terface, to the COF, as measured with a non-degraded counterface,
has demonstrated a small range of true mechanical –overall- friction
that was found to be easily lost due to the presence of a liquid film.

Such findings suggest the importance of a further study of the sur-
face chemistry on the design of PVC composite surfaces with the desired
COF.
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