# A technoeconomic assessment of microalgal culture technology implementation for combined wastewater treatment and CO<sub>2</sub> mitigation in the Arabian Gulf

Ahmed M.D. Al Ketife<sup>1</sup>, F. A. O. Al Momani<sup>2\*</sup>, Muftah EL-Naas<sup>1</sup>, Simon Judd<sup>1,3</sup>, <sup>1</sup>Gas Processing Center, Qatar University; <sup>2</sup>Department of Chemical Engineering, Qatar University; <sup>3</sup>Cranfield Water Science Institute, Cranfield University, \*corresponding author

#### Abstract

A technoeconomic assessment (TEA) has been conducted of the feasibility of large-scale application of microalgal culture technology (MCT) to the combined mitigation of  $CO_2$  emissions from flue gases and nutrient discharges from wastewater in the Arabian Gulf. The assessment has incorporated the selection of the algal species and MCT technologies, the extent of nutrient removal, and the biomass/biofuel production rate. The cost benefit of the abatement of pollutants (in the form of  $CO_2$  and nutrient discharges) was included by assigning appropriate credits to these contributions. The overall economic viability was quantified as the break-even selling price (BESP) of the generated biocrude, taken to be the price at which the product must sell to cover the operating expenditure (OPEX). Based on available information and optimal operational conditions, the BESP was calculated as being \$0.544 per kg biomass, equating to \$0.9  $L^{-1}$  for the extracted biocrude, the credited items contributing ~14% of this figure. The BESP was found to be most sensitive to the algal growth rate  $\mu$ , the BESP changing by  $\pm 24\%$  in response to a  $\pm 20\%$  change in  $\mu$ . Whilst the terms of reference of the study are limited to OPEX contributors, the potential for sustainability associated with the innately reliably high levels of natural light in the Gulf region appear to provide auspicious circumstances for large-scale implementation of MCT. For emerging economies with a comparable climate but without a mineral oil-based economy a greater financial benefit from the proposed scheme would arise.

Keywords: Technoeconomic analysis; Microalgae culture technology; break-even selling price; large-scale implementation; carbon dioxide biofixation; nutrient removal.

#### Abbreviations

| APR  | Algal pond reactor                              |
|------|-------------------------------------------------|
| AST  | Abiotic sewage treatment                        |
| BESP | Break-even selling price with reference to OPEX |
| BSDP | Biomass solar drying process                    |
| CPC  | Solar-tracking compound parabolic collector     |
| CSO  | Combined sewer overflow                         |
| fte  | Full-time equivalent                            |
| GWP  | Green wall panel                                |
| HTL  | Hydrothermal liquefaction                       |
| IWPP | Integrated water and power plant                |
| MCT  | Microalgae culture technology                   |
| OPEX | Operating expenditure                           |
| PBR  | Photobioreactor                                 |
| TEA  | Technoeconomic analysis                         |
| TPP  | Thermal power plant                             |
| TSS  | Total suspended solids                          |
| WwTW | Wastewater treatment works                      |

# Symbols

| Symbols                         |                                                                                              |
|---------------------------------|----------------------------------------------------------------------------------------------|
| $h_{co}$                        | Combustion energy of algae biomass, J Kg <sup>-1</sup>                                       |
| E                               | Emissivity of the water in the infrared region, -                                            |
| Α                               | Pond surface area, m <sup>2</sup>                                                            |
| IC                              | Inorganic carbon concentration, mg L <sup>-1</sup>                                           |
| Со                              | Cost of MCT biomass production per unit biomass, \$ kg <sup>-1</sup>                         |
| Ср                              | Growth medium heat capacity, J kg <sup>-1</sup> °K <sup>-1</sup>                             |
| Cr                              | Credit from relevant MCT-related parameter per mass of biomass produced, \$ kg <sup>-1</sup> |
| $C_s$                           | Saturation concentration of CO <sub>2</sub> , mg L <sup>-1</sup>                             |
| $D_{C}$ , $Do$                  | Diffusivity of CO <sub>2</sub> , oxygen, $m^2.s^{-1}$                                        |
| $d_{th}$                        | Biomass loss (death) rate, d <sup>-1</sup>                                                   |
| Ebiocrude                       | Biocrude energy content, MJ kg <sup>-1</sup>                                                 |
| $E_{petroleum}$                 | Petroleum energy content, MJ kg <sup>-1</sup>                                                |
| $E_{vr}$                        | Rate of evaporation, kg hr <sup>-1</sup>                                                     |
| $f_b$                           | Daily photoperiod, d                                                                         |
| $f_{Xoil}$                      | Potential extractable oil content of dry basis, % w/w                                        |
| hc                              | Heat transfer coefficient, W m <sup>-2</sup>                                                 |
| $H_{C,O}$                       | Henry constant for $O_2$ or $CO_2$ , D.L                                                     |
| $I_0$                           | Incident light, µE m <sup>-2</sup> s <sup>-1</sup>                                           |
| $I_{av}$                        | The average irradiance, $\mu E m^{-2} s^{-1}$                                                |
| $I_d$                           | Daily total light intensity at pond surface, $\mu E m^{-2} s^{-1}$                           |
| $I_S$                           | PAR half saturation constant, $\mu E m^{-2} s^{-1}$                                          |
| $I_t$                           | Total light intensity, $\mu E m^{-2}s^{-1}$                                                  |
| $K_c$                           | Chlorophyll-base light extinction coefficient of algae, cm <sup>2</sup> (mg Chl-a).          |
| k <sub>C</sub> , k <sub>O</sub> | Mass transfer coefficient of CO <sub>2</sub> , oxygen, d <sup>-1</sup>                       |
| $K_i$                           | Half saturation constant for nutrient $i_s$ -                                                |
| $K_{ih}$                        | Self-inhibition constant, mg L <sup>-1</sup>                                                 |
| $K_L$                           | Light extinction coefficient, g m <sup>-2</sup>                                              |
| $MW_i$                          | Molecular weight of species i, g mol <sup>-1</sup>                                           |
| n                               | Shape factor, -                                                                              |
| р                               | Pressure, bar                                                                                |
| $P_a$                           | Areal biomass productivity, kg m <sup>-2</sup> d <sup>-1</sup>                               |
| PAR                             | Photosynthetically active radiation, $\mu E m^{-2} s^{-1}$                                   |
| $P_{v}$                         | Volumetric productivity, kg m <sup>-3</sup> d <sup>-1</sup>                                  |
| $P_X$                           | Annual biomass productivity, tn y <sup>-1</sup>                                              |
|                                 |                                                                                              |

| $Q_i$            | Energy loss or gained, W                                                                   |
|------------------|--------------------------------------------------------------------------------------------|
| $q_m$            | Maximum specific transformation rate, d <sup>-1</sup>                                      |
| R                | Universal gas constant, L <sup>3</sup> bar <sup>-1</sup> k <sup>-1</sup> mol <sup>-1</sup> |
| $S_i$            | Concentration of selected nutrient, mg $L^{-1}$                                            |
| 0C               | Organic carbon concentration, mg L <sup>-1</sup>                                           |
| TP               | Total phosphorus concentration, mg L <sup>-1</sup>                                         |
| TN               | Total Nitrogen concentration, mg L <sup>-1</sup>                                           |
| C,cg             | Gas concentration, %                                                                       |
| Т                | Temperature, °K                                                                            |
| t                | Time, days                                                                                 |
| $T_a$            | Air temperature, °K                                                                        |
| $T_s$            | Ambient temperature for clear sky days, °K                                                 |
| Tw               | Temperature of cultivation media, °K                                                       |
| V                | Volume, L                                                                                  |
| X                | Biomass concentration, g L <sup>-1</sup>                                                   |
| X <sub>max</sub> | Maximum biomass concentration, g L <sup>-1</sup>                                           |
| $W_i$            | Molecular weight of species i, g mol <sup>-1</sup>                                         |
| у                | Mole fraction of $CO_2$ in gas phase, -                                                    |
| Y                | Yield coefficient for total carbon, $g_c g_x^{-1}$                                         |
| $Y_{O2}$         | Oxygen yield coefficient, g <sub>biomass</sub> g <sub>i</sub> <sup>-1</sup>                |
| z                | Pond depth, m                                                                              |
| Ζ                | Mass of biomass needed to produced 1 m <sup>3</sup> biofuel of algal biomass, kg           |
| $\gamma_{w,i}$   | Half saturation constant for i nutrient, -                                                 |
| ε                | Gas holdup volume, L                                                                       |
| $\mu_{max}$      | Maximum specific growth rate, d <sup>-1</sup>                                              |
| ρ                | Density of the cultivation medium, kg m <sup>-3</sup>                                      |
| $ ho_{oil}$      | Biocrude density, kg m <sup>-3</sup>                                                       |
| σ                | Stefan–Boltzman constant, W m <sup>-2</sup> °K <sup>-4</sup>                               |
| ~                |                                                                                            |

#### **Subscripts**

| 8    | Gas phase                     |
|------|-------------------------------|
| i    | Substrate/nutrient (OC, N, P) |
| l    | Liquid phase                  |
| tot  | Total concentration           |
| R    | Reactor                       |
| init | Initial value                 |
| atm  | Atmospheric                   |
| feed | Feed                          |
|      |                               |

# 1 Introduction

Carbon dioxide (CO<sub>2</sub>) fixation methods are well known, and include its conversion to chemical feedstock and fuels, biological conversion (photosynthesis) (Al Momani et al., 2004), and mineralisation for the production of metal carbonate/bicarbonates (Almomani et al., 2019a; Almomani et al., 2019b; Laumb et al., 2013). Whereas these methods mainly focus on CO<sub>2</sub> utilisation following capture, biological conversion directly mitigates CO<sub>2</sub> and uses it as a feedstock to create useful products.

Microalgae are acknowledged as providing an efficient means of mitigating carbon while generating products such as biofuels (Almomani et al., 2019a; Meher et al., 2006; Mutanda et al., 2011); interest in microalgae culture technology (MCT) has grown significantly since first it was pioneered in the late 1970s (Leduy and Therien, 1979). Algae can utilise both  $CO_2$  and organic carbon as the substrate, by autotrophic and mixotrophic growth respectively, such that the

technology can potentially be employed for combined  $CO_2$  sequestration from flue gases and nutrient removal from wastewater (Almomani et al., 2017; AlMomani and Örmeci, 2016; Shurair et al., 2016; Almomani et al., 2014). Whilst the economics of this option are not normally favourable (Judd et al., 2017; Mohamad et al., 2017), the sub-tropical climate of the Arabian Gulf, where there is an abundance of natural light, makes MCT closer to being viable in this region than in less temperate zones

The paper sets out to established the technical feasibility and quantify the cost benefit of a sustainable MCT- based carbon capture and wastewater treatment scheme for implementation in a warm, arid climate. In this regard its specific most novel elements comprise:

- a) Selection of the corresponding most appropriate algal species, though reference to available information.
- b) Maximising the harnessing of solar energy, both for (i) promoting algal growth, and (ii) disinfecting the clarified municipal wastewater source, the latter providing and additional cost benefit through obviating conventional wastewater treatment.
- c) Implementation at national scale with due consideration of the regional ambient conditions.

Only two other examples have been published in this specific area (Hernández-Calderón et al., 2016; Orfield et al., 2014), neither of which encompass the novel sustainable design elements proposed in the current study.

# 2 Species selection

The microalgal strain selected for MCT must be robust to the prevailing environmental conditions, but also have a rapid growth rate and a high yield of the cell materials forming the biofuel product. For the envisaged application both the APR and PBR (algal pond and photobioreactor) configurations are considered, and the boundary conditions determined by wastewater quality and  $CO_2$  gas concentration. Growth under both mixotrophic and autotrophic conditions is required, permitting the removal of both  $CO_2$  and dissolved organic carbon from the wastewater as well as the key nutrients of nitrogen (N) and phosphorus (P). The environmental conditions are set by the water salinity and temperature conditions, demanding thermal tolerance.

A review of the available information suggests the species *Nannochloris*. sp. as being appropriate. This strain has featured in published studies elsewhere (Table 1). Whilst peer-reviewed studies of the species have been limited (Fig. 1), it has been locally identified and selected via ribotyping (a molecular technique for bacterial identification and characterization that uses information from rRNA-based phylogenetic analyses), and its growth rate and lipids production rate determined following the screening of 55 species (Saadaoui et al., 2016).

The strain is reported to be tolerant to a 50-950  $\mu$ E light intensity range (Jazzar et al., 2015; Saadaoui et al., 2016; Takagi et al., 2000; Teo et al., 2014; Wahidin et al., 2013), a broad (0.03 - 80%) CO<sub>2</sub> gas concentration range (Liu et al., 2013; Watanabe and Fujii, 2016), a pH range of 7-9 (Kim and Lee, 2016) and salinities up to 10 g L<sup>-1</sup>. Its oil content has been reported to be between 31 and 40% with a triacylglycerol (TAG) content up to 21% (Jazzar et al., 2015; Li et al., 2014; Stepan et al., 2016; Takagi et al., 2000; Teo et al., 2014; Wahidin et al., 2013). The biomass concentration range is 20-60 kg/m<sup>3</sup> for a PBR (Wileman et al., 2012), the growth phase relatively short at 4 days (Jiménez-Pérez et al., 2004; Saadaoui et al., 2016) and the growth rate relatively

high at  $1.32 d^{-1}$  (Ishika et al., 2017). The species is tolerant to N and P concentrations up to 100 and 500 mg L<sup>-1</sup> respectively (Jiménez-Pérez et al., 2004), and hydraulic retention times (HRT) of 6-24 hrs<sup>-1</sup> validated (Terigar and Theegala, 2014) with growth under the mixotrophic conditions of wastewater treatment confirmed (Stepan et al., 2016) (Table 1).

#### Figure 1

#### Table 1

#### 3 Model development

#### 3.1 Substrate fixation and assimilation

The molar balance for dissolved inorganic carbon of concentration (C) in a completely mixed liquid phase of reactor volume (V), and gas hold-up volume  $\varepsilon$  over time (t, days) is:

$$(1-\varepsilon)V\frac{dc}{dt} = M_t - M_c \tag{1}$$

where  $M_t$ , the rate of CO<sub>2</sub> transferred from gas to liquid phase, is represented by dual-film theory (Cabello et al., 2014):

$$M_{t} = k_{c}(C_{s} - C)V(1 - \varepsilon)$$
<sup>(2)</sup>

 $M_c$  is the rate of CO<sub>2</sub> uptake by the biomass, expressed in terms of the change in biomass concentration dX, the algal biomass yield per unit carbon Y, and the molecular weight of bicarbonate W<sub>HCO3</sub>:

$$M_{c} = V(1-\varepsilon) \left(\frac{1}{Y}\right) \left(\frac{dX}{dt}\right) \left(\frac{1}{W_{HCO3}}\right) 1000$$
(3)

where  $k_C$  is the mass transfer coefficient for the transfer of CO<sub>2</sub> from the gas to bulk culture phase and  $C_s$  is the saturated concentration of CO<sub>2</sub>. According to Henry's law:

$$Cs = \frac{py}{RTH_e} W_{HCO3} 1000 \tag{4}$$

where *p* is the pressure, *y* the gas phase CO<sub>2</sub> fraction, *R* the gas constant, *T* the temperature and  $H_e$  the Henry's Law constant.  $k_C$  can be interpolated from correlations available (Shah et al., 1982) for the oxygen transfer coefficient  $k_0$  using the aqueous phase diffusivities of CO<sub>2</sub> and O<sub>2</sub> ( $D_C$  and  $D_O$  respectively):

$$k_c = k_o \sqrt{\frac{D_c}{D_o}} \tag{5}$$

 $\varepsilon$  in Eq. 3 is estimated by volumetric expansion (Chisti, 2007) based on the gassed and un-gassed height of fluid ( $h_G$  and  $h_L$  respectively) in each part of the reactor:

$$\mathcal{E} = \frac{h_G - h_L}{h_G} \tag{6}$$

The mass balance for total dissolved nutrients (N and P) not involved in the gas liquid mass transfer phenomena can be expressed as:

$$\frac{dC_{N,P}}{dt} = -1000Y_{N,P}\,\mu_X\,X \tag{7}$$

with appropriate initial conditions of:

$$[N,P] = [N_{init}, P_{init}] \text{ at } t=0$$
(8)

The dissolved organic matter biodegradation rate is described by the Haldane equation (Anderson et al., 2002):

$$-\frac{d(s)}{d(t)X} = -\frac{q_m S}{K_s + S + S^2 / K_{ih}}$$
(9)

where *t* is the time (days), *X* the biomass concentration, *S* the organic matter concentration (mg L<sup>-1</sup>),  $q_m$  the maximum specific transformation rate.  $K_S$  and  $K_{ih}$  are the half saturation coefficient and the self-inhibition constant (mg L<sup>-1</sup>) respectively.

#### 3.2 Biomass growth

The general logistic model can be used to predict growth rate of algal biomass dX/dt:

$$\frac{dX}{dt} = \mu_X X \left( 1 - \frac{X}{X_{\text{max}}} \right) - d_{th} X$$
(10)

where  $\mu_X$  is the specific growth rate in d<sup>-1</sup>,  $X_{max}$  the maximum biomass concentration reached during the cultivation period, and  $d_{th}$  the biomass death rate.

The integrated Monod model correlating the algal specific growth rate with substrate concentration and light intensity has been proposed by (Bernard et al., 2001), extending Equation 10:

$$\mu_{X} = \mu_{\max}\left(\prod_{i}^{N} \left[\frac{N_{i}}{K_{i}+N_{i}}\right]\right)\left[\frac{q_{m}S}{K_{S}+S+S^{2}/K_{ih}}\right]\left[\frac{I_{av}^{n}}{I_{S}^{n}+I_{av}^{n}}\right]\left[T_{(T)}\right]$$
(11)

where  $N_i$  represents the respective N, P and total C content of the culture,  $K_i$  the corresponding half saturation constants for substrate or nutrient *i*, and  $I_S$  the corresponding parameter for light. The average radiant energy  $I_{av}$  within the bulk culture medium is estimated assuming exponential decay of the radiant energy  $I_0$  at the incident reactor surface. For a completely mixed liquid phase, the average light intensity for the culture volume is given by (Sciandra, 1986):

$$I_{av} = \frac{1}{z} \int_0^t I_0 \exp(-K_L \tau) \, d\tau$$
 (12)

where z is the pond depth and  $K_L$  the overall light extinction coefficient. Generally, light intensity decreases exponentially with distance from the reactor wall due to the increase in algal cell concentration:

$$\frac{I_{av}}{I_0} = \exp(-K_L L) \tag{13}$$

where  $K_L$  is correlated with the algae concentration ( $X_A$ ) (Jupsin et al., 2003):  $K_L = f(X_A)$ (14)

The diurnal variation of the surface light intensity,  $I_0$ , can be estimated assuming a sinusoidal function for the photoperiod (Smith, 1980):

$$I_0(t) = \left(\frac{\Pi}{2} \frac{I_d}{f_p}\right) \sin\left(\frac{\Pi t}{f_p}\right)$$
(15)

where  $I_d$  is the total daily light intensity at the pond surface and  $f_p$  the fraction of the photoperiod in a day.

The influence of temperature is accounted for by (Stewart, 2005):

$$T_{(T)} = 0.06^{(T-20.035)} \tag{16}$$

In a batch process operation, the volumetric productivity ( $P_{\nu}$  in kg m<sup>-3</sup> d<sup>-1</sup>) for the biomass is given by:

$$P_{\nu} = \frac{X_{\max} - X_{init}}{\Delta t}$$
(17)

where  $X_{init}$  is the initial biomass concentration in kg m<sup>-3</sup> and  $\Delta t$  the time interval between inoculation and the maximum biomass concentration.

The areal biomass productivity,  $P_a$  in kg m<sup>-2</sup> d<sup>-1</sup>, of an APR can obtained from the volumetric productivity:

$$P_a = P_v L \tag{18}$$

The combined set of ordinary differential equations (*ODEs*) were coded in MATLAB to combine the time-dependent algal biomass concentration X (g L<sup>-1</sup>) and algal nutrient uptake functions with light intensity, and the simulations validated with the experimentally-determined Cv growth data. A sensitivity analysis ( $\sigma_x$ ) of an examined parameter  $P_j$  was conducted with respect to X to assess the response of biomass concentration to changes in each model parameter:

$$\sigma_x = \frac{\Delta X}{\Delta P_j} \frac{P_{jnom}}{X_{nom}}$$
(19)

where  $P_{jnom}$  is the parameter nominal value and  $X_{nom}$  the model response using the nominal parameter values. A ±20% variation in  $\Delta P_j$  was applied to obtain the test values to determine  $\Delta X$ . Four biomass profiles were used in calculating the mean profile with the standard deviation estimated from the four profiles. The sensitivity coefficient for each parameter was calculated from the average spread according to published methods (Bernard et al., 2001; Lardon et al., 2009). An F-test was performed to determine the variance between the predicted and measured values using the *Jmp* statistical discovery software (*SAS version 11.2.1*).

#### 3.3 MCT process facets

A novel abiotic sewage treatment (AST) process is to be used for wastewater pre-treatment prior to a set of green wall panels (GWPs) and APRs, the GWPs being used to produce the inoculum while mass production is carried out in the APRs. Subsequent stages comprise algal harvesting followed by hydrothermal liquefaction (HTL) extraction of bio-crude, followed by bio-oil production (Fig. 2).

The AST process is intended to remove suspended matter prior to disinfection by UV irradiation, disinfection being required to avoid contamination of the algal culture (Qadir et al., 2010). Clarification is needed to ensure reasonable UV transmittance and so sufficient disinfection capacity (Agulló-Barceló et al., 2013); the target TSS UV unit inlet total suspended solids (TSS) concentration is thus 90-100 mg  $L^{-1}$ .

Solar-tracking compound parabolic collectors (CPCs) are used to supply solar energy for both the UV unit and the biomass solar drying process (BSDP). Water is evaporated by concentrating the solar energy using the CPCs to provide a slurry of 20% solids to feed to the HTL process. An APR HRT of two days is required to achieve a 0.5 Kg cell density per m<sup>3</sup>.

#### 3.1 Greenhouse design

The greenhouse for the APR is to be constructed of white polypropylene material (Kmart Australia Limited, Australia) intended to filter the light to a specific wavelength to promote biomass productivity (Almomani et al., 2017; Shurair et al., 2016; Znad et al., 2018a; Znad et al., 2018b). The cover also reduces the water evaporation rate and risk of contamination, but then demands temperature control. The latter is to be achieved through natural convection in the head space between the APR and CT.

A simple thermal energy balance can be conducted across the APR to assess the influence of radiation, evaporation, and convection on the medium temperature, assuming:

- 1. APR is a shallow pond with no temperature gradient in the cultivation medium.
- 2. The APR walls are completely insulated such that heat loss through walls is negligible.

#### 3.1.1 APR heat balance

The thermal energy balance across the APR greenhouse is represented by the following equation:

$$\rho CpAz \ \frac{dT}{dt} = Q_{irradiance} - Q_{absorbed} - Q_{radiation} - Q_{evaporation} - Q_{convection} - Q_{convection}$$
(20)  
-  $Q_{conduction}$ 

where  $\rho$  (kg m<sup>-3</sup>) is the cultivation medium density, A (m<sup>2</sup>) the pond surface area, Cp (J kg<sup>-1</sup> °K<sup>-1</sup>) the growth medium heat capacity, z (m) the pond depth,  $Q_{irrandace}$  the solar heat flow (or power) to the pond,  $Q_{absorbed}$  the solar power to the algal cells during growth,  $Q_{radiation}$  the power emitted by radiation,  $Q_{evaporation}$  the power associated with either condensation or evaporation,  $Q_{convection}$  the convective heat loss, and  $Q_{conduction}$  the heat flow between the pond and the ground (Andersen, 2005; Huesemann et al., 2018) - assumed negligible, Q being in Watts.

The cultivation medium is heated by solar irradiation entering the culture volume:

$$Q_{irradiance} = AI_t \tag{21}$$

 $I_t$  (µE m<sup>-2</sup>s<sup>-1</sup>) is the total light intensity received by the pond, part of which is used for photosynthesis by the microalgae cells:

$$Q_{absorbed} = h_{co}\mu_{max}XV \tag{22}$$

 $Q_{absorbed}$  is a function of the combustion energy of the algae biomass  $h_{co}$  (J Kg<sup>-1</sup>), the growth rate  $\mu_{max}$  (s<sup>-1</sup>), the biomass concentration X (kg m<sup>-3</sup>) and the pond volume V (m<sup>3</sup>). The pond water emits thermal energy as longwave radiation (Duffie and Beckman, 2013):

$$Q_{radiation} = A \in \sigma((T_W^4 + 273.15) - T_S^4)$$
(23)

where  $\in$  (dimensionless) is the emissivity of the water in the infrared region,  $\sigma$  (W m<sup>-2</sup> K<sup>-4</sup>) the Stefan–Boltzman constant and  $T_s$  the ambient temperature for clear sky days (Duffie and Beckman, 2013).

Evaporation is the most influential parameter on the medium temperature, especially in a location with low average humidities. Evaporative losses can be calculated from:

$$Q_{evaporation} = \Delta H E_{vr} \tag{24}$$

where  $E_{vr}$  (kg hr<sup>-1</sup>) is the rate of evaporation, which can be given by:

$$E_{vr} = 2.06 \times 10^3 A (P_W - P_a) \tag{25}$$

and  $\Delta H$  (KJ Kg<sup>-1</sup>) is the heat of evaporation for water.

Convection causes heat loss as a result of replacing the hot rising air near the pond by the cooler ambient air (Rafferty and Culver, 1998):

$$Q_{convection} = h_c A((T_W + 273.15) - (T_a + 273.15))$$
(26)

 $h_c$  (W m<sup>-2</sup>) being the heat transfer coefficient.

#### 3.2 Solar disinfection system: background and design

The proposed MCT employs solar-powered UV irradiation for disinfection of a clarified municipal wastewater source, similar in application to combined sewer overflows (CSOs) (Muller, 2011), and permitting its reuse (Toze, 2006). Reuse of the water for crop irrigation (Briskin, 2000; WHO, 2006), can offset the costly potable water supply produced by seawater desalination, but demands a level of disinfection. The reuse opportunity offered by MCT offers a viable reuse alternative, providing a high-value product (biocrude or biofuel) whilst incurring very low bacteriological risk to human health.

Disinfection upstream of the APR is nonetheless required to maintain the health of the microalgae. The effectiveness of the advocated solar-powered compound parabolic collector (CPC) UV unit has been broadly demonstrated for inactivating a wide range of pathogen microorganisms in water (McGuigan et al., 2012). These devices are inexpensive and low in maintenance, can efficiently concentrate both direct and diffuse solar radiation (Malato et al., 2009), and have been successfully demonstrated for wastewater disinfection (Godwin, 2017). The return of up to 59% (Jones et al., 2014) of the wastewater from the HTL process to the APR would require supplementary treatment, most simply by upgrading the AST process.

The recommended CPC UV device comprises a 4 m-long, 125 mm-diameter borosilicate glass tube (Gaia/OEM model PT-5760, Spain). The parabolic trough solar collector has a reflective surface of 72 m<sup>2</sup> housed in a galvanized steel frame, with an estimated 20 year life (Ltd, 2017). At an average solar UV irradiance during daylight of 13-50 W.m<sup>-2</sup>, the disinfection attained (as log kill, the logarithm of the ratio of the feed to treated water bacterial concentration for a given cumulative UV dose in W.h m<sup>-2</sup> (Breeze, 2016) can be determined.

#### 3.3 Costs equations

The quantity of biomass Z(kg) needed to produced 1 m<sup>3</sup> biofuel of algal biomass having a potential extractable oil content of  $f_{Xoil}$  (% w/w, dry basis) of density  $\rho_{oil}$  (kg m<sup>-3</sup>), is given by:

$$Z.f_{X_{oil}} = \rho_{oil}.1m^3 \tag{27}$$

such that the amount of biomass required to produce 1 m<sup>3</sup> of biofuel is.

$$Z = \frac{\rho_{oil}}{f_{xoil}} \tag{28}$$

The operating expenditure cost (OPEX) is determined by the algae production and oil extraction costs, including the cost of delivery of the wastewater and  $CO_2$  to the MCT, mitigated by the value of the recovered resources such as the biofuel, residual organic carbon (as biogas, for example), and nutrients:

$$B_{co} = Z \times 10^{-3} (C_{Cr} + RN_{Cr} + RP_{Cr} + Fg_{cr} + Ae_{Cr} + BOD_{Cr} - In_{co} - Dfg_{co} - Cf_{co} - Ab_{co}$$
(29)  
$$- Dis_{co} - WW_{co} - Sd_{co} - HTL_{co} - Solar_{co} - Pre_{co})$$

where  $B_{Co}$  is the biocrude production cost (\$/L),  $In_{Co}$  is the cost of inoculation,  $Dfg_{Co}$  the cost of delivered flue gas,  $Cf_{Co}$  is the cost of cultivation,  $Ab_{Co}$  is the cost of abiotic WW treatment,  $Dis_{Co}$  cost of disinfection,  $WW_{Co}$  cost of delivered WW,  $Sd_{Co}$  the cost of solar drying, and  $HTL_{Co}$  the cost of biocrude production.  $C_{Cr}$ ,  $RN_{Cr}$ ,  $RP_{Cr}$ ,  $Fg_{Cr}$ ,  $Ae_{Cr}$ ,  $BOD_{Cr}$  respectively refer to the credit from carbon, N and P removed from the wastewater, from the flue gas,  $Ae_{Cr}$  from gas aeration, credit from biological contaminants removal, all costs being in \$/Kg. Substituting Eq. 31 in Eq 32:

$$B_{Co} = \frac{\rho_{oil}}{f_{Xoil} 10^3} (C_{Cr} + RN_{Cr} + RP_{Cr} + Fg_{cr} + Ae_{Cr} + BOD_{Cr} - In_{Co} - Dfg_{Co} - Cf_{Co} - Ab_{Co}$$
(30)  
$$- dis_{Co} - WW_{Co} - Sd_{Co} - HTL_{Co} - Solar_{Co} - Pre_{Co})$$

The above equation can encompass the extracted biomass lipids conversion to biocrude via hydrothermal liquefaction (HTL) and upgrading processes (Zhu et al., 2013). An established parameter in published economic analyses is the break-even selling price (BESP) (Amanor-Boadu et al., 2014), the price for the algal biomass with a given oil content for the equivalent price of crude petroleum yielding the same amount of energy in MJ. This estimated price can then be compared with the total cost of algal biomass production (Eq. 33). The quantity of algal biomass (Z, kg) with the energetic equivalent of a litre of crude petroleum is:

$$Z = \frac{E_{petroleum}}{f_{voil} y E_{biocrude}}$$
(31)

where  $E_{petroleum}$  is ~45 MJ per kg crude oil at a density of 850 kg m<sup>-3</sup> of crude petroleum and  $E_{biocrude}$  is the energy content of the algal oil in MJ per kg. The latter has been reported as being 38 MJ kg<sup>-1</sup> at an assumed density of 887 kg m<sup>-3</sup>.

Assuming conversion of 1 L of crude oil to various useable transport energy products costs roughly the same as converting X kg of biomass to bioenergy, the maximum acceptable price that could paid for the biomass would be the same price of a barrel of crude petroleum. This parameter can be used as the BESP:

 $BESP(\$/L) = \frac{Price \ of \ 1 \ barrel \ of \ petroleum}{No.of \ equivelent \ litre \ of \ biocrude}$ (32)

Moreover, OPEX will include energy, materials, land, maintenance, insurance, loan payments, taxes, and labor.

#### 3.4 Model strategy

The modelling process begins with collation of relevant literature data as relating, wherever possible, to the Arabian Gulf region. The process then proceeds via the study of the combined influence of the key parameters of wastewater and flue gas composition and flows, environmental conditions, and algal strain on algal growth. The outputs of this stage are then used for the economic analysis, which are subsequently reassessed with reference to biomass/biofuel production, nutrient removal, and the input parameters adjusted as required. The process is repeated until reasonable and representative outcomes are obtained (Fig. 3). The iterated outcomes are then (a) subject to a sensitivity analysis of the key process parameters, and (b) compared with those from similar literature studies for other global locations.

#### 3.5 Design criteria

#### 3.5.1 Environmental conditions

Assumptions made in constructing the model comprise:

- The algal culture considered to have the same rheological properties as water.
- The flow pattern at a selected paddle wheel velocity assumed to be turbulent to prevent stratification, improve oxygen stripping and keep the algal biomass suspended;
- Whilst the average monthly evaporation rate is location dependent, a mean value of 0.4 cm day<sup>-1</sup> is assumed (Al-Khayat and Jones, 1999; Das et al., 2016; Davis et al., 2016; Delrue et al., 2012; statista, 2016; Sun et al., 2011), yielding a sub-1% evaporative loss of the wastewater fed to the process.
- The seawater salinity assumed to be 4.1 g  $L^{-1}$  on average, compared to reported values of 3.5-4.1 g  $L^{-1}$  at the surface with maximum of 6 g  $L^{-1}$  (Saadaoui et al., 2016).
- The average ambient temperature assumed to be 35°C (Statistics, 2013).
- The annual average rainfall assumed to be 75 mm p.a. (Statistics, 2017; Statistics, 2013);
- A total average monthly insolation assumed to be ~185 kWh m<sup>-2</sup>, with 9.5 h daylight on average providing light of 300-800 nm wavelength (Abdallah et al., 2016; Znad et al., 2018a), based on reported direct normal irradiance values of 550 and 925  $\mu$ E m<sup>-2</sup>s<sup>-1</sup> for January and June respectively (Abdallah et al., 2016; Qatar, 2013, 2014), and an average irradiance of 753  $\mu$ E m<sup>-2</sup>s<sup>-1</sup>;
- pH levels maintained below 8 by CO<sub>2</sub> dissolution;

- No significant oxygen inhibition;
- No CO<sub>2</sub> or nutrient limitation;
- APR algal cells comprise >80% of culture volume;
- Biofuel productivity determined entirely by the algal cell triglyceride fraction;
- Latent energy from the non-triglyceride fraction of the algal biomass harnessed for electricity generation to displace the mains electricity supply;
- The biomass sustained by the organic carbon in the wastewater during night-time;
- Average wastewater temperature of 25°C (Castillo et al., 2016).

#### 3.5.2 Technology design

APR cultivation systems are considered to incur lower capital costs and energy demand than PBRs (Slade and Bauen, 2013). They are generally constructed as carousels, with vertical walls and a flat base, and culture is continuously mixed and circulated in the APR using a paddlewheel. The pond width/breadth (W/r) ratio is >10 to ensure even flow, monitored by flow meters (Becker, 2007). The wastewater is fed to the paddlewheel at a constant flowrate and algal culture withdrawn (harvested) continuously at the same flow rate. Other key design facets assumed comprise:

- A nutrient-rich wastewater feed, largely obviating the use of a commercial supply of nutrients (N and P);
- The water is recycled to the process from the HTL, following clarification, retaining most of the nutrients;
- $\sim 30\%$  of the water to the process is lost, demanding a make-up water flow of  $\sim 60$  MLD;
- The pond is assumed to be constructed with raised walls of compacted earth lined with a 1-2 mm thick polymer membrane to minimise leakage;
- The thickness of the APR walls is neglected in calculating the footprint.
- The algal biomass concentration is kept at 0.5 kg m<sup>-3</sup> to sustain light penetration (Borowitzka, 2005).
- The process is initiated in batch mode and switched to continuous operation once the required biomass concentration is reached;
- The volume of inoculum is assumed to be 10% of the volume of the medium (Rodolfi et al., 2009);
- A working depth of 0.2 m is assumed; the lower depth being preferred to improve light penetration with an ideal surface to volume ratio (1/h) of 3.3 to 4 m<sup>-1</sup>;
- The paddlewheel-generated mixing velocity, required to maintain sufficient mixing of the APR biomass, is assumed to be a 30 cm s<sup>-1</sup> (Vasudevan et al., 2012);
- The facilities are designed in terraces to enable low-energy water system recycling;
- The cultivation system is modelled as a hybrid system of PBRs and ponds;
- The harvesting and dewatering processes comprise (i) natural settling (Huntley et al., 2015), followed by (ii) filter press (Beal et al., 2012; Corporation, 2018; E Wiley et al., 2011), to produce a 20% solids cake;
- The extraction/conversation is based on hydrothermal liquefaction (HTL) (Davis et al., 2014; Zhu et al., 2013) to produce bio-crude (Turton, 1998);
- Batch inoculation is based on a biomass concentration of 8-10 kg m<sup>-3</sup>;
- Two 1250 m<sup>2</sup> green wall panel GWP modules are used for the inoculation system, based on a total panel surface of 800 m<sup>2</sup> and a land surface area of 1250 m<sup>2</sup> generating 52 m<sup>3</sup> culture per module (Guccione et al., 2014; Rodolfi et al., 2009).

• The number of full-time equivalent employees required is 125, similar to a previous estimation (Hoffman et al., 2017), paid at the Gulf region rate (Secretariat, 2005) based on a monthly cost of 1340 USD/per full-time equivalent (fte) at 100% overhead.

#### 3.6 Cultivation system input parameters

The targeted biomass production rate is 40,000 te.y<sup>-1</sup>, or 19m L biofuel.y<sup>-1</sup>. The facilities are to be installed on a 1% slope on sandy soil to assist gravity-fed volume transfer, the 3.6 km<sup>2</sup> rectangular site prepared with cut and fill earthworks to create both the ponds and GWP PBRs. The proposed plant has 88 terraces, the upper terrace containing a parking lots, office and laboratory facilities, and the GWP PBRs. Wastewater and CO<sub>2</sub> flue gas is to be supplied continuously from local wastewater and power plants, assumed to be respectively located 4 and 1 km distant from the site. The number of ponds required to satisfy the targeted production capacity is 350 ha, with another hectare assigned to the GWP PBRs and other facilities (Table 2).

Harvesting is conducted every other day, commencing with the lowest main terrace. The algal biomass is then transferred for downstream processing and the treated supernatant wastewater discharged for further use. Once the lowest ponds are emptied, the second-lowest terrace is harvested, and the algal biomass again transferred and the supernatant discharged as before. This cycle is repeated as the harvesting process moves upwards to the higher terraces, with the water being replenished as needed. The daily water demand is roughly 333 m<sup>3</sup> d<sup>-1</sup>.

Table 2

### 4 Results and discussion

#### 4.1 Model calibration and validation, algal growth

Assumed values for calibration (Table 3) are based on a range of feedwater and gas concentrations taken from four independent published studies (P1-P4) providing relevant experimental data on algal cell concentration X and, for P3 and P4, nutrient removal as residual concentration (TN and TP). The computed dynamic response for X and total nutrients (Fig. 4) indicate a reasonable fit between the experimental data and model. This then determines the most appropriate values for the key algal growth-related parameters (Table 4) for subsequent validation. Data selected for both calibration and validation cover a wide range of input parameters for  $C_{c,g}$ , *I*, *N*, *P*, and *OC* concentrations (Tables 3, 5) so as to appropriately reflect the model's ability to predict the biomass profile under different cultivation conditions.

# Table 3Figure 4

The sensitivity of the growth profile  $\sigma_x$  to the range of values of some key system parameter included in Table 5 indicates it to be most sensitive to the maximum specific growth rate  $\mu_{max}$  (Fig. 6) corroborating outcomes from a number of other MCT studies (Davis et al., 2014). Regression analysis for the experimental and predicted growth profile was subsequently conducted using *SAS* statistical analysis software (SAS Institute). A high regression number of 0.99 was obtained along with *p* values below 0.0001 for the all validated points, indicating a significant fit between measured and predicted values in the current model (Fig 7).

Table 4Table 5Figure 5Figure 6

#### Figure 7

## 5 Optimisation, energy balance

Based on the data reported in Tables 1, the optimum conditions, providing the maximum algal growth, considered for the energy balance (Section 3.5.1) comprise a temperature *T* of 25-40°C and a light intensity *I* of 250-420  $\mu$ E m<sup>-2</sup> s<sup>-1</sup>. *Nannochloris* sp. has been reported to be tolerant to irradiance levels up to 420  $\mu$ E m<sup>-2</sup>s<sup>-1</sup> (Jazzar et al., 2015) and temperatures up to 45°C (Saadaoui et al., 2016). Therefore, the targeted energy balance aims to reduce the average *I* from 753 to 420  $\mu$ E m<sup>-2</sup>s<sup>-1</sup>, whilst the average temperature of 35°C is already within optimum range for rapid microalgae cultivation.

The results obtained from the APR greenhouse analysis (Section 5.2.1) reveal there to be no difference between the reported atmospheric average temperature ( $35^{\circ}$ C) and the calculated temperature inside the greenhouse, due to the lower thermal conductivity of the polypropylene cover (Weidenfeller et al., 2004). Furthermore, based on the model generated in Section 5.2, the temperature of cultivation medium increases only from  $25^{\circ}$ C (Section 5.7.1) to  $26^{\circ}$ C - still within the optimum temperature range. There is thus no cooling required to counter seasonal changes, based on a maximum transmittance of 33.9% and filtered the wavelength between 750-350 nm with peak at 413 nm for the polypropylene cover for accelerating algal growth (by up to 46%) (Znad et al., 2018a).

# 6 Solar disinfection and nutrients

The UV dose required to achieve 3-log disinfection has been reported to be 35 mW.cm<sup>-2</sup> for an associated transmittance of 20-25% (Cairns, 1996; Camp, 1997; Muller, 2011; Wojtenko et al., 2001). This compares with a solar UV dose of 50 minutes producing a 2-3 log reduction of *Escherichia coil* (Amoah et al., 2007), and more comprehensive disinfection of municipal wastewater at an exposure of 3.33 hrs at an average solar UVA irradiance of 38 W m<sup>-2</sup> (Agulló-Barceló et al., 2013). Therefore, based on the current design, the required time for disinfection has been estimated to be 50 minutes under the irradiance conditions prevailing between 09:00 and 14:00 (Touati et al., 2017).

The calculated feed gas pressure is 1.6 bar for a volumetric  $CO_2$  gas input of 30 m<sup>3</sup>.hr<sup>-1</sup> per APR. At this loading carbon limitation would be mitigated (Lundquist et al., 2010). Based on available data for the wastewater specification in the Arabian Gulf region (Al-Naimi, 2002; Mohamad et al., 2017; Shamim Ahmad et al., 1989), initial nutrient concentrations of 20 mg L<sup>-1</sup> and 10 mg L<sup>-1</sup> for N and P respectively were selected. The removal efficiencies for N and P were estimated to be 51% and 86% respectively, compared with negligible *OC* removal, similar to those reported by previous author (Lam and Lee, 2014).

# 7 Cost analysis

The cost analysis was conducted based on the selected parameters reflecting the process design (Fig. 3) and the governing equations (Section 3.5). The estimated BESP was based on credit for nutrient removal ( $C_{Cr}$ ,  $RN_{Cr}$ ,  $RP_{Cr}$ ), flue gas fixation ( $Fg_{Cr}$ ) and flue gas aeration ( $Ae_{Cr}$ ), with outgoings incurred by inoculation ( $In_{co}$ ), flue gas and wastewater delivery ( $Dfg_{Co}$  and  $WW_{co}$ ), cultivation ( $Cf_{Co}$ ), abiotic wastewater treatment ( $Ab_{Co}$ ), disinfection ( $Dis_{Co}$ ), solar drying ( $Sd_{Co}$ ), and HTL ( $HTL_{Co}$ ), as given in Table 6. The current analysis reveals the nutrient content of the

wastewater to be sufficient to sustain the required biomass concentration of 0.5 kg m<sup>-3</sup>. Nutrient removal from the wastewater provides a credit of 0.03-0.25 \$ kg<sup>-1</sup> dry biomass for N and P respectively. The cost of  $CO_2$  as a feed reagent is similarly obviated by the use of flue gas.

The estimated cost of the GWP inoculation system advocated is  $0.36 \text{ kg}^{-1}$  dry biomass (Table 9), in keeping with reported data of significantly higher costs for PBR inoculating systems compared with those of the APR (Davis et al., 2011). The next highest estimated cost contribution is the cultivation cost of  $0.09 \text{ kg}^{-1}$  dry biomass. It has been reported that, for the cultivation phase in raceway ponds, the most significant component of the energy demand is the recirculation energy, contributing 22%-79% of the total (Kadam, 2002). Recirculating the water has the potential to reduce energy consumption, nutrient loss, and water demand. However, this also incurs a risk of infection and growth inhibition from accumulated pathogenic micro-organisms and refractory organic and inorganic chemicals and residual metabolites from the destroyed algae cells (Lundquist et al., 2010). UV disinfection, powered by solar irradiation, mitigates this risk to an extent and incurs an energy cost of \$0.0035 kg<sup>-1</sup> dry biomass.

#### Table 6

Based on the assumptions made, the estimated BESP of the algal biomass is \$0.544 kg<sup>-1</sup> (Table 6), equating to \$0.91 L<sup>-1</sup> for the extracted biocrude, based on OPEX. A biofuel BESP below the benchmark of \$1 L<sup>-1</sup> is thus potentially achievable. A minimum production cost of \$0.55 kg<sup>-1</sup> dry biomass has been previously reported (F.G. Acie'n, 2014), very similar to the value calculated in the current study, whereas previously estimated biofuel production costs were around \$1 L<sup>-1</sup> for a facility production of 100,000 kg biomass annually (Chisti, 2007). Although the assumptions made in the Chisti study have been subsequently considered overly optimistic (Davis et al., 2011), more recent cost analyses based on highly optimised conditions have led to BESP estimates of \$0.55-0.97 L<sup>-1</sup> (Hernández-Calderón et al., 2016). Sensitivity to the specific growth rate  $\mu$ , as indicated in Figure 6, was exemplified by a ±20% change in  $\mu$  producing a corresponding ±24% change in the BESP.

# 8 Conclusions

An analysis of the logistics, technical feasibility and operating costs associated with the large-scale implementation of microalgal culture technology (MCT) has been conducted with specific reference to the Arabian Gulf. The facility was designed to provide combined biofixation of  $CO_2$  from flue gas and pollutant removal from wastewaters. The analysis included unit operation selection for fully harnessing the solar energy supply for both algal growth and wastewater disinfection, and maximizing utility of the wastewater supply through recycling. A model developed to simulate  $CO_2$  fixation and nutrient removal was validated using relevant literature data and used to optimise the operating conditions. The impact of the design on temperature regulation was also considered.

The analysis indicated a break-even selling price of  $0.544 \text{ kg}^{-1}$  for the dried algal biomass required to cover all operating costs under optimum operational conditions. This figure included 0.086 of amounts credited from pollution abatement from reduced emissions. The cost is comparable with that from previous published studies, and the study also corroborated the previously reported sensitivity to the algal growth rate.

Whilst the results appear encouraging, the capital costs associated with implementation and the logistics associated with conveying the flue gas and wastewater to the site should not be overlooked. However, the potential for sustainability associated with the innately reliably high levels of natural light of the Gulf region appear to provide auspicious circumstances for large-scale implementation of MCT. Moreover, extending the assessment to a full life cycle analysis would almost certainly demonstrate the benefits of the scheme in terms of carbon footprint, rather than economics alone.

# 9 Acknowledgments

This work was made possible by the support of a National Priorities Research Programme (NPRP) grant from the Qatar National Research Fund (QNRF), grant reference number NPRP 6-1436-2-581. The statements made herein are solely the responsibility of the authors.

# 10 References

- Abdallah, A., Martinez, D., Figgis, B., El Daif, O., 2016. Performance of Silicon Heterojunction Photovoltaic modules in Qatar climatic conditions. Renewable Energy 97, 860-865.
- Agulló-Barceló, M., Polo-López, M.I., Lucena, F., Jofre, J., Fernández-Ibáñez, P., 2013. Solar Advanced Oxidation Processes as disinfection tertiary treatments for real wastewater: Implications for water reclamation. Applied Catalysis B: Environmental 136-137, 341-350.
- Al-Khayat, J.A., Jones, D.A., 1999. A Comparison of the Macrofauna of Natural and Replanted Mangroves in Qatar. Estuarine, Coastal and Shelf Science 49, 55-63.
- Al-Naimi, J.A.S.a.I.S., 2002. Trace Metals in Wastewater Ponds in Qatar Qatar Univ. Sci. J (2002), 22 : 97-106
- Almomani, F., Al Ketife, A., Judd, S., Shurair, M., Bhosale, R.R., Znad, H., Tawalbeh, M., 2019a. Impact of CO2 concentration and ambient conditions on microalgal growth and nutrient removal from wastewater by a photobioreactor. Science of The Total Environment 662, 662-671.
- Almomani, F., Judd, S., Bhosale, R.R., Shurair, M., Aljaml, K., Khraisheh, M., 2019b. Intergraded wastewater treatment and carbon bio-fixation from flue gases using *Spirulina platensis* and mixed algal culture. Process Safety and Environmental Protection 124, 240-250.
- Almomani, F., Judd, S., Shurair, M., 2017. Potential use of mixed indigenous microalgae for carbon dioxide bio-fixation and advanced wastewater treatment, Environmental Division 2017 Core Programming Area at the 2017 AIChE Spring Meeting and 13th Global Congress on Process Safety AIChE San Antonio, TX, pp. 58-64.
- AlMomani, F.A., Örmeci, B., 2016. Performance Of *Chlorella Vulgaris*, *Neochloris Oleoabundans*, and mixed indigenous microalgae for treatment of primary effluent, secondary effluent and centrate. Ecological Engineering 95, 280-289.
- Almomani, F.A., Delatolla, R., Örmeci, B., 2014. Field study of moving bed biofilm reactor technology for post-treatment of wastewater lagoon effluent at 1°C. Environmental Technology (United Kingdom) 35, 1596-1604.
- Al Momani, F., Gonzalez, O., Sans, C., Esplugas, S., 2004. Combining photo-Fenton process with biological sequencing batch reactor for 2,4-dichlorophenol degradation, Water Science and Technology, pp. 293-298.
- Amanor-Boadu, V., Pfromm, P.H., Nelson, R., 2014. Economic feasibility of algal biodiesel under alternative public policies. Renewable Energy 67, 136-142.

- Amoah, P., Drechsel, P., Abaidoo, R.C., Klutse, A., 2007. Effectiveness of common and improved sanitary washing methods in selected cities of West Africa for the reduction of coliform bacteria and helminth eggs on vegetables. Tropical Medicine & International Health 12, 40-50.
- Andersen, R.A., 2005. Algal culturing techniques. Elsevier Academic Press, Burlington, MA.
- Anderson, D., Glibert, P., Burkholder, J., 2002. Harmful algal blooms and eutrophication: Nutrient sources, composition, and consequences. Estuaries 25, 704-726.
- Andruleviciute, V., Makareviciene, V., Skorupskaite, V., Gumbyte, M., 2014. Biomass and oil content of *Chlorella* sp., *Haematococcus* sp., *Nannochloris* sp. and *Scenedesmus* sp. under mixotrophic growth conditions in the presence of technical glycerol. Journal of Applied Phycology 26, 83-90.
- Ashghal-PWA, 2014. Public Works Authority Apply Sustainable Developments Concept with Sewerage Works, Qatar.
- Beal, C., Hebner, R., Webber, M., Ruoff, R., Frank Seibert, A., 2012. The Energy Return on Investment for Algal Biocrude: Results for a Research Production Facility.
- Becker, E.W., 2007. Micro-algae as a source of protein. Biotechnology Advances 25, 207-210.
- Benemann, J.R., Oswald, W.J., 1996. Systems and economic analysis of microalgae ponds for conversion of CO2 to biomass. Final report. ; California Univ., Berkeley, CA (United States). Dept. of Civil Engineering, p. Medium: ED; Size: 214 p.
- Bernard, O., Hadj-Sadok, Z., Dochain, D., Genovesi, A., Steyer, J.P., 2001. Dynamical model development and parameter identification for an anaerobic wastewater treatment process. Biotechnology and Bioengineering 75, 424-438.
- Borowitzka, M.A., 2005. Culturing microalgae in outdoor ponds. Book Chapter, School of Biological Sciences and Biotechnology.
- Breeze, P., 2016. Solar Power Generation.
- Briskin, D.P., 2000. Medicinal Plants and Phytomedicines. Linking Plant Biochemistry and Physiology to Human Health. Plant Physiology 124, 507-514.
- Cabello, J., Morales, M., Revah, S., 2014. Dynamic photosynthetic response of the microalga Scenedesmus obtusiusculus to light intensity perturbations. Chemical Engineering Journal 252, 104-111.
- Cairns, W.L.a.J.M., 1996. New advances in ultraviolet light disinfection technology. WEAO Technical Symposium, Toronto, Ontario.
- Camp, D.M., Spring Creek, 1997. CSO Disinfection Pilot Study. AWPCP Upgrade, Final Report, New York, New York.
- Castillo, A.B., Al-Maslamani, I., Obbard, J.P., 2016. Prevalence of microplastics in the marine waters of Qatar. Marine Pollution Bulletin 111, 260-267.
- Chisti, Y., 2007. Biodiesel from microalgae. Biotechnology Advances 25, 294-306.
- Corporation, D., 2018. Dryers
- Craggs, R., Park, J., Heubeck, S., Sutherland, D., 2014. High rate algal pond systems for lowenergy wastewater treatment, nutrient recovery and energy production. New Zealand Journal of Botany 52, 60-73.
- Das, P., Thaher, M.I., Hakim, M., Al-Jabri, H.M.S.J., Alghasal, G.S.H.S., 2016. A comparative study of the growth of Tetraselmis sp. in large scale fixed depth and decreasing depth raceway ponds. Bioresource Technology 216, 114-120.
- Davis, R., Aden, A., Pienkos, P.T., 2011. Techno-economic analysis of autotrophic microalgae for fuel production. Applied Energy 88, 3524-3531.

- Davis, R., Markham, J., Kinchin, C., Grundl, N., Tan, E.C.D., Humbird, D., 2016. Process Design and Economics for the Production of Algal Biomass: Algal Biomass Production in Open Pond Systems and Processing Through Dewatering for Downstream Conversion, United States.
- Davis, R.E., Fishman, D.B., Frank, E.D., Johnson, M.C., Jones, S.B., Kinchin, C.M., Skaggs, R.L., Venteris, E.R., Wigmosta, M.S., 2014. Integrated Evaluation of Cost, Emissions, and Resource Potential for Algal Biofuels at the National Scale. Environmental Science & Technology 48, 6035-6042.
- Delrue, F., Setier, P.A., Sahut, C., Cournac, L., Roubaud, A., Peltier, G., Froment, A.K., 2012. An economic, sustainability, and energetic model of biodiesel production from microalgae. Bioresource Technology 111, 191-200.
- Duffie, J.A., Beckman, W.A., 2013. Solar Engineering of Thermal Processes, 4th Edition. John Wiley & Sons.
- E Wiley, P., Campbell, J., McKuin, B., 2011. Production of Biodiesel and Biogas from Algae: A Review of Process Train Options.
- F.G. Acie'n, J.M.F.n., E. Molina-Grima, 2014. Economics of Microalgae Biomass Production, Biofuels from Algae. 2014 Elsevier B.V., Department of Chemical Engineering, University of Almeri'a, Almeri'a, Spain.
- Godwin, A.D., 2017. Indiana Wastewater Treatment Plant Installs Evoqua UV system
- WaterWorld Magazine
- Guccione, A., Biondi, N., Sampietro, G., Rodolfi, L., Bassi, N., Tredici, M.R., 2014. *Chlorella* for protein and biofuels: from strain selection to outdoor cultivation in a Green Wall Panel photobioreactor. Biotechnology for Biofuels 7, 2-29.
- Hernández-Calderón, O.M., Ponce-Ortega, J.M., Ortiz-del-Castillo, J.R., Cervantes-Gaxiola, M.E., Milán-Carrillo, J., Serna-González, M., Rubio-Castro, E., 2016. Optimal Design of Distributed Algae-Based Biorefineries Using CO2 Emissions from Multiple Industrial Plants. Industrial & Engineering Chemistry Research 55, 2345-2358.
- Hoffman, J., Pate, R.C., Drennen, T., Quinn, J.C., 2017. Techno-economic assessment of open microalgae production systems. Algal Research 23, 51-57.
- Huesemann, M., Chavis, A., Edmundson, S., Rye, D., Hobbs, S., Sun, N., Wigmosta, M., 2018. Climate-simulated raceway pond culturing: quantifying the maximum achievable annual biomass productivity of *Chlorella sorokiniana* in the contiguous USA. Journal of Applied Phycology 30, 287-298.
- Huntley, M.E., Johnson, Z.I., Brown, S.L., Sills, D.L., Gerber, L., Archibald, I., Machesky, S.C., Granados, J., Beal, C., Greene, C.H., 2015. Demonstrated large-scale production of marine microalgae for fuels and feed. Algal Research 10, 249-265.
- Ishika, T., Moheimani, N.R., Bahri, P.A., 2017. Sustainable saline microalgae co-cultivation for biofuel production: A critical review. Renewable and Sustainable Energy Reviews 78, 356-368.
- Jazzar, S., Quesada-Medina, J., Olivares-Carrillo, P., Marzouki, M.N., Acién-Fernández, F.G., Fernández-Sevilla, J.M., Molina-Grima, E., Smaali, I., 2015. A whole biodiesel conversion process combining isolation, cultivation and in situ supercritical methanol transesterification of native microalgae. Bioresource Technology 190, 281-288.
- Jiménez-Pérez, M.V., Sánchez-Castillo, P., Romera, O., Fernández-Moreno, D., Pérez-Martínez, C., 2004. Growth and nutrient removal in free and immobilized planktonic green algae isolated from pig manure. Enzyme and Microbial Technology 34, 392-398.

- Jones, S.B., Zhu, Y., Anderson, D.B., Hallen, R.T., Elliott, D.C., Schmidt, A.J., Albrecht, K.O., Hart, T.R., Butcher, M.G., Drennan, C., Snowden-Swan, L.J., Davis, R., Kinchin, C., 2014. Process Design and Economics for the Conversion of Algal Biomass to Hydrocarbons: Whole Algae Hydrothermal Liquefaction and Upgrading. ; Pacific Northwest National Lab. (PNNL), Richland, WA (United States), p. Medium: ED; Size: 69 p.
- Judd, S.J., 2017. Membrane technology costs and me. Water Research 122, 1-9.
- Judd, S.J., Al Momani, F.A.O., Znad, H., Al Ketife, A.M.D., 2017. The cost benefit of algal technology for combined CO2 mitigation and nutrient abatement. Renewable and Sustainable Energy Reviews 71, 379-387.
- Jupsin, H., Praet, E., L Vasel, J., 2003. Dynamic mathematical model of high rate algal ponds (HRAP).
- Kadam, K.L., 2002. Environmental implications of power generation via coal-microalgae cofiring. Energy 27, 905-922.
- Kim, J., Lee, J.-Y., 2016. Optimal use of Na 2 CO 3 buffer for enhanced autotrophic growth of Nannochloris sp. and CO 2 bioremediation. Process Biochemistry 51, 2162-2169.
- Laboratory, N.E.T., 2010. Carbon Dioxide Enhanced Oil Recovery: Untapped Domestic Energy Supply and Long Term Carbon Storage Solution, Pittsburgh, PA. U.S Department of Energy
- Lam, M.K., Lee, K.T., 2014. Cultivation of *Chlorella vulgaris* in a pilot-scale sequential-baffled column photobioreactor for biomass and biodiesel production. Energy Conversion and Management 88, 399-410.
- Lardon, L., Helias, A., Sialve, B., Steyer, J.-P., Bernard, O., 2009. Life-cycle assessment of biodiesel production from microalgae. ACS Publications.
- Laumb, J.D., Kay, J.P., Holmes, M.J., Cowan, R.M., Azenkeng, A., Heebink, L.V., Hanson, S.K., Jensen, M.D., Letvin, P.A., Raymond, L.J., 2013. Economic and Market Analysis of CO2 Utilization Technologies – Focus on CO2 derived from North Dakota lignite. Energy Procedia 37, 6987-6998.
- Leduy, A., Therien, N., 1979. Cultivation of *spirulina* maxima in an annular photochemical reactor. The Canadian Journal of Chemical Engineering 57, 489-495.
- Li, J., Xu, N.S., Su, W.W., 2003. Online estimation of stirred-tank microalgal photobioreactor cultures based on dissolved oxygen measurement. Biochemical Engineering Journal 14, 51-65.
- Li, S., Xu, J., Chen, J., Chen, J., Zhou, C., Yan, X., 2014. The major lipid changes of some important diet microalgae during the entire growth phase. Aquaculture 428, 104-110.
- Liao, Q., Sun, Y., Huang, Y., Xia, A., Fu, Q., Zhu, X., 2017. Simultaneous enhancement of Chlorella vulgaris growth and lipid accumulation through the synergy effect between light and nitrate in a planar waveguide flat-plate photobioreactor. Bioresource Technology 243, 528-538.
- Liu, Z., Zhang, F., Chen, F., 2013. High throughput screening of CO 2-tolerating microalgae using GasPak bags. Aquatic Biosystems 9, 23.
- Ltd, G.S.E.C., 2017. Parabolic Trough Solar Collector.
- Lundquist, T.J., Woertz, I.C., Quinn, N., Benemann, J.R., 2010. A realistic technology and engineering assessment of algae biofuel production. Energy Biosciences Institute, 1.

- M. Raees, A., Ben-Hamadou, R., 2015. Characterization of microalgae species from Qatar coastal waters for animal feed production. Qatar University / Graduate Studies/ College of Art and Sciences.
- Malato, S., Fernández-Ibáñez, P., Maldonado, M.I., Blanco, J., Gernjak, W., 2009. Decontamination and disinfection of water by solar photocatalysis: Recent overview and trends. Catalysis Today 147, 1-59.
- McGuigan, K.G., Conroy, R.M., Mosler, H.-J., Preez, M.d., Ubomba-Jaswa, E., Fernandez-Ibañez, P., 2012. Solar water disinfection (SODIS): A review from bench-top to roof-top. Journal of Hazardous Materials 235-236, 29-46.
- Meher, L.C., Vidya Sagar, D., Naik, S.N., 2006. Technical aspects of biodiesel production by transesterification—a review. Renewable and Sustainable Energy Reviews 10, 248-268.
- Mohamad, S., Fares, A., Judd, S., Bhosale, R., Kumar, A., Gosh, U., Khreisheh, M., 2017. Advanced wastewater treatment using microalgae: effect of temperature on removal of nutrients and organic carbon. IOP Conference Series: Earth and Environmental Science 67, 012032.
- Muller, J., and Lem, W., 2011. UV disinfection of storm water flows and low UVT wastewaters. IUVA News 13(3) 13-17.
- Mutanda, T., Ramesh, D., Karthikeyan, S., Kumari, S., Anandraj, A., Bux, F., 2011. Bioprospecting for hyper-lipid producing microalgal strains for sustainable biofuel production. Bioresource Technology 102, 57-70.
- Norsker, N.-H., Barbosa, M.J., Vermuë, M.H., Wijffels, R.H., 2011. Microalgal production A close look at the economics. Biotechnology Advances 29, 24-27.
- Orfield, N.D., Keoleian, G.A., Love, N.G., 2014. A GIS based national assessment of algal biooil production potential through flue gas and wastewater co-utilization. Biomass and Bioenergy 63, 76-85.
- Perry, R.H., 2008. Perry's chemical engineers' handbook.
- Programme, I.g.g.R.D., 2000. Leading options for the capture of CO2 emissions at power stations.
- Qadir, M., Wichelns, D., Raschid-Sally, L., McCornick, P.G., Drechsel, P., Bahri, A., Minhas, P.S., 2010. The challenges of wastewater irrigation in developing countries. Agricultural Water Management 97, 561-568.
- Qatar, S.o., 2013. State of Qatar Ministry of Development Planning and Statistics Environment Statistics Annual Report
- Qatar, S.o., 2014. Environment Statistics Annual Report
- Rafferty, K.D., Culver, G., 1998. Chapter 11. Heat Exchangers. ; Geo-Heat Center, Klamath Falls, Oregon.
- Raven, J.A., Geider, R.J., 1988. Temperature and algal growth. New Phytologist 110, 441-461.
- Rodolfi, L., Chini Zittelli, G., Bassi, N., Padovani, G., Biondi, N., Bonini, G., Tredici, M.R., 2009. Microalgae for oil: Strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnology and Bioengineering 102, 100-112.
- Saadaoui, I., Al Ghazal, G., Bounnit, T., Al Khulaifi, F., Al Jabri, H., Potts, M., 2016. Evidence of thermo and halotolerant Nannochloris isolate suitable for biodiesel production in Qatar Culture Collection of Cyanobacteria and Microalgae. Algal Research 14, 39-47.
- Sciandra, A., 1986. Study and modelling of a simple planktonic system reconstituted in an experimental microcosm. Ecological modelling 34, 61-82.

- Secretariat, G., 2005. Bulletin of Employment, Wages and Working Hours in: Design and Editing communications Development incorporated, W., DC. (Ed.). General Secretariat for development Planning
- Shah, Y.T., Kelkar, B.G., Godbole, S.P., Deckwer, W.-D., 1982. Design parameters estimations for bubble column reactors. AIChE Journal 28, 353-379.
- Shamim Ahmad, K.H. Javed, M.Murad, 1989. Full Scale Performance of Primary Settling Tanks. Engineering Journal of Qatar University Vol. 2, 1989.
- Shurair, M.S., Fares Almomani, Simon Judd, Rahul R. Bhosale, Kumar, A., 2016. Potential for green algae *spirulina* to capture carbon dioxide from gas stream. Materials for Energy, Efficiency and Sustainability: TechConnect Briefs 2016, 141-143.
- Slade, R., Bauen, A., 2013. Micro-algae cultivation for biofuels: Cost, energy balance, environmental impacts and future prospects. Biomass and Bioenergy 53, 29-38.
- Smith, R.A., 1980. The theoretical basis for estimating phytoplankton production and specific growth rate from chlorophyll, light and temperature data. Ecological Modelling 10, 243-264.
- Statista, 2016. The Statistics Portal Qatar Statistics & Facts.
- Statistics, M.o.D.P.a., 2017. Water statistics in the state of Qatar, 2015.
- Statistics, S.o.Q.-M.o.D.P.a., 2013. Environment Statistics Annual Report
- Stepan, E., Enascuta, C.-E., Oprescu, E.-E., Radu, E., Radu, A., Galan, A.-M., Vasilievici, G., Lavric, V., Velea, S., 2016. Intermediates for synthetic paraffinic kerosene from microalgae. Fuel 172, 29-36.
- Stewart, K.M., 2005. The Lakes Handbook Volume 2, Lake Restoration and Rehabilitation Edited By Patrick O'sullivan and Colin s. . Environmental Conservation 32, 279-280.
- Sun, A., Davis, R., Starbuck, M., Ben-Amotz, A., Pate, R., Pienkos, P.T., 2011. Comparative cost analysis of algal oil production for biofuels. Energy 36, 5169-5179.
- Takagi, M., Watanabe, K., Yamaberi, K., Yoshida, T., 2000. Limited feeding of potassium nitrate for intracellular lipid and triglyceride accumulation of *Nannochloris* sp. UTEX LB1999. Applied Microbiology and Biotechnology 54, 112-117.
- Teo, C.L., Idris, A., Zain, N.A.M., Taisir, M., 2014. Synergistic effect of optimizing light-emitting diode illumination quality and intensity to manipulate composition of fatty acid methyl esters from *Nannochloropsis* sp. Bioresource Technology 173, 284-290.
- Terigar, B.G., Theegala, C.S., 2014. Investigating the interdependence between cell density, biomass productivity, and lipid productivity to maximize biofuel feedstock production from outdoor microalgal cultures. Renewable Energy 64, 238-243.
- Touati, F., Chowdhury, N., Benhmed, K., Gonzales, A., Jr., A. Al-Hitmi, M., Benammar, M., Gastli, A., Ben-Brahim, L., 2017. Long-term performance analysis and power prediction of PV technology in the State of Qatar.
- Toze, S., 2006. Reuse of effluent water—benefits and risks. Agricultural Water Management 80, 147-159.
- Turton, R.a.B., R.C. and Whiting, W.B., 1998. Analysis, synthesis and design of chemical processes.
- Vasudevan, V., Stratton, R.W., Pearlson, M.N., Jersey, G.R., Beyene, A.G., Weissman, J.C., Rubino, M., Hileman, J.I., 2012. Environmental Performance of Algal Biofuel Technology Options. Environmental Science & Technology 46, 2451-2459.

- Wahidin, S., Idris, A., Shaleh, S.R.M., 2013. The influence of light intensity and photoperiod on the growth and lipid content of microalgae *Nannochloropsis* sp. Bioresource Technology 129, 7-11.
- Watanabe, K., Fujii, K., 2016. Isolation of high-level-CO 2-preferring *Picochlorum* sp. strains and their biotechnological potential. Algal Research 18, 135-143.
- Weidenfeller, B., Höfer, M., Schilling, F.R., 2004. Thermal conductivity, thermal diffusivity, and specific heat capacity of particle filled polypropylene. Composites Part A: Applied Science and Manufacturing 35, 423-429.
- WHO, 2006. Guidelines for the Safe Use of Wastewater, Excreta and Greywater. Vol. 2: Wastewater Use in Agriculture.
- Wileman, A., Ozkan, A., Berberoglu, H., 2012. Rheological properties of algae slurries for minimizing harvesting energy requirements in biofuel production. Bioresource technology 104, 432-439.
- Wojtenko, I., K. Stinson, M., Field, R., 2001. Challenges of Combined Sewer Overflow Disinfection by Ultraviolet Light Irradiation.
- Zhu, Y., Albrecht, K.O., Elliott, D.C., Hallen, R.T., Jones, S.B., 2013. Development of hydrothermal liquefaction and upgrading technologies for lipid-extracted algae conversion to liquid fuels. Algal Research 2, 455-464.
- Znad, H., Al Ketife, A.M.D., Judd, S., 2018a. Enhancement of CO2 biofixation and lipid production by *Chlorella vulgaris* using coloured polypropylene film. Environmental Technology, 1-7.
- Znad, H., Al Ketife, A.M.D., Judd, S., AlMomani, F., Vuthaluru, H.B., 2018b. Bioremediation and nutrient removal from wastewater by *Chlorella vulgaris*. Ecological Engineering 110, 1-7.

#### List of Tables

 Table 1: Reported most influential key operational parameters on algal growth parameters of microalgae Nannochloris. sp.

Table 2: Design and operating APR parameters

- Table 3: Water and gas concentrations used for calibration, along with source data
- Table 4: Numerical values of model parameters
- Table 5: Numerical values of model parameters used for validation (Fig. 5)
- Table 6: Cost parameter values

| System                               | Cultiv.        | $TN_{\rm in}$ , | $TP_{\rm in}$ , | TC <sub>init</sub> | COD <sub>init</sub> , | Salinity | pН             | Light int,       | Inlet                                      | <i>Т</i> , °С         | $P_X$ , g L <sup>-1</sup>                | RE TP,    | RE TN,   | $\mu$ , d <sup>-1</sup>                  | X <sub>max</sub> | Ref.                            |
|--------------------------------------|----------------|-----------------|-----------------|--------------------|-----------------------|----------|----------------|------------------|--------------------------------------------|-----------------------|------------------------------------------|-----------|----------|------------------------------------------|------------------|---------------------------------|
| Config.                              | media          | mg L-1          | mg L-1          | mg L-1             | mg L <sup>-1</sup>    | g L-1    | -              | μΕ               | CO <sub>2</sub> C <sub>cg</sub> ,<br>% v/v |                       | d-1                                      | %         | %        |                                          | g L-1            |                                 |
| Btc.                                 | F/2            | nr              | nr              | nr                 | nr                    | 40       | 7-8            | 100 <sup>a</sup> | 3                                          | 30                    | 0.05-<br>0.04                            | nr        | nr       | 0.09-<br>0.18                            | 0.4-0.8          | (M. Raees and Ben-Hamadou 2015) |
| Btc.                                 | Ss             | nr              | nr              | nr                 | nr                    | nr       | 8.2            | 50<br>100<br>200 | nr                                         | 23                    | nr                                       | nr        | nr       | 0.299<br>0.268<br>0.299                  | nr<br>nr<br>nr   | (Wahidin et al., 2013)          |
| Btc.                                 | BBM            | 240             | 50              | nr                 | nr                    | 0.025    | 8-9            | 120              | nr                                         | 20                    | nr                                       | 0.8       | 3.5      | nr                                       | nr               | (Jiménez-Pérez et al., 2004)    |
| Btc.                                 | BM             | 130             | 20              | nr                 | nr                    | 29       | 8              | 150              | nr                                         | 30                    | nr                                       | nr        | nr       | nr                                       | 2.6              | (Takagi et al., 2000)           |
| Btc.                                 | BG11<br>& glyc | 240             | 7               | 2.2                | 4-120 <sup>d</sup>    | 0.03     | 7.6            | 250              | nr                                         | 22                    | 0.08 <sup>b</sup> ,<br>0.19 <sup>c</sup> | nr        | nr       | 0.13 <sup>d</sup> -<br>0.22 <sup>c</sup> | 1.78-<br>1.96    | (Andruleviciute et al., 2014)   |
| Btc.                                 | F/2            | 30              | 6               | 120                | 6                     | 35-40    | 7 <sup>e</sup> | 257±11           | 99.9 <sup>e</sup>                          | 30                    | nr                                       | 100       | 96       | 0.3                                      | 2.1              | (Kim and Lee, 2016)             |
| Btc. <sup>f</sup><br>CC <sup>f</sup> | AM             | 233             | 30              | nr                 | nr                    | nr       | 8              | 200<br>950       | Nr <sup>g</sup>                            | 23<br>20 <sup>f</sup> | 0.16<br>0.26 <sup>h</sup>                | 100<br>96 | 99<br>93 | nr<br>nr                                 | 2.2<br>~1.6      | (Jazzar et al., 2015)           |

Table 1: Reported most influential key operational parameters on algal growth parameters of microalgae Nannochloris. sp.

Btc. batch process; CC continuous process; BBM Blod's Basel Medium; BM Basic medium; BG11 Blue green medium; HRT hydraulic residence time; MWw municipal wastewater; nr Not reported; ared & blue system used; bsterilized sea water mixed with marine medium, dCOD calculated based on glycerol concertation. dAutotrophic,  $^{c}$ Mixtrophic,  $^{g}$ equivalent to removal of 90% of nutrients in MWw, e CO<sub>2</sub> gas was bubbled frequently to control pH at 7, Whereas pH initial value was 9, AM algal medium, f the cultivation process was maintained at 20°C by circulting thermostaed waster through PBR water jacket, g CO<sub>2</sub> gas was injected on demand, h 0.16 L d<sup>-1</sup> was used a dilution rate.

| Variable                                         | Units                                           | Value              |
|--------------------------------------------------|-------------------------------------------------|--------------------|
| Target annual biomass production                 | tn                                              | $4 \times 10^{4}$  |
| Target annual biofuel production                 | L y <sup>-1</sup>                               | $19 \times 10^{6}$ |
| APR reactor (pond) surface area                  | ha                                              | 1                  |
| Total area requirement, incl. inoculation system | ha                                              | 300                |
| Average daily algal biomass productivity         | g dry biomass L <sup>-1</sup>                   | 0.5                |
|                                                  | tn dry biomass ha <sup>-1</sup> d <sup>-1</sup> | 0.38               |
| Average annual algal biomass productivity        | tn ha <sup>-1</sup> y <sup>-1</sup>             | 133 <sup>a</sup>   |
| Algal bio-crude fraction                         | wt%                                             | 0.5                |
| Oil density                                      | kg m <sup>-3</sup>                              | 880                |
| Recovery faction                                 | %                                               | 95                 |

Table 2: Design and operating APR parameters

<sup>a</sup>Based on 350 days of operation per year

ΤN, TP, IC, OC, Τ, No *I₀*, C,cg,Refs  $\underline{mg} L^{-1}$ μE  $mg L^{-1}$  $mg L^{-1}$  $mg L^{-1}$ °C (%) *P1* 100 99.9 240 36 3.2 40 (Saadaoui et al., 3 2016)) 5 P2 2.8 3 75 4 100 30 (M. Raees and Ben-Hamadou, 2015) Р3 5.5 119 2.5 99.9 30 257±11.7 30 (Kim and Lee, 2016) P4240 7 2.2 50 240 25 5 (Liao et al., 2017)

Table 3: Water and gas concentrations used for calibration, along with source data

TN Total nitrogen; TP Total phosphorus; IC inorganic carbon; OC Organic carbon; I<sub>0</sub> incident light; C<sub>,cg</sub> CO<sub>2</sub> gas concentration.

Table 4: Numerical values of model parameters<sup>a</sup>

| <b>Parameter</b> | <u>Units</u>          | Estimated value                                  |
|------------------|-----------------------|--------------------------------------------------|
| $\mu_{max}$      | d-1                   | 1                                                |
| $K_n$            | mg L <sup>-1</sup>    | 0.5                                              |
| $K_p$            | mg L <sup>-1</sup>    | 0.34                                             |
| $K_c$            | mg L <sup>-1</sup>    | $0.093 \times 10^{2}$                            |
| $K_{oc}$         | mg L <sup>-1</sup>    | 7.83                                             |
| $K_{ih}$         | mg L <sup>-1</sup>    | $53.8 \times 10^2$                               |
| Is               | $\mu E m^{-2}s^{-1}$  | 16                                               |
| $Y_n$            | -                     | 7×10 <sup>-1</sup>                               |
| $Y_p$            | -                     | $9.9 \times 10^{-1}$                             |
| $Y_C$            | -                     | 9.9×10 <sup>-1</sup>                             |
| $Y_{OC}$         | -                     | $1.14 \times 10^{-2}$ ,                          |
| $Y_{O2}$         | -                     | 0.534, (Li et al., 2003)                         |
| n                | -                     | 0.12                                             |
| $d_{th}$         | d-1                   | 9×10 <sup>-2</sup>                               |
| $k_C$            | d <sup>-1</sup>       | 5×10 <sup>-1</sup>                               |
| $D_C$            | $m^2 s^{-1}$          | 14.7×10 <sup>-9</sup> , (Raven and Geider, 1988) |
| $D_O$            | $m^2 s^{-1}$          | 8.0×10 <sup>-9</sup> , (Raven and Geider, 1988)  |
| $K_L$            | g m <sup>-2</sup>     | 15                                               |
| $K_s$            | mg L <sup>-1</sup>    | 7.83                                             |
| $f_p$            | d                     | Hours 6 to hours 19                              |
| $I_d$            | $\mu E m^{-2} s^{-1}$ | $4 \times 10^{2}$                                |
| $H_{e,C}$        | -                     | 8.23×10 <sup>-1</sup> , (Perry, 2008)            |
| $H_{e,O}$        | -                     | 3.2×10 <sup>-2</sup> , (Perry, 2008)             |

<sup>a</sup>Parameters used in mathematical model for biomass and nutrients

#### Al Ketife et al: TEA of MCT implementation in the Arabian Gulf

| No                                       | TN,                            | $TP, mg L^{-1}$  | IC,<br>mg L <sup>-1</sup>       | OC,                      | <i>I</i> 0,        | T,<br>°C              | $C_{cg},$           | Refs                            |                                                                              |
|------------------------------------------|--------------------------------|------------------|---------------------------------|--------------------------|--------------------|-----------------------|---------------------|---------------------------------|------------------------------------------------------------------------------|
| <i>P1</i>                                | <i>mg L<sup>-1</sup></i> 240   | <u>mg L</u><br>7 | 2.4                             | $\frac{mg L^{-1}}{40}$   | μE<br>250          | 25                    | <u>(%)</u><br>0.034 | (Andruleviciute et a            | 1 2014)                                                                      |
| P2                                       | 31                             | 4.11             | 2.4<br>560                      | 5.5                      | 257                | 25<br>25              | 12                  | (And devicture et a             | 1., 2014)                                                                    |
|                                          |                                |                  |                                 |                          |                    |                       |                     |                                 |                                                                              |
| able 6<br><i>Term</i>                    | : Cost paran                   |                  | es<br>Cost, \$.kg <sup>-1</sup> | Notes                    |                    |                       |                     |                                 | Refs                                                                         |
|                                          |                                | à                | ry biomass                      | 110705                   |                    |                       |                     |                                 | Rejs                                                                         |
|                                          | tems used in<br>tost of inocul |                  | .36                             | Calculate<br>GWP des     |                    | ent sti               | ıdy: cos            | t of inoculum based             | (Guccione et al.,<br>2014; Norsker et<br>al., 2011; Rodolfi<br>et al., 2009) |
| <i>Dfg<sub>Co</sub>,</i><br>flu gas      | , cost of deli                 | vered 0          | .02                             | Calculate content ir     |                    |                       |                     | sed on 52% carbon               | (Laboratory, 2010)                                                           |
| -                                        | cost of cultiv                 | ation 0          | .09                             |                          | -                  | •                     |                     | R mixing costs                  | (Norsker et al., 2011)                                                       |
| Ab <sub>Co</sub> , o<br>treatm           | cost of abiot                  | ic 0             | .012                            | Calculate                | d, curre           | ent stu               | dy: incl            | udes filtration.                | (Judd, 2017)                                                                 |
|                                          | cost of                        | 0                | .0035                           | Calculate<br>full waste  |                    |                       | •                   | ed on 35 Wh.m <sup>-2</sup> for | (Muller, 2011)                                                               |
| $WW_{Co}$ , cost of delivered 0.04<br>WW |                                |                  |                                 | Calculate                | (Sun et al., 2011) |                       |                     |                                 |                                                                              |
|                                          | cost of solar                  | 0                | .012                            | Calculate<br>for cell ha |                    |                       | dy: base            | d on energy required            | (Norsker et al., 2011)                                                       |
|                                          | , cost of bio                  | crude 0          | .00401ª                         |                          |                    |                       | dy: assu            | med 50% conversion              | (Zhu et al., 2013)                                                           |
|                                          | , cost of labo                 | our O            | .088                            |                          |                    |                       |                     | re information for costs        | (Hoffman et al.,<br>2017; Secretariat<br>2005)                               |
| TOTA<br>OUT(                             | AL<br>GOINGS                   | 0                | .630                            |                          |                    |                       |                     |                                 | 2000)                                                                        |
| <u>Credit</u><br>MCT                     | titems used                    | <u>in</u>        |                                 |                          |                    |                       |                     |                                 |                                                                              |
|                                          | redit from ca                  | urbon 0          | .003 <sup>b</sup>               | Estimated                | l, curre           | nt stud               | ly                  |                                 |                                                                              |
|                                          | credit form N                  | N 0              | .03°                            | Estimated                | l, curre           | nt stud               | ły                  |                                 |                                                                              |
|                                          | credit form H                  | <b>P</b> 0       | .025 <sup>c</sup>               | Estimated                | l, curre           | nt stud               | ly                  |                                 |                                                                              |
|                                          | credit from f                  | lue 0            | .025 <sup>b</sup>               | Estimated                | l, curre           | nt stud               | ły                  |                                 |                                                                              |
| Ae <sub>Cr</sub> , A                     | Aeration ene<br>for flue gas   | rgy 0            | .0019                           | Estimated in referen     |                    | nt stu                | dy: calc            | ulated based on data            | (Orfield et al., 2014)                                                       |
| BODC                                     | r, credit fron removed         | n 0              | .0009 <sup>d</sup>              |                          | oval efficiency    | (Craggs et al., 2014) |                     |                                 |                                                                              |
| TOTA                                     | AL CREDIT<br>OPEX              |                  | .086<br>.544                    |                          |                    |                       |                     |                                 | ,                                                                            |

Based on electricity market price of 0.11 kWh<sup>-1</sup> (Ashghal-PWA, 2014) and currency conversion of 0.274 USD:QAR; <sup>b</sup>calculated, cf. average value for carbon capture using standard MEA amine scrubbing technology reported as 0.04 \$.kg<sup>-1</sup> (Benemann and Oswald, 1996; programme, 2000); <sup>c</sup> based on BOD removal cost 1.48 \$.kg<sup>-1</sup> (Davis et al., 2011). <sup>d</sup>based on 2% BOD removal efficiency.

#### List of figures

Figure 1: Number of studies undertaken within different subject areas, Nannochloris. sp.

Figure 2: Schematic diagram of wastewater pre-treatment, disinfection, and MCT processes used in TEA model.

Figure 3: Model strategy

Figure 4: Computed dynamic performance with respect to algal cell concentration and nutrient removal for wastewater quality and operating conditions of (a) P1, (b) P2, (c) P3 and (d) P4 (Table 3).

Figure 5: Computed dynamic performance with respect to algal cell concentration and nutrient removal for wastewater quality and operating conditions of (a) P1, and (b) P2 (Table 8).

Figure 6: Impact of key parameters on  $\sigma X$ , the proportional change in a selected parameter for a. 25% change in parameter X.

Figure 7: Experimentally determined vs. theoretically predicted biomass concentration over range of conditions indicated in Table 8: R2 = 0.99, P = 0.0001 and p>F = <0.0001 (i.e. significant). Dashed curved lines indicate >95% confidence bands; dashed horizontal lines represent mean of the Y leverage residuals (measurement of agreement with the model).

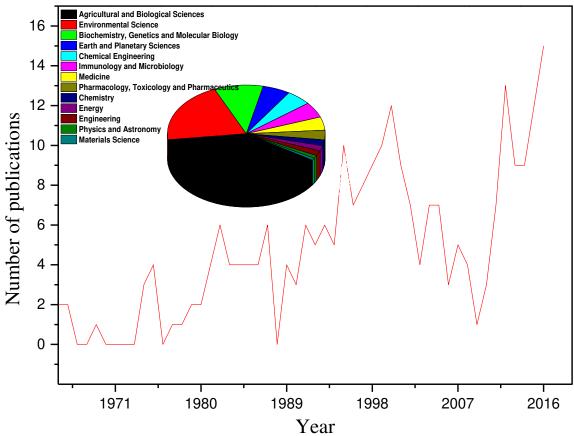



Figure 1: Number of studies undertaken within different subject areas, *Nannochloris*. sp. (SCOPUS database, search term "Nannochloris" for the period between 1965 and 2018).

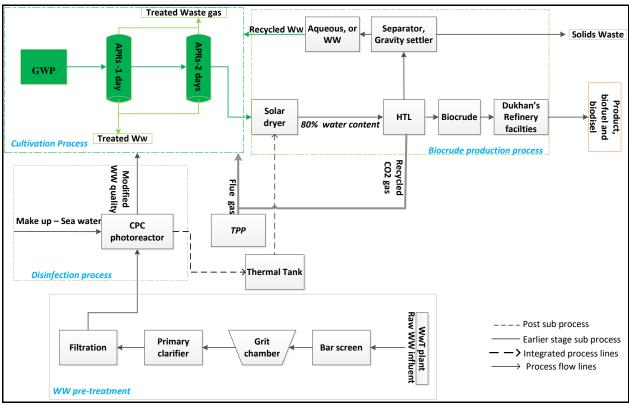
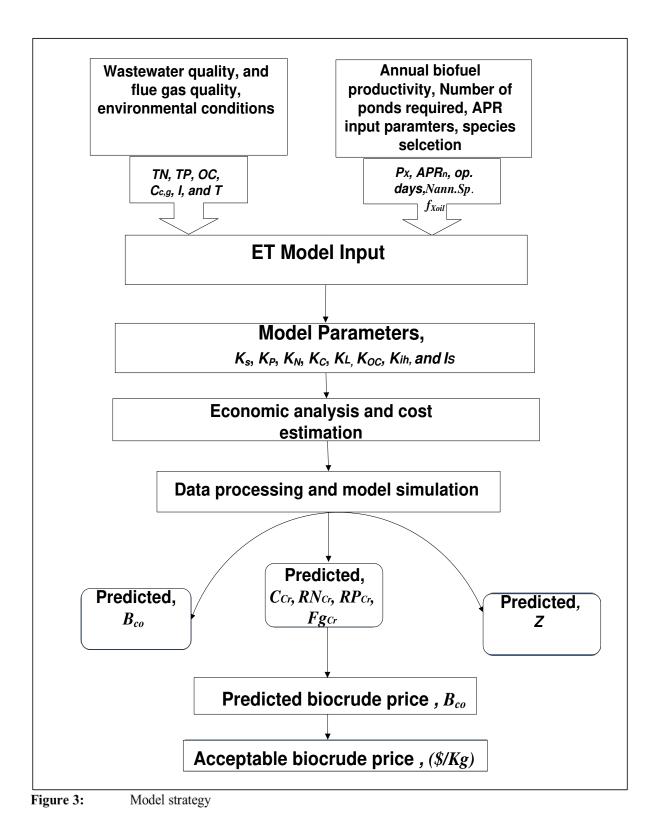




Figure 2: Schematic diagram of wastewater pre-treatment, disinfection, and MCT processes used in model.



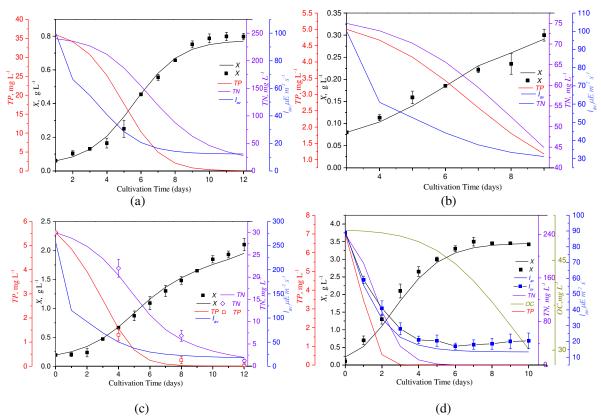



Figure 4:

Computed dynamic performance with respect to algal cell concentration and nutrient removal for wastewater quality and operating conditions of (a) P1, (b) P2, (c) P3 and (d) P4 (Table 3).

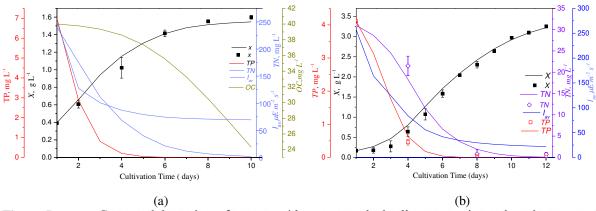



Figure 5:

Computed dynamic performance with respect to algal cell concentration and nutrient removal for wastewater quality and operating conditions of (a) P1, and (b) P2 (Table 5).

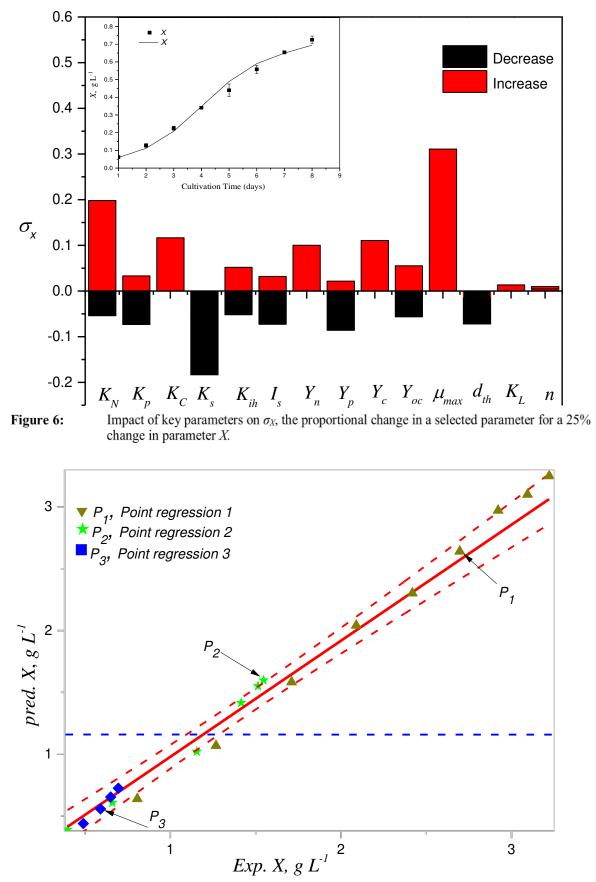



Figure 7: Figure 9: Experimentally determined vs. theoretically predicted biomass concentration over range of conditions indicated in Table 8:  $R^2 = 0.99$ , P = 0.0001 and p > F = <0.0001 (i.e. significant). Dashed curved lines indicate >95% confidence bands; dashed horizontal lines represent mean of the Y leverage residuals (measurement of agreement with the model)