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Abstract 

This study aims to characterize at landscape level the spatio-temporal dynamics of 

a massive oak decline that is occurring in dehesas ecosystems, looking at its 

possibilities of matching with Phytophthora disease behavior and to interpret its 

implications within the context of the disease management. Affected spots from 2001, 

2009 and 2016 identified through photo interpretation were analyzed with the 

inhomogeneous Ripley’s K function to identify spatial patterns. The relationship 

between affected/healthy spots with a range of landscape descriptors was investigated 

via the Multivariate Adaptive Regression Splines (MARS), a non-parametric data 

mining method. Affected spots showed a strong clustering pattern that decreased over 

time. The reported spatial patterns align with the hypothesis of Phytophthora 

cinnamomi Rands being the main cause of oak decline in Mediterranean forests. 

Affected spots from different years were found to be dependent, suggesting the 

implication of a contagion process. MARS models from 2001, 2009 and 2016 reported 

Area Under the Curve (AUC) values of 0.707, 0.671 and 0.651, respectively. Slope 
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was the most relevant landscape descriptor across the three years, with distance to 

afforestations being the second for 2001 and 2009. Landscape descriptors linked to 

human factors and soil water content seem to influence oak decline caused by P. 

cinnamomi at landscape level. Afforestations carried out as part of the afforestation 

subsidy program promoted by the European Commission in 1992 could have acted as 

an initial source of P. cinnamomi infection. These findings together with the 

consideration of the spatial and temporal scale of the spreading are essential when 

planning the management of oak decline in open woodlands.  

Keywords: Phytophthora cinnamomi; Dehesas ecosystems; Multivariate Adaptive 

Regression Splines; Inhomogeneous Ripley’s K; Afforestation; Disease spread. 
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Dear Editors, 

 

I am pleased to submit an original research article entitled:  

 

'Spatio-temporal analysis of oak decline process in open woodlands: A case study in 

SW Spain' 

. 

by Jesús Fernández-Habas, Pilar Fernández-Rebollo, Mónica Rivas Casado, Alma 

María García Moreno and Begoña Abellanas for consideration for publication in 

Journal of Environmental Management 

 

The main subject of our work is to investigate into the dynamics of the observed decline 

process in open woodlands of Mediterranean Quercus species that is a major concern in 

a wide region of southern Spain, mainly in agroforestry systems like the open forests of 

Quercus named dehesas, looking at its possibilities of matching with Phytophthora 

disease behavior and to interpret its implications within the context of the disease 

management. We have focused on the long-range spatio-temporal analysis. 

 

While there is a lot of progressing knowledge on the pathology of pathogen-driven 

decaying processess from an ecophysiological perspective, there is still a need of 

deepening into the relationship among the spreading of the forest decline processess and 

the environmental factors that have influence on them at large scales. Especially 

important in order to tackle the contention of the observed destructive process is 

analysing the relationship between agroforestry management practices and the 

advancement of these epidemic phenomena. This approach needs a long-range spatial 

and temporal insight that allows informing the best practice to face the fight against the 

forest cover shrinking. 

 

The present work has been focused on the long-range spatio-temporal analysis of the 

spreading of dieback and mortality observed in a wide region of dehesa systems in 

Southwestern Spain and over a period of more than 15 years, that comprises the major 

time period since the first foci were detected. The spatial and temporal analysis allowed 

us to confirm the rapid spreading of the disease and so the urgency of acting against it, 

and also the importance of some factors that are linked to managerial practices. 
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We have combined two methodologies for tackling with the main objectives; firstly we 

have dealt with spatial analysis of point patterns investigating second order 

characteristics functions (inhomogeneous Ripley's K and derivatives) and their 

evolution through time, in order to analyse the spatial pattern of affected trees and its 

evolution. This analysis has allowed us to confirm the epidemic nature of the disease, 

with a strong clustering of affected individuals and a highly spatial relationship between 

newly and previously affected spots, pointing to a contagious pathogen-driven process.  

 

Secondly, we have investigated the influence of environmental and managerial factors 

on the proneness to decaying of the studied area using the Multivariate Adaptive 

Regression Splines (MARS), a non-parametric data mining method that allowed us to 

look at relevant factors of very different nature. This method has proven very useful to 

enlighten the main external factors that have acted in the initiation of the disease at large 

spatial scale. The environmental factors related with water content have been confirmed 

as main influencers, and the afforestations with Quercus derived from ACP subsidies of 

European Union in the 1990s decade have revealed as a principal factor of initiation 

beside the intensity of human intervention. 

 

We think that these results are highly compatible with the effects of the disease caused 

by the oomicete Phytophthora cinnamomi that has been isolated in the studied region, 

and has been reported as one of the main pathogens involved in decline processess of 

Mediterranean oaks. Our results will be useful to inform the agroforestry managers and 

policy makers to improve their guidelines and managerial practices in the future. 

Besides, we propose a useful methodology to face the study of spatio-temporal 

phenomena that require both a short and a large range insight in order to achieve a 

sound understanding of them. 

 

For all the above we believe that this manuscript is appropriate for publication by 

Journal of Environmental Management and we would be very grateful if you would 

kindly consider it to publication. 

 

This study is part of a master thesis submitted at Cranfield University to complete the 

degree of MSc in Geographical Information Management by one of the authors. 

 

 This manuscript has not been published and is not under consideration for publication 

elsehwere. 

 

Thank you very much for your consideration 

Sincerely, 

 

Dr. Begoña Abellanas 

Associate Professor, Universidad de Córdoba 

Spain 



 

ANSWERS TO REVIEWER 3: 

 

1. MARS supposes a specific relationship between response and predictors. MARS 

supposes that the relationship is linear with a hinge, or as you said in the manuscript: 

MARS produces a regression line that is allowed to bend at certain knots or nodes that 

mark a change in the behavior of the function. 

This is why I was asking for a justification for using MARS. If there are reasons to 

think that the relationship is not hinged, MARS is not the best option. Other non-

parametric methods such as Poison point process, GAM, Random Forest, or Support 

vector machines should be considered. I am not saying that using MARS is wrong, but a 

justification is necessary. If the relationship is not curvilineal, MARS is obviously a 

good option. 

ANSWER: 

Besides the "flexibility"  of the model and the other qualities of it that we claimed in our 

previous answer to the Reviewer, we really think that there are sound reasons to believe 

that the response of our dependent variable (proneness to disease) to some of our 

covariates, fits well to a hinged relationship, and so to the splines approach, that allow 

to bend the regression line at certain knots. Mainly those covariates that are distances to 

some elements (distance to roads, water courses, reforested areas, reservoirs, or urban 

areas), are assumed that could have changing relationships with proneness to disease. 

We assume in our  model (and in our data) that affected trees do not recover and  all of 

them die, so, if it is true that any of these covariates are influential over the disease 

dynamics (as it is our hypothesis), the spatial progression  of the disease could derive in 

a changing relationship of disease with distance-defined covariates because the closest 

locations to those elements will not have been evermore affected once the trees in them 

had previously died. 

 

2. Training and test data. Still, it is not clear for me if the folds were separated in 

training and test data, or data were separated in training and test inside each fold. 

ANSWER: 

Yes, indeed the explanation about the training and test data was confusing, being the 

first of the two options that you point out what we have done: folds were separated into 

training and test data in each repetition. We re-wrote it in a simpler way. We hope it is 

clear now: 

The model outputs were validated via cross-validation. For that purpose, the dataset 

was randomly divided into five folds. Five validation models were built leaving, each 

time, one of the five folds apart for testing and using the other four for training. This 

way, five measures of R2 of the predictions were made. Following the recommendation 

of Milborrow (2018a), this process was repeated 3 times to average out the variation, 

ensuring more stable results. The final result of the cross-validation is the average of 

R2 values thus obtained denoted by CVRsq. 
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3 Null models can be calculated for any modelling method, presence-absence or 

presence-only method. In the case of presence-absence data, you need to generate two 

random point process, one for the presences and the other for the absences. The you can 

run the models as usual. This is obviously not essential for the paper, but it is worthy to 

try as this will indicate clearly if the empiric models are better than the null ones. 

ANSWER: 

We are grateful to the reviewer for the clarification and we agree that it would help to 

test if the empirical models are significantly different from random expectations. To do 

so, we followed the recommendations of the reviewer and the methodology of Raes& 

der Steege 2007 as it was suggested by the reviewer in the first revision. 99 null models 

with equal number of presence/absence data to the empirical models were run for each 

year (n=4,521 for 2001; n=8,632 for 2009; and n=28,617 for 2016). The 

presence/absence virtual data collection was randomly drawn from the modeled area 

(13,376,531 cells of 5x5 m). The methodology and the results have been changed as 

follow: 

In methodology: 

“The significance of MARS models was tested by the use of null-models (Raes 

and der Steege, 2007). For each year, 99 null-models were run by randomly drawing 

from the study area the same number of virtual presence/absence localities than for the 

empirical models. A model is considered as significantly different from random 

expectation if its AUC value exceeds the 95% quantile of the 99 null-model AUC 

values.” 

In results:  

“The three MARS models are significantly different from random since their AUC 

values clearly depart from the 95% quantile of the 99 null-model AUC values (Table 

3).”  

Table 3. Statistics of Multivariate Adaptive Regression Splines models for 2001, 

2009 and 2016. Area under the curve (AUC), 95% quantile of the 99 null-model AUC 

values (Null-models AUC 95% quantile), Generalized cross-validation (GCV), and 

mean of the out-of-fold R2 values (CVRsq). 

 

Year AUC 
Null-models AUC 

95% quantile 
GCV CVRsq 

2001 0.707 0.523 0.216 0.130 

2009 0.671 0.500 0.226 0.093 

2016 0.651 0.500 0.232 0.071 

Since we have been asked for a reduction of the length of the manuscript and there is a 

limit for the number of figures, we decided not to include the figure of the frequency 

histograms of the null models. Besides, they are not very illustrative as the 99 AUC 



values were quite close to 0.5 in 2001 and 2009 and all of them were equal to 0.5 in 

2016.  

 

4. ANOVA of repeated measures over time: please, confirm that your are considering 

the data independent over time. If the data is not independent, you need to use the 

ANOVA for repeated measures. 

ANSWER: 

Our approach does not match with a repeated measures analysis, as our data are timely 

independent. The affected trees on each date are different. We are mainly interested in 

the process of spreading of the disease. This is why when collecting data for each date 

(locations of affected trees), we rejected those of previous dates, independently of if the 

trees were still alive or already dead. 

 

5. Buffer 15 m: why this specific distance? Why not 10 or 20 m? 

ANSWER: 

 

We have justified in the text the distance chosen to establish the buffer area. The 

criterion used was to exceed the area occupied by the roots of the affected tree. The text 

has been modified as follows: 

It is not unusual in the zone that clustered trees are the same individual, sharing a 

unique rootstock, coming from ancient coppicing or root sprouts. For this reason, a 

buffer circle was associated to each affected tree and it was considered as affected spot. 

The size of the affected spot was established to exceed the area occupied by the roots of 

the affected tree. Dinis (2014) showed that, in dehesa, superficial oak roots can spread 

away at least two times the canopy projection for the majority of the directions 

(azimuths), reaching in some cases a maximum distance of four times the canopy 

projection. The average crown diameter of oak trees in this area was 8.9  0.06 m 

(Fernández-Rebollo et al. 2017), therefore the buffer distance turned out to be between 

8.9 m and 17.8 m. Finally, a buffer area of 15 m radius was chosen (Figure2: B). 

Affected trees falling within the 15m-buffer of the central affected one were not tagged 

as different ones to ensure that sprouts of the same tree were not counted as additional 

individuals. 
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Abstract 

This study aims to characterize at landscape level the spatio-temporal dynamics of a 

massive oak decline that is occurring in dehesas ecosystems. We are looking at possibilities 

of matching with Phytophthora disease behavior, a harmful disease detected in the studied 

area, in order to interpret its implications within the context of the disease management. 

Spatial locations of affected trees from 2001, 2009 and 2016 identified through 

photointerpretation were analyzed with the inhomogeneous Ripley's K-function to assess 

their spatial pattern. Multivariate Adaptive Regression Splines (MARS), a non-parametric 

data mining method, was used to investigate the influence of a range of landscape 

descriptors of different nature on the proneness to oak decline, using the location of affected 

trees in comparison with that of healthy spots (points randomly extracted from areas covered 

by healthy trees). 

Affected trees showed a strong clustering pattern that decreased over time. The reported 

spatial patterns align with the hypothesis of Phytophthora cinnamomi Rands. being the main 

cause of oak decline in Mediterranean forests. Location of affected trees detected in different 

years was found to be spatially related, suggesting the implication of a contagion process. 

MARS models from 2001, 2009 and 2016reported Area Under the Curve (AUC) values of 

0.707, 0.671and 0.651,respectively. Slope was the most influential landscape descriptor 

across the three years, with distance to afforestations being the second for 2001 and 2009. 

Landscape descriptors linked to human factors and soil water content seem to influence oak 

decline caused by Phytophthora cinnamomi at landscape level. Afforestations carried out as 

*Manuscript
Click here to view linked References



2 
 

 

part of the afforestation subsidy program promoted by the European Commission in 1992 

could have acted as an initial source of Phytophthora cinnamomi infection. These findings 

together with the consideration of the spatial and temporal scale of the spreading are 

essential when planning the management of oak decline in open woodlands.  

Keywords: Phytophthora cinnamomi; Dehesa ecosystems; Multivariate Adaptive 

Regression Splines; InhomogeneousRipley's K-function; Afforestation; Disease spread. 

 

1. Introduction. 

Oak open woodlands cover in the Iberian Peninsula 3,956,000 ha (Costa et al., 

2006), accounting for7% of the total area. This ecosystem, known as “Dehesa”, is mainly 

composed of Holm oak (Quercus ilex) and Cork oak (Quercus suber) combined with 

pastures in a savanna-like agroforestry system. Dehesas are considered to be one of the 

most biodiverse and multifunctional ecosystems (Martín et al., 2001; Díaz et al., 2003; 

Plieninger and  Wilbrand, 2001; Moreno and  Pulido, 2009; Bugalho et al.,  2011) and are 

known to provide multiple ecosystem services (e.g.pasture and acorn for livestock, cork 

production or biodiversity conservation). 

Oak decline has been reported in European forests since the beginning of the 20th 

century, becoming especially serious and widespread from the 1980s (Jung and Blaschke, 

2000; de Sampaio e Paiva Camilo-Alves et al., 2013). It endangers the sustainability of both 

Iberian dehesas and associated ecosystem services, being therefore of major concern for 

farmers, forest managers and government institutions alike.  

A range of biotic and abiotic factors as insects, fungi, drought, and other stress 

factors have been discussed as causes and predisposing factors of oak decline (Thomas et 

al., 2002). However, as Jung et al., (2018) state, these factors by themselves account for 

local and regional decline episodes rather than a worldwide phenomenon. Researches 

conducted since the early 1990s have suggested the oomycete Phytophthora cinnamomi 

Rands. as the main cause of oak decline in Mediterranean forests and open woodlands 

(Brasier, et al., 1993; Braisier, 1996; Gallego et al., 1999; Sánchez et al., 2002; Sánchez et 

al., 2003; Moreira and Martins, 2005; de Sampaio e Paiva Camilo-Alves et al., 2013; 

Linaldeddu et al., 2014). This soil-borne oomycete has been recognized as one of the most 

devastating plant pathogens in the world (Luque et al., 2014; Hardham and Blackman, 2018, 

Burgess et al., 2017; Sena et al., 2018). It affects a wide range of trees and shrubs, some of 

them of key economic and ecological importance such as oaks (Quercus sp.), eucalyptus 
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(Eucalyptus sp.), chestnut trees (Castanea sativa), and avocado (Persea americana) 

(Zentemeyer, 1980; Braisier, 1996; Cahill et al., 2008; Ploetz, 2013; Jung et al., 2017), 

amongst others. 

Oak decline processes are expected to become more frequent and virulent due to 

additive stress effects caused by increased temperature and drought periods driven by 

underlying climate change trends. These climatic patterns could also enhance the incidence 

of Phytophthora cinnamomi (Braisier, 1996; Sánchez et al., 2002; Bergot et al., 2004;de 

Sampaio e Paiva Camilo-Alves et al., 2013;Natalini et al., 2016; Duque-Lazo et al., 2018; 

Sena et al., 2018) 

The study of spatio-temporal patterns of oak decline spreading at landscape level, 

although essential to articulate effective management and control measures (Holdenrieder et 

al., 2004; Moreira and Martins, 2005; Costa et al., 2010; Peterson et al., 2014; Sena et al., 

2018; Duque-Lazo et al., 2018), has not received much attention. Landscape studies 

regarding the spatial patterns of the disease progression are needed to understand the 

influence of external factors acting on invasion and spreading processes further than local 

contagion (Ristaino and Gumpertz, 2000; Abellanas et al., 2017; Sena et al., 2018). 

Temporal analyses at landscape level could allow to assess the influence of changes in 

environmental factors on proneness to disease (i.e. management practices or changes in 

plant cover) (Holdenrieder et al., 2004) and also to weigh up the role of contagion (epidemic 

phenomenon) and new invasions (endemic issues) in disease spreading (Meyer et al.,2017). 

Studies at tree- and stand-level analyzing the influence of site factors have been carried out 

in Spain and Portugal (Sánchez et al., 2002; Moreira and Martins, 2005; de Sampaio e Paiva 

Camilo-Alves et al., 2013). These studies have shown significant relationships between 

some site variables (e.g., aspect, slope, and soil water content) and oak mortality caused by 

Phytophthora spp. (de Sampaio e Paiva Camilo-Alves et al., 2013; Cardillo et al., 2018). 

Wilson et al., (2003) studied the relationship of a wide range of variables with Phytophthora 

cinnamomi presence in vegetation communities from Australia to develop a predictive model. 

The results showed a negative association with elevation and positive with sun-index. In 

general, the local relationships obtained from tree level studies cannot be extrapolated to 

landscape analyses due to the complexity of the landscape and the multiple factors involved 

in the spreading. Studies at landscape-level focused on the forest disease named sudden 

oak death, caused by Phytophthora ramorum,  have shown the relationship between dead 

trees and landscape variables (e.g., forest edge). Some studies have reported spatial 

aggregation patterns in Phytophthora ramorum foci over time (California and Oregon, USA) 

(Kelly and Meentemeyer, 2002; Liu et al., 2007). 
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Within the context of open woodland ecosystems, Abellanas et al., (2017) and 

Cardillo et al., (2012) addressed the spatial patterns of oak decline in Spanish dehesas. Both 

studies found statistical relationships between affected oaks and their proximity to roads 

whereas Cardillo et al., (2012) found affected trees to be correlated to their proximity to 

watercourses. Spatio-temporal studies expanding the analysis to further factors not 

considered in previous studies (e.g., geomorphology or management practices) are required 

to better understand spread patterns. Here, we address the study of oak decline patterns at 

landscape level considering the possible influence of a wide range of landscape descriptors, 

the interaction among affected trees and the temporal evolution of the decline process. 

The aim of this study is to enhance and advance our understanding of the spatio-

temporal patterns of oak decline at landscape level in dehesa ecosystems. This is achieved 

through two overarching objectives and their interpretation within the context of disease 

management:  

(i) To characterize the spatial patterns of affected trees. 

(ii) To study the potential role of a set of landscape descriptors in the spread of 

oak decline in three surveyed years (2001, 2009 and 2016). 

2. Methodology 

Affected trees and healthy spots (points randomly extracted from areas covered by 

healthy trees) from 2001, 2009 and 2016 were identified and geolocated in "El Andevalo" 

Region (Huelva, Spain. Figure 1). A spatial analysis using inhomogeneous Ripley's K-

function was conducted to assess the spatial patterns of affected trees within years 

(univariate) and between years (bivariate). The association of oak decline with a set of 

potential predisposing factors the three years of study (2001, 2009 and 2016) was 

investigated implementing the non-parametric data mining technique Multivariate Adaptive 

Regression Splines (MARS).  

2.1. Study area selection 

“El Andevalo” (Huelva, Spain) is an area characterized by a sequence of rolling hills 

and plateaus. The average altitude along the area is150 m.a.s.l.“El Andevalo”’ has long and 

dry summers typical of the Mediterranean climate. The annual average precipitation is 550 

mm, and the average temperature 17ºC. Lithology is characterized by eutric cambisols, eutric 

regosols, and lithosols with rankers (climatic and lithologic data from REDIAM, 2018). The 

land cover is dominated by dehesas, recent afforestations, and arable lands, with livestock 

farming systems and cereals production being the dominant land uses within the area. The 
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afforestations were established mainly during the second half of the ‘90s promoted by the 

subsidy program 1992 EEC Regulation 2080/92by the European Commission in 1992 

(Jiménez and Navarro, 2014) aiming to convert agricultural lands into forested ones. 

The study area was selected based on well documented evidence of significant oak 

decline presence in the zone (Carrasco, 2009). Small foci appeared in the early ‘90s with 

research studies carried out in 1998 and 2000 isolatingPhytophthora cinnamomi from soil 

samples surveyed in farms from this area (Sánchez et al., 2002; Sánchez et al., 2003). 

Inside this region, the study area was defined by the dehesa covered areas (shape-file layer 

with the spatial distribution of dehesa areas from 1999, REDIAM, 2018)following the work by 

Abellanas et al., (2017). The analyses were carried out in this delimited dehesa area 

covering a total of 35,356 ha inside a total area of about 110,250 ha (45 km x 24,5 

km)(Figure1).  

 

Figure 1.Location of the study area in El Andevalo region. The study area matches the dehesa area of 

the region (brown), delimited by a shape file layer of the spatial distribution of dehesa areas from 1999 

(REDIAM, 2018). 
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2.2. Identification of affected and healthy trees. 

Aerial orthophotography at 0.5 m resolution collected in 2001 (July), 2009 (April-May) 

and 2016 (July) (Linea,2018) were photo-interpreted to identify trees affected by oak decline. 

The imagery was visually inspected by trained operators and all trees affected were identified 

based on partial or total defoliation(Figure 2, A and B; Abellanas et al., 2017; Cardillo et al.,  

2012). Oak decline in Mediterranean forest is characterized by progressive crown thinning, 

branch dieback and defoliation (Jung et al., 2018), although the range of symptoms could be 

highly variable within the same area (Gallego et al., 1999; Moreira and Martins, 2005; de 

Sampaio e Paiva Camilo-Alves et al., 2013).  

It is not unusual in the zone that clustered trees are the same individual, sharing a 

unique rootstock, coming from ancient coppicing or root sprouts. For this reason, a buffer 

circle was associated with each affected tree and it was considered as affected spot. The 

size of the affected spot was established to exceed the area occupied by the roots of the 

affected tree. Dinis (2014) showed that, in dehesa, superficial oak roots can spread away at 

least two times the canopy projection for the majority of the directions (azimuths), reaching in 

some cases a maximum distance of four times the canopy projection. The average crown 

diameter of oak trees in this area was 8.9  0.06 m (Fernández-Rebollo et al., 2017), 

therefore the buffer distance turned out to be between 8.9 m and 17.8 m. Finally, a buffer 

area of 15 m radius was chosen (Figure2.B). Affected trees falling within the 15m-buffer of 

the central affected one were not tagged as different ones to ensure that sprouts of the same 

tree were not counted as additional individuals. Affected spots showing symptoms of oak 

decline within livestock enclosures and also those closer than 15 meters to water bodies, 

were excluded from the analysis as their cause of death could be attributed to other local 

causes not linked to general oak decline episodes at landscape level(Cardillo et al.,  2012; 

Abellanas et al., 2017).Management practices of Holm and Cork oak trees that could lead to 

misclassification with (Figure 2.C) were also considered during the identification of affected 

spots. 
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 The accuracy in affected spots detection was assessed based on recognition of the 

status of affected spots in the following dates. The status (healthy/affected) of each spot 

considered as affected within the 2001 sample was identified in the 2009 imagery. Those 

that have not shown any symptoms in 2009 were considered to have been erroneously 

classed as affected in the previous date. Within the area, cutting dead trees is a common 

practice (Sánchez et al., 2002); affected trees identified in 2001 but not present in the 2009 

imagery were considered to have been cut and were classified as truly affected trees in 

2001. The same approach was used for 2009 regarding 2016 status. It was assumed that 

affected trees do not recover from the disease (Brasier, 1996). Percentage values of 

misclassification were assessed from a sample of affected spots n equal to 354 (2001) and 

368 (2009) for 95% confidence (Z=1.96) and 5% error (E=0.05), p=0.5, q=0.5 (being p and q 

the probabilities of success and failure, respectively) and N=total number of affected spots in 

each year in equation (1). From sampled spots classified as affected in 2001, 79% were 

classified as dead in 2009, 16% as symptomatic and only 5% were classified as healthy, 

being this figure the estimated error of observations in 2001. In 2009 a similar error figure 

was estimated:  84% of sampled spots classified as affected in 2009 were classified as dead 

in 2016, 12% as symptomatic, and 4% as healthy trees, being this figure the estimated error 

for 2009. 

Figure 2.A) Affected Holm oak by Phytophthora cinnamomi in El Andévalo region in 2009 showing 
evident defoliation. B) Spots affected by oak decline identified in El Andévalo in orthophoto from 2009. 
C) Left; Field with pruned trees showing similar appearance to defoliated trees due to oak decline. 
Right; Different field where trees have not been pruned (2009, El Andévalo). 
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                           (1) 

 

Even if the studied disease could affect other species, the main ones affected and 

those of our interest are the tree species in the dehesa, so for our purpose, we assume that 

the disease inhabits only on the trees. It was necessary, then, to estimate the susceptible 

area of infection as the tree-covered area among the entire study area, since we are dealing 

with open forests. The tree-covered area was identified using an object-based classification 

developed with the Example-Based Classification module from ENVI 5.4. For that purpose, 

RGB aerial photography from 1998 at 1 m resolution was used to ensure the whole tree-

covered area pre-2001 was captured. From this previous tree-covered area we derived 

"healthy-tree-covered areas" for each study date by subtracting the affected spots identified 

each date (15m radius buffer around each affected tree) from the previous "healthy tree-

covered area". From these shrinking healthy area, we successively randomly selected 

"healthy spots" whose central points were used to compare with affected spots. We used the 

same number of spots as the number of identified affected spots each year (Baddeley, 

2014). 

This data set of healthy and affected spots, converted to points (each spot 

represented by its central point), constituted the presence/absence data to fit the MARS 

models. Affected spots were also used for the analysis of spatial patterns of dispersion with 

inhomogeneous Ripley´s K-function. Since the objectives of the subsequent analyses were 

to characterize the spatial patterns of spread of oak decline and relations with landscape 

descriptors (MARS) in different years, those spots recorded as affected in previous years 

were excluded in the successive years, so only the newly affected spots were considered in 

each date. 

2.3. Extraction of landscape descriptors 

A total of ten landscape descriptors known to affect oak decline (Kelly and 

Meentemeyer, 2002; Wilson et al., 2003; Cardillo et al., 2012; de Sampaio e Paiva Camilo-

Alves et al., 2013; Abellanas et al., 2017; Peterson et al., 2014) were derived from available 

geographic data (Table 1). The first five topographic descriptors: ASPECT (compass 

direction -N, NE, E, SE, S, SW, W or NW- that the pixel faces in this location), SLOPE (slope 

gradient of each pixel calculated by the average maximum technique according Burrough 

and McDonell, 1998), ELV (Elevation) , FLOWAC (Flow Accumulation) and TMI 
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(Topographic Moisture Index) were extracted from a 5 m resolution Digital Elevation Model 

(DEM) from 2015 (IGN, 2018) using the following available tools in ArcMap 10: Aspect, Slope 

and Flow Accumulation (ESRI, 2016). The procedure to derive the Flow accumulation in 

ArcMap follows the methodology presented in Jenson and Domingue(1988), by which the 

derived value for a raster pixel represents the number of pixels flowing downslope into this 

pixel. A threshold value of 50 pixels was set to avoid bias caused by pixels falling in rivers, 

which could derive to extreme values. This threshold value was selected by comparing the 

flow accumulation values with the stream network used to represent watercourses for 

deriving variable WATER (Minimum distance to watercourses). Following the approach of 

Kelly and Meentemeyer (2002), the TMI was calculated according  to Moore et al., (1991):  

                (2) 

Where a is the upslope drainage given by the calculated flow accumulation 

(FLOWAC) and b represents the slope gradient. The extracted values were normalized.  

The values of these five variables at the location of the affected and healthy spots 

were extracted from the raster by Extract Multi Values to Points tool. The distance to features 

of the landscape was calculated with Near tool also from ArcMap 10.5. It represents the 

minimum distance from an affected/healthy spot to the closest corresponding feature, lines 

for ROADS and WATER, and the edge of the polygon for RESEV (Minimum Distance to 

reservoirs), REFOR (Minimum Distance to Afforested patches) and URBAN (Minimum 

distance to Urban polygons). For affected/healthy spots falling within the polygon, the 

distance is 0 m. Descriptive statistics of the extracted values of the variables are shown in 

Table 2.  

Data for the landscape descriptors that have suffered some changes over time 

(mainly those linked to human activities) were derived based on the closest (in time) data 

source available (Table 1). Regarding REFOR, the main reforestation activity in the region 

spanned from 1994 to 2001, but most of the affected land was reforested during the first half 

of the period; more than 75% was carried out between the years 1995 and 1998, and by the 

year 2000, a year before our first study date, more than 95% of the reforestation was already 

completed, so the reforested polygons considered to define the variable REFOR were the 

same for all the study dates. The Andalusian Administration responsible for the afforestation 

program provided the shape-files containing the forested polygons. 
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Table 1. Landscape descriptors considered for data analysis (REDIAM, 2018)1. (IGN, 2018)2. 

Regional Ministry of Agriculture, Fishing and Rural Development of Andalusia (JA)3. “Year” refers to 

the year for which the data source was available. S.R.: Spatial Resolution (m) 

Landscape descriptors Code Units Year Source S.R. 

Aspect ASPECT categorical 2015 DEM2 5 

Slope SLOPE degrees 2015 DEM2 5 

Elevation ELV m 2015 DEM2 5 

Flow accumulation FLOWAC N pixels 2015 DEM2 5 

Topographic moisture Index TMI dimensionless 2015 DEM2 5 

Distance to roads ROADS m 2009 IGN2 3 

Distance to watercourses  WATER m 2009/2016 IGN2 3 

Distance to afforestations REFOR m 2011 JA3 5 

Distance to urban areas  URBAN m 2005/2009/2013 Land use map1 5 

Distance to reservoirs  RESEV m 2005/2009/2015 Land use map1 5 

 

2.4. Spatial analysis of affected spots. 

Spatial patterns of oak decline spread within the study area were quantified using 

Ripley's K-function (Ripley, 1977). To perform this analysis, the coordinates of the central 

point of affected spots previously identified were extracted. Ripley's K-function is a second-

order characteristic widely used to assess spatial patterns at multiple scales in forests and 

plant ecology (Szwagrzyk and Czerwczak, 1993; Haase, 1995; Vacek and Lepš, 1996; 

Eccles et al., 1999; Getzin et al., 2008; Liu et al., 2014; Fibich et al., 2016). The function has 

been successfully applied to characterize spatial patterns of sudden oak death caused by 

Phytophthora ramorum (Kelly and Meentemeyer, 2002; Liu et al., 2007). 

Given a point pattern with intensity  , the K-function defined as  K(r), represents the 

expected number of points located within a distance (r) of a random point of the pattern 

(Ripley, 1977). For bivariate point patterns, where two types of points, i and j, share the 

space, K-function represents the number of points of type j within a distance r of a random 

point of type i, divided by the intensity  j of the pattern of points of type j (Wiegand, 2004). 

The K-function relies on the assumption that the point process is homogeneous (i.e., 

stationary and isotropic). Spatial trends and covariates of the point patterns could lead to 

non-spatially-constant intensity, this indicating inhomogeneous processes(Brodie et al., 

1995; Liu et al., 2007; Lin et al.,  2011). Liu et al. (2007) found better point pattern description 

when the spatial patterns of sudden oak death are considered as inhomogeneous. As the 

here studied affected trees intensity is expected to vary due to covariates (e.g., factors 

driving the initiation of the disease), the point processes were assumed to be 
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inhomogeneous and the inhomogeneous K-function was applied (Eq. 3a) (Baddeley et al., 

2000). This assumption ensured that the observed spatial interactions were not influenced by 

spatial variation of the intensity function (Liu et al., 2007). The notation for the 

inhomogeneous K-function is as follows: 

                                          
 

    (3a) 

Where R represents the study area;     is an edge correction factor; N is the total 

number of affected trees (points);       and       the intensity function values at points    and   ;    , distance between    and              equals to 1 if      , 0 otherwise. 

The dependency between pairwise affected spots patterns from different years was 

quantified via bivariate analysis of marked point patterns, being the year the point's mark 

(Baddeley, 2010). For that purpose, the generalized K-function, called inhomogeneous 

cross-K-function for bivariate inhomogeneous processes (Liu et al., 2007), was applied (3b).  

                                                 
   

  
    (3b) 

Where R represents the study area;      is an edge correction factor; Nm and Nn are 

the total number of newly affected trees in years m and n, respectively; di,j  is the distance 

between point sm,i of year m and point sn,I of yearn;                        are the values of 

intensity functions of point patterns of years m and n at points      and     , respectively;          equals to 1 if      , 0 otherwise. 

To facilitate the interpretation and visualization of Kinhom and cross-Kinhom the 

normalized function proposed by Besag, (1977)  was applied: 

                         (4) 

This function is used to investigate the departure from randomness of the point 

patterns in the case of its univariate form, and the independence between points of different 

types in the bivariate form. For univariate point patterns, values of L(r)-r close to zero for 

every r indicate randomness, while values greater than zero mean clustering patterns and 

values lower than zero are sign of overdispersed points. For bivariate point patterns, L(r)-r 
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equal zero means spatial independence between points of different types, being values 

greater than zero indication of attraction among points of different types at distance r, and, 

conversely, values lower than zero mean repulsion of points of different types. 

The analysis was implemented using “spatstat” / “earth” Rpackage in R studio (v. 

1.1.453) following Baddeley et al., 2018. To correct the edge effect of Ripley's K-function 

(Haase, 1995), the border method or “reduced sample”(Ripley, 1991) was applied due to its 

computational efficiency and suitability when dealing with non-geometrical windows 

(Baddeley et al., 2018). Statistical significance and confidence intervals of Ripley's K-function 

are commonly tested using Monte Carlo pointwise simulations envelopes. However, this 

method is valid as exploratory analysis but it cannot be used to define the level of 

significance (Loosmore and Ford, 2006; Baddeley et al., 2014; Velázquez et al., 2016). As 

Velázquez et al.,(2016) recommended, the statistically valid test global envelope (Myllymäki 

et al., 2017) was used to test the null hypothesis of random distribution. Using this test, the 

confidence intervals to assess the significance of the departure from Inhomogeneous 

Poisson Process (IPP) were created through the generation of 99 simulations (α= 0.02) of 

IPP. 

In order to gain spatial visibility at landscape level, a graphical approach was also tackled 

using the kernel density tool of ArcMap to produce a map of density of affected trees in the 

whole studied area. This tool computes a magnitude per unit area for each raster cell 

(density of affected trees) using a kernel function to fit a smoothly tapered surface to each 

point, assigning then a density to each pixel of the area by adding the volumes under all 

kernel surfaces that overlap the pixel center. 

2.5. Analysis of landscape descriptors using MARS 

Multivariate Adaptive Regression Splines (MARS; Friedman, 1991) was used to 

investigate the relationship between landscape descriptors (explanatory variables) and oak 

decline. MARS is a non-parametric flexible regression modelling method that has shown its 

suitability when dealing with a high number of variables, collinearity, complex non-linear and 

linear relationships between predictors and response, allowing easier interpretation of results 

than similar methods (De Veaux et al., 1993; Muñoz and Felicísimo, 2004; Sharda et al., 

2008;Gómez Gutiérrez et al.,2009a; 2009b; Herguido et al., 2017a). MARS produces a 

regression line that is allowed to bend at certain knots or nodes that mark a change in the 

behavior of the function. These knots mark the start and end of functions called basis 

functions (BFs). BFs represent either, linear or non-linear relationship between response and 
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the most determinant predictors at this section of the regression (Muñoz and Felicísimo, 

2004). The equation is described as follows: 

                 
       (5) 

where   is the predicted value,      the MARS’s function,    represents an initial 

constant,   is the sum of terms and    and       the coefficient and BFs of each of these 

terms.  

The MARS analysis approaches the response to a constant (β0) and then establishes 

the knots through a forward pass that determines all the possible BFs. Because of the 

forward pass, an overfitted model is generated. Then, a backward or pruning pass selects 

the most important BFs (those with the lowest residual sum of squares; RSS). The output of 

the forward pass is a sequence of models or subsets of the overfitted model with different 

numbers of BFs. To select the best model, MARS calculates the Generalized Cross-

Validation (GCV; Craven and Wahba, 1978) and chooses the model with the lowest GCV 

value (Gómez Gutiérrez et al., 2009a; Herguido et al., 2017a). The “earth” R package in R 

studio (v. 1.1.453) was used to perform MARS (Milborrow, 2018b). The generalized cross-

validation expression (GCV; Craven and Wahba, 1978) is as follows: 

                                       (6) 

where   is the number of terms,   the number of cases,   the dependent 

variable,        , the value given by the model and      a cost function for this number of 

terms.  

The model outputs were validated via cross-validation. For that purpose, the dataset 

was randomly divided into five folds. Five validation models were built leaving, each time, 

one of the five folds apart for testing and using the other four for training. This way, five 

measures of R2 of the predictions were made. Following the recommendation of Milborrow 

(2018a), this process was repeated 3 times to average out the variation, ensuring more 

stable results. The final result of the cross-validation is the average of R2 values thus 

obtained denoted by CVRsq. 

The dependent variable introduced in MARS was binary presence/absence data (0: 

healthy spot; 1: affected spot). The same number of observations was used for both healthy 

and affected spots. The landscape descriptors constituted the model predictors (Table 1). 
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Based on Leathwick et al., (2005), a generalized linear model (GLM; McCullagh and 

Nelder,1989) was included in the MARS algorithm to fit the final binomial MARS model; the 

GLM is invoked after the backward pass (Milborrow, 2018a). 

Models’ performance from each year was assessed via the Receiver Operating 

Characteristic (ROC) and the Area Under the Curve (AUC) (Swets, 1988; DeLeo, 1993; 

Fielding and Bell, 1997; Pearce and Ferrier, 2000; Gómez Gutiérrez et al., 2009a; Herguido 

et al., 2017a). ROC provides a measure of the capacity of the model to discriminate between 

presence/absence of the dependent variable (healthy spots/affected spots). To do that, ROC 

represents sensitivity (true positives) against specificity (true negatives). The closer the ROC 

curve is to the upper-left side of the graph, the better is the performance of the MARS model. 

AUC should be close to 1; areas above 0.7 are commonly considered as acceptable 

discrimination and model performance, but this threshold could be lower in cases of 

unbalanced prevalence. In any case, an AUC of 0.5 following the 45º line means no 

discrimination ability of the model (Swets, 1988; Fielding and Bell, 1997; Pearce and Ferrier, 

2000). The significance of MARS models was tested by the use of null-models (Raes and der 

Steege, 2007). For each year, 99 null-models were run by randomly drawing from the study 

area the same number of virtual presence/absence localities than for the empirical models. A 

model is considered as significantly different from random expectation if its AUC value 

exceeds the 95% quantile of the 99 null-model AUC values. 

To interpret the role of each variable, MARS allows the estimation of the relative 

importance (RI) of the variables included in the model. This measure of importance reflects 

the strength of the relationship between the predictor variables and the response (Milborrow, 

2018a). To estimate the RI, during the backward pass, RI measures the relative decrease of 

the residual sum of square (RSS) for each subset in relation to the previous one. Then, the 

sum of the decreases overall subsets are scaled to the largest value (so the most important 

variable accounts for 100% RI). Those variables that give larger RSS’ decreases through the 

subsets are considered to be more significant (Milborrow, 2018a). Additionally, MARS 

estimates the RI based on the number of subsets that include a certain variable; the more 

subsets include a variable, the more important this variable is. MARS excludes automatically 

those variables that are not relevant for the discrimination of the classes in the dependent 

variable. 

Following the approach of Herguido et al., (2017a), in order to make the interpretation 

of the relationships between variables and outcomes easier, the Spearman correlation 
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coefficients between the continuous predictor variables and the values predicted by the 

models were calculated. 

3. Results  

3.1. Identification of affected spots and selection of healthy spots 

A total of 4,521 affected spots by oak decline were identified in the year 2001; 8,632 in 

the year 2009 and 28,617 in the year 2016 (Figure 3). The Kernel density maps confirm the 

exponential increase of accumulated affected spots (see Fig. SM1 in Supplementary 

Material),showing clustering of affected spots in four hot spots in 2001 whose density 

increase from less than 100 affected spots/km2 to more than 400 affected spots/km2 in 2016, 

reaching 735 affected spots/km2 in the northern part of the study area. The increment of 

affected spots is consistent in the same hot spots over the three years. 

 

Figure 3. Newly affected spots (oak decline)identified through photo interpretation for the study area 

(Dehesa stands in El Andévalo region) in each individual year. 

 From the RGB aerial photography from 1998 at 1 m resolution, a shape with the initial 

"tree-covered area" was obtained via object-based classification rendering a tree-

covered surface of 13,073.17 ha out of the 35,356 ha total surface of the study area 
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(See Fig SM3 in Supplementary Material). The validity of this classification was 

assessed via a confusion matrix, which reported an overall accuracy of 77%. From 

this previous tree-covered area we randomly selected "healthy spots", avoiding the 

affected spots previously identified. We selected the same number of spots as the 

number of identified affected spots each year n=4,521 for 2001; n=8,632 for 2009; 

and n=28,617 for 2016 

3.2. Landscape descriptors statistics 

The descriptive statistics of the extracted values of landscape descriptors for 2001, 2009 

and 2016 are shown in Table 2. For the categorical variable ASPECT, the frequency of the 

classes is reported.  Overall, all the variables but TMI and FLOWAC show lower means for 

affected spots than for healthy spots. TMI shows the opposite trend while FLOWAC does not 

show constant trends. Frequency values of ASPECT do not present any trend. The CV 

values seem to be especially high for FLOWAC, with values over 1 in all years for both, 

healthy and affected spots. Table SM1 (Supplementary Material) shows the p values for the 

ANOVA or Welch's unequal variance t-test run each study date. Variables were transformed 

when necessary to gain homoscedasticity or Welch's two-sample t-test, that is robust to the 

departure from it, has been used. Density functions of the main descriptors for affected and 

healthy spots can be seen in Fig. SM2 in Supplementary material. 

Table 2.Summary statistics (average values, CV in brackets) of landscape descriptors of affected and 
healthy spots. ELV (m), SLOPE (degrees), FLOWAC (number of pixels), TMI (dimensionless), 
WATER (m), ROADS (m), REFOR(m), RESEV(m), URBAN(m), ASPECT (categorical).  
 

a) Year 2001 (Number of Affected spots = Number of healthy spots=4,521) 

ELV SLOPE FLOWAC TMI WATER ROADS 

Affected 164.433 11.799 9.686 0.170 118.999 130.164 

(0.203) (0.534) (1.368) (0.309) (0.771) (0.828) 

Healthy 163.731 15.593 8.713 0.159 137.706 157.029 

(0.256) (0.612) (1.474) (0.374) (0.846) (0.825) 
 

REFOR RESEV URBAN ASPECT (Frequency %) 

Affected  
 

647.701 374.142 1097.645 N=12% NE=12% NW=11% E=11% 

(0.978) (0.695) (0.563) S=16% SE=14% SW=14% W=10% 

Healthy 
 

760.187 419.370 1186.133 N=13% NE=13% NW=12% E=11% 

(0.830) (0.672) (0.689) S=16% SE=12% SW=13% W=11% 
 

b) Year 2009 (Number of Affected spots = Number of healthy spots =8,632) 

ELV SLOPE FLOWAC TMI WATER ROADS 

Affected 163.873 12.526 8.692 0.164 129.764 131.423 



17 
 

 

(0.221) (0.530) (1.430) (0.310) (0.852) (0.827) 

Healthy 
164.397 15.520 8.995 0.160 136.161 159.331 

(0.255) (0.611) (1.455) (0.374) (0.855) (0.849) 

REFOR RESEV URBAN ASPECT (Frequency %) 

Affected  
 

653.391 374.611 1008.150 N=13% NE=12% NW=12% E=10% 
(0.942) (0.711) (0.720) S=15% SE=12% SW=15% W=12% 

Healthy 
 

762.316 425.158 1157.461 N=13% NE=13% NW=11% E=12% 
(0.830) (0.681) (0.692) S=14% SE=12% SW=13% W=12% 

 

c) Year 2016(Number of Affected spots = Number of healthy spots =28,617) 

ELV SLOPE FLOWAC TMI WATER ROADS 

Affected 
163.716 13.694 7.967 0.159 127.298 143.692 

(0.235) (0.537) (1.492) (0.322) (0.829) (0.830) 

Healthy 
164.787 15.704 8.878 0.159 137.615 157.254 

(0.257) (0.612) (1.488) (0.382) (0.853) (0.833) 

REFOR RESEV URBAN ASPECT (Frequency %) 

Affected  
 

827.557 346.271 976.003 N=14% NE=13% NW=11% E=11% 
(0.854) (0.737) (0.673) S=13% SE=11% SW=14% W=11% 

Healthy 
 

755.986 411.196 1112.696 N=13% NE=13% NW=11% E=12% 
(0.820) (0.691) (0.739) S=14% SE=12% SW=14% W=11% 

 

3.3. Spatial analysis of affected spots 

For the three years, the univariate Linhom(r)-r function clearly departs from spatial 

randomness indicating strong clustering. The scale of clustering is approximately 1,750 m 

and similar for the three years patterns. The dominant clustering distance represented by the 

r corresponding to the Linhom(r)-r peak value is located at 1000m. and constant over the three 

years. Although the aggregation of affected spots is evident in all the three years, it 

decreases over the time and approximates to spatial randomness in 2016, when the Linhom(r)-

r function peak value reaches half of the value of 2001 (Figure4). 
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Figure 4.Normalized K functions of the univariate analysis of affected spots patterns from 2001, 2009 

and 2016 assuming inhomogeneity. The solid black line represents the empirical Linhom(r)-r function 

values, red dotted line corresponds to the theoretical function of the Inhomogeneous Poisson Process 

(IPP) and shaded areas are the 99 global envelope simulations (α= 0.02) of the IPP. 

For the bivariate analysis, all the pairwise patterns exceed the 99 simulation envelopes 

(Figure5). This indicates a significant strong attraction between affected spots from different 

years. The scale of clustering for 2001 vs 2009 is 1500 m, while for 2009 vs 2016 and 2001 

vs 2016 is approximately 1800 m.  
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Figure5. Normalized cross-K functions of the bivariate analysis of pairwise marked point patterns of 

affected spots assuming inhomogeneity. The solid black line represents the empirical cross-Linhom(r)-r 

function values, red dotted line corresponds to the theoretical function of the Inhomogeneous Poisson 

process (IPP) and shaded areas are the 99 global envelope simulations (α= 0.02) of the IPP. 

 

3.4. Analysis of explanatory variables using MARS 

The three MARS models are significantly different from random since their AUC values 

clearly depart from the 95% quantile of the 99 null-model AUC values(Table 3). The AUC 

value in 2001 indicates a satisfactory fitting of the model (>0.7); the variables selected by the 

model have an important influence on the discrimination between healthy and affected spots. 

In the following study dates (2009, 2016), the AUC shows slightly decreasing values which 

could be an artifact due to the unbalanced prevalence of data derived from the increase in 

affected trees with the exponential progression of the disease over time (Raes and der 

Steege, 2007)(Table 3 and Figure6). 
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Table 3. Statistics of Multivariate Adaptive Regression Splines models for 2001, 2009 and 2016. Area 

under the curve (AUC), 95% quantile of the 99 null-model AUC values (Null-models AUC 95% 

quantile), Generalized cross-validation (GCV), and mean of the out-of-fold R2 values (CVRsq). 

Year AUC 
Null-models AUC 

95% quantile 
GCV CVRsq 

2001 0.707 0.523 0.216 0.130 

2009 0.671 0.500 0.226 0.093 

2016 0.651 0.500 0.232 0.071 

 

Figure6. Receiver Operating Characteristic curve of Multivariate Adaptive Regression Splines models 

from 2001, 2009 and 2016. 

The results obtained for RI (Table 4) show that SLOPE was the most significant 

explanatory variable over the three years. REFOR showed high importance in 2001 and 

2009 whereas in 2016 its relative importance decreased. The significance of WATER 

decreased from 2001 to 2009 and 2016 increasing that of other variables. However, URBAN 

presented constant values of importance along the three years taking the fourth place in 

2001 and 2009 and third in 2016. ELV seemed to have intermediate importance over time. 

TMI occupied the bottom half position in order of RI for all the years. ROADS, which in 2001 

was, after RESEV, the least important variable, became more important in 2009 and was 

excluded from the model in 2016. RESEV showed an increase in importance over time from 

the last position in RI in 2001 to the second most important variable in 2016. FLOWAC and 

ASPEC were excluded from all models, indicating that these variables were irrelevant in the 



21 
 

 

model to discriminate between healthy and affected spots. The order of RI was consistent 

with both criteria (decrease of RSS and the number of subsets) for the three models.  

The Spearman correlation factors between predicted values and variables were 

significant in most cases (Table 5), showing that all the explanatory variables but TMI 

correlate negatively with the probability of spots being affected. Predicted values were 

extracted to compute the Spearman correlation coefficient factors to show the correlation 

sign, not for predictive purposes.  

Table 4. Relative importance of landscape predictors in Multivariate Adaptive Regression Splines 

models for each year. RI stands for relative importance based on the relative decrease of the residual 

sum of square (RSS) and Nsubsets stands for the number of subsets in which the variable was 

included. “Unused” indicates that this variable was not relevant for the discrimination between affected 

and healthy spots. 

MARS model 2001 MARS model 2009 MARS model 2016 

Variables RI (%) Nsubsets 
Order of 

RI 
RI (%) Nsubsets 

Order of 

RI 
RI (%) Nsubsets 

Order of 

RI 

SLOPE 100.0 24  1/8 100.0 15 1/8 100 18 1/7 

REFOR 78.1 23 2/8 78.8 14 2/8 33.6 7 7/7 

WATER 71.8 22 3/8 39.7 8 7/8 37.9 8 6/7 

URBAN 66.5 21 4/8 66.5 12 4/8 80.4 16 3/7 

ELV 54.0 18 5/8 71.3 13 3/8 75.1 15 4/7 

TMI 40.9 14 6/8 24.5 5 8/8 56.3 12 5/7 

ROADS 27.6 10 7/8 52.8 10 5/8 unused unused - 

RESEV 17.3 6 8/8 44.7 9 6/8 87.4 17 2/7 

FLOWAC unused unused - unused unused - unused unused - 

ASPECT unused unused - unused unused - unused unused - 

 

Table 5.Spearman correlation coefficients between predicted values and variables. †Indicates that the 

correlation is not significant (p < 0.05). 

Variable 

Spearman CC 

2001 

Spearman CC 

2009 

Spearman CC 

2016 

ELV 0.009† -0.042† -0.156 

SLOPE -0.528 -0.482 -0.334 

TMI 0.372 0.236 0.096 

WATER -0.171 -0.074 -0.148 

ROADS -0.247 -0.281 - 

REFOR -0.294 -0.330 0.128 

RESEV -0.193 -0.295 -0.477 

URBAN -0.017† -0.290 -0.189 
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4. Discussion 

The implications of the results within the context of the disease management and the 

methodology applied are analyzed to further inform forest managers, farmers, and 

researchers, interested in preventing and reducing the incidence of oak decline in dehesa 

ecosystems.  

4.1. Identification of affected and healthy spots 

Frequently, remote sensing methods based on more or less automatic algorithms are 

used to monitor the occurrence of tree decline status in forests (Joshi et al., 2004; Kelly and 

Meentemeyer, 2002; Liu et al, 2006; Liu et al., 2007; Wilson et al., 2012). Nevertheless, the 

large scale of the study area (35,356 ha) and the highly variable range of symptoms the 

disease manifests, from sudden death to slow decline(Gallego et al., 1999; Moreira and 

Martins, 2005; de Sampaio e Paiva Camilo-Alves et al., 2013) makes difficult the direct 

application of traditional remote sensing methods to monitor occurrence of oak decline in this 

study(Liu et al., 2006). Moreover, Holmoak pruning,a common practice in dehesa 

management, could lead to misclassification of defoliated healthy trees (Figure 2:C). Visual 

interpretation of aerial imagery, although laborious, allowed the differentiation and suitable 

identification of affected trees and overcame some of the limitations of more automatic 

remote sensing approaches by enabling the identification of affected trees in heterogeneous 

scenarios. The limitations of traditional remote sensing methods for the detection of affected 

trees could be addressed with the development of methodologies based on high resolution 

imagery and machine learning(Carreiras et al., 2006; Liu et al., 2006), but looking backwards 

in time to dates of less quality imagery availability prevents this approach.  

The identification of representative samples of healthy spots at tree crown level applying 

an object-based classification was achievable due to the uniform characteristic of Holmoak 

trees in the dehesa system in a date when the studied disease was almost absent in the 

area. The tree-covered area thus obtained was successively modified to produce the healthy 

areas in each study date by subtracting from it the visual-identified affected spots. The tree-

cover classification showed acceptable overall accuracy (77%). Similar values of overall 

accuracy (78%) were reported by Godinho et al.,(2016) estimating dehesa canopy densities 

using Forest Canopy Density (FCD) model and Landsat-5 TM multispectral data. The object-

based classification represents a significant improvement of existing methods for healthy 
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trees identification. Specifically, regarding the work presented in Abellanas et al., (2017), 

where random points generated in the whole study area represented healthy spots instead of 

allocating them in classified healthy tree-covered areas. This approach has allowed us to 

develop a presence-absence model considering true absences. 

4.2.Spatial patterns of affected spots 

The density maps derived from the visual identification of affected spots are consistent 

with the typical distribution of affected trees by Phytophthora cinnamomi in large groups of 

foci (Braisier, 1996). The aggregation of Phytophthoraspp.foci following the appearance of 

the initial foci is well accepted in the literature and, together with the dependency between 

affected spots from different years shown by the bivariate cluster analysis, could indicate an 

epidemiological process (Kelly and Meentemeyer, 2002; D. Liu et al., 2007; Abellanas et al., 

2017). This aligns with the hypothesis of Phytophthora cinnamomi being the main cause of 

oak decline in Mediterranean forests (Brasier et al., 1993; Brasier, 1996; Gallego et al., 1999; 

Sánchez et al., 2002; Sánchez et al., 2003; Moreira and Martins, 2005; de Sampaio e Paiva 

Camilo-Alves et al., 2013; Linaldeddu et al., 2014). 

Results from the univariate cluster analysis for the three years were consistent in the 

clustering distance of affected spots (1,750 m). This has important implications for disease 

management as it could determine the size of surveillance and emergency areas around 

initial foci to be established to avoid disease spread. It also informs on the spatial scale in 

oak decline; studies at smaller scales may not be able to capture patterns occurring at 

landscape scale (Kelly and Meentemeyer, 2002). 

The decrease of the peak clustering value over the years (Figure4) could indicate that 

the disease is changing to a different stage of spreading, colonizing new areas driven by 

vectors and factors less related to the initial foci. Results from the bivariate cluster analysis 

also indicate that affected spots could maintain their potential as a source of propagation of 

Phytophthora cinnamomi in long periods of time given that affected spots from 2016 still 

show a strong dependency of those infected in 2001 or before. The prevalence of 

Phytophthora cinnamomi in soil over the time has been pointed out in many studies (de 

Sampaio e Paiva Camilo-Alves et al., 2013; Hardham and Blackman, 2018; Sena et al., 

2018).  

4.3. Performance of MARS and landscape descriptors influence on the 

proneness to oak decline 
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Overall, the MARS models showed a strong relationship between the landscape 

descriptors selected and the presence/absence of infection. The decrease in the AUC values 

of MARS over time could be related to the increase of newly affected trees in successive 

dates, that has derived in an unbalanced prevalence in the successive models, as the area 

for the absences has simultaneously decreased (Raes and der Steege, 2007). 

A total of eight out of ten landscape descriptors showed to be significant in the 

occurrence of oak decline, presenting remarkable changes in importance over the years. For 

all the models fitted, FLOWAC did not figure as a significant landscape descriptor and was 

excluded from the analysis. This could be due to the method used to extract flow 

accumulation values from the available DEM which may not be representative at the 

resolution and extent applied. Indexes such as TMI might capture the characteristics of the 

landscape in a better and more realistic way (Moore et al., 1991; Parker, 2013). The flow 

accumulation at 5m-grid resolution could represent values too local and variable, as its CV 

indicates (Table 2), to characterize processes occurring at landscape level. 

The exclusion of ASPEC from all the models fitted disagreed with previous studies that 

found a higher occurrence of Phytophthora cinnamomi in southerly oriented slopes (Brasier, 

1996; Moreira and Martins, 2005). This could be explained by the spatial configuration and 

extent of the study area; in an area dominated by rolling hills, other variables such as the 

geomorphology (valleys, hills, etc.) could outweigh the aspect effect on the moisture content 

of the locations considered by other authors.  

The importance of SLOPE remains the highest every year, indicating a high explanatory 

value of this variable regarding the occurrence of oak decline. This agrees with Duque-Lazo 

et al., (2018) who found a negative correlation between slope and probability of occurrence 

of oak decline caused by Phytophthora cinnamomi. The authors related this to water carrying 

spores of Phytophthora cinnamomi being more easily stored in gentle slopes, while steeper 

slopes ease the drainage. It might be also related to erosion processes in steep slopes and 

sedimentation carrying spores in gentle slopes. In connection with that, Cardillo et al. (2018) 

demonstrated the development of Phytophthora cinnamomi patches downslope in Spanish 

heathlands. 

The influence of soil moisture at landscape level has also been pointed out in many 

studies as a factor contributing to the proneness of infection by Phytophthora cinnamomi 

(Moreira and Martins, 2005; Vannini et al., 2010; Sena et al., 2018),and could also explain 

the importance of TMI and WATER in all the MARS models. The relationship between 

affected spots by Phytophthora cinnamomi occurrence and distance to watercourses is in 
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agreement with results from previous studies (Jules et al., 2002; Cardillo et al., 2012; Duque-

Lazo et al., 2018). Similarly, for ELV the results obtained align with Wilson et al., (2003) and 

Václavík et al., (2010). In these studies, a significant negative correlation of elevation with the 

presence of Phytophthora cinnamomiwasreported. This could be explained by lower 

locations being more likely to receive spores carried by downhill water transport(Wilson et al., 

2003).  

Slope is also an important variable determining the intensity of management and impacts 

in dehesa ecosystems. Since topography is recognized to be a determining factor on the 

intensity of use (Herguido et al., 2017a; Veldkamp and Lambin, 2001), steeper slopes are 

expected to present less impact related to livestock, and agricultural activities such as 

plowing. Steeper areas are therefore less exposed to potential vectors of Phytophthora 

cinnamomi such as vehicles, animal hooves, workers’ boots, etc. (Cardillo et al., 2018). 

Herguido et al., (2017b) also found slope as the most explanatory variable to model tree loss 

vs recruitment in dehesas using MARS, arguing that steeper slopes presented more tree 

recruitment due to the less intense management. 

Of special relevance is the RI of REFOR in 2001 and 2009. As part of the afforestation 

subsidy program 1992 EEC Regulation 2080/92 promoted by the European Commission in 

1992 to encourage the afforestation of agricultural lands (EU, 1992), 61,268 ha were 

afforested between 1994 and 2006 (especially in the first years) in Huelva province (Spain) 

with mainly Holm oak (Quercus ilex) and Cork oak (Quercus suber) (Jiménez and Navarro, 

2014). The afforestation period coincides with the exponential spread of Phytophthora 

cinnamomi in this area (Abellanas et al., 2017). The infestation of nurseries with 

Phytophthora spp. in Europe has been proved in previous research studies (Brasier and 

Jung, 2003; Moralejo et al., 2009; Pérez-Sierra et al., 2013; Jung et al., 2016). It is therefore 

quite likely that the afforestation program relied, at least partly, on the use of infested nursery 

stock. This could have been one of the key vectors for the development of the foci/focus of 

Phytophthora cinnamomi within the study area. Similarly, a recent paper about “Phytophthora 

infestations in European nurseries” by Jung et al., 2016 reported the following results: “90% 

of the containers stands of 11 oak species analyzed were infested with 16 Phytophthora 

species” and “Phytophthora cinnamomi was isolated in 18 of 21 Mediterranean oak plantings 

in Italy, Spain and Portugal”. From these results, they concluded, “86% of these 

afforestations probably are infested by Phytophthora cinnamomi” (Jung et al., 2016).  

The research studies cited above are consistent with the results obtained for REFOR 

in our study; REFOR was the second most explanatory variable in 2001 and 2009, which 
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were the two periods where afforestations could act as the initial source of infection. In 2016, 

when the disease is widespread over the study area and the spread is less linked to the 

initial foci and driven by different factors, REFOR is the variable with the lowest RI. The fact 

that affected spots from 2001 and 2009 are not included in the data to fit the MARS model 

from 2016 could also affect the low RI of REFOR as most of the trees close to afforestations, 

the initial source of Phytophthora cinnamomi, could have died. This is confirmed by the 

positive Spearman correlation coefficient for REFOR in 2016 (Table 5), which indicates that 

unlike in 2001 and 2009, affected spots tend to be further away than healthy spots, due to 

the disappearance of the closest affected spots to afforestations from previous years.  

The results here reported also showed that human factors could have an important 

role in the dynamics of oak decline at landscape level. URBAN maintained a high RI over 

time that suggests the highest occurrence of oak decline close to urban areas and artificial 

infrastructures. The association between Phytophthoraspp.without aerial dispersal(Peterson 

et al., 2013; Peterson et al., 2014)and roads is well acknowledged by multiple authors 

(Brasier, 1996; Jules et al., 2002; Cardillo et al., 2012; Abellanas et al., 2017). For ROADS, 

the MARS model found the descriptor of importance for 2001 and 2009. ROADS was 

included in models from 2001 and 2009 and URBAN in all the three dates’ models. This 

behavior aligns with the hypothesis of the influence of the human factor as a vector of 

Phytophthora cinnamomi at long distances. The contribution of human activity such as 

recreation and tourism to Phytophthora cinnamomi spread has been suggested in previous 

research (Pickering and Hill, 2007; Pickering et al., 2010; Rankin et al., 2015). Abellanas et 

al., (2017) also found a spatial relationship between oak decline spots and roads. Although in 

the present study WATER was included in the MARS model of 2009, this variable showed 

less importance (39,7%) than ROADS (52,8%) describing the distribution of affected spots. 

The exclusion of ROADS in 2016 could be explained by the predominance of the contagion 

process between trees over the transport of Phytophthora cinnamomi by roads or 

watercourses as the cause of new infections in 2016, when the disease is widespread along 

the study area. 

Finally, the influence of RESEV seems to be linked to the use of reservoirs as 

drinking troughs for livestock, where the presence of livestock is more frequent and 

consequently the accumulation of spores carried by animal hooves to these areas is more 

likely. Brasier(1996) already mentioned the relation of oak decline with areas of heavy animal 

trampling, although it could be a combined effect with soil compaction which has also been 

demonstrated to have a strong association with oak decline (de Sampaio e Paiva Camilo-

Alves et al., 2013). The increase of RI from 2001 to 2016 could be due to the consolidation of 
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a process pointing to mature stages of the disease rather than a primary process of the 

spread. 

Although most of the landscape descriptors included in the analysis showed easy 

interpretation, meaningful RI and agreement with the literature, the importance of variables in 

MARS models has to be interpreted carefully since the dependent and independent variables 

do not necessarily follow a causal relationship (Herguido et al., 2017a). In addition, there are 

variables that are difficult to represent spatially at landscape level such as those related to 

the management, which have not been included in this study but could play an important role 

in the dynamics of oak decline. Studies following the same approach at farm level could 

further inform the spatio-temporal dynamics of oak decline in dehesa ecosystems. These 

studies might incorporate variables related to the management to further understand within-

farm drivers of the disease and the differences in the dynamics at a broader scale 

investigated in this study. 

5. Conclusion 

It has been proved that oak decline has progressed significantly in the last two 

decades in “El Andevalo” region threatening the future of its dehesas. The studied patterns 

agree with the hypothesis of Phytophthora cinnamomi being the main cause of oak decline 

process in this area.  Concerning the method, inhomogeneous Ripley's K-function allowed 

capturing spatial patterns, overcoming the limitation of the lack of stationarity. MARS 

demonstrated satisfactory performance dealing with a wide range of variables and reported 

meaningful and easily interpretable outcomes. Regarding the proposed objectives, the 

following conclusions are extracted: 

i) Spatial pattern analysis with inhomogeneous Ripley's K-function allowed the 

identification of clustered patterns of affected spots in 1,750 m., showing a decrease of 

clustering overtime. The bivariate analysis demonstrated spatial dependency between 

affected spots from different years confirming the epidemic process.  

ii) Variables directly and indirectly related to the soil moisture and water content at 

landscape level demonstrated to favor the presence of oak decline. The human factor and 

farm management seem to have an important role in the disease spreading. Afforestations 

conducted during the afforestation subsidy program of agricultural lands initiated in 1992 

could have acted as the initial source of a massive Phytophthora cinnamomi infection.  

The previous findings have important implications within the context of disease 

management. The scale of clustering (1,750m) could be taken as a reference to establish 
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areas of surveillance around initial foci, although the spreading at long distances needs to be 

also considered at the same time. The dependency between affected spots should be taken 

into account to prevent infection of Phytophthora cinnamomi to contiguous areas.  From the 

point of view of preventive measures planning at landscape level, those locations that tend to 

store water should receive special attention. Managers should also consider the human 

factor and livestock habits when designing disease-managing planning given its potential to 

act as long-distance vectors. Afforestation programs must be carefully designed, ensuring 

the use of clean nursery stocks to avoid devastating effects caused by the introduction of 

invasive pathogens in forestry and agroforestry ecosystems. The disease tends to evolve to 

different stages of maturity where primary factors of dispersion, responsible for initial 

clustering, loss importance over time. Since the importance of variables seems to vary with 

both; the stage of the disease and the scale of the analysis, the consideration of temporal 

and spatial scale is of key importance when studying and planning oak decline management. 
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Figure SM_1. Kernel density maps of oak decline affected spots in 2001, 2009 and 2016. The affected spots of the consecutive years have 

been aggregated. 
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Figure SM_2.- Density functions of MARS model selected descriptors in affected (red) and healthy 

(blue) spots along the study years. 
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Figure SM3. Initial tree-covered area within the study area, obtained by an object-based clasification method (1998) 
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Table SM.1.-Significance values (p) of ANOVA and/or Welch t-tests of model descriptors for 
affected/healthy trees each study date (Welch t-test was used when homocedasticity was not 
achievable even with the transformation of variables) 

ELV SLOPE TMI WATER ROADS REFOR RESEV URBAN 

2001 n.s. 
0.3801 

*** 
<2e-16 

*** 
<2e-16 

n.s. 
0.641 

*** 
7.4e-14 

*** 
<2e-16 

* 
0.018 

ns 
0.494 

2009 n.s. 
0.3831 

*** 
1.4e-12 

*** 
1.939e-6 
(Welch) 

*** 
0.000124 

*** 
<2e-16 

*** 
<2e-16 

*** 
<2e-16 

*** 
<2e-16 

2016 
** 

0.001766 
(Welch) 

*** 
<2e-16 
(Welch) 

n.s. 
0.2815 
(Welch) 

*** 
<2e-16 
(Welch) 

n.s. 
0.233 

** 
0.00323 

*** 
<2e-16 

 

*** 
<2e-16 
(Welch) 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 
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