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Abstract 

Presented in this thesis are novel methods for uncertainty quantification and 

management (UQ&M) in computational engineering design. The research has been 

motivated by the industrial need for improved UQ&M techniques, particularly in 

response to the rapid development of the model-based approach and its application to 

the (early) design of complex products such as aircraft. Existing work has already 

addressed a number of theoretical and computational challenges, especially regarding 

uncertainty propagation. In this research, the contributions to knowledge are within the 

wider UQ&M area. 

The first contribution is related to requirements for an improved margin management 

policy, extracted from the FP7 European project, TOICA (Thermal Overall Integrated 

Conception of Aircraft). Margins are traditional means to mitigate the effect of 

uncertainty. They are relatively better understood and less intrusive in current design 

practice, compared with statistical approaches. The challenge tackled in this research 

has been to integrate uncertainty analysis with deterministic margin allocations, and to 

provide a method for exploration and trade-off studies. The proposed method 

incorporates sensitivity analysis, uncertainty propagation, and the set-based design 

paradigm. The resulting framework enables the designer to conduct systematic and 

interactive trade-offs between margins, performances and risks. Design case studies 

have been used to demonstrate the proposed method, which was partially evaluated in 

the TOICA project.  

The second contribution addresses the industrial need to properly ‘allocate’ uncertainty 

during the design process. The problem is to estimate how much uncertainty could be 

tolerated from different sources, given the acceptable level of uncertainty associated 

with the system outputs. Accordingly, a method for inverse uncertainty propagation has 

been developed. It is enabled by a fast forward propagation technique and a workflow 

reversal capability. This part of the research also forms a contribution to the TOICA 

project, where the proposed method was applied on several test-cases. Its usefulness 

was evaluated and confirmed through the project review process. 
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The third contribution relates to the reduction of UQ&M computational cost, which has 

always been a burden in practice. To address this problem, an efficient sensitivity 

analysis method is proposed. It is based on the reformulation and approximation of 

Sobol’s indices with a quadrature technique. The objective is to reduce the number of 

model evaluations. The usefulness of the proposed method has been demonstrated by 

means of analytical and practical test-cases. Despite some limitations for several 

specific highly non-linear cases, the tests confirmed significant improvement in 

computational efficiency for high dimensional problems, compared with traditional 

methods. 

In conclusion, this research has led to novel UQ&M tools and techniques, for improved 

decision making in computational engineering design. The usefulness of these methods 

with regard to efficiency and interactivity has been demonstrated through relevant test-

cases and qualitative evaluation by (industrial) experts.  

Finally, it is argued that future work in this field should involve research and 

development of a comprehensive framework, which is able to accommodate 

uncertainty, not only with regard to computation, but also from the perspective of 

(expert) knowledge and assumptions. 
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1 Introduction 

The embrace of computation in modern engineering design has largely reshaped the 

paradigm of synthesis and analysis. Back to the era of pioneering designers, such as the 

Wright brothers, it was extremely difficult to predict the performance of a design 

solution, due to limited knowledge and experience at that time. In fact, the Wright 

brothers had to build their own wind tunnel, so that proper wing geometry could be 

selected, based on experiment results (Keane and Nair, 2005). As knowledge was 

gained in relevant disciplines (such as structures and aerodynamics), several analytical 

and systematic aircraft design approaches were developed (Cherry and Croshere, 1948; 

Driggs, 1950), based on explicit mathematical relationships between major design 

variables and performance. Following this pattern, research was conducted to setup 

design problems as numerical optimizations (Cramer, 1995; Haupt, 1977; Hicks and 

Henne, 1977). As a result, the distinction between synthesis and analysis has been 

blurred. This is because the corresponding design knowledge (for synthesis and 

analysis) is formulated as computational models, while the latter can be combined and 

organised in one comprehensive Computational Workflow (Balachandran and Guenov, 

2010). In such a model-based design approach, products can be virtually ‘created’ and 

‘assessed’. There is no doubt that physical prototypes are still necessary for design 

decision making. The benefit of using computational models is reflected on the 

reduction of development time and cost. Furthermore, it allows a designer to explore a 

design space and search for potentially promising solutions (Balachandran and Guenov, 

2010; Guenov, Nunez and Gondhalekar, 2011; Nunez et al., 2009, 2012; Riaz, Guenov 

and Molina-Cristóbal, 2017), before any physical prototypes are produced. 

Resulting from the extensive application of computational design, is a growing need for 

capabilities to handle uncertainty. Uncertainty is normally inevitable, due to limited 

knowledge and uncontrollable factors. Thus the computational results may deviate from 

the reality. Consequentially, a theoretical optimal solution may turn out to be sub-

optimal or even infeasible at all.  This effect can lead to excessive rework during a 

design process, especially for complex and highly integrated systems. For instance, if 

the stress in one structural component is underestimated, considerable amount of 

modification might be required, not only for this specific component, but also for the 
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entire aircraft as well. In the worst cases, catastrophic failures could happen in service 

operation, if this type of deviation remains undetected.  

1.1 Context 

Design under the presence of uncertainty is not a brand new topic. Traditionally, 

concerns of uncertainty are implicitly embedded in decision making. For instance, one 

approach can be to design for the worst-case scenarios, so that unknown or 

uncontrollable factors can be accommodated. In practice, such a manner can be 

problematic. Firstly, the worst-case scenarios are difficult to identify in reality (Zang et 

al., 2002), and are normally based on assumptions (Miles Jr., 1993). These assumptions 

themselves can be uncertain as well. Secondly, the worst-case scenarios will lead to 

conservative design solutions, which are likely to be uncompetitive regarding the 

overall performance. These limitations have led to the development of explicit 

Uncertainty Quantification and Management (UQ&M) as an independent discipline. On 

the other hand, UQ&M provides a systematic approach to estimating the amount of 

uncertainty and its consequence, so that better decisions can be made with the uncertain 

results of design computation. 

 

Figure 1-1. A common framework for UQ&M (adapted from (Mangeant, 2011; 

Rocquigny, Devictor and Tarantola, 2008)) 

Illustrated in Figure 1-1 is a common framework for UQ&M within the computational 

context (Mangeant, 2011; Rocquigny, Devictor and Tarantola, 2008). The white blocks 

are key elements of problem formulation, which include input and output variables, a 
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computational workflow, Quantities of Interest (QoI), and decision criteria. A QoI is an 

indicator of the uncertainty associated an output variable (for instance a statistical 

moment or a probability), while a decision criterion is a threshold of accepting/rejecting 

a specific design solution (Rocquigny, Devictor and Tarantola, 2008). More details of 

the problem formulation are presented in Section 2.2 and 2.5 as a background of this 

research.  

The grey blocks in Figure 1-1 are the major UQ&M problem areas, as listed below: 

Uncertainty Quantification: Uncertainty is an abstract concept and is different from 

general physical quantities (such as mass, height, etc.). To start with, the sources of 

uncertainty should be represented with proper mathematical forms. Currently, 

uncertainty quantification can be conducted following either the probabilistic approach 

or non-probabilistic approach. In the former, the variations of uncertain variables are 

represented as probability distributions, and described as Probability Density Functions 

(PDF). The non-probabilistic approaches include: Possibility Theory (Zadeh, 1999), 

Evidence Theory (Dempster, 1967; Shafer, 1976; Zadeh, 1986) etc. Within the scope of 

this research, the probabilistic approach is adopted for uncertainty quantification.  

Apart from choosing a mathematical form, another aspect of uncertainty quantification 

is to decide the relevant details, for instance, the type and parameters of a probabilistic 

distribution. If historical data are available, these details can be obtained with a 

statistical regression. Otherwise, expert elicitation can be applied to construct the 

probabilistic distributions, based on personal knowledge and experience (Ayyub, 2001; 

Cooke, 1991; O’Hagan et al., 2006). This part of the problem is beyond the scope of 

this research, in which we assume that probabilistic distributions of uncertain sources 

are available for further analysis. 

Uncertainty Propagation: Given the sources of uncertainty, the next step is to model 

the “non-deterministic behaviour” (Padulo, 2009) of the output variables, and to 

calculate the quantities of interest. This process is referred as uncertainty propagation. 

Extensive research has been conducted within this problem area, with main focuses on 

the development and implementation of various numerical techniques. Among the 

available techniques, Monte Carlo Simulation (MCS) has been widely used for its 
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simplicity and effectiveness. It utilizes repeated sampling of the uncertain input 

variables, and approximates the output distributions (and QoI’S) based on statistical 

histograms. The major shortcoming of MCS is the computational cost, which can be 

prohibitive for high-fidelity models. Alternative techniques are based on Gaussian 

Quadratures (Evans, 1972; Seo and Kwak, 2002), Polynomial Chaos (Eldred and 

Burkardt, 2009; Xiu et al., 2002; Xiu and Karniadakis, 2002), Taylor Series Expansion 

(Du and Chen, 2002). The reader is referred to (Lee and Chen, 2009; Mares et al., 1853; 

Padulo, Campobasso and Guenov, 2007) for more comprehensive reviews and 

comparisons. 

Sensitivity Analysis: The terminology of Sensitivity Analysis may refer to various 

concepts within different research communities. A general definition from (Smith, 

2013) is “quantifying the relative contributions due to individual parameters or inputs 

and determining how variations in parameters affect measured responses”. In the 

context of UQ&M, sensitivity analysis is utilized to rank the contributions from 

different sources of uncertainty, regarding their impact over the uncertainty of output 

variables (Saltelli et al., 2004).  

For large scale design problems, it is normally impractical to consider all the uncertain 

factors, especially at the outset. Sensitivity analysis can be applied to identify the most 

influential factors, so that the problem dimensions can be reduced by freezing 

insignificant factors. In the reduced problem, priorities can be set for further analysis 

(e.g., to allocate more time and resource on the most influential factors).  

Trade-off under uncertainty: In the original figure from (Rocquigny, Devictor and 

Tarantola, 2008), this part is referred to as “Feedback”, which includes actions for 

improvement (e.g. modifying the input variables, using more accurate models, 

collecting more experiment data, etc. (Rocquigny, Devictor and Tarantola, 2008)). In 

the context of engineering design, we narrow down this problem area as conducting 

design trade-offs. That is to make decisions with information obtained from 

quantification, propagation, and sensitivity analysis. 

Several aspects can be considered within this problem area. The first one is to search for 

promising design solutions which are less affected by uncertain variables. The second 

aspect is mitigation of uncertainty (McManus and Hastings, 2005), which include 
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margin, safety factor, tolerance, redundancy, etc. The last aspect is to reduce uncertainty 

from the sources, for instance, to calibrate a computational model with experiment 

results (Kennedy and O’Hagan, 2001). 
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1.2 Motivations 

For this research, trade-off under uncertainty and sensitivity analysis are the particular 

problem areas of interest. Specifically, the FP7 European project, Thermal Overall 

Integrated Conception of Aircraft
1
 (TOICA) (Rouvreau, S., Mangeant, F., and Arbez, 

2015), has specified some of the research challenges, which motivated this work. 

The first motivation is related to requirements extracted from the TOICA project, for an 

improved margin management policy (Rouvreau, S., Mangeant, F., and Arbez, 2015). 

Compared with statistical design approaches, margins are relatively better understood 

and easier to implement. This enables the designer to focus more on design decision 

making in his/her own expertise (e.g. aerodynamics, thermodynamics, structure, etc.), 

rather than be heavily involved in statistical analysis. Furthermore, margins have 

already been applied extensively in industrial practice, which makes them less intrusive 

compared with statistical design approaches. Last but not least, margins still play import 

rules to handle “unknown-unknowns” (McManus and Hastings, 2005), especially at the 

early stage of design process. The shortcomings are also clear. Firstly, a margin lumps 

all the uncertainty into one piece, which goes against the need to treat uncertainty 

explicitly. Secondly, the allocation of margins is largely restricted by historic data and 

designer’s experience. For novel technologies, it is more difficult to make decisions 

upon margins. Last but not least is the lack of systematic approach to assess the 

influence of margins on other margins, and on system performances.  

The second motivation is the industrial need to manage sources of uncertainty during 

the design process. Uncertainty is inevitable in design computation. Nevertheless, the 

amount of uncertainty can be reduced by conducting more analysis, for instance, by 

using physical experiments and/or models of higher fidelity. Obviously, those activities 

will lead to additional time and/or computational resources, therefore a trade-off should 

be sought, between the cost and the accepted amount of uncertainty. This trade-off is 

referred as the problem of Uncertainty Allocation. Specifically, a sub-problem is to 

estimate how much uncertainty could be tolerated from different sources, given the 

acceptable amount of uncertainty associated with the system outputs. This sub-problem 

                                                 

1
 Project webpage: http://www.toica-fp7.eu/ 
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is referred to as Inverse Uncertainty Propagation in this thesis. Compared with forward 

propagation, relatively less has been researched on the inversed process, which requires 

novel enablers to provide the relevant capability. 

The third motivation is the requirement for an efficient method of sensitivity analysis. 

This is not directly proposed by the TOICA project, but from the general need to reduce 

UQ&M computational cost. Compared with the deterministic design approach, 

implementation of UQ&M requires additional calculations to provide sensible 

information about the uncertainty. Therefore the resulting computational cost has 

always been a burden in industrial practice, especially for large scale problems such as 

design of aerospace systems (Zang et al., 2002). Within this context, the challenge is to 

improve the current numerical techniques. 

1.3 Aim and Objectives 

The aim of this PhD research is to develop novel enablers, to improve UQ&M practice 

in the context of model-based design of complex systems such as aircraft. 

The aim is supported by three objectives, corresponding to the aforementioned 

motivations: 

 To develop a method for margin allocation and trade-off, which incorporates the 

UQ&M techniques, and facilitates systematic and assessment on the interaction 

between margins, performances, and probabilities of constraint satisfaction. 

 To develop a method for inverse uncertainty propagation, as an enabler of the 

uncertainty allocation problem. 

 To develop a method for efficient sensitivity analysis, which has lower 

computational cost compared with existing techniques, and will ultimately result 

in a more efficient UQ&M process. 

1.4 Research Methodology 

In a typical research on natural or social science, the research methodology may include 

proposing hypnosis, conducting experiment/simulation, collecting data, analysis, etc. 

On the other hand, the research presented in this thesis can be categorised under the so-
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called “Science of Design” (Cross, 1993), where the methods themselves are under 

study, with the aim is to make them more efficient and effective. 

Given the aforementioned motivations and objectives, the research questions are:  

 What capabilities should be provided by the methods under development? 

 How to realise these capabilities? 

The answer to the first question is based on literature review, which identifies the gaps 

between the existing methods and the industrial need (from the TOICA project). 

Answering the second question is the actual development of these methods. As the 

question is ill-defined (Simon, 1973), the answer is not unique, and the path to this 

answer is more of a creation (through try and error) rather than fixed procedures. 

Specifically in this research, it involves integration and modification of existing 

approaches and tools to achieve the targeting capabilities. 

The evaluation of these methods involves two levels. The lower level is regarding the 

correctness of the proposed mathematical equations and algorithms, which can be 

analytically verified or validated through numerical test-cases. This type of evaluation 

can be found for the second and third objectives. The higher level is regarding the 

usefulness of the proposed approaches and concepts, especially in the case of objective 

one. In the corresponding evaluation, the method was applied to a realistic test-case and 

demonstrated at one of the TOICA project milestone meetings. The feedback from the 

practicing designers and airframe systems architects was used as a qualitative 

assessment of the proposed method. 

1.5 Thesis Overview 

The remaining part of the thesis is structured as follows. Chapter 2 provides the 

background information of this PhD research. Specifically, the model-based design 

approach is explained briefly as a general context, along with essential definitions and 

existing enablers to support the methodology chapters. In Chapter 3, a literature review 

is presented regarding the specific problem areas of interest (motivations). Chapters 4, 

5, and 6 present the novel methods developed in this research. They are, respectively, a 

method for margin allocation and trade-offs, a method for inverse uncertainty 

propagation, and a method for efficient sensitivity analysis. In each of these three 
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chapters, the specific problem is defined and formulated. Also, some additional 

literature review for every specific development is presented separately in the 

corresponding chapters. The proposed methods are evaluated with different test-cases, 

for which the results and discussions could be found at the end of these chapters. 

Chapter 7 is the overall conclusion of the PhD research, in which the research is 

summarised. Contribution to knowledge is stated, along with limitations of the current 

development. At the end of this chapter, a roadmap is represented for future work, 

regarding the broader picture of UQ&M research. 
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2 Background 

2.1 Introduction 

This chapter presents concepts and terminologies which are adopted in this PhD 

research. In Section 2.2, mathematical definitions are introduced for a general 

computational workflow and the associated variables. Within this context, the sources 

of uncertainty are briefly discussed in Section 2.3. The probabilistic approach to 

quantifying these uncertainties is briefly explained in Section 2.4. Section 2.5 presents 

two general formulations for uncertainty-based design problems, which include the 

Robust Design Optimization (Section 2.5.1) and Reliability Base Design Optimization 

(Section 2.5.2). In Section 2.6, an in-house software named AirCADia is introduced. 

This software has provided a computational environment for implementations of the 

proposed methods in Chapter 4, 5, and 6. 

2.2 Computational Workflow 

In this thesis, a model refers to a mathematical relationship between some input and 

output variables. At early design stages, e.g. in an aircraft sizing problem, models can 

be as simple as single-line algebraic equations, look-up tables, or design graphs.  Later 

on, more complex models may take the form of numerical simulations, such as Finite 

Element Method (FEM) models and Computational Fluid Dynamic (CFD) models.   

In design computation, an output of one model can be used as an input to another. In 

this manner, a computational workflow can be defined as an assembly of models 

connected by variables (Balachandran and Guenov, 2010; Nunez et al., 2012). Such a 

computational workflow is noted in the form of a function: 

𝒚 = 𝑓(𝒙), (2-1) 

where 𝒙 and 𝒚 refer to the vectors of 𝑛 inputs and 𝑙 outputs, respectively. 

𝒙 = [𝑥1, 𝑥2, 𝑥3… , 𝑥𝑛] ∈ 𝑅
𝑛 (2-2) 

𝒚 = [𝑦1, 𝑦2, 𝑦3… , 𝑦𝑙] ∈ 𝑅
𝑙  (2-3) 
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In this notation, 𝑓(𝒙) serves only for discussion purposes, since its analytical expression 

might be implicit, due to the models within the workflow (i.e. CFD, FEM or black-

boxes, for which analytical equations are not available). The input/output variables are 

assumed to be scalars. In each vector, the elements are general and can be arranged in 

any orders, unless there is a need to group them due to the specific physical meanings 

(as will be demonstrated later in equation (2-4)). 

Finally it should be stated that in this research, the input variables are assumed to be 

independent (If a correlation exists, it will take the form either as a model or as a 

constraint).  

An illustrative example is shown in Figure 2-1 (Guenov et al., 2017), which represents a 

simplified computational workflow for aircraft sizing (named as SIMPCODE). This 

workflow is constructed with five models from aircraft design text books (Jenkinson, 

Simpkin and Rhodes, 1999; Raymer, 2012). The input and output variables are 

indicated as green and red ovals, respectively; while the models are represented as 

blocks. Full details of these variables are listed Table 2-1. 

 

Figure 2-1. an illustrative example of an aircraft sizing workflow 
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Table 2-1. List of input and output variables 

 Variable Notation Unit 

Inputs Aspect Ratio 𝐴𝑅  

Fuel Weight 𝑊𝑓 𝑙𝑏 

Payload Weight 𝑊𝑝 𝑙𝑏 

Specific Fuel Consumption 𝑆𝐹𝐶 𝑙𝑏/ℎ𝑟/𝑙𝑏 

Speed of Sound 𝑎 𝑘𝑛𝑜𝑡 

Mach Number 𝑀𝑎𝑐ℎ  

Wing Reference Area 𝑆𝑟𝑒𝑓 𝑓𝑡2 

Take-off Lift Coefficient 𝐶𝐿𝑡𝑜  

Sea Level Static Thrust 𝑆𝐿𝑆𝑇 𝑙𝑏 

Outputs Empty Weight 𝑊𝑒 𝑙𝑏 

Lift over Drag 𝐿𝑜𝐷  

Total Weight 𝑊0 𝑙𝑏 

Equivalent Still Air Range 𝐸𝑆𝐴𝑅 𝑛.𝑚 

Take-off Field Length 𝑇𝑂𝐹𝐿 𝑓𝑡 

In some cases, the input variables can be further categorised as design variables and 

parameters. The former are used to define a specific solution, and their values are 

controlled by the designer. On the other hand, parameters are used to define factors 

which are beyond the design decision making, such as pre-specified operational 

conditions, material properties, and so on. Some of the parameters can also be 

embedded in computational models, for instance, the empirical coefficient “5.48” in the 

“Aerodynamics Model” (Figure 2-1). The values of parameters are normally fixed 

during the design process, but can be modified if the problem setup is changed (e.g. 

change of design cruise altitude due to modification of mission profiles). 

It should be noted that, the distinction between design variables and parameters is not 

absolute, but dependent on the specific problem formulations.  In this thesis, if the focus 

is on the mathematical aspect of a function (e.g. in Section 6), the notation of 𝒙 will be 

used, which refers to general input variables. In this case, the ordering of variables in 

the vector 𝒙 is arbitrary. If the emphasis is placed on a design problem, the design 

variables and parameters will be represented by 𝒅𝒗 and 𝒑 respectively. Without loss of 

generality, the design variables are arranged at the front, followed by the parameters: 

𝒙 = (𝒅𝒗, 𝒑) (2-4) 
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𝒅𝒗 = [𝑑𝑣1, 𝑑𝑣2, 𝑑𝑣3, … , 𝑑𝑣𝑢] ∈ 𝑅
𝑢 (2-5) 

𝒑 = [𝑝1, 𝑝2, 𝑝3, … , 𝑝𝑣] ∈ 𝑅
𝑣 (2-6) 

Within each sub-category, the sequence is arbitrary, and the numbers of inputs, design 

variables, and parameters has the following relationship: 

𝑛 = 𝑢 + 𝑣 (2-7) 

2.3 Sources of Uncertainty 

Within a computational workflow, uncertainty is mainly introduced from three sources: 

models, unfixed design variables, and external factors. 

 Uncertainty in models is due to lack of knowledge. Models are mathematical 

depictions of systems or phenomena, but they do not necessarily capture all the 

relevant information. Some models are based on empirical data, which are not 

direct representations of the physics behind. For instance, at conceptual stage, 

the weight of a wing can be defined as a portion of the total aircraft weight, 

based on regression analysis of previous aircrafts. However each individual 

design is different, thus the prediction from such an empirical model can be 

diverted from the reality. This is especially the case when designing aircrafts 

with unconventional configurations, because most of the existing data are no 

longer applicable as references. For physical-based models, this diversion 

between calculation and the reality may also exist. Many physical phenomena 

have not been fully understood yet (e.g. turbulence), therefore the corresponding 

models may contain assumptions, which are not always valid. Furthermore, in 

engineering design, simplification can be applied on the original mathematical 

relationships for practical implementation, which will also affect the accuracy of 

design computation (Mangeant, 2011). 

 Uncertainty in unfixed design variables is due to lack of definition,  which refers 

to “Things about the system in question that have not been decided or specified” 

(McManus and Hastings, 2005). Although design variables are controlled by the 

designer (or obtained by certain searching strategies e.g. an optimization 

process), it is impractical to totally freeze a design solution at early stages, 
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especially regarding the details. For instance, the location of a wing spar may be 

roughly defined so that a computational workflow can be executed for initial 

results. Later on, the designer may revisit this part of the design problem, and 

modify the spar location, given that new analysis has been conducted. 

 Uncertainty in external factors is due to their “inherent variation” (Thunnissen, 

2003). This type of variation is not necessarily aleatory, but tends to be 

unpredictable in engineering practice. External factors include operational 

conditions, material properties, manufacturing accuracy, etc. In a computational 

workflow, these factors are reflected on values of both parameters and design 

variables. Although the nominal values of the relevant variables may be known 

or specified, their variations are beyond the control of the designer, thus 

introducing uncertainty in the computation. For instance, due to limited 

manufacture accuracy the dimension of a component (after being manufactured) 

might be slightly different from its designed value. Note that in this example, the 

uncertainty is different from the one mentioned in the previous paragraph, 

although both of them are associated with design variables. In this case, the 

design variable has already been fixed and there is no uncertainty associated 

with the decision itself.  

In practice, uncertainty can also be introduced due to specific numerical 

implementations (Aughenbaugh, 2006; Mangeant, 2011; Oberkampf et al., 2002b, 

2002a; Thunnissen, 2003) for instance, the way of coding models, storing data, and 

performing calculations, etc.  

Specifically in this thesis, the numerical uncertainty can be introduced due to the fact 

that, all the computational results will be kept with two digits after the decimal point, 

except for two cases:  

 When the variable itself is very small but highly influential (e.g. a standard 

deviation on a small coefficient).  

 When the accuracy of the method needs to be demonstrated (e.g. numerical test-

cases in Section 5.4). 

In general, the impact of numerical uncertainty/error is assumed to be negligible, 

because the context of the current research is within the conceptual design stage, where 



 

16 

most of the models being used are based on simple algebraic equations. In some specific 

cases, for instance, the computational workflow is based on a set of comprehensive 

Partial Differential Equations (PDE), the numerical uncertainty/error will become 

significant, and its influence can be represented as part of the model uncertainty, using 

the method discussed in the following section. The detailed quantification process is 

assumed to be based on expert elicitation and beyond the scope of this thesis. 

2.4 Probabilistic Approach 

In this PhD research, the probabilistic approach is adopted for quantification of 

uncertainty. The variations of uncertain variables are represented as probability 

distributions, and the latter are described as Probability Density Functions (PDF). This 

setup is straight forward for design variables and parameters. To represent the 

uncertainty associated with computational models, the method proposed in (Molina-

Cristóbal et al., 2014) is adopted.  

As illustrated in Figure 2-2, given a set of deterministic input variables, 𝑦𝑖 is one of the 

outputs obtained from a deterministic model in the computational workflow. Due to the 

model uncertainty (or numerical uncertainty) as mention in Section 2.3, this calculated 

𝑦𝑖 is likely to be deviated from the true response of the system or phenomenon under 

study. To address this deviation (which is unknown), 𝑦𝑖  is multiplied with a random 

variable 𝑟𝑣𝑦𝑖, and the final output 𝑦𝑖𝑅 becomes random as well: 

𝑦𝑖𝑅 = 𝑟𝑣𝑦𝑖 ∙ 𝑦𝑖 (2-8) 

For each output variable, a different 𝑟𝑣𝑦𝑖 will be assigned. All the 𝑟𝑣𝑦𝑖’s are assumed to 

be scalars. The probability distributions of 𝑟𝑣𝑦𝑖’s can be obtained from historical data 

(using physical experiments) or expert elicitation (as a subjective estimation of the 

model discrepancy). Mathematically, those random variables are equivalent to other 

uncertain parameters, therefore they will be included in the vector 𝒑, or in a more 

general case, as elements in the vector 𝒙. In this thesis, all the PDF’s are assumed to be 

independent and available. 

It should be mentioned that a more systematic approach to represent model uncertainty 

is to further distinguish between model structure uncertainty and model parameter 
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uncertainty. The former is due to inaccurate model forms and potential missing terms in 

the equations, while the latter is caused by possible variations of the coefficients in the 

model (Kiureghian and Ditlevsen, 2009; Renard et al., 2011). In this paradigm, apart 

from multiplicative random variables, additive 𝑟𝑣𝑦𝑖’s  can also be used, especially to 

account for the model structure uncertainty. As a result, several random variables may 

be assigned for a single output as calibration factors. The implantation of this systematic 

approach requires specific domain knowledge and detailed investigation into the models 

themselves, therefore is beyond the scope the current research.  

 

Figure 2-2. Representation of model uncertainty (Adopted from (Molina-Cristóbal et al., 

2014)) 

2.5 Formulation of Uncertainty-Based Design Problem 

Within the framework of the probabilistic approach, two paradigms are widely adopted 

to formulate an uncertainty-based design problem: Robust Design Optimization (RDO) 

and Reliability-Based Design Optimization (RBDO). It should be mentioned that, 

although the terminology “optimization” is adopted, our focus here is not on searching 

for optimal solutions, but on the common structure to define a problem.  
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As illustrated in Figure 2-3 (Huyse and Bushnell, 2001), a RDO problem intends to 

minimise the performance variation due to “everyday fluctuations” of uncertain 

variables, while a RBDO problem aims to reduce the probabilities of “infrequent but 

potentially catastrophic events” (Huyse and Bushnell, 2001).  

 

Figure 2-3. Application scenarios of RDO and RBDO (Huyse and Bushnell, 2001) 

This distinction is also reflected as different areas of interest in a relevant probabilistic 

distribution. As shown in Figure 2-4 (Zang et al., 2002), a RDO problem focuses more 

on the area near the nominal value; while in a RBDO problem, more emphases are 

placed on the tails. 
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Figure 2-4. Areas of interest of RDO and RBDO (Zang et al., 2002) 

2.5.1 Robust Design Optimization 

It has been widely accepted (Huyse and Bushnell, 2001; Keane and Nair, 2005; Park et 

al., 2006; Schuëller and Jensen, 2008; Yao et al., 2011) that RDO is originated from the 

pioneer development of Taguchi in 1940s. The philosophy of Taguchi is to make the 

performance of a product (or a process) insensitive to the so-called noise factors 

(Phadke, 1989; Taguchi, 1986). To measure the quality of a product, a Loss Function 

(Phadke, 1989; Taguchi, 1986) can be defined as: 

𝐹𝑙(𝑦𝑖) = 𝑘𝑇𝑦𝑖
(𝑦𝑖 − 𝑦𝑖

∗)2 (2-9) 

In this function, 𝑦𝑖  is one of the output (performance) variables and 𝑦𝑖
∗  is its target 

value. The coefficient 𝑘𝑇𝑦𝑖
 is dependent on the costs of rework or scrap.  

Considering the variation of 𝑦𝑖, the expectation of 𝐹𝑙(𝑦𝑖) (Phadke, 1989) is given by: 

𝐸[𝐹𝑙(𝑦𝑖)] = 𝑘𝑇𝑦𝑖
[𝜎𝑦𝑖

2 + (𝜇𝑦𝑖 − 𝑦𝑖
∗)
2
] (2-10) 

From this equation, it can be noted that the critical parts are the variance of the 

performance 𝜎𝑦𝑖
2, and the gap between the mean and target (𝜇𝑦𝑖 − 𝑦𝑖

∗)
2
. Because there 

are two objectives, the concept of Signal to Noise (S/N) ratio is adopted as an measure 

of robustness (Phadke, 1989; Taguchi, 1986). If the target is finite and positive, the 
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scenario is referred to as ‘nominal-the-better’. If the target is zero or infinite, the 

scenarios can be defined as ‘smaller-the-better’ and ‘larger-the-better’, respectively. 

Corresponding to these scenarios, the S/N ratio (Phadke, 1989) is defined as: 

Smaller-the-better: 𝜂𝑦𝑖 = −10 𝑙𝑜𝑔10 [
1

𝑁
∑ (𝑦𝑖

(𝑗)
)2𝑁

𝑗 ]   

Nominal-the-better: 𝜂𝑦𝑖 = 10 𝑙𝑜𝑔10 (
𝜇𝑦𝑖

2

𝜎𝑦𝑖
2
) 

Larger-the-better: 𝜂𝑦𝑖 = −10 𝑙𝑜𝑔10 [
1

𝑁
∑

1

(𝑦
𝑖
(𝑗)
)2

𝑁
𝑗 ]   

(2-11) 

Here the parameter 𝑁 is the number of samples drawn from the production, and 𝑦𝑖
(𝑗)

 are 

the 𝑗𝑡ℎ sample of 𝑦𝑖 . With this formulation, the goal becomes searching for a design 

which achieves highest S/N ratio.  

Modern RDO in the probabilistic framework has adopted the setup to “optimise the 

mean” and “minimise the variance” (Chen, Wiecek and Zhang, 1999). Mathematically, 

the problem can be reformulated as (Park et al., 2006; Yao et al., 2011): 

Find: 

𝒅𝒗 ∈ 𝑅𝑢 (2-12) 

To minimize: 

𝐹𝑜𝑏𝑗[𝜇𝐹𝑜𝑏𝑗
𝐷 (𝒅𝒗, 𝒑), 𝜎𝐹𝑜𝑏𝑗

𝐷 (𝒅𝒗, 𝒑)] (2-13) 

Subject to: 

𝐶𝑖(𝒅𝒗, 𝒑) ≤ 0, 𝑖 = 1,2,3, … , 𝑡 (2-14) 

In equation (2-13), 𝐹𝑜𝑏𝑗
𝐷  is the objective function of the deterministic problem, 𝜇𝐹𝑜𝑏𝑗

𝐷 is 

the mean value, while 𝜎𝐹𝑜𝑏𝑗
𝐷  is the standard deviation. 𝐹𝑜𝑏𝑗[𝜇𝐹𝑜𝑏𝑗

𝐷 (𝒅𝒗, 𝒑), 𝜎𝐹𝑜𝑏𝑗
𝐷 (𝒅𝒗, 𝒑)] 

is a function which combines these two statistical values, for example, as a weighted 

sum of 𝜇𝐹𝑜𝑏𝑗
𝐷  and 𝜎𝐹𝑜𝑏𝑗

𝐷 . 𝐶𝑖(𝒅𝒗, 𝒑) ≤ 0 is the 𝑖𝑡ℎ constraint. 
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2.5.2 Reliability-Based Design Optimization 

The RBDO focuses more on the constraint satisfaction. A typical RBDO problem can 

be formulated as: 

Find: 

𝒅𝒗 ∈ 𝑅𝑢 (2-15) 

To minimize: 

𝐹𝑜𝑏𝑗(𝒅𝒗, 𝒑) (2-16) 

Subject to: 

ℙ{𝐶𝑖(𝒅𝒗, 𝒑) ≤ 0} ≥ 𝕡𝐶𝑖 , 𝑖 = 1,2,3, … , 𝑡 (2-17) 

Hereℙ{𝐶𝑖(𝒅𝒗, 𝒑) ≤ 0} is the probability of satisfying constraint 𝐶𝑖(𝒅𝒗, 𝒑) ≤ 0. This is 

also referred to as “robustness of constraints”, and is an overlapping area between RDO 

and RBDO (Park et al., 2006). 𝕡𝐶𝑖  is a threshold value set by the designer for the 

minimum probability to be achieved.  

In design practice, equation (2-17) can be rewritten as a combination of the mean and 

standard deviation (Du and Chen, 2002; Padulo, 2009; Park et al., 2006; Parkinson, 

Sorensen and Pourhassan, 1993): 

𝜇𝐶𝑖(𝒅𝒗, 𝒑) + 𝑘𝑃𝐶𝑖
𝜎𝐶𝑖(𝒅𝒗, 𝒑) ≤ 0, 𝑖 = 1,2,3, … , 𝑡 (2-18) 

In this equation, the constant 𝑘𝑃𝐶𝑖
 is dependent on to the value of 𝕡𝐶𝑖 in equation (2-17). 

In (Du and Chen, 2002; Parkinson, Sorensen and Pourhassan, 1993), the constraint is 

assumed to follow a normal distribution, which provides the relationship: 

𝑘𝑃𝐶𝑖
= Φ−1(𝕡𝐶𝑖) (2-19) 

Here Φ−1(𝕡𝐶𝑖) is the inverse CDF of a standard normal distribution. 

In (Padulo and Guenov, 2011), more general assumptions are considered, and the 

resulting relationships are shown in Table 2-2. 
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Table 2-2. Coefficient 𝑘𝑃𝐶𝑖
 as a function of the probability 𝕡𝐶𝑖 (Padulo and Guenov, 2011) 

Distribution Assumptions 𝑘𝑃𝐶𝑖
(𝕡𝐶𝑖) Validity 

None 
𝑘𝑃𝐶𝑖

= √
𝕡𝐶𝑖

1 − 𝕡𝐶𝑖
 

0 ≤ 𝕡
𝐶𝑖
≤ 1 

Symmetry 
𝑘𝑃𝐶𝑖

= √
1

2(1 − 𝕡𝐶𝑖)
 

𝕡𝐶𝑖 ≥
1

2
 

Unimodality 
𝑘𝑃𝐶𝑖

= √
9𝕡𝐶𝑖 − 5

9(1 − 𝕡𝐶𝑖)
 

𝕡𝐶𝑖 ≥
5

6
 

𝑘𝑃𝐶𝑖
= √

3𝕡𝐶𝑖
(4 − 3𝕡𝐶𝑖)

 
𝕡𝐶𝑖 <

5

6
 

Symmetry+Unimodality 
𝑘𝑃𝐶𝑖

= √
2

9(1 − 𝕡𝐶𝑖)
 

𝕡𝐶𝑖 ≥
1

2
 

2.6 AirCADia Software 

AirCADia is an in-house model-based design tool, developed by the Advanced 

Engineering Design Group in Cranfield University (Guenov et al., 2014a, 2014b).  

In AirCADia, computational models can be created within the software, or imported as 

.dll plug-ins (e.g. MATLAB, FMI (Blochwitz et al., 2011), etc.). The software is 

capable of assembling the models as computatioal workflows automatically. It also 

contains inbuilt enablers for performing optimization, uncertainty analysis, as well as 

visualization of the results. 

In this research, the case studies in Chapter 4 and 5 are implemented with AirCADia. 

Specifically, some visualization techniques (as presented in Section 4.2.2 and 4.2.3) are 

utilised in the proposed method for margin allocation in Chapter 4. A workflow reversal 

capability (as presented in Section 5.2.2) is utilised in the proposed method for inverse 

uncertainty propagation in Chapter 5. 
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3 Literature Review 

3.1 Introduction 

The general UQ&M problem areas were briefly reviewed in Section 1.1. This chapter 

focuses on three specific topics, aligned with the motivations of this research. In Section 

3.2, methods for margin allocation and trade-off are presented, specifically within the 

UQ&M context. Section 3.3 presents research on uncertainty allocation. Because the 

problem itself has not been fully defined, the literature is separated in several different 

research communities. The development of sensitivity analysis is presented in Section 

3.4, specifically regarding the so-call Variance-Based Sensitivity Indices or Sobol’ 

Indices. This section includes the general mathematical formulation of these sensitivity 

indices, the conventional approach of calculation, and existing research aiming to 

reduce the relevant computational cost. Finally, the conclusions of this literature review 

are given in Section 3.5. 

3.2 Margin Allocation and Trade-off 

Margins are widely applied as mitigation of uncertainty. They could be allocated on 

technical parameters (e.g. mass, power consumption, etc.), or from the perspective of 

project management (e.g. on budgets, schedules, etc.). The philosophy behind is that the 

system (or the process) is designed “to be more capable” than “necessary” (McManus 

and Hastings, 2005), so that possible design changes or over-optimistic estimations 

could be accommodated. 

3.2.1 Definition of Margin 

In general, a margin can be defined as a “reserve” on a relevant quantity. In this thesis, 

only scalar quantities are considered. For certain purposes, the designer may be 

interested in vectors or fields of scalars/vectors (e.g. lift distribution over the wing 

surface). This is beyond the scope of this research. 

Within the computational context, consider 𝑧 as a general scalar variable, which can be 

either an input or an output. The value of 𝑧 is uncertain, but its nominal value 𝑧𝑁 is 

known. A margin can then be defined as a distance as shown in the following equations: 
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𝑀𝑎𝑟𝑧 = 𝑧𝐶  – 𝑧𝑁 Lower the better
𝑀𝑎𝑟𝑧 = 𝑧𝑁 – 𝑧𝐶 Higher the better,

 
(3-1) 

or as a percentage: 

𝑀𝑎𝑟𝑧 = [(𝑧𝐶  – 𝑧𝑁)/ 𝑧𝑁] ∙ 100% Lower the better
𝑀𝑎𝑟𝑧 = [(𝑧𝑁 – 𝑧𝐶)/ 𝑧𝑁] ∙ 100% Higher the better

 
(3-2) 

Here 𝑧𝐶 is a conservative estimation of 𝑧 (on the pessimistic side) (Thunnissen, 2004), 

or a threshold value (e.g. a constraint) (Helton, 2009). It should be noted that, in this 

thesis, the variable 𝑧 is considered to either “lower the better” or “higher the better”. In 

the case of “nominal the better”, two margins may be allocated simultaneously on both 

side of 𝑧𝑁. This is not demonstrated in this thesis. 

In engineering design, margins can be classified into two categories: safety margins and 

design margins. The former could be regarded as synonym of safety factors; once 

decided, they remain fixed during the design process. The choices of this type margins 

are normally based on regulations, with less freedom for decision making. On the other 

hand, the design margins may vary “throughout the development” (Thunnissen, 2005), 

and depend more on the designers’ knowledge and experience. The magnitude of a 

margin indicates a deterministic estimation of uncertainty. Traditionally this is “an 

afterthought” and lumps all the uncertainties “into one value with little or no analysis” 

(Thunnissen, 2005). For instance, given the nominal value (𝑧𝑁), the true value of 𝑧 is 

unknown (or keeps on changing) within a range. Ideally the margin should be chosen to 

cover this possible variation (𝑧 is considered to be ‘lower the better’), as illustrated in 

Figure 3-1 (adapted from (Pilch, Trucano and Helton, 2011)). In practice, due to 

subjectivity, the margin can be over- or under-estimated, which leads to over-

conservative (thus non-competitive) or over-radical (thus risky) design solutions. 
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Figure 3-1. Margin as a deterministic estimation of uncertainty (adapted from (Pilch, 

Trucano and Helton, 2011)) 

3.2.2 Probabilistic Formulation of Margins 

Assuming that the uncertain variable (𝑧) follows a probability distribution, and that the 

PDF (𝕗𝑧) is available, then the margin (𝑀𝑎𝑟𝑧) can be formulated based on a percentile 

(𝑧𝑃 ) of the relevant distribution (Thunnissen, 2004, 2005; Thunnissen and Tsuyuki, 

2004): 

𝑀𝑎𝑟𝑧 = 𝑧𝑃 − 𝑧𝑁 (3-3) 

In the form of a percentage, equation (3-3) becomes: 

𝑀𝑎𝑟𝑧 = [
𝑧𝑃 − 𝑧𝑁
𝑧𝑁

] ∗ 100% 
(3-4) 

The probability of not exceeding this percentile (𝑧𝑃) is given by: 

ℙ{𝑧 ≤ 𝑧𝑃} = 𝔽𝑧(𝑧𝑃) = ∫ 𝕗𝑧(𝑧)𝑑𝑧
𝑧𝑃

−∞

 
(3-5) 

Here 𝔽𝑧(𝑧𝑃) is the CDF of 𝑧𝑃. In this way, an analytical relationship can be established 

between the magnitude of a margin and the corresponding probability of maintaining 

this margin, as illustrated in Figure 3-2 (if 𝑧𝑃 is considered as a constraint, this becomes 

the probability of constraint satisfaction). 
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Figure 3-2. Relationship between margin and uncertainty 

3.2.3 Margin Allocation 

In practice, two possible design scenarios could be adopted, as illustrated in Figure 3-3. 

 

Figure 3-3. Possible design scenarios for margin allocation 

Scenario 1: This scenario is adopted in (Birman, 2013; Cooke et al., 2015; Guenov, 

Nunez and Gondhalekar, 2011; Zang et al., 2015), where a margin is allocated a priori, 

based on experience or on historical data. By using this specified margin, as well as the 

results from uncertainty quantification, the designer would be able to assess the 

probability of maintaining such a margin (or probability of constraint satisfaction): 
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ℙ{𝑧 ≤ 𝑧𝑁 +𝑀𝑎𝑟𝑧} = 𝔽𝑧(𝑧𝑁 +𝑀𝑎𝑟𝑧) = ∫ 𝕗𝑧(𝑧)𝑑𝑧
𝑧𝑁+𝑀𝑎𝑟𝑧

−∞

 
(3-6) 

Scenario 2: This scenario is adopted in (Thunnissen, 2004, 2005; Thunnissen and 

Tsuyuki, 2004), where uncertainty quantification and propagation are conducted a 

priori to obtain the relevant PDF’s. Then the designer may specify a probability 𝕡𝑧, 

which he/she wants to achieve. Based on this probability, the corresponding percentile 

is calculated as: 

𝑧𝑃 = 𝔽𝑧
−1(𝕡𝑧) (3-7) 

Substituting equation (3-7) into equation (3-3), the margin is given as: 

𝑀𝑎𝑟𝑧 = 𝔽𝑧
−1(𝕡𝑧) − 𝑧𝑁 (3-8) 

Here 𝔽𝑧
−1(𝕡𝑧) is the inversed CDF of 𝑧. 

In practice, 𝕗𝑧, 𝔽𝑧, and 𝔽𝑧
−1 are difficult to be obtained analytically, therefore numerical 

methods are normally adopted (e.g. MCS in (Thunnissen, 2004, 2005; Thunnissen and 

Tsuyuki, 2004; Yuan et al., 2016), method of moments in (Birman, 2013), URQ in 

(Guenov, Nunez and Gondhalekar, 2011), and Bayesian Belief Networks in (Cooke et 

al., 2015; Zang et al., 2015)). 

3.2.4 Margin Trade-off 

Most of the research (Cooke et al., 2015; Guenov, Nunez and Gondhalekar, 2011; 

Thunnissen, 2004, 2005; Thunnissen and Tsuyuki, 2004; Yuan et al., 2016) has 

addressed the trade-off between a margin and a probability of constraint satisfaction. In 

(Yuan et al., 2016; Zang et al., 2015), this trade-off is implicitly embedded in an 

optimization process of the margins. 

In (Cooke et al., 2015), a set based design approach is used to down select of multiple 

margin combinations. In this method, the trade-off between margins and performances 

are partially addressed, however the relationship between margin and performance is 

not explicitly captured. 
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3.2.5 Discussion 

According to the literature review, several limitations can be identified regarding the 

existing methods for margin management: 

Firstly, the existing research only considers the margins to accommodate model 

uncertainties, while uncertainties associated with input variables and constraints are not 

accounted for (e.g., to accommodate changes in design requirements). 

Secondly, the aforementioned research focuses on combing margins with uncertainty 

quantification and propagation, while the aspect of trade-offs is relatively less-

developed, especially regarding the trade-off (interaction) between different margins. 

3.3 Uncertainty Allocation 

Uncertainty allocation is not a conventional problem, compared with other topics under 

UQ&M (such as uncertainty propagation, sensitivity analysis, RDO, RBDO, etc.). A 

similar problem, within the context of design methodology, is the Uncertainty 

Budgeting, as presented in Section 3.3.1. Within the manufacturing research 

communities, relevant topics include Tolerance Design and Tolerance Allocation, 

which are presented in Section 3.3.2 and 3.3.3, respectively. Section 3.3.4 presents 

several methods for Inverse Uncertainty Propagation, which is a specific sub-problem 

of interest, under uncertainty allocation. The relevant research is mainly from the 

modelling and simulation communities. 

3.3.1 Uncertainty Budgeting 

The concept of uncertainty budgeting is to “spend” uncertainty as a “currency” 

(Opgenoord, 2016; Opgenoord and Willcox, 2016). The method assumes that a specific 

amount of uncertainty is accepted in the design process, and more uncertainty should be 

“spend” on the factors which are less influential to the output performances.  

Specifically, the “budgets” of uncertainty include three aspects: probabilities of 

exceeding constraints (1 − 𝕡𝐶𝑖 ), upper bounds of performance standard deviations 

(𝜎𝑦𝑖
𝑈𝐵 ), and costs of reducing uncertainty (ℂ ). These budgets are predefined by a 

designer, and the problem is formulated as an optimization. 
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Find: 

𝝁𝒙, 𝝈𝒙 ∈ 𝑅
𝑛 (3-9) 

To minimise:  

𝐹𝑜𝑏𝑗(𝝁𝒙, 𝝈𝒙) =∑𝓌1𝑖

1 − ℙ{𝐶𝑖(𝝁𝒙, 𝝈𝒙) ≤ 0}

1 − 𝕡𝐶𝑖

𝑡

𝑖=1

+∑𝓌2𝑗

𝜎𝑦𝑗(𝝁𝒙, 𝝈𝒙)

𝜎𝑦𝑗
𝑈𝐵

𝑙

𝑗=1

+𝓌3

𝐹𝐶(𝝁𝒙, 𝝈𝒙)

ℂ
 

(3-10) 

Subject to: 

ℙ{𝐶𝑖(𝝁𝒙, 𝝈𝒙) ≤ 0} ≥ 𝕡𝐶𝑖 , 𝑖 = 1,2,3, … , 𝑡 

𝜎𝑦𝑗(𝝁𝒙, 𝝈𝒙) − 𝜎𝑦𝑗
𝑈𝐵 ≤ 0, 𝑗 = 1,2,3, … , 𝑙 

𝐹𝐶(𝝁𝒙, 𝝈𝒙) − ℂ ≤ 0 

(3-11) 

In this formulation, 𝝁𝒙 and 𝝈𝒙 are the vectors of input means and standard deviations. 

The output standard deviation 𝜎𝑦𝑖 is defined as a function of 𝝁𝒙 and 𝝈𝒙. This calculation 

is enabled by constructing a High-Dimensional Model Representation-based (HDMR) 

surrogate. On the other hand, to obtain ℙ{𝐶𝑖(𝝁𝒙, 𝝈𝒙), a base-line MCS is first conducted 

on the surrogate model, which produces an initial probability ℙ0 . Then partial 

derivatives are used to linearize and approximate the change of this probability due to 

𝝁𝒙  and 𝝈𝒙 , respectively. The cost model 𝐹𝐶(𝝁𝒙, 𝝈𝒙)  needs to be specified by the 

designer. 𝓌’s are the weight factors. In the optimization process, sensitivity analysis is 

used to identify which input variables should be updated.  

3.3.2 Tolerance Design 

The tolerance design is part of the Taguchi method (Phadke, 1989; Taguchi, 1986) as 

mentioned in Section 2.5.1. Unlike the RDO problem, tolerance design is conducted 

after the values of design variables are fixed. Instead of exploring the design space, 

restrictions are directly placed on the uncertain factors. Within the context of the 

Taguchi method, such restrictions are realized by improving manufacture accuracy or 

deploying parts/components of higher quality. Since the product cost will be increased 

by the aforementioned activities, a trade-off shall be sought between robustness and the 

cost of upgrading parts/components.  
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In the Taguchi method, this process employs Design of Experiments (DoE) to assess the 

performance variances. Analysis of Variance (ANOVA) is used to identify the most 

influential noise factors. The aforementioned trade-off is conducted by evaluating 

different options to reduce the variances of the most influential uncertain factors (e.g. by 

choosing from a set of off-the-shelf components with different prices and qualities). The 

objective is to minimise the overall cost, which is calculated by adding the price of the 

chosen component and the quality loss of the product (as defined in equation (2-6)). It 

should be mentioned that, the “performance variation” in the Taguchi method is 

mathematically different from the “statistical variance” in the context of probability 

theory. 

3.3.3 Tolerance Allocation 

Tolerance allocation is slightly different from the concept of Taguchi’s tolerance design. 

In the context of the tolerance allocation, a “tolerance” specifically refers to the 

manufacturing accuracy of component dimensions (while Taguchi’s tolerance can also 

refer to other physical quantities, such as electrical resistance, ingredient concentration, 

and so on).  

Methods for tolerance allocation are normally based on local sensitivity analysis (partial 

derivatives) to obtain an explicit relationship between component tolerances and overall 

assemble tolerance (Chase, 1999). To choose the optimal tolerance for each component, 

optimization process can be used, as presented in Lööf et al (Lööf, Hermansson and 

Söderberg, 2007; Lööf and Söderberg, 2011). 

3.3.4 Inverse Uncertainty Propagation 

The inverse uncertainty propagation refers to estimating the uncertainty of input 

variables, given the known or pre-defined uncertainty associated with system (model) 

outputs. Such a problem is also referred to as Backward Uncertainty Propagation in 

(Congedo et al., 2012), Stochastic Inverse Problem in (Narayanan and Zabaras, 2004; 

Zabaras and Ganapathysubramanian, 2008), and Uncertainty Identification in (Fonseca 

et al., 2005).  

It should be mentioned that distinctions need to be made between the inverse 

uncertainty propagation and several similar, but not identical problems in the literature. 
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For instance, the Inverse Uncertainty Quantification (Litvinenko and Matthies, 2013), 

refers to estimating the unknown parameters of a specific probability distribution, based 

on a set of samples drawn from this distribution. In (Jiang, Liu and Han, 2008; 

Ngnepieba and Hussaini, 2007; Wang and Zabaras, 2004), the problem is to estimate 

the unknown parameters of a specific model, given the uncertain outputs of the model. 

These model parameters themselves are deterministic, but the estimations will follow 

distributions, due to other sources of uncertainty (e.g. measurement uncertainty). In 

(Abusam, Keesman and van Straten, 2003), the term Backward Uncertainty 

Propagation (different from (Congedo et al., 2012)) refers to identification of regions of 

the input space, corresponding to the regions of interest within an output distribution. 

These problems (Abusam, Keesman and van Straten, 2003; Jiang, Liu and Han, 2008; 

Litvinenko and Matthies, 2013; Ngnepieba and Hussaini, 2007; Wang and Zabaras, 

2004) are not within the scope of the current research. The reader is referred to 

(Tarantola, 2005), for a discussion of Inverse Problems within a more general context. 

Within our scope, three approaches for inverse uncertainty propagation are identified:  

The first approach requires the explicit relationship between the input and output 

statistical moments, so that when the output uncertainty is specified, the input 

uncertainty can be calculated accordingly. However, this relationship is normally 

inaccessible in most practical applications. Therefore a method has been proposed in 

(Baumgärtel et al., 2014) to approximates this relationship based on a Gaussian process 

as a surrogate (Girard and Murray-Smith, 2005).  

The second approach is based on maximum likelihood method (Fonseca et al., 2005). 

The uncertain input variables are firstly assumed to follow a multivariate normal 

distribution 𝒩(𝝁𝒙, 𝚺𝒙), where 𝝁𝒙 and 𝚺𝒙 are the unknown vector of input means and 

covariance matrix, respectively. Given a set of data from model calculation or 

observation, the likelihood function of 𝝁𝒙  and 𝚺𝒙  can be constructed by using 

perturbation method (based on first order Taylor expansion) or Monte-Carlo simulation. 

The problem is then transformed into an optimization to maximize the likelihood 

function. The optimal solutions are the most likely 𝝁𝒙  and 𝚺𝒙 , which recover the 

unknown input distribution.  
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The third approach is to minimise the difference between the actual and target output 

distributions, by optimizing the input ones (Congedo et al., 2012; Narayanan and 

Zabaras, 2004; Zabaras and Ganapathysubramanian, 2008).  

In (Zabaras and Ganapathysubramanian, 2008) and some early development in 

(Narayanan and Zabaras, 2004), thermal conduction within a heat sink is considered. In 

the forward problem, a stochastic temperature profile is solved, given the stochastic heat 

flux from the boundary of the region under study. The heat flux is represented as 

𝓆(𝓼, 𝓉, 𝝃𝓺), where 𝓼 is the vector to define the location in the space domain, 𝓉 is the 

time, and 𝝃𝓺  is a finite-length vector of random variables to replace the original 

probability space of 𝓆 , using the Karhunen–Loève Expansion (KLE) (Ghanem and 

Spanos, 1991). Then a collocation approach is applied to approximate the heat flux as a 

polynomial interpolant: 

𝓆(𝓼, 𝓉, 𝝃𝓺) =∑𝓆(𝓼, 𝓉, 𝝃𝓺
𝒊 )𝜓𝑖(𝝃𝓺)

𝑛𝓆

𝑖=1

,  

(3-12) 

where 𝑛𝓆 is the number of collocation points, 𝝃𝓺
𝒊  is one realization of 𝝃𝓺  (at one 

collocation point) over the stochastic space, and 𝜓𝑖 is the corresponding polynomial. In 

this equation, 𝓆(𝓼, 𝓉, 𝝃𝓺
𝒊 ) is a deterministic function, which will be noted as 𝓆𝑖 hereafter. 

Based on the known 𝓆𝑖’s, the stochastic temperature in space and time can be deducted.  

The inverse problem is to re-construct/design the heat flux, to maintain an 

observed/specified temperature profile. Assuming that the temperatures at 𝑛𝓈 locations 

(𝓼𝒊, 𝑖 = 1,2,3, … , 𝑛𝓈 ) in space are of interest, an optimization is used to find 𝓆𝑖, 𝑖 =

1,2,3, … , 𝑛𝓆 which will minimize: 

𝐹𝑜𝑏𝑗 (𝓆1, 𝓆2, 𝓆3, … , 𝓆𝑛𝓆) =
1

2
∑∫ [∑𝓌𝑗(〈𝒯

𝑗(𝓼𝒊, 𝓉)〉 − 〈𝒯
𝑗(𝓼𝒊, 𝓉)〉

∗)
2

𝛽

𝑗=1

]
𝓉𝑚𝑎𝑥

𝓉=0

𝑛𝓈

𝑖=1

𝑑𝓉 

(3-13) 

or 

𝐹𝑜𝑏𝑗 (𝓆1, 𝓆2, 𝓆3, … , 𝓆𝑛𝓆) =
1

2
∑∫ ∫ [𝔽𝒯

−1(𝓼𝒊, 𝓉, 𝕡) − 𝔽𝒯
−1∗(𝓼𝒊, 𝓉, 𝕡)]

1

0

𝓉𝑚𝑎𝑥

𝓉=0

𝑛𝓈

𝑖=1

𝑑𝕡 
(3-14) 
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In equation (3-13), 〈𝒯𝑗(𝓼𝒊, 𝓉)〉 and 〈𝒯𝑗
∗
(𝓼𝒊, 𝓉)〉 are respectively the actual and target 𝑗𝑡ℎ 

moment of the temperature at location 𝓼𝒊 and time 𝓉. 𝓌𝑗  is a weight factor for the 𝑗𝑡ℎ 

moment. This objective function will be used when the information is available only 

regarding the statistical moments. If the shape of the target probability distribution is 

known, the objective function defined in equation (3-14) will be used, where 

𝔽𝒯
−1(𝓼𝒊, 𝓉, 𝕡) and 𝔽𝒯

−1∗(𝓼𝒊, 𝓉, 𝕡) are respectively the actual and target inverse CDF of 

the temperature at location 𝓼𝒊 and time 𝓉, and 𝕡 is the probability as an input to the 

inverse CDF. For both objective functions, the optimization is solved using a gradient-

based method, the reader is refer to (Narayanan and Zabaras, 2004; Zabaras and 

Ganapathysubramanian, 2008) for details of calculating the directional derivatives of 

these objective functions. 

Presented in (Congedo et al., 2012) is a study of rarefaction shock waves. The sources 

of uncertainty include the initial flow conditions and the thermodynamic models being 

used. Consequently, the stochastic output is the Mach number at a specific location of 

interest. In this research, inverse propagation is used to estimate the maximum amount 

of uncertainty from different sources, which can ensure the Mach number to be higher 

than one (as a condition for the occurrence of rarefaction shock waves). This problem is 

proposed as,  

To find: 

∆𝒙 = [∆𝑥1, ∆𝑥2, ∆𝑥3, … , ∆𝑥𝑛], (3-15) 

which minimize: 

𝐹𝑜𝑏𝑗1(∆𝒙) = |〈𝑦𝑗
𝑟〉 − 〈𝑦𝑗

𝑟〉∗|, (3-16) 

and maximize: 

𝐹𝑜𝑏𝑗2(∆𝒙) = ‖∆𝒙‖, (3-17) 

subject to 

∆𝑥𝑖 ≥ ∆𝑥𝑖
𝐿𝐵, 𝑖 = 1,2,3, … , 𝑛 (3-18) 
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Here ∆x𝑖 is the variation of the 𝑖𝑡ℎ uncertain input (assumed to be uniformly distributed). 

∆𝑥𝑖
𝐿𝐵  is the lower bound of ∆𝑥𝑖 , due to physical limitations. 〈𝑦𝑗

𝑟〉  and 〈𝑦𝑗
𝑟〉∗  are 

respectively the actual and target 𝑟𝑡ℎ moment of the 𝑗𝑡ℎ output (in this case the Mach 

number is the only output being considered).  

In the implementation, the link between ∆𝒙 and 〈𝑦𝑗
𝑟〉 was obtained with polynomial 

chaos expansions (as a forward uncertainty propagation), and the optimization was 

solved using a Genetic Algorithm (GA). To reduce the computational cost, an artificial 

neural network was constructed simultaneously, to replace the original CFD model, 

using existing model evaluations. The second objective defined in equation (3-16) was 

achieved by gradually reducing each ∆𝑥𝑖 from its initial value, until the first objective 

function was converged. Specifically, an iterative scheme was proposed, in which the 

solver started with updating only the most influential uncertain input variable. If this 

variable reached its lower bound, one additional variable will be taken into account. 

It can be seen that, the objective functions defined in (Zabaras and 

Ganapathysubramanian, 2008) and (Congedo et al., 2012) are closely related. The 

former is more general by using both the moments (equation (3-13)) and the PDF’s 

(equation (3-14)) of the output distributions, while the in the latter, only the moments 

are used (equation (3-16)). It should also be noted that, in (Zabaras and 

Ganapathysubramanian, 2008), the optimization is setup to find an set of collocation 

points (further deduction is needed to obtain the input uncertainty), while in (Congedo 

et al., 2012), the input uncertainty are directly manipulated by the solver. Other 

differences are mainly regarding the solvers (gradient-based versus GA) and stochastic 

expansions (KL versus PCE) used in these two methods. 

3.3.5 Discussion 

The relationship between the topics in this section is summarized in Figure 3-4, where 

four domains are defined by distinctions on two dimensions.  

On the vertical axis, the distinction is “what is controlled by the designer”. For instance, 

in the classical RDO and RBDO, the amount of uncertainty remains fixed and the 

process is to search in the design space for promising solutions, which fulfil 

requirements on robustness or reliability. On the other hand, in an uncertainty allocation 
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or an uncertainty budgeting problem, the focus is to directly control the amount of 

uncertainty, regarding the trade-off between some quantities of interest and the cost of 

reducing uncertainty.   

On the horizontal axis, a distinction is “where the method is used”. From this 

perspective, uncertainty allocation should be considered as a design method, while 

tolerance allocation is a method for manufacturing process. The Taguchi method (which 

includes parameter design and tolerance design) has covered all the four domains, while 

uncertainty budgeting covers the two domains on the left (because in the relevant 

method (Opgenoord, 2016; Opgenoord and Willcox, 2016), both the means and 

standard deviations are controlled by the designer). 

 

Figure 3-4. Domains of several related topics 

From mathematical perspective, uncertainty budgeting, tolerance design, and tolerance 

allocation are proposed as forward problems. While in uncertainty allocation, an 

inversed approach is sought, and the latter is enabled by the inverse uncertainty 

propagation (which is not shown in Figure 3-4). The benefit of using the inversed 

approach is that the designer can ask ‘what-if’ type of questions, by interactively 

specifying the output uncertainty. While in the forward approaches, more effort is spent 
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on searching for the final solution in one go, rather than on the exploration process. At 

the early design stages, the latter could be of greater importance, as it brings the design 

knowledge of what can be potentially achieved, regarding the reduction of uncertainty. 

Regarding the existing methods (Baumgärtel et al., 2014; Congedo et al., 2012; Fonseca 

et al., 2005; Narayanan and Zabaras, 2004; Zabaras and Ganapathysubramanian, 2008) 

for inverse propagation, a general limitation is the difficulty to set up the problem. For 

instance, a Gaussian process/collocation expansion/likelihood functions/cost functions 

need to be constructed for the specific case study, which requires extensive work before 

the inverse propagation can be conducted. Another aspect is the computational cost, 

which will become a burden for high dimensional problems. 

3.4 Sensitivity Analysis 

Various techniques have been developed for sensitivity analysis. In general, these 

techniques can be classified as: Local Sensitivity Analysis (LSA) and Global Sensitivity 

Analysis (GSA). LSA is based on the gradient at a given point of an input space, 

therefore the result is sensible only within the neighbourhood of the selected point 

(Smith, 2013). On the other hand, the GSA is able to analyse all the factors 

simultaneously, and captures the average effect over the entire region of interest 

(Saltelli et al., 2004, 2008). The GSA can be conducted with Derivative-Based Methods 

(Lamboni et al., 2013; Sobol’ and Kucherenko, 2009) and Variance-Based Methods 

(also referred to as the Sobol’ Indices). In this research, focus has been placed on the 

latter. For systematic review on other LSA and GSA techniques, the reader is referred to 

references (Saltelli et al., 2004, 2008; Smith, 2013). 

3.4.1 Mathematical Definition 

The development of variance-based sensitivity analysis dates back to 1970s, when the 

Fourier Amplitude Sensitivity Test (FAST) is proposed by (Cukier, 1973; Cukier, 

Levine and Shuler, 1978; Cukier, Schaibly and Shuler, 1975; Schaibly and Shuler, 

1973). In this method, the Fourier Transformation and searching curves were used to 

decompose the output variances. Similar problems were also referred to as Importance 

Measure by (Hora and Iman, 1986; Iman and Hora, 1990; Ishigami and Homma, 1990; 

Saltelli, Andres and Homma, 1993; Saltelli and Homma, 1992); or Top/Bottom 
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Marginal Variance by (Jansen, Rossing and Daamen, 1994). In parallel, Sobol’ adopted 

the so-called ANOVA-representation to decompose a function, so that the portions of 

total variance caused by different factors can be formulated separately (Sobol’, 1990, 

1993, 2003; Sobol’ and Levitan, 1999; Sobol′, 2001). It was later pointed out by Saltelli 

that all these methods calculate an equivalent statistical quantity (Saltelli, Tarantola and 

Chan, 1999), and that with this regard, the Sobol’s approach is the most general one 

(Homma and Saltelli, 1996).  

Recently, a further generalization of these indices has been proposed by (Fort, Klein and 

Rachdi, 2016). In their research, a sensitivity index can be defined with a contrast 

function (Rachdi, 2011), and the latter is corresponding to a specific feature of a 

probability distribution. For instance, the classic Sobol’ indices are defined with the 

contrast function that links to the output variance. In the general case, by constructing 

different contrast functions, the sensitivity indices can be extended to other statistical 

quantities as well, (e.g. the quantile of a distribution, as demonstrated in (Fort, Klein 

and Rachdi, 2016), and further developed in (Browne et al., 2017; Maume-Deschamps 

and Niang, 2018; Niang, 2016)). This generalized approach is referred to as the Goal 

Oriented Sensitivity Analysis (GOSA), which is able to provide further information 

beyond the classic sensitivity analysis.  

Another generalization of the Sobol’ indices is to accommodate the correlation between 

input variables. In the original definition (Sobol’, 1990, 1993, 2003; Sobol’ and Levitan, 

1999; Sobol′, 2001), the sources of uncertainty (uncertain inputs) are assumed to be 

independent. However, this assumption cannot be maintained in many practical 

applications (Kucherenko, Tarantola and Annoni, 2012). To overcome this limitation, 

research has been conducted to extend the original method with: Gram–Schmidt 

orthogonalization (Bedford, 1998; Mara and Tarantola, 2012), sampling reordering (Xu 

and Gertner, 2007), regression-based decomposition (Xu and Gertner, 2008), and new 

definition of the indices (Kucherenko, Klymenko and Shah, 2017; Kucherenko, 

Tarantola and Annoni, 2012).  

In this research, the focus is on the classic definition of the Sobol’ Indices, where all the 

input variables are assumed to be independent. Regarding GOSA and dependent input 

variables, the reader is referred to the aforementioned papers for further information. 
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3.4.2 Formulation of Classic Sobol’ Indices 

The mathematical formulation of a variance-based sensitivity index is given as follows. 

Considering the workflow defined in equation (2-1), and for discussion purpose, instead 

of using a vector of outputs 𝒚, only one output 𝑦 is considered. Firstly one of the input 

variables 𝑥𝑖  is fixed as a constant 𝑋𝑖 , the conditional variance of output 𝑦  could be 

calculated as, 

𝑉𝑥~𝑖( 𝑦|𝑥𝑖=𝑋𝑖) = ∬…∫[𝑓(𝑥1, 𝑥2, … , 𝑥𝑖−1, 𝑋𝑖 , 𝑥𝑖+1, … , 𝑥𝑛) − 𝐸𝑥~𝑖( 𝑦|𝑥𝑖=𝑋𝑖)]
2
∏𝕗𝑥𝑗

𝑛

𝑗=1
𝑗≠𝑖

(𝑥𝑗)𝑑𝑥𝑗 
(3-19) 

Here the subscript 𝑥~𝑖 indicates that the variance/expectation is due to all inputs except 

the 𝑖𝑡ℎ  one. In this equation, 𝑋𝑖  is considered as a constant. However by choosing 

different values of 𝑋𝑖 , the value of 𝑉𝑥~𝑖( 𝑦|𝑥𝑖=𝑋𝑖)  will be changed accordingly. 

Therefore to globally analyse the impact from 𝑥𝑖, the expectation of 𝑉𝑥~𝑖( 𝑦|𝑥𝑖=𝑋𝑖) needs 

to be calculated, with regard to the randomness of 𝑋𝑖 (which is the equivalent to the 

randomness of 𝑥𝑖, as 𝑋𝑖 is a realization of 𝑥𝑖.  

𝐸𝑋𝑖 (𝑉𝑥~𝑖( 𝑦|𝑥𝑖=𝑋𝑖)) = ∫(𝑉𝑥~𝑖( 𝑦|𝑥𝑖=𝑋𝑖)) 𝕗𝑥𝑗(𝑋𝑖)𝑑𝑋𝑖 
(3-20) 

Since 𝐸𝑋𝑖 (𝑉𝑥~𝑖( 𝑦|𝑥𝑖=𝑋𝑖)) is the expected output variance with contributions from all 

but the 𝑖𝑡ℎ input, its difference with the total output variance 𝑉(𝑦), could then be taken 

as the contribution from 𝑥𝑖  only. Normalized by the total variance, the First Order 

Sensitivity Index for 𝑥𝑖 is defined as, 

𝑆𝑖 =
𝑉(𝑦) − 𝐸𝑋𝑖 (𝑉𝑥~𝑖( 𝑦|𝑥𝑖=𝑋𝑖))

𝑉(𝑦)
 

(3-21) 

Apart from the first order indices 𝑆𝑖, similar formulations can also be used to deduce the 

Higher Order Index 𝑆𝑖𝑗 and Total Effect Index 𝑆𝑖
𝑇, which will be further discussed in 

Section 6.2.2 and 6.2.3, respectively. It should be noted that, in the general case of 

multiple outputs, a different set of Sobol’ indices (𝑆𝑖, 𝑆𝑖𝑗, and 𝑆𝑖
𝑇) will be obtained for 

each variable in the vector 𝒚 = [𝑦1, 𝑦2, 𝑦3… , 𝑦𝑙] . In the current discussion, such a 
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situation will not be demonstrated, therefore no additional notations will be introduced 

to distinguish Sobol’ indices for multi-output functions. 

3.4.3 Numerical Calculation 

For most of the models used in real applications, analytical solutions of sensitivity 

indices are not available, therefore numerical methods are used for calculation. Here the 

most traditional and widely applied Pick-Freeze approach (based on Monte Carlo 

Simulation) is presented. This approach has been proposed separately by Sobol’ 

(Ishigami and Homma, 1990; Sobol’, 1993)  

For each index, two sets of samples are needed:  

𝓢𝟏 =

[
 
 
 
 
 
 𝑥1

(1) 𝑥2
(1) …

𝑥1
(2) 𝑥2

(2) …
… … …

𝑥𝑖
(1) … 𝑥𝑛

(1)

𝑥𝑖
(2) … 𝑥𝑛

(2)

… … …

𝑥1
(𝑟) 𝑥2

(𝑟) …
… … …

𝑥1
(𝑁) 𝑥2

(𝑁) …

𝑥𝑖
(𝑟) … 𝑥𝑛

(𝑟)

… … …

𝑥𝑖
(𝑁) … 𝑥𝑛

(𝑁)
]
 
 
 
 
 
 

 

(3-22) 

𝓢𝟐 =

[
 
 
 
 
 
 𝑥1

(1)′ 𝑥2
(1)′ …

𝑥1
(2)′ 𝑥2

(2)′ …
… … …

𝑥𝑖
(1)′ … 𝑥𝑛

(1)′

𝑥𝑖
(2)′ … 𝑥𝑛

(2)′
… … …

𝑥1
(𝑟)′ 𝑥2

(𝑟)′ …
… … …

𝑥1
(𝑁)′ 𝑥2

(𝑁)′ …

𝑥𝑖
(𝑟)′ … 𝑥𝑛

(𝑟)′
… … …

𝑥𝑖
(𝑁)′ … 𝑥𝑛

(𝑁)′]
 
 
 
 
 
 

 

(3-23) 

In these matrixes, 𝑁 is the number of points in each of the sampling sets. 𝑥𝑖
(𝑟)

 is the 𝑟𝑡ℎ 

sample value of the 𝑖𝑡ℎ variable, from the first sampling set 𝓢𝟏, while 𝑥𝑖
(𝑟)
′ is from the 

second sampling set 𝓢𝟐. 

The first order indices can be estimated by (Ishigami and Homma, 1990; Saltelli, 2002; 

Saltelli et al., 2008): 

𝑆̂𝑖 = 
𝑈̂ − [𝐸̂(𝑦)]

2

𝑉̂(𝑦)
 

(3-24) 
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In equation (3-24), 𝐸̂(𝑦) and 𝑉̂(𝑦) are the estimators of mean and variance, based on 

either sampling set 𝓢𝟏 or 𝓢𝟐, or both set 𝓢𝟏 and 𝓢𝟐 (using a standard MCS). The critical 

part is to calculate 𝑈̂ by:  

𝑈̂ ≈
1

𝑁 − 1
∑𝑓(𝑥1

(𝑟), 𝑥2
(𝑟), … , 𝑥𝑖

(𝑟), … , 𝑥𝑛
(𝑟)) ∙

𝑁

𝑟=1

𝑓(𝑥1
(𝑟)′, 𝑥2

(𝑟)′, … 𝑥𝑖
(𝑟), … , 𝑥𝑛

(𝑟)′) 
(3-25) 

In this equation, 𝑓(𝑥1
(𝑟)′, 𝑥2

(𝑟)′, … 𝑥𝑖
(𝑟), … , 𝑥𝑛

(𝑟)′) takes all the input values from sampling 

set 𝓢𝟐, except 𝑥𝑖
(𝑟)

 which is taken from set 𝓢𝟏.  

While set 𝓢𝟐  needs to be re-produced for each of the input variables, set 𝓢𝟏  can be 

reused every time. To obtain all the first order indices, 𝑁(𝑛 + 1) evaluations of the 

model are need. The value of  𝑁 is chosen by the user, based on the required accuracy 

(the error is inversely proportional to √𝑁) (Saltelli et al., 2008). If a purely random 

sampling strategy is used, a representative value of 𝑁 could be 1000.  

The process is similar for total effect and higher order indices. The total effect indices 

require one more set for their calculation (Saltelli, 2002), which leads to 𝑁(𝑛 + 2) total 

evaluations. To calculate the higher order indices, each combination of the input 

variables requires an extra sampling set. For instance, considering up to the second 

order, the total evaluation for all the first, second order and total effect indices is 

𝑁(𝑛 + 2 + (
𝑛
2
)) , where (

𝑛
2
)  is the number of combinations (every pair of input 

variables). 

3.4.4 Improvement 

Further research has been conducted to reduce the computational cost of variance-based 

sensitivity analysis. The focused areas include: 

 Sampling Strategy: Instead of using a pure random sampling strategy, quasi-

random samples can be used to speed up the convergence. For instance, the 

Sobol’ sequences in (Saltelli et al., 2010), and Latin Hyper Cube in (Helton and 

Davis, 2003). An improved FAST (Tarantola, Gatelli and Mara, 2006) was 

proposed with the Random Balance Design (RBD) strategy (Satterthwaite, 

1959). Later on, this sampling strategy was also introduced to the MCS 
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approach by (Mara and Rakoto Joseph, 2008). In these methods, the same 

sampling points are reused for sensitivity indices corresponding to all the input 

variables; therefore the total number of model evaluations is reduced. 

 Formulation of Estimator: the estimator in equation (3-25) was improved by 

(Jansen, 1999; Saltelli, 2002; Sobol’ et al., 2007) The new estimators can 

accelerate the convergence of the Monte Carlo approach (leading to a reduced 

𝑁), therefore reduce the total number of model evaluations.  

 Approximation: In (Lamboni, 2016), a method was proposed to use quadrature 

and Latin Hyper Cube for the total effect indices. In (Kucherenko, Klymenko 

and Shah, 2017), a new formulation of Sobol’ indices was proposed which can 

be used for correlated input variables. In this research, grid quadrature is used 

for approximation. 

 Using Expansion: Oakley and O’hagan proposed the Bayesian approach based 

on Gaussian processes (Oakley and O’Hagan, 2004). In (Blatman and Sudret, 

2010; Crestaux, Le Maître and Martinez, 2009; Konakli and Sudret, 2016; 

Sudret, 2008), the Polynomial Chaos Expansion (PCE) was applied for 

sensitivity analysis. In this approach, the indices can be calculated from the 

coefficients of the orthogonal polynomials, while the latter is obtained by 

evaluating the model at specific sampling points.  

3.4.5 Discussion 

Regarding the traditional MCS approach, equations (3-26), (3-27), and (3-28) are 

adopted from (Saltelli, 2002). The cost of the improved MCS with Random Balance 

Design (Mara and Rakoto Joseph, 2008) is given by equation (3-29). In these equations, 

𝑁 is the number of samples, which will be used for a general MCS. It is chosen by the 

user, based on the required accuracy (the error is inversely proportional to √𝑁) (Saltelli 

et al., 2008). If a purely random sampling strategy is used, a representative value of 𝑁 

could be 1000. Some of the modified estimators (Jansen, 1999; Saltelli et al., 2010) or 

quasi-random sampling methods can speed up the convergence, therefore smaller 𝑁 

could be used. In Figure 3-5, the computational costs against the number of uncertain 

input variables for all the MCS approaches are plotted as red lines, where the different 

settings (𝑁  values and orders of indices) are indicated by different markers. For 
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instance, assume that the modified estimator from (Jansen, 1999; Saltelli et al., 2010) 

could increase the efficiency by 50% (which is very optimistic), the cost of computing 

the first order indices (with 𝑁 = 500) is indicated by the red line with asterisk markers. 

The computational costs of PCE approaches are dependent on the detailed techniques 

for estimating the polynomial coefficients. For intrusive PCE, equation (3-30) can be 

used, where 𝑃 is the order of truncation. The non-intrusive PCE can be further classified 

as full tensor approach, Least Square Approximation (LSA), and sparse grid approach. 

The cost of a full tensor approach grows exponentially as shown in (3-31), while LSA 

can provide the same cost as the intrusive approach (as adopted in (Cuneo, Traverso and 

Shahpar, 2017)). In (Eldred and Burkardt, 2009) and (Sudret, 2008), over-sampling is 

recommended, which increases the total number of model evaluations, as shown in 

equations (3-34) and (3-35). The cost of sparse grid approach can be estimated with 

equation (3-32), where 𝐾 is the level of the grid. A technique named low-rank tensor 

approximation was proposed in (Konakli and Sudret, 2016), which was reported to be 

more efficient than the conventional LSA. The computational cost is not included in 

Table 3-1, as an iterative algorithm is used for sampling. The stopping criteria of this 

algorithm include a pre-defined tolerance for error and a number of maximum 

iterations. In Figure 3-5, the PCE related approaches are plotted as blue lines, with the 

markers indicating different settings. In equations (3-30), (3-31), and (3-32), 𝑃 is chosen 

to be 2 and 4, and 𝐾 is chosen to be 2 (as representative values).  

The computational cost of Lamboni method for total effect indices is given by equation 

(3-36), where 𝑁 is the sampling of a Latin Hyper Cube and 𝑄 is the order of quadrature. 

In the plot, 𝑁 is assumed to be 250 and 𝑄 is assumed to be 2, indicated by the green 

line. The cost of the grid quadrature method used by (Kucherenko, Klymenko and Shah, 

2017) is not compared here, because the quantities being calculated are not equivalent. 

However a higher cost can be expected as the cost of grid quadrature grows 

exponentially. 

The cost of FAST is given by (3-37), where 𝑀 is the order of interference (the value is 

set as 4) and 𝜔𝑚𝑎𝑥 is the maximum frequency in the Fourier Transformation, the set of 

frequencies are adopted from (McRae, Tilden and Seinfeld, 1982). In Figure 3-5, the 
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cost is indicated by the purple line. The cost of extended-FAST (which is not plotted 

here) will be higher due to re-samplings. 

The Bayesian approach is not included in the table, as no explicit estimation of the 

computational cost has been provided in the original paper (Oakley and O’Hagan, 

2004). However an example was given, in which a 40-dimensional problem was solved, 

using 101 model evaluations. 

Table 3-1. Computational costs of various methods 

Method Computational Cost 

MCS for First Order Indices Only (Saltelli, 2002) 𝑁𝑡𝑜𝑡𝑎𝑙 = 𝑁(𝑛 + 1) (3-26) 

MCS for First Order and Total Effect Indices 

(Saltelli, 2002) 
𝑁𝑡𝑜𝑡𝑎𝑙 = 𝑁(𝑛 + 2) (3-27) 

MCS for First Order, Second Order, and Total 

Effect Indices (Saltelli, 2002) 
𝑁𝑡𝑜𝑡𝑎𝑙 = 𝑁(𝑛 + 2 + (

𝑛
2
)) (3-28) 

MCS using Random Balance Design (Mara and 

Rakoto Joseph, 2008) 
𝑁𝑡𝑜𝑡𝑎𝑙 = 2𝑁 (3-29) 

Intrusive PCE for All the Indices (Xiu and 

Karniadakis, 2002) 𝑁𝑡𝑜𝑡𝑎𝑙 =
(𝑛 + 𝑃)!

𝑛! 𝑃!
 

(3-30) 

Non-Intrusive PCE (using full tensor quadrature) 

for All the Indices (Eldred and Burkardt, 2009) 
𝑁𝑡𝑜𝑡𝑎𝑙 = (𝑃 + 1)𝑛 (3-31) 

Non-Intrusive PCE (using sparse grid) for All the 

Indices (Xiu and Hesthaven, 2005) 
𝑁𝑡𝑜𝑡𝑎𝑙~2

𝐾𝑛𝐾/𝐾! (3-32) 

Non-Intrusive PCE 

(using least square 

approximation) for All 

the Indices 

Adopted in (Cuneo, 

Traverso and Shahpar, 

2017) 

𝑁𝑡𝑜𝑡𝑎𝑙 =
(𝑛 + 𝑃)!

𝑛! 𝑃!
 

(3-33) 

Recommended in 

(Eldred and Burkardt, 

2009) 

𝑁𝑡𝑜𝑡𝑎𝑙 = 2
(𝑛 + 𝑃)!

𝑛! 𝑃!
 

(3-34) 

Reported in (Sudret, 

2008) 𝑁𝑡𝑜𝑡𝑎𝑙 = (𝑛 − 1)
(𝑛 + 𝑃)!

𝑛! 𝑃!
 

(3-35) 

Lamboni Method (Lamboni, 2016) 𝑁𝑡𝑜𝑡𝑎𝑙 = 𝑁(𝑛𝑄 + 1) (3-36) 

Classic FAST (McRae, Tilden and Seinfeld, 1982) 𝑁𝑡𝑜𝑡𝑎𝑙 = 2𝑀𝜔𝑚𝑎𝑥 + 1 (3-37) 
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Figure 3-5. Number of evaluations for different SA techniques  

It can be seen that, for most of cases (except the random balanced methods (Mara and 

Rakoto Joseph, 2008; Tarantola, Gatelli and Mara, 2006)), the computational cost is 

related with the number of uncertainty sources, therefore becomes very expensive for 

high dimensional problems. Thus improving efficiency (i.e. the calculation speed), is 

still an area requiring further research. 



 

45 

3.5 Summary and Conclusions 

This chapter has reviewed the existing methods regarding the three specific problem 

areas of interest, namely: margin allocation and trade-off, uncertainty allocation, and 

sensitivity analysis. According to the literature review, several limitations can be 

identified for each of these problem areas: 

Regarding margin allocation and trade-off, existing research has already addressed the 

explicit link between margin and uncertainty, based on the probabilistic formulation of 

the former. However there is a lack of systematic approach to perform trade-off studies, 

especially considering the interaction between different margins.  

Regarding uncertainty allocation, similar problems can be identified among several 

different research communities. Although a few methods have been proposed, the 

implementation of these methods are complicated, which has restricted their application 

for interactive design exploration.     

Regarding sensitivity analysis, the main challenge is related to the computational cost 

for large scale problems. With most of the current techniques, the required number of 

model evaluations will become prohibitive, as the dimension increases. Although some 

improved techniques are proposed, there are still different ways to address the problem, 

which have not been investigated. 

In response to these issues, methods are developed as presented in the following 

Chapters. 
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4 Margin Allocation and Trade-offs 

4.1 Introduction 

This chapter presents a method for margin allocation and trade-off, within the context of 

UQ&M. The pros and cons of margins have already been discussed in the motivations 

(Section 1.2) and literature review (Section 3.2.1). According to the literature review, 

some of the problems have been addressed, especially regarding the probabilistic 

formulation of margins. The remaining challenges include: 

 Account for different types of uncertainties: In the previous research (Cooke 

et al., 2015; Guenov, Nunez and Gondhalekar, 2011; Thunnissen, 2004, 2005; 

Thunnissen and Tsuyuki, 2004; Zang et al., 2015), margins were mainly 

introduced for uncertainties associated with computational models. In practice, 

margins can also be applied to account for uncertain requirements, due to 

potential design modifications and future developments.  

 Explore the interactions between different margins: When designing a 

complex system, different margins can be competing and even conflicting with 

each other. For instance, given a constraint on the aircraft gross weight, 

increasing the margin on the weight of one subsystem will restrict the potential 

margins on the weights of others. In a more general case, the margins can be 

allocated across different disciplines. A method should be developed to 

explicitly explore this interaction, which has not been addressed in the previous 

research. 

 Enable the trade-off between margins and other quantities: The previous 

research (Cooke et al., 2015; Guenov, Nunez and Gondhalekar, 2011; 

Thunnissen, 2004, 2005; Thunnissen and Tsuyuki, 2004; Zang et al., 2015) has 

addressed the trade-off between a margin and a probability of constraint 

satisfaction. In (Cooke et al., 2015), the trade-off between margins and 

performances are implicitly addressed by using a down selection process. In a 

broader picture, this should involve decision making upon margins, system 

performances, and probabilities of constraint satisfaction. A formalised approach 

is therefore required to organise such trade-off studies. 
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To address these problems, the proposed method adopts a set-based design approach (as 

explained in Section 4.2), along with techniques for uncertainty quantification and 

sensitivity analysis. The aforementioned interactions and trade-offs are classified as 

three categories: margin vs. margin, margin vs. probability of constraint satisfaction, 

and margin vs. performance. 

The rest of the chapter is organized as follows. Section 4.2 presents specific concepts, 

tools, and enablers which are adopted in the proposed method. The latter is described in 

Section 4.3. The demonstration of the proposed approach, implemented in AirCADia is 

presented in Section 4.4. Finally, conclusions are drawn and future work is outlined in 

Section 4.5. It should be mentioned that, the development is a collaborative work of the 

entire research group (Guenov et al., 2017). Some initial ideas are proposed by the 

author’s supervisors and colleagues, while the formulation and implementation are 

conducted as the author’s work. 

4.2 Background 

The philosophy of the set-based design approach is to keep the design open “by the 

parallel development of multiple design solutions and delaying the critical decisions” 

(Riaz, Guenov and Molina-Cristóbal, 2017). Some early application and general 

introduction on set-base design can be found in (Singer, Doerry and Buckley, 2009; 

Sobek, Ward and Liker, 1999). More recent development of set-based approach for 

aircraft family design is given by (Riaz, 2015; Riaz, Guenov and Molina-Cristóbal, 

2017), from which the following concepts and enablers are adopted in this work. 

4.2.1 Design and Performance Space 

A design space (𝐷𝑆) is defined as the hypercube confined by the specified (valid) 

intervals of all design variables. The design variables are assumed to be independent. If 

a correlation exists, there will be either a constraint, or a model (in which the dependent 

variable will not be considered as a design variable) to address the relationship.  

For continues design variables, the specified (valid) interval of the 𝑖𝑡ℎ design variable is 

given as follows: 

𝐷𝑉𝑖 = [𝑑𝑣𝑖
𝐿𝐵, 𝑑𝑣𝑖

𝑈𝐵], 𝑖 = 1,2,3, … , 𝑢 (4-1) 
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Here 𝑑𝑣𝑖
𝐿𝐵 and 𝑑𝑣𝑖

𝑈𝐵 are the lower and upper bounds, respectively. Mathematically, the 

𝐷𝑆 can be represented by equation (4-2), as the Cartesian product of all the design 

variable sets (𝐷𝑉𝑖 , 𝑖 = 1,2,3,… , 𝑢 ). Each element in the 𝐷𝑆  is a possible design 

solution, i.e., an ordered 𝑢-tuple [𝑑𝑣1, 𝑑𝑣2, … , 𝑑𝑣𝑢]. 

𝐷𝑆 = 𝐷𝑉1 × 𝐷𝑉2 × …× 𝐷𝑉𝑢 (4-2) 

In practice, Design of Experiments (DoE) (Antony, 2003) can be applied to discretise 

and populate the design space. For this purpose, various sampling strategies can be used, 

for instance, full factorial, Monte Carlo, Latin hypercube, etc. In this research, full 

factorial approach is used for its simplicity. If the design variables are discrete in nature, 

the aforementioned process can still be applied. For instance, the interval of number of 

passengers is [160, 180], and DoE can be conducted with 160, 165, 170, 175, and 180 

passengers. However these cases are not demonstrated in this research.  

For each sample, the computational workflow is executed to obtain the relevant 

performances. Similar to the concept of design space, a performance space (𝑃𝑆) can be 

defined as a hypercube confined by the intervals of all performance variables. The 

ranges however are not specified by the designer but rather defined by the maximum 

and minimum values of the corresponding variables, obtained from the DoE study: 

𝑃𝑉𝑖 = [𝑦𝑖
𝑀𝐼𝑁 , 𝑦𝑖

𝑀𝐴𝑋], 𝑖 = 1,2,3, … , 𝑙 (4-3) 

By using Cartesian product, the performance space is defined as: 

𝑃𝑆 = 𝑃𝑉1 × 𝑃𝑉2 ×…× 𝑃𝑉𝑙 (4-4) 

4.2.2 Parallel Coordinates Plot 

The Parallel Coordinates Plot (PCP) is used to visualise high-dimensional spaces 

(Inselberg, 2009). One illustrative example is shown in Figure 4-1 (plotted in 

AirCADia), in which, every vertical axis represents one dimension of the design or 

performance space. The values of each variable are indicated as the vertices along the 

corresponding axes. One design solution could be represented as a polyline which 

connects the vertex on each axis, as indicated by the highlighted orange line. 
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Figure 4-1. Example of parallel coordinates plot 

In AirCADia, constraints can be specified dynamically for each variable. For instance in 

Figure 4-1, a lower bound and an upper bound are placed on the axes of 𝐸𝑆𝐴𝑅 and 

𝑇𝑂𝐹𝐿, respectively. According to these constraints, the feasible solutions are marked as 

green polylines, while the infeasible ones indicated by grey. Further information of PCP 

for set-based design could be found in (Guenov et al., 2014a, 2014b; Nunez et al., 2009; 

Riaz, 2015; Riaz, Guenov and Molina-Cristóbal, 2017). 

4.2.3 Iso-Contours Plot 

The Iso-Contours Plot (ICP) divides a high-dimensional design space into multiple two-

dimensional (2D) contours, on which the projections of performance constraints are 

plotted, based on numerical calculation (Guenov et al., 2014a; Riaz, 2015; Riaz, 

Guenov and Molina-Cristóbal, 2017). An illustrative example is shown in Figure 4-2, in 

which, the three-dimensional design space composed of 𝐴𝑅, 𝑊𝑓, and 𝑆𝑟𝑒𝑓 (on the left) 

is projected as the 2D contours of 𝐴𝑅 and 𝑊𝑓 (on the right). Within a 2D contour plot, 

the feasible regions are indicated as white areas, while the infeasible ones are shaded by 

grey. By changing the value of 𝑆𝑟𝑒𝑓, the positions of constraints (on 𝐸𝑆𝐴𝑅 and 𝑇𝑂𝐹𝐿 in 

this case) will be changed accordingly, as indicated by the two different 2D contour 

plots on the right. In a more general case, the designer can arbitrarily select any two 

dimensions to plot multiple contours. It should be mentioned that, the method does not 

require any additional model evaluations, apart from the samples of the DoE study. The 

reader is referred to (Riaz, 2015; Riaz, Guenov and Molina-Cristóbal, 2017) for more 

information on this technique. 
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Figure 4-2. Design space exploration using 2D contour plots (adapted from (Riaz, 2015)) 

4.3 Methodology 

The overview of the proposed method is illustrated by Figure 4-3. After design problem 

formulation, the process breaks into two streams. The left stream includes analyses 

conducted by an uncertainty expert, and the results are used to support the decision 

making in the right stream (by a designer). The final outcome of this method is a set of 

promising margin combinations.  

This separation of the two streams is to make the method less intrusive to be 

incorporated in the traditional deterministic design process, which has already been 

widely adopted in industrial practice. For instance, the designer can focus on his/her 

domains of expertise (e.g. airframe or systems) without being heavily involved in the 

UQ&M techniques. On the other hand, the uncertainty expert is not required to fully 

understand the domain knowledge of aircraft design. It should be noted that, this 

distinction between the designer and uncertainty expert is not absolute, as an individual 

can have multiple capabilities and roles in the design study. 
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Figure 4-3. Overview of margin allocation and trade-off 

In the following sections, a running example is used to explain details of the proposed 

method, using the SIMPCODE workflow as presented in Section 2.2. The deterministic 

setup is listed in Table 4-1.  

Table 4-1. DoE setup using the illustrative example 

 Variable Notation Unit Value (Range) 

Design Variable Aspect Ratio 𝐴𝑅  [8,9] 

Fuel Weight 𝑊𝑓 𝑙𝑏 [35000, 37000] 

Parameter Payload Weight 𝑊𝑝 𝑙𝑏 28000 

Performance Equivalent Still Air Range 𝐸𝑆𝐴𝑅 𝑛.𝑚 𝐸𝑆𝐴𝑅 ≥ 3500 

Take-off Field Length 𝑇𝑂𝐹𝐿 𝑓𝑡 To minimise 
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4.3.1 Sensitivity Analysis 

The first step is to identify all the potential margins in the design problem. In this 

research, margins can be allocated to account for two types of uncertainty: 

 Requirement Uncertainty: is due to vagueness (Ayyub and Klir, 2006), design 

modifications, or potential needs for future product evolution. Considering 

margins on requirements offers the flexibility to handle such scenarios. For 

instance, in the running example, a margin (𝑀𝑎𝑟𝑊𝑝) can be applied on required 

payload mass (𝑊𝑝) to account for the potentially increase during the design 

process (e.g. catering to a changing market need). This margin can also enable 

the future development of a derivative aircraft with more passenger capability 

(van Heerden et al., 2016; Riaz, Guenov and Molina-Cristóbal, 2017). 

 Model Uncertainty: is due to lack of knowledge as explained in Section 2.3. A 

margin can be applied as a knock-down factor on a model output to make the 

predictions more conservative. For example, margins (𝑀𝑎𝑟𝐿𝑜𝐷 and 𝑀𝑎𝑟𝑊𝑒) can 

be applied on the predicted lift-over-drag (𝐿𝑜𝐷 ) and empty weight (𝑊𝑒 ), 

respectively. Because the corresponding models in the running example are 

based on simplified empirical relationships, the results can be over- or under- 

estimated. By applying the margins, risk of rework can be mitigated if the true 

values turn out to be on the pessimistic side. 

If the total number of potential margins is too large, sensitivity analysis (Section 1.2 and 

3.4) can be applied to select a subset of the most critical margins. For instance, all the 

margins are assumed to follow uniform distributions within +/- 10% intervals around 

their nominal values. In this case, the mathematical meaning of the resulting sensitivity 

indices is not strictly the same as defined in Section 3.4, because the margins are not 

necessarily random variables and the distributions are only assumed. However, these 

results are used to down scale the problem, so that the following analysis can be 

computationally affordable. 

4.3.2 Initial Margin Allocation 

According to results of sensitivity analysis, margins are allocated on the most critical 

variables. Similar to the design variables, all the margins are assumed to be independent 
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and they interactions will be explored as trade-offs as shown in the following sections. 

The initial values of margins can be based on equation (3-8), if the probability 

distributions are already known. In a more likely scenario, the probability distributions 

are not yet available or even not attainable (for instance, a possible growth in the 

required payload). In such a case, the margins will be arbitrarily specified based on the 

designer’s judgement. For example, margins are allocated on the predicted Lift-over-

Drag Ratio (𝑀𝑎𝑟𝐿𝑜𝐷 = 5% ), Empty Weight (𝑀𝑎𝑟𝑊𝑒 = 5% ), and requirement of 

Payload Weight (𝑀𝑎𝑟𝑊𝑝 = 10%). 

The effect of margins on the computational workflow is illustrated in Figure 4-4, where 

the margins and additional calculations (compared with the original workflow in Figure 

2-1) are indicated by yellow ovals and dashed-line blocks, respectively. 

 

Figure 4-4. Workflow modified to include margins 

Since the initial margins might not be feasible, a set-based approach is adopted to 

evaluate multiple solutions. Here the concept of Margin Space (𝑀𝑆) is introduced, as a 

hypercube similar to the design and performance spaces. For each margin of interest, an 

interval is defined, which should contain the initially specified values.  

𝑀𝐴𝑅𝑖 = [𝑀𝑎𝑟𝑖
𝐿𝐵,𝑀𝑎𝑟𝑖

𝑈𝐵],   𝑖 = 1,2,3, … ,𝑤 (4-5) 
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The upper bounds 𝑀𝑎𝑟𝑖
𝐿𝐵  and lower bounds 𝑀𝑎𝑟𝑖

𝑈𝐵  are based on the maximum and 

minimum values of interest for each margin. The 𝑀𝑆  is generated by using the 

Cartesian product of all the margin intervals: 

𝑀𝑆 = 𝑀𝐴𝑅1 ×𝑀𝐴𝑅2 ×…×𝑀𝐴𝑅𝑤 (4-6) 

Each element in the margin space is an ordered 𝑢-tuple [𝑀𝑎𝑟1,𝑀𝑎𝑟2, … ,𝑀𝑎𝑟𝑤], which 

will be referred to as a ‘margin combination’. 

A DoE study, as mentioned in Section 4.2.1 is used to populate both the design space 

and margin space. The step size is decided by the designer. To maintain the 

computational cost within an affordable level, a large step size can be used for initial 

assessment to explore the general trends of the design and margin spaces. Reduced step 

sizes can be applied later, on specific areas of interest. In this case, 5 samples are placed 

for each design variable and 6 samples are placed for each margin. This leads to 5400 

design solutions in total, as shown in Figure 4-5. 

 

Figure 4-5. Result of initial margin allocation (to be updated please ignore the yellow lines 

in the plot) 

Some of the margin combinations may not be feasible because of the resulting 

performance not meeting the constraints (as indicated by grey in the plot). On the other 

hand, the yellow polylines indicate solutions which are feasible, but with no margins on 

the uncertain variables. 
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The maximum value of a margin can be defined as a function of the design variable and 

other margins:  

𝑀𝑎𝑟𝑖 ≤ 𝐹𝑀𝑎𝑟𝑖,𝐶𝑟(𝒅𝒗,𝑴𝒂𝒓~𝑖), 𝑖 = 1,2,3, … ,𝑤, 𝑟 = 1,2,3, … , 𝑡 (4-7) 

Here,  𝐹𝑚𝑎𝑟𝑖,𝐶𝑟  is a function which returns the upper bound of the 𝑖𝑡ℎ  margin, with 

regard to the 𝑟𝑡ℎ constraint.  𝒅𝒗 is the vector of values of design variables, and 𝑴𝒂𝒓~𝑖 

is the vector of all except the 𝑖𝑡ℎ  margin, i.e. 𝑴𝒂𝒓~𝑖 = (𝑀𝑎𝑟1, 𝑀𝑎𝑟2, 𝑀𝑎𝑟3,

… ,𝑀𝑎𝑟𝑖−1, 𝑀𝑎𝑟𝑖+1, … , 𝑀𝑎𝑟𝑤). 

The iso-contours plot, as explained in Section 4.2.3, can be used to visualise the feasible 

margin space for each design point (DP). This is demonstrated in Figure 4-6, where the 

design space is shown on the left, with two design variables 𝑑𝑣1-aspect ratio (𝐴𝑅) and 

𝑑𝑣2-fuel mass (𝑊𝑓). For selected design points (DP1 and DP2) in the design space, the 

corresponding feasible margin spaces are shown as the white regions in Figure 4-6 (a) 

and (b), respectively. It can be seen that, compared with DP1, DP2 leads to a reduced 

feasible area, which means that this design point has less room for margin allocation. 

Note that, for simplicity, only one constraint (𝐸𝑆𝐴𝑅 ≥ 3 500𝑛𝑚) is applied in Figure 

4-6. Introducing iso-contours of other constraints may further constrict the margin 

spaces. This will be illustrated in the evaluation section. 
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Figure 4-6. Effect of design point selection on the margin space 

Similarly, if a margin combination is selected in the margin space, the feasible design 

space will also be changed accordingly. This is illustrated in Figure 4-7, again using the 

running example. Figure 4-7 (a) shows the design space with zero margins. Selection of 

a margin combination, represented by the dotted circle in Figure 4-7 (b), modifies the 

feasible design space, as shown in Figure 4-7 (c).  
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Figure 4-7. Effect of margin selection on the design space 

The explicitly-defined and bi-directionally linked margin and design spaces constitute 

one of the central concepts of this research. 

4.3.3 Uncertainty Propagation 

Uncertainty analysis is performed for all the feasible design solutions. This includes 

forward propagation and probabilistic assessment of constraint satisfaction. The 

Univariate Reduced Quadrature (URQ) method (Padulo, Campobasso and Guenov, 

2011), was employed to propagate the uncertainty for each design point (more details of 

this technique will be explained in Chapter 5). 

To account for model uncertainty, the method from (Molina-Cristóbal et al., 2014) is 

adopted, as explained in Section 2.4. One issue to be addressed is that, for uncertainty 
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propagation, the margins corresponding to model uncertainty need to be removed first. 

Otherwise, the uncertainty will be double counted. However, simply removing the 

margins will lead to another problem, because the links between margins and 

probabilities of constraint satisfaction will be lost. As illustrated in Figure 4-8, for one 

design point with 𝐴𝑅 = 8, the deterministic prediction of lift-over-drag will be 𝐿𝑜𝐷 =

15.50. By applying different 𝑀𝑎𝑟𝐿𝑜𝐷 on the relevant model, the conservative estimation 

𝐿𝑜𝐷𝐶  will change accordingly. On the other hand, in uncertainty analysis, the same 

probability of constraint satisfaction will be obtained, if the margin is removed and the 

random factor 𝑟𝑣𝐿𝑜𝐷 is used. This gives a wrong impression that the margins are not 

related to the probability of constraint satisfaction at all. 

 

Figure 4-8. Link between margin and probability 

In fact, for a fixed design point, its probability of constraint satisfaction cannot be 

improved by adding margins. The real effect of margins is: they tend to shift the 

projection of deterministic performance constraints towards more robust regions in the 

design space. This seems to be obvious if the margin is allocated directly on the 

constraints, but turns out to be implicit for intermediate variables of the workflow. As 

illustrated in Figure 4-9, by increasing the margins on 𝐿𝑜𝐷 and 𝑊𝑒 from 2% to 3%, the 

projection of constraint (𝐸𝑆𝐴𝑅 ≥ 3500) has been moved towards the top right corner. 

As a result, the design points which are feasible with small margins become infeasible 
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as the margins are increased (for instance the point A, as marked by the dashed circle). 

Although in this case the margins cannot improve the robustness of point A, they do 

help to filter out such points, which are likely to have lower probabilities of constraint 

satisfaction. 

 

Figure 4-9. Effect of margins on the projection of deterministic constraint 

Following this reasoning, one approach is adopted from (Cooke et al., 2015; Zang et al., 

2015), in which the uncertainty propagation is implemented using two sets of models as 

shown in Figure 4-10. On the left stream, are the deterministic models, where margins 

are added; on the right stream are the randomized models, for which the outputs are 

distributions. 

In this way, the links between the conservative estimations (due to margins) and the 

probability of constraint satisfaction (due to randomization) can be ‘preserved’. The 

results are shown in Figure 4-11, in which three extra axes (𝜇𝑇𝑂𝐹𝐿𝑅 , 𝜇𝐸𝑆𝐴𝑅𝑅 , and 

𝕡𝐸𝑆𝐴𝑅𝑅) are added on the right, which are respectively the means of stochastic 𝑇𝑂𝐹𝐿 

and 𝐸𝑆𝐴𝑅 , and the probability of 𝐸𝑆𝐴𝑅 ≥ 3500 . The benefit of plotting both the 

margins and probability is that, the designer can put a lower bound on the probability, to 

identify which margin combinations are able to produce robust solutions. If this link is 

lost, such a down-selection will not be able to perform. 
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Figure 4-10. Two set of models for implementing the uncertainty analysis 

 

 

Figure 4-11. Combination of conservative estimations and result from uncertainty analysis 
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4.3.4 Trade-off Study 

In the trade-off study, the designer explores the design/margin space and identifies one 

or more margin combinations that may provide reserves for uncertainty in models and 

requirements, while attempting to prevent degradation in design performance. The 

previous steps can be considered as a process to gather information, which is used for 

three types of trade-off studies presented in this section: between margins, between 

margins and performances, and between margins and probabilities of constraint 

satisfaction. It is important to note that in practice the designer can conduct these trade-

offs in any order, subject to available information.  

4.3.4.1 Margin vs. Margin 

Due to the presence of performance constraints, margins on different variables and 

models can be conflicting with each other. Therefore trade-off studies are conducted 

between margins to find acceptable combinations which fulfil all the constraints. 

This exploration is enabled by a matrix of two-dimensional Iso-contour plots of the 

margin space. This is demonstrated in Figure 4-12, using the running example. Given a 

selected design point, for instance DP1 in Figure 4-6, the projection of performance 

constraint (𝐸𝑆𝐴𝑅 ≥ 3500𝑛𝑚) is plotted in two-dimensional contours of 𝑀𝑎𝑟𝐿𝑜𝐷  vs. 

𝑀𝑎𝑟𝑊𝑒, 𝑀𝑎𝑟𝐿𝑜𝐷 vs. 𝑀𝑎𝑟𝑊𝑝, and 𝑀𝑎𝑟𝑊𝑒 vs. 𝑀𝑎𝑟𝑊𝑝. By selecting a margin combination 

point (MP) in one of the plots (for instance MP1: 𝑀𝑎𝑟𝐿𝑜𝐷 = 1%, 𝑀𝑎𝑟𝑊𝑒 = 3%), the 

feasible region in the remaining two plots will be updated. 
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Figure 4-12. Selection of MP1 in margin space (𝑀𝑎𝑟𝑊𝑒 = 3% and 𝑀𝑎𝑟𝐿𝑜𝐷 = 1% ). 

If the margin combination point, MP2 (𝑀𝑎𝑟𝑊𝑒 = 1%, 𝑀𝑎𝑟𝐿𝑜𝐷 = 4%), is subsequently 

selected, the iso-contour representing the aircraft range constraint shifts in the other 

contour plots of the 𝑀𝑆, as shown in Figure 4-13. It can be seen from Figure 4-13 that 

the selection of MP2 results in a larger feasible margin space in plot 𝑀𝑎𝑟𝐿𝑜𝐷 vs. 𝑀𝑎𝑟𝑊𝑒. 

However, the opposite trend is noticeable in the bottom-right plot (𝑀𝑎𝑟𝑊𝑒 vs. 𝑀𝑎𝑟𝑊𝑝). 
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Figure 4-13. Selection of MP2 in margin space (𝑀𝑎𝑟𝑊𝑒 = 1% and 𝑀𝑎𝑟𝐿𝑜𝐷 = 4%). 

By selecting different margin combinations in this manner, the designer can 

interactively visualize how the feasible margin space changes. Note that, the sequence 

of assigning combinations of margins is up to the designer and can be dependent on the 

problem under consideration.  

After exploration of the relationships between margins (and design variables), parallel 

coordinates plot (PCP) is utilized to down select design solutions. The designer may 

filter out solutions with insufficient margins, by placing a lower bound on each margin 

axis. The remaining solutions constitute a deterministic design band (𝐷𝐵𝐷 ) in the 

parallel coordinates plot. The 𝐷𝐵𝐷 for the running example is shown in Figure 4-14. It 

is confined by the dashed blue lines. In addition to the design variables (𝐴𝑅 and 𝑊𝑓) 

and performance parameters (𝑇𝑂𝐹𝐿 and 𝐸𝑆𝐴𝑅), the plot in Figure 4-14 also includes 

the margin parameters (𝑀𝑎𝑟𝐿𝑜𝐷, 𝑀𝑎𝑟𝑊𝑒, and 𝑀𝑎𝑟𝑊𝑝). Here, two criteria are used for 

filtering out undesirable points: 1) deterministic constraints (𝐸𝑆𝐴𝑅 ≥ 3500𝑛𝑚) and 2) 

minimum margin requirements (1%, 1% and 2.5%, for margins 𝑀𝑎𝑟𝐿𝑜𝐷, 𝑀𝑎𝑟𝑊𝑒, and 
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𝑀𝑎𝑟𝑊𝑝 , respectively). The grey solutions are discarded due to the violation of the 

deterministic constraint, whereas the yellow solutions are filtered out due to the required 

minimum margin values not being met.  

 

Figure 4-14. Deterministic design band (𝐷𝐵) filtering using parallel coordinates plots. 

The seamless integration of parallel coordinates and Iso-contour plots is an effective 

means for interactive design space exploration and margins trade-off. For example, it 

may turn out that it is impossible to achieve the desired minimum values for all the 

margins under consideration, due to not being able to meet the constraints. In such a 

case, the parallel coordinates plot could be used to find an appropriate combination of 

minimum margin values by interactively varying the minimum values of the individual 

margins. Moreover, given that the parallel coordinates and the Iso-contours are 

interlinked, the designer can simultaneously investigate the positions of the points in the 

design and margin spaces and visualize the topology of the feasible regions (the white 

regions in Figure 4-7).  
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4.3.4.2 Margin vs. Probability of Constraint Satisfaction 

The implementation of uncertainty propagation has been explained in Section 4.3.3. 

Based on those results, the designer can conduct trade-off studies between margins and 

probabilities of constraint satisfaction. 

 

Figure 4-15. A visualization technique to combine a deterministic constraint and the 

probability of constraint satisfaction 

A visualization technique has been developed by combining a deterministic constraint 

and the corresponding probability of constraint satisfaction, projected in one contour 

plot of the design space.  

As shown in Figure 4-15 (a), the deterministic constraint (𝐸𝑆𝐴𝑅 ≥ 3500) projected in 

the design space (of 𝐴𝑅  and 𝑊𝑓 ), is affected by margins to account for model 

uncertainty (referring to Figure 4-9). In Figure 4-15 (b), for each design point, the 

probability of constraint satisfaction, ℙ{𝐸𝑆𝐴𝑅𝑅 ≥ 3500}, is calculated (by using the 

right stream in Figure 4-10) and plotted as a 3D surface. The horizontal transparent slide 

represents a designer specified threshold value for this probability, ℙ{𝐸𝑆𝐴𝑅𝑅 ≥

3500} ≥ 85%. The intersection of this slide and the 3D surface is also projected on the 



 

67 

same two-dimensional design space. By combining these two contours as shown by 

Figure 4-15 (c), the designer is able to visually assess: 

 Are the margins allocated on the right variable: The relationship between a 

margin and a probability of constraint satisfaction is straight forward, if there is 

only one dimension and the margin is directly allocated on the uncertain variable  

(as shown in Figure 3-2). But in high dimensional cases, this relationship will be 

complicated. For instance, the constraint is defined on the 𝐸𝑆𝐴𝑅 , but the 

margins are allocated on the 𝐿𝑜𝐷 and  𝑊𝑒. If there are no dependencies between 

these variables, the margins will not be relevant to the probability we want to 

increase. From the plot, the two contour lines should be ideally ‘parallel’ 

(although the contour lines are not necessarily straight lines), and the feasible 

regions defined by these two lines should be on the same side. Large intersection 

angle of the two contour lines would indicate that the margins and uncertainty 

are not correlated. In the extreme case, the two contour lines are perpendicular to 

each other, thus altering the margin will not change the probability of constraint 

satisfaction. This implies that the margins in question should be reallocated 

elsewhere.  

 Are the margins sufficient to account for the relevant uncertainty: this can be 

assessed by comparing the feasible (or infeasible) region defined by the two 

contour lines as illustrated in Figure 4-16. Here four possible margin 

combinations are considered, as listed in Table 4-2. If the feasible region defined 

by the deterministic constraint is fully contained within the region defined by 

probability contour line (Figure 4-16 (c)), then the margins are sufficient to 

accommodate the relevant uncertainty. Otherwise higher values should be 

applied on the margins (Figure 4-16 (a) and (b)). In another scenario, the 

designer may realise that too much margin is allocated, if the deterministic 

constraint defines a much smaller feasible region compared to that defined by 

the probability threshold (Figure 4-16 (d)). 
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Figure 4-16. Probability of constraint satisfaction vs. margin combinations 

Table 4-2. Trade-off between margins combinations 

Combination 𝑀𝑎𝑟𝐿𝑜𝐷 𝑀𝑎𝑟𝑊𝑒 

MP1 2% 1% 

MP2 3% 2% 

MP3 1% 5% 

MP4 4% 4% 

Similar to the previous step, filtering can be used after the exploration, to discard design 

solutions that do not meet the required probability of constraint satisfaction. The result 

of doing this is a robust design band (𝐷𝐵𝑅). In this running example, the threshold on 

the probability of satisfying the 𝐸𝑆𝐴𝑅 constraint, ℙ{𝐸𝑆𝐴𝑅𝑅 ≥ 3500}, is set as 85%. 

Design solutions that fail to meet this threshold are shown by the red lines in Figure 
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4-17. These can be discarded as a further reduction of the polylines in the 𝐷𝐵𝐷  as 

shown in Figure 4-14. The resulting robust design band is shown in Figure 4-17 as the 

region enclosed by the dashed blue lines. 

 

Figure 4-17. Robust design band (𝐷𝐵𝑅) filtering using parallel coordinates plots 

4.3.4.3 Margins vs. Performance 

In general, the allocation of margins adversely affects performance, as it involves 

placing ‘reserves’. The purpose of trading-off margins with performance variables is 

therefore to identify combinations of margins that adequately account for uncertainty, 

but still allow acceptable performance. A technique using scatter plots is presented for 

interactively exploring the change in the location of the Pareto front when the margin 

values are varied. 

This is demonstrated in Figure 4-18, where a two-dimensional performance space is 

plotted. The performances are 𝑇𝑂𝐹𝐿 (smaller the better) and 𝐸𝑆𝐴𝑅 (larger the better).  
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Figure 4-18. Exploration effect of different combinations of margins on the location of the 

Pareto front 

In this plot, the Pareto front of the design solutions with no margins (MP0) is depicted 

by the black dashed line. The other two dashed lines (green and purple) represent the 

Pareto fronts corresponding to two different combinations of nonzero margin 

combinations MP1 and MP2, respectively. As can be seen from Figure 4-18, margin 

combination MP1 provides better performance compared to margin combination MP2. 

The designer can therefore use this technique to interactively vary the values of the 

margins and simultaneously observe the resulting movement of the Pareto front towards 

degradation or improvement of performance. 

4.4 Evaluation 

A qualitative evaluation and validation of the proposed method was undertaken as part 

of the TOICA project. In the evaluation, the proposed method was applied on an aircraft 

and subsystem sizing test-case, implemented with the in-house software AirCADia (as 

presented in Section 2.6). The feedback from the practicing experienced designers and 

airframe systems architects confirmed the potential usability of the method in an 

industrial context.  
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4.4.1 Test case description 

A conceptual sizing study of a short-range passenger aircraft was considered. A 

simplified high level view of the computational workflow for this study is shown in 

Figure 4-19. The margins applied are shown in blue rectangles. For the sake of 

simplicity, only nine out of the 28 margins were shown in the figure. The full 

nomenclature of all the margins and design variables are shown in Table 4-3. 

 

Figure 4-19. Schematic computational workflow of the design study 

Table 4-3. Test case nomenclature 

Category Symbol Name 

Aircraft Level 𝐷𝑒𝑠𝑅𝑛𝑔 Design Range [𝑛𝑚] 

𝑆𝑤 Wing Reference Area [𝑓𝑡2] 

𝑆𝐿𝑆𝑇 Engine Sea-Level Static Thrust [𝑙𝑏] 

𝐺𝑊 Gross Weight [𝑙𝑏] 

𝑉𝑎𝑝𝑝 Approach Velocity [𝑘𝑡] 
𝑇𝑂𝐹𝐿 Take-Off Field Length [𝑓𝑡] 
𝐿𝐹𝐿 Landing Field Length [𝑓𝑡] 
𝑁𝑂𝑥 Nitrogen Oxide Emissions [𝑙𝑏] 

𝑆𝐿𝑁𝑜𝑖𝑠𝑒 Sideline Noise [EPNdB] 

𝐹𝑂𝑁𝑜𝑖𝑠𝑒 Flyover Noise [EPNdB] 

𝐵𝑙𝑜𝑐𝑘𝐹𝑢𝑒𝑙 Block Fuel [𝑙𝑏] 

𝐹𝐴𝑆𝑀 Fuel per Available Seat Mile [𝑙𝑏/𝑛𝑚] 

𝑆𝑃𝑂𝑇  Total Shaft Power Off-Take [𝑘𝑊] 

𝑀𝑠𝑦𝑠 Total System Mass [𝑙𝑏] 

𝑁𝑃𝑎𝑥 Number of Passengers 

Environment Control 

System (ECS) 
𝑚̇𝑃𝑒𝑟𝑂𝑐𝑝𝑚𝑖𝑛

 Mass Flow Rate of Fresh Air per Occupant [kg/s] 

𝑇𝑖𝑛𝑚𝑖𝑛 Temperature of Air Flow into the Cabin [℃] 

𝑀𝐸𝐶𝑆 ECS Mass [𝑙𝑏] 
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𝑃𝐸𝐶𝑆 ECS Power Off-Take [𝑘𝑊] 

𝑀𝑎𝑟𝑚̇𝑃𝑒𝑟𝑂𝑐𝑝
 Margin on Mass Flow Rate of Fresh Air per Occupant 

𝑀𝑎𝑟𝑇𝑖𝑛𝑚𝑖𝑛
 Margin on Temperature of Air Flow into the Cabin 

𝑀𝑎𝑟𝑀𝐸𝐶𝑆 Margin on ECS Mass 

𝑀𝑎𝑟𝑃𝐸𝐶𝑆 Margin on ECS Power Off-Take 

Flight Control System 

(FCS) 
𝑆𝐻𝑇 Horizontal Tail Reference Area [𝑓𝑡2] 

𝑆𝑉𝑇  Vertical Tail Reference Area [𝑓𝑡2] 

𝑀𝐹𝐶𝑆 FCS Mass [𝑙𝑏] 

𝑃𝐹𝐶𝑆 FCS Power Off-Take [𝑘𝑊] 

𝑀𝑎𝑟𝑀𝐹𝐶𝑆 Margin on FCS Mass 

𝑀𝑎𝑟𝑃𝐹𝐶𝑆 Margin on FCS Power Off-Take 

Ice Protection System 

(IPS) 
𝑇𝑠𝑘𝑖𝑛 Required Skin Temperature [𝐾] 

𝑆𝑃𝑅𝑂𝑇𝑊 Total Protected Area for Wing IPS [𝑚2] 

𝑆𝑃𝑅𝑂𝑇𝑁𝐴𝐶 Total Protected Area for Cowling IPS [𝑚2] 

𝑀𝐼𝑃𝑆 IPS Mass [𝑙𝑏] 

𝑃𝐼𝑃𝑆 IPS Power Off-Take [𝑘𝑊] 

𝑀𝑎𝑟𝑇𝑠𝑘𝑖𝑛 Margin on Required Skin Temperature 

𝑀𝑎𝑟𝑀𝐼𝑃𝑆 Margin on IPS Mass 

𝑀𝑎𝑟𝑃𝐼𝑃𝑆𝑊
 Margin on Wing IPS Power Off-Take 

𝑀𝑎𝑟𝑃𝐼𝑃𝑆𝐶
 Margin on Cowling IPS Power Off-Take 

Fuel System (FS) 𝑀𝑎𝑟𝑀𝐹𝑆 Margin on FS Mass 

𝑀𝑎𝑟𝑃𝐹𝑆 Margin on FS Power Off-Take 

Hydraulic Power 

System (HPS) 
𝑀𝑎𝑟𝑀𝐻𝑃𝑆 Margin on HPS Mass 

Electrical Power 

System (EPS) 
𝑀𝑎𝑟𝑀𝐸𝑃𝑆 Margin on EPS Mass 

Thrust Reverser System 

(ThrRev) 
𝑀𝑎𝑟𝑃𝑇ℎ𝑟𝑅𝑒𝑣𝐿𝑁𝐷

 Margin on Thrust Reverser Power Off-Take at Landing 

Landing Gears (LG) 𝑀𝑎𝑟𝑃𝐿𝐺 Margin on Landing Gear Power Off-Take 

Brakes (Brk) 𝑀𝑎𝑟𝑃𝐵𝑟𝑘 Margin on Brake Power Off-Take 

Avionics (Avion) 𝑀𝑎𝑟𝑀𝐴𝑣𝑖𝑜𝑛 Margin on Avionics Mass 

𝑀𝑎𝑟𝑃𝐴𝑣𝑖𝑜𝑛 Margin on Avionics Power Off-Take 

Auxiliary Power Unit 

(APU) 
𝑀𝑎𝑟𝑀𝐴𝑃𝑈  Margin on APU Mass 

Instruments (Instr) 𝑀𝑎𝑟𝑀𝐼𝑛𝑠𝑡𝑟 Margin on Instrument Mass 

𝑀𝑎𝑟𝑃𝐼𝑛𝑠𝑡𝑟 Margin on Instrument Power Off-Take 

Equipment (Equip) 𝑀𝑎𝑟𝑀Equip Margin on Equipment Mass 

Passenger Service 

Units (PaS) 
𝑀𝑎𝑟𝑃𝑃𝑎𝑆 Margin on Passenger Service Units Power Off-Take 

Inflight Entertainment 

System (IfEnt) 
𝑀𝑎𝑟𝑃𝐼𝑓𝐸𝑛𝑡 Margin on Inflight Entertainment System Power Off-

Take 

Lightings (Light) 𝑀𝑎𝑟𝑃𝐿𝑖𝑔ℎ𝑡 Margin on Lighting Power Off-Take 

Galley (Gal) 𝑀𝑎𝑟𝑃𝐺𝑎𝑙 Margin on Galley Power Off-Take 

Lavatories (Lav) 𝑀𝑎𝑟𝑃𝐿𝑎𝑣 Margin on Lavatory Power Off-Take 

As can be seen, the workflow is divided into two hierarchical levels: aircraft (top) level 

and subsystems level. The top level contains the computational models for aircraft 

geometry and performance. Specifically, the NASA code, Flight Optimization System 

(FLOPS) (Mccullers, 1984), was used for overall aircraft sizing and analysis. Models at 
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the subsystems level were adopted from several research papers (Chakraborty et al., 

2014; Lammering, 2014; Shibata et al., 2014; de Tenorio, 2010; Xia and Lawson, 2013), 

which compute subsystem attributes and performances. As shown in Figure 4-19, the 

outputs of the system models were aggregated and linked to the aircraft level, to 

compute the total systems weight and engine shaft power offtake.  

All models were assembled into a computational workflow using the dynamic 

(automatic) workflow creation module (Guenov et al., 2010) in AirCADia. Figure 4-20 

shows a screen capture of the computational workflow, where the purple rectangles 

represent the computational models, while the green and red ovals represent input and 

output variables, respectively. A fragment of the workflow is magnified for an intuitive 

image of how models and variables are connected. In total, the workflow comprises 171 

models and 317 variables. The data employed are realistic, but do not represent any 

actual aircraft, since the purpose was solely to demonstrate the capabilities and benefits 

of the proposed method. 
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Figure 4-20. Computational workflow used for the evaluation case 
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4.4.2 Sensitivity Analysis and Initial Margin Allocation 

After the set-up of the computational workflow, margins were allocated (on 28 variables 

with values of up to 30%) to address two types of uncertainty: uncertainty in the 

requirements and uncertainty in the computational models. For example, as shown in 

Figure 4-19, 𝑀𝑎𝑟𝑚̇𝑃𝑒𝑟𝑂𝑐𝑝
 was applied to account for changes of the requirement on the 

fresh air mass flow rate in the environmental control system (ECS), whereas  𝑀𝑎𝑟𝑀𝐸𝐶𝑆
 

was applied to account for uncertainty associated with the output of the ECS mass 

model. 

DoE study with all the 28 margins will be computationally very expensive. In order to 

determine which margins are the most influential, a sensitivity analysis was performed, 

using the Fourier-Amplified Sensitivity Test (FAST) (Cukier, 1973; Cukier, Levine and 

Shuler, 1978) (also refer to Section 3.4). Uniform distributions were applied on all the 

margins, ranging between 0 and 30%. The result of the sensitivity analysis is shown in 

Figure 4-21. 
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Figure 4-21. Sensitivity analysis result for all margins 

As can be seen from Figure 4-21, the five most influential margins are 𝑀𝑎𝑟𝑚̇𝑃𝑒𝑟𝑂𝑐𝑝
, 

𝑀𝑎𝑟𝑀𝐸𝐶𝑆
, 𝑀𝑎𝑟𝑀𝐹𝐶𝑆

, 𝑀𝑎𝑟𝑃𝐸𝐶𝑆, and 𝑀𝑎𝑟𝑀𝐸𝑃𝑆
. For demonstration, three of these were of 

particular interest for this study, as summarized in Table 4-4. 

Table 4-4. Three margins selected for trade-off 

Parameter Margin Need/Justification 

Min. fresh air mass flow rate per occupant 𝑀𝑎𝑟𝑚̇𝑃𝑒𝑟𝑂𝑐𝑝
 Uncertainty in requirement 

ECS mass 𝑀𝑎𝑟𝑀𝐸𝐶𝑆
 Computational model uncertainty 

FCS mass 𝑀𝑎𝑟𝑀𝐹𝐶𝑆
 Computational model uncertainty 

Two design variables, wing reference area (𝑆𝑊) and sea-level static thrust (𝑆𝐿𝑆𝑇) were 

considered. A full factorial DoE study was then performed in AirCADia to populate the 

design and margin spaces. The lower and upper bounds of the design variables and 
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margins are listed in Table 4-5, along with the corresponding numbers of levels for the 

DoE. 

Table 4-5. Design of experiments study formulation 

Category Name Parameter Lower 

bound 

Upper 

bound 

Levels 

Design 

Variables 

Wing Area 𝑆𝑊 (𝑓𝑡
2) 1350 1390 5 

Sea-Level Static Thrust 𝑆𝐿𝑆𝑇 (𝑙𝑏𝑓) 27000 29000 5 

Margins Fresh air mass flow rate 𝑀𝑎𝑟𝑚̇𝑃𝑒𝑟𝑂𝑐𝑝
 0% 30% 4 

Environmental control system 

mass 
𝑀𝑎𝑟𝑀𝐸𝐶𝑆

 0% 30% 4 

Flight control system mass 𝑀𝑎𝑟𝑀𝐹𝐶𝑆
 0% 30% 4 

The performance constraints are listed in Table 4-6. For clarity of display, only three 

performance constraints are considered. The result of the DoE study is shown in Figure 

4-22. The plot shows simultaneously the design space, the margin space, the 

performance space, and the performance constraint values. All feasible solutions are 

shown in blue, whereas the infeasible ones are shown in grey. 

Table 4-6. Performance constraints 

Constraint Parameter Limiting value 

Take-off field length 𝑇𝑂𝐹𝐿 ≤ 5500 𝑓𝑡 
Approach velocity 𝑉𝑎𝑝𝑝 ≤ 136 𝑘𝑡 

NOx emissions 𝑁𝑂𝑥 ≤ 500 𝑙𝑏 
 

 

Figure 4-22. Results of the design of experiments study 

4.4.3 Uncertainty Propagation 

The sources of uncertainty considered, along with the assumed distributions, are listed 

in Table 4-7. These sources include both input and model uncertainties. Generally, such 

distributions can be obtained from historical data and/or expert elicitation. If this 
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information is not available, the designer may proceed to the margin vs. performance 

trade-off (as demonstrated in the next sub section). 

Table 4-7. Sources of uncertainty 

Parameter Notation Distribution 

Fuselage skin heat transfer 

coefficient [𝑊/(𝑚2𝐾)] 
𝑐𝑤𝑎𝑙𝑙 Uniform distribution: 

lower bound=1; upper bound=1.4  

Heat load from the flight 

deck [𝑊] 
𝑄̇𝐹𝐷 Random factor 𝑅𝑄𝐹𝐷: uniform distribution: 

lower bound=0.8; upper bound=1.2 

ECS mass [𝑙𝑏] 𝑀𝐸𝐶𝑆 Random factor 𝑅𝑀𝐸𝐶𝑆
: triangular distribution: left 

point=0.7; top point=1; right point=1.3 

FCS mass [𝑙𝑏] 𝑀𝐹𝐶𝑆 Random factor: 𝑅𝑀𝐹𝐶𝑆 : triangular distribution: left 

point=0.7; top point=1; right point=1.3 

Before uncertainty propagation, the margins on ECS and FCS mass had to be removed, 

because placing the distribution on a variable in addition to its margin would result in 

double accounting for uncertainty (as explained in Section 4.3.3). This was not required 

for the margin on the ECS fresh mass flow rate, since this margin was applied to 

accommodate flexible requirement, which would not be assigned any probability 

distribution.  

The results of the uncertainty propagation are shown in Figure 4-23 as an extension of 

the deterministic results shown in Figure 4-22. The mean values of the output variables 

and the probabilities of constraint satisfaction have been added as the last eight parallel 

coordinates. For example, the arbitrarily selected poly line, highlighted in orange, 

represents a point in the 𝐷𝐵𝐷 with a particular combination of margins. The red error 

bars represent the standard deviation (±1σ) of the performance variables. 

 

Figure 4-23. Uncertainty propagation result for a single design point 



 

79 

While not central to this particular research, it should be noted that the URQ method 

only estimates the means and standard deviations of the outputs. Therefore, to calculate 

the probabilities of constraint satisfaction, assumptions needed to be made regarding the 

output distributions. For this purpose, a Monte Carlo simulation was conducted with 

10000 model evaluations. The resulting histogram (as shown in Figure 4-24) indicated 

that a Gaussian distribution could be assumed for the output variables. It should be 

mentioned that, in this test case, this assumption was based on visual comparison only, 

because the focus was not on statistics of the results, but on demonstration of the trade-

off studies. In a practical design process, some more rigours approaches can be applied 

for normality test, for instance, the Kolmogorov-Smirnov analysis (Massey and Jr., 

1951) and Kullback–Leibler divergence (Kullback and Leibler, 1951). 

 

Figure 4-24. Histogram of MCS to assess the distribution of the outputs 

4.4.4 Trade-off Study 

4.4.4.1 Margin vs. Margin 

Recall from Section 4.3.2 that the allowable ‘room’ for allocating a particular margin is 

dependent on the selected design point and the selected magnitudes of the other 



 

80 

margins. This can be seen again in Figure 4-25 and Figure 4-26, where the design space 

and corresponding margin spaces for design points DP1 (𝑆𝑊 = 1300 𝑓𝑡2 , 𝑆𝐿𝑆𝑇 =

28500 𝑙𝑏𝑓) and DP2 (𝑆𝑊 = 1380 𝑓𝑡2, 𝑆𝐿𝑆𝑇 = 28500 𝑙𝑏𝑓) are shown, respectively. 

In both figures, the constraints on take-off field length (𝑇𝑂𝐹𝐿), approach velocity (𝑉𝑎𝑝𝑝), 

and emission (𝑁𝑂𝑥) are projected on the two-dimensional design and margin spaces. It 

can be observed that DP2 would provide more room for allocating margins compared 

with PD1, as indicated by the white feasible regions in the plots. 

 

Figure 4-25. Margin exploration for DP1 

 

Figure 4-26. Margin exploration for DP2 

After selecting a particular design point (for instance DP2), the designer can start 

trading-off the margins with each other (as described in Section 4.3.4.1). Assume that 

the designer decided to allocate a 20% margin on FCS mass (𝑀𝑎𝑟𝑀𝐹𝐶𝑆
= 20%) and 

10% margin on the ECS fresh air mass flow rate (𝑀𝑎𝑟𝑚̇𝑃𝑒𝑟𝑂𝑐𝑝
= 10%), the resulting 

allowable room for the margin on the ECS mass (𝑀𝑎𝑟𝑀𝐸𝐶𝑆
) may not be sufficiently 

large, which is indicated by the green arrows in Figure 4-27 (a).  
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Subsequently, selecting a different point in the margin space, i.e. 10% margin on FCS 

mass and 20% margin on the ECS fresh air mass flow rate will modify the feasible 

(allowable) margin space, as shown in Figure 4-27 (b). 

 

Figure 4-27. Margin space assignment for DP2 in the design space 

Finally, suppose that the designer wishes to have a value of at least 10% for all the 

margins. This will reduce the feasible design space to that shown in Figure 4-28 and 

Figure 4-29. This leads to a reduction in the number of design points with different 

margin combinations from 1600 to 124. The parallel coordinates plot in Figure 4-29 

shows the deterministic design band which is represented by the region enclosed by the 

dashed-blue lines. All the design points in this band could therefore maintain at least 

10% margins on ECS mass, FCS mass, and ECS mass flow rate, and still remain 

feasible.  

 

Figure 4-28. An example of a feasible combination of margins 
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Figure 4-29. Deterministic design band 

It can be noted from Figure 4-28 (b) that, after selecting the minimum value of 10% on 

all the chosen margins, the allowable room for margin on the 𝑇𝑂𝐹𝐿  requirement 

becomes only 0.6%. This value is calculated by comparing the current constraint 

(𝑇𝑂𝐹𝐿 ≤ 5500 𝑓𝑡) and the take-off field length calculated at the selected point in the 

design/margin space (in this case, 𝑇𝑂𝐹𝐿 = 5467 𝑓𝑡). It should be noted that the purple 

double headed arrow in Figure 4-28 (b) is not a margin, but the distance between the 

current constraint and the best achievable one through trade-off (indicated by the purple 

dash line). 

This can be further illustrated in Figure 4-30, where the blue surface is the model 

response (𝑇𝑂𝐹𝐿) over the margin space of  𝑀𝑎𝑟𝑚̇𝑃𝑒𝑟𝑂𝑐𝑝
 and 𝑀𝑎𝑟𝑀𝐹𝐶𝑆

. The two grey 

planes are respectively the current constraint at 5500 𝑓𝑡  and the best achievable 

constraint which goes through the selected design/margin point ( 5467 𝑓𝑡 ). The 

projections of these two constraints lead to the contour plots shown on the left. The 

actual margin on 𝑇𝑂𝐹𝐿 can be defined as the distance between these two grey planes 

(as indicated by the vertical red arrow), therefore it is orthogonal to the margin space of  

𝑀𝑎𝑟𝑚̇𝑃𝑒𝑟𝑂𝑐𝑝
 and 𝑀𝑎𝑟𝑀𝐹𝐶𝑆

, and cannot be projected to the counter plots on the left. 

In the current test-case, these two constraints can be considered as straight lines and 

parallel to each other. This is because the total aircraft weight is promotional to 

𝑀𝑎𝑟𝑚̇𝑃𝑒𝑟𝑂𝑐𝑝
 and 𝑀𝑎𝑟𝑀𝐹𝐶𝑆

, and within this small increment of weight, the response of 

𝑇𝑂𝐹𝐿 is close to linear. Therefore the purple arrow is plotted to be perpendicular to the 

two constraints. It should be stated that this arrow is only to visually indicate the shift of 

the constraint, while rigorous definition of this arrow (as a vector) is beyond the scope 
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of this research. In a highly non-linear case, this distance might be represented as a set 

of vectors, as illustrated in Figure 4-31 (using an assumed model). 

 

Figure 4-30. 3-Dimensional plot of the model response and projections of constraints 

 

Figure 4-31. Model response and constraints of an assumed non-linear model 
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4.4.4.2 Margin vs. Probability of Constraint Satisfaction 

Next, the user could interactively adjust the margins and probability thresholds to 

perform trade-off studies, as shown in Figure 4-32 for margin combinations listed in 

Table 4-8. Assume that the required probabilities of constraint satisfaction for 𝑇𝑂𝐹𝐿, 

𝑉𝑎𝑝𝑝, and  𝑁𝑂𝑥 were all selected to be 90%. This defines the robust (white) and non-

robust (grey shaded) regions in the design space, as indicated in Figure 4-32 (a). 

Following the approach described in Section 4.3.4.2, the contours formed in the design 

space, resulting from the allocation of deterministic margins, can now be combined 

(overlapped) with the probabilistic contours. This is illustrated in Figure 4-32 (a)-(f) 

where the blue lines represent the deterministic constraints and the blue-shaded regions 

represent the infeasible regions for particular margin combinations (Table 4-8). As can 

be seen in the figure, more stringent combinations constrict the design space further. A 

reasonable selection of margins would be MP3 which would ‘just’ cover the 

probabilistic constraints (i.e. rendering the design space slightly smaller than what it 

would have been with only the probabilistic constraints present). An undesirable case 

will be the margin combination MP6, where the 𝑁𝑂𝑥  constraint renders the design 

space infeasible. 

Table 4-8. A selection of possible margin combinations for trade-off with probability of 

constraint satisfaction. 

Combination 𝑴𝒂𝒓𝑴𝑬𝑪𝑺
 𝑴𝒂𝒓𝑴𝑭𝑪𝑺

 𝑴𝒂𝒓𝒎̇𝑷𝒆𝒓𝑶𝒄𝒑
 

MP1 10% 10% 10% 

MP2 10% 20% 10% 

MP3 10% 20% 20% 

MP4 30% 30% 10% 

MP5 30% 30% 20% 

MP6 30% 30% 30% 
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Figure 4-32. Different combinations of margins with 90% probability constraint 

satisfaction for all three constraints (𝑇𝑂𝐹𝐿, 𝑉𝑎𝑝𝑝, and 𝑁𝑂𝑥) 

To determine the robust design band, 90% thresholds were placed on the probabilistic 

constraints. The results are shown in Figure 4-33. In this case, only three points were 

discarded (as indicated by red), which means that the minimum values placed on 

margins in Section 4.4.4.1 were sufficient to account for uncertainty. Depending on the 

assessment of the available feasible space, the decision maker may attempt to reduce 

(some of) the margins to ensure improved performance. 
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Figure 4-33. Robust design band filtering using parallel coordinates plot 

4.4.4.3 Margins vs. Performance 

As described in Section 4.3.4.3, assigning different combinations of margins lead to the 

‘shifting’ of the Pareto front in the performance space. A Pareto front investigation can 

be applied to trade-off the margins and performances as illustrated in Figure 4-34, for 

instance, using the margin combinations listed in Table 4-9. The performance variables 

considered are the nitrogen oxide emissions (𝑁𝑂𝑥) and fuel per available seat mile 

(𝐹𝐴𝑆𝑀). Combination MP1 (represented by the red dashed line) provides the best 

performance compared to the other margin combinations. 

Table 4-9. A selection of possible margin combinations for performance trade-off 

Combination 𝑴𝒂𝒓𝒎̇𝑷𝒆𝒓𝑶𝒄𝒑
 𝑴𝒂𝒓𝑴𝑭𝑪𝑺

 𝑴𝒂𝒓𝑴𝑬𝑪𝑺
 

MP1 10% 10% 10% 

MP2 20% 10% 20% 

MP3 20% 20% 10% 

MP4 30% 10% 30% 
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Figure 4-34. Exploring the effect of different combinations of margins on the location of 

the Pareto front 

A parallel coordinates plot can be used to further down-select the design points. For 

instance, if the designer identifies that the Pareto front corresponding to margin 

combination MP3 (represented by the purple dashed line in Figure 4-34) is the 

minimum accepted performance, then he/she can use the parallel coordinates plot to 

filter out the margin combinations which are more conservative than MP3. As shown in 

Figure 4-35, this leads to the reduction of the number of design points from 121 down to 

30. In AirCADia, the designer can ‘drag’ the filter bars for the different margin values 

in the parallel coordinates plot and immediately view the effect on the performance 

parameters. Furthermore, the designer may also apply filtering on performance 

parameters, e.g., fuel per available seat mile (𝐹𝐴𝑆𝑀). 

 

Figure 4-35. Effects of filtering margins on performance 
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4.4.5 What-if scenarios 

The trade-off techniques presented in the previous section enable the designer to answer 

certain what-if questions.  

1. If the weight growth for a certain system exceeds the assigned margin, then the 

designer can reduce margins on other systems, to re-allocate them on the 

overweight system. For example, if at a stage of the design process, it is found that 

the selected margin on the FCS mass, 𝑀𝑎𝑟𝑀𝐹𝐶𝑆
, is not sufficient, then the designer 

can attempt to reduce the margin on the ECS mass, 𝑀𝑎𝑟𝑀𝐸𝐶𝑆
, and assign extra 

margin on the mass of the FCS. Such a case is illustrated in Figure 4-36, where the 

initial margin combination is shown by the red arrows, while a possible revised 

selection is indicated by the blue arrows. 

 

Figure 4-36. Reallocation of margins from one system to another 

2. If, for whatever reason, a requirement is changed during the design process (for 

example, a reduction in required take-off field length, 𝑇𝑂𝐹𝐿), the designer can 

proceed with one of the following two options: 

A. Trade between different margins (as described above). This is shown in Figure 

4-37 (a), the selected point in the margin space allows a scope for only 0.6% 

reduction on the constraint of 𝑇𝑂𝐹𝐿 . (Note that the meaning of the purple 

arrows is the same as explained earlier with regard to Figure 4-28). By reducing 

the margins 𝑀𝑎𝑟𝑀𝐹𝐶𝑆
 and 𝑀𝑎𝑟𝑀𝑚̇𝑃𝑒𝑟𝑂𝑐𝑝

, this scope could be increased to 1%, as 
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shown in Figure 4-37 (b). However, if the required reduction on the 𝑇𝑂𝐹𝐿 is 

5%, no margin combination will be feasible, as shown in Figure 4-37 (c). 

B. An investigation in the design space shows that, even when changing to another 

design point, the margin of 5% can still not be achieved by any design and 

margin combination. Based on the knowledge gained during the design and 

margin space exploration, a possible course of action is to expand the design 

space. Not surprisingly, in this case study, the harder 𝑇𝑂𝐹𝐿 constraint can be 

met by increasing the wing area and/or sea-level static thrust, as shown by the 

direction of the purple arrow in Figure 4-38 (c). 

 

Figure 4-37. Accommodating change of take-off field length 𝑇𝑂𝐹𝐿 requirement 

 

Figure 4-38. Required expansion of the design space to accommodate the desired margin 



 

90 

4.5 Summary and Conclusions 

Presented in this chapter is a novel method for margin allocation and trade-off study. 

The proposed method integrates deterministic margin allocations with uncertainty 

analysis (sensitivity analysis and propagation), following a set-based design paradigm 

for different trade-off studies. The method was explained with a running example and 

demonstrated with a realistic test case. Compared with the existing approaches (Birman, 

2013; Cooke et al., 2015; Thunnissen, 2004, 2005; Thunnissen and Tsuyuki, 2004; 

Yuan et al., 2016; Zang et al., 2015), the novelty includes: 

 Incorporation of different types of margins to handle uncertainties not only due 

to computational models, but also from flexible requirements. This improves the 

margin allocation at early design stages, when the design requirements are not 

fully defined. Also it provides means to account for possible future 

developments.  

 The interactions between margins and design variables are explored in an 

explicit manner. This helps the designer to understand the trends in the 

design/margin space, rather than only down selecting the design solutions. With 

more knowledge of the design/margin space, better decisions can be made to 

handle the competing or conflicting relationships between margins and design 

variables. Additionally, the designer will be able to predict the direction to 

expand the design space for further exploration, if there is no feasible solution.   

 The trade-off studies are organised in a systematic way, and are enabled by 

several novel techniques. These developments will improve the decision making 

for margin management under multiple criteria.  

Future work will focus on three aspects:  

 Currently the margins are allocated from bottom-up and propagated to the top-

level performances. The next step is to account for margin decomposition from 

the top-down in the design hierarchy. For instance, if the margin on the 𝑇𝑂𝐹𝐿 is 

defined a priori, the challenge will be to properly apportion this margin on the 

relevant design variables. 

 In the current implementation, the computational workflow is fixed throughout 

the design study. A future research is to investigate the evolution of margins 
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during the design process, where the model fidelity is gradually increased. As 

the maturity of design solution grows, the proportion of the margins due to 

computational uncertainty (lack of knowledge) should ideally diminish, while 

the proportion accounting for design flexibility will be maintained. 

 Currently, full factorial design of experiment is applied for its simplicity. If the 

designer wants to treat a large number of margins simultaneously, Latin 

Hypercube and other sampling strategies can be adopted to reduce the 

computational cost of the proposed method. 
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5 Inverse Uncertainty Propagation 

5.1 Introduction 

In this chapter, a method is proposed for inverse uncertainty propagation, as part of the 

broader problem of uncertainty allocation. Recall that the latter is defined in such a 

context that controlling the amount of uncertainty is also part of the decision making. 

Within this context, inverse uncertainty propagation is to estimate the uncertainty from 

different sources, given the known or pre-defined amount of uncertainty associated with 

the system outputs. 

According to the literature review, several numerical approaches have been proposed to 

address this problem (Section 3.3.4). However, the implementation of the existing 

methods is complicated, and requires different setups for every specific case study. On 

the other hand, we would like to enable the interactive exploration at early design stages, 

by asking “what-if” types of questions. For instance, the designer can specify on-the-fly 

different amount of uncertainty associated with different output variables, and 

immediately receive a feedback regarding if the target is attainable, and if so, how much 

input uncertainty can be tolerated. This requires dynamic reformulation of the problem, 

which has been largely restricted by the existing methods. 

To overcome this issue, the proposed method integrates a fast forward propagation 

method with the workflow reversal capability of AirCADia.  These enablers are briefly 

explained in Section 5.2, while the proposed method is presented in Section 5.3. In 

Section 5.4, several numerical test-cases are used for validation. Finally, summary and 

conclusions are presented in Section 5.5. 

5.2 Background 

5.2.1 Univariate Reduced Quadrature Method 

The Univariate Reduced Quadrature (URQ) method was proposed by (Padulo, 

Campobasso and Guenov, 2011) for efficient uncertainty propagation. It takes the first 

four statistical moments (mean 𝜇𝑥𝑖, standard deviation 𝜎𝑥𝑖, skewness 𝛾𝑥𝑖, and kurtosis 

𝛤𝑥𝑖) of the stochastic inputs, and produces the means and variances of the outputs: 
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The coefficients in equation (5-1) and (5-2) are listed in Table 5-1. To produce the 

results, this method requires 2𝑛 + 1 model evaluations in total. 

Table 5-1. Coefficients and vectors used in URQ (Padulo, Campobasso and Guenov, 2011) 

ℎ𝑖
+ =

𝛾𝑥𝑖
2
+ √Γ𝑥𝑖 −

3𝛾𝑥𝑖
2

4
 𝑊0 = 1 +∑

1

ℎ𝑖
+ℎ𝑖

−

𝑛

𝑖=1

 

ℎ𝑖
− =

𝛾𝑥𝑖
2
− √Γ𝑥𝑖 −

3𝛾𝑥𝑖
2

4
 𝑊𝑖 =

1

ℎ𝑖
+−ℎ𝑖

− 

𝝁𝒙 = [𝜇𝑥1 , 𝜇𝑥2 , … , 𝜇𝑥𝑛] 𝑊𝑖
+ =

(ℎ𝑖
+)2 − ℎ𝑖

+ℎ𝑖
− − 1

(ℎ𝑖
+−ℎ𝑖

−)2
 

𝒙𝒊
+ = [𝜇𝑥1 , 𝜇𝑥2 , … , 𝜇𝑥𝑖 + ℎ𝑖

+𝜎𝑥𝑖 , … , 𝜇𝑥𝑛] 𝑊𝑖
− =

(ℎ𝑖
−)2 − ℎ𝑖

+ℎ𝑖
− − 1

(ℎ𝑖
+−ℎ𝑖

−)2
 

𝒙𝒊
− = [𝜇𝑥1 , 𝜇𝑥2 , … , 𝜇𝑥𝑖 + ℎ𝑖

−𝜎𝑥𝑖 , … , 𝜇𝑥𝑛] 𝑊𝑖
± =

2

(ℎ𝑖
+−ℎ𝑖

−)2
 

5.2.2 AirCADia Workflow Reversal 

Reversal is one of the unique capabilities of AirCADia, which enables the designer to 

swap the input and output variables of a model/workflow. An illustrative example is 

shown in Figure 5-1. On the left side is the original workflow, consisted of two inputs 

(𝑥1, 𝑥2) and two outputs (𝑦1, 𝑦2). On the right side is a reversed workflow, constructed 

by swapping 𝑥1  with 𝑦1  (arbitrarily selected). In this new workflow, 𝑦1  becomes an 

input, for which the designer can specify a value, and 𝑥1 will be calculated accordingly. 

This capability allows the designer to ask “what-if” questions and conduct flexible 

computational studies, for instance to inversely size a system based on a pre-defined 

output performance. 
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Figure 5-1 Example of workflow reversal: Original workflow (left) and Reversed 

workflow (right) 

The reversed model/workflow is solved numerically as shown in Figure 5-2 (adapted 

from (Balachandran, 2007)). In this process, the value of 𝑥2 is directly passed to the 

original Model 1 and a temporary value of 𝑥1 (noted as 𝑥1′) is updated by a solver to 

minimise the difference between the designer specified 𝑦1 (as a target) and the actual 

value 𝑦1′  (as a result of 𝑥2  and 𝑥1′). Once the difference falls below the tolerance 

(currently set as 10−6), the 𝑥1′ will be returned as the output of the reversed model. In a 

general case where multiple input and output variables are involved in the reversal, the 

norm of all the differences will be used. 

 

Figure 5-2 Process of solving reversed model/workflow (adapted from (Balachandran, 

2007)) 

In AirCADia, the solving of a reversed workflow will be firstly attempted with 

Gaussian-Newton (GN) method (Keane and Nair, 2005). If no solution can be found 
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within the pre-specified limit of iterations, Particle Swarm Optimization (PSO) 

(Kennedy and Eberhart, 1995) will be used. In addition, algorithms have been 

developed in (Datta, 2014) to perform the calculation in the Local Reversal mode or 

Global Reversal mode. The former refers to updating only the corresponding models in 

the optimization loop (as in the case of Figure 5-2), while the latter evaluates the entire 

workflow in each iteration. It should be noted that the local/global reversal is different 

from the local/global solver, and is intended for reducing the computational cost. 

Regarding an arbitrarily defined workflow reversal, the existence and uniqueness of a 

solution can be partially assessed, using the Incidence Matrix (IM) method (Guenov et 

al., 2006) and algorithms proposed in (Datta, 2014). Two necessary conditions for a 

determined solution are listed below: 

 There is a dependency between the input and output variables to be reversed. 

 The total number of input relationships in the IM of a reversed workflow is the 

same as the original workflow (if there are more input relationships, the reversal 

is over-determined, and vice versa under-determined) 

As the models are treated as black-boxes, the aforementioned conditions are not 

sufficient for a determined solution. In addition, feasibility of a reversal is also 

dependent on the specified values of the reversed input variables. Currently, the solver 

will stop at a local solution which is nearest from the initial values (for example the 

initial value of 𝑥1  in Figure 5-2). The designer should check if this solution is 

meaningful in the engineering context.  

5.3 Methodology 

5.3.1 Problem formulation 

Considering the design workflow 𝑓(𝒙) , the uncertainty of input variables are 

represented as a joined probability distribution defined as 𝕗𝒙(𝑥1, 𝑥2, 𝑥3, … 𝑥𝑛). The task 

of forward propagation is to find the probability distribution of the outputs, represented 

as 𝕗𝒚(𝑦1, 𝑦2, 𝑦3, … 𝑦𝑙). In the inverse propagation, the target is to solve for the unknown 

𝕗𝒙(𝑥1, 𝑥2, 𝑥3, … 𝑥𝑛), which leads to the pre-defined 𝕗𝒚(𝑦1, 𝑦2, 𝑦3, … 𝑦𝑙). 
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To simplify the problem, statistical moments are used to represent the uncertainty, 

instead of the original probability density functions. 

𝓜𝒙 =

[
 
 
 
 
 
〈𝑥1
1〉

〈𝑥2
1〉

〈𝑥1
2〉

〈𝑥2
2〉

〈𝑥1
3〉

〈𝑥2
3〉

…
…

〈𝑥1
𝛼〉

〈𝑥2
𝛼〉

〈𝑥3
1〉
…
〈𝑥𝑛
1〉

〈𝑥3
2〉
…
〈𝑥𝑛
2〉

〈𝑥3
3〉
…
〈𝑥𝑛
3〉

…
⋱
…

〈𝑥3
𝛼〉
…
〈𝑥𝑛
𝛼〉]
 
 
 
 
 

 

(5-3) 

𝓜𝒚 =

[
 
 
 
 
 〈𝑦1

1〉

〈𝑦2
1〉

〈𝑦1
2〉

〈𝑦2
2〉

〈𝑦1
3〉

〈𝑦2
3〉

…
…

〈𝑦1
𝛽〉

〈𝑦2
𝛽〉

〈𝑦3
1〉
…
〈𝑦𝑙
1〉

〈𝑦3
2〉
…
〈𝑦𝑙
2〉

〈𝑦3
3〉
…
〈𝑦𝑙
3〉

…
⋱
…

〈𝑦3
𝛽〉
…

〈𝑦𝑙
𝛽〉]
 
 
 
 
 

 

(5-4) 

Here, 〈𝑥𝑖
𝑗〉 (or 〈𝑦𝑖

𝑗〉) is the 𝑗𝑡ℎ statistical moment of the 𝑖𝑡ℎ input (or output) variable.  

A matrix of target output statistical moments 𝓜𝒚
∗  is defined by equation (5-5). The 

values inside this matrix are supposed to be known or specified a priori by the designer 

based on engineering requirements.  

𝓜𝒚
∗ =

[
 
 
 
 
 〈𝑦1

1〉∗

〈𝑦2
1〉∗

〈𝑦1
2〉∗

〈𝑦2
2〉∗

〈𝑦1
3〉∗

〈𝑦2
3〉∗

…
…

〈𝑦1
𝛽〉∗

〈𝑦2
𝛽〉∗

〈𝑦3
1〉∗

…
〈𝑦𝑙
1〉∗

〈𝑦3
2〉∗

…
〈𝑦𝑙
2〉∗

〈𝑦3
3〉∗

…
〈𝑦𝑙
3〉∗

…
⋱
…

〈𝑦3
𝛽〉∗

…

〈𝑦𝑙
𝛽〉∗]
 
 
 
 
 

 

(5-5) 

An optimization is then set up to minimise the squared sum of the differences between 

the actual and target output statistical moments: 

𝐹𝑜𝑏𝑗(𝓜𝒙) = √∑∑(〈𝑦𝑖
𝑗〉 − 〈𝑦𝑖

𝑗〉∗)
2

𝛽

𝑗=1

𝑙

𝑖=1

, 

(5-6) 

where 〈𝑦𝑖
𝑗〉 is obtained from forward uncertainty propagation (as a function of 𝓜𝒙). 
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5.3.2 Proposed process 

In the implementation, assuming that a forward propagation has already been conducted 

and the designer would like to reduce the uncertainty of some output variables. To solve 

the aforementioned optimization problem with workflow reversal, the proposed process 

consists of three steps: 

1. Sensitivity analysis (optional): The first step is to conduct a sensitivity analysis, so 

that the most influential sources of uncertainty can be selected for inverse 

propagation. This step is optional, as the designer can specify arbitrary input 

variables in the study. However, the most influential sources are preferred. 

2. Construction of an Outer Workflow: An outer workflow is constructed by 

integrating the original workflow with forward uncertainty propagation. The new 

inputs and outputs of the outer workflow now become the statistical moments of 𝒙 

and 𝒚 as defined by:  

𝓜𝒚 = 𝐹𝑂𝑢𝑡𝑒𝑟(𝓜𝒙) (5-7) 

In the proposed method for inverse propagation, the outer workflow is constructed 

with URQ. Therefore the new inputs of the outer workflow include the first four 

statistical moments (means 𝜇𝑥𝑖 , standard deviations 𝜎𝑥𝑖 , skewness’s 𝛾𝑥𝑖 , and 

kurtosis’s Γ𝑥𝑖) of the original input variables, and the first two statistical moments 

(means 𝜇𝑦𝑗 and standard deviations 𝜎𝑦𝑗) of the original output variables:  

𝓜𝒙
𝑈𝑅𝑄 =

[
 
 
 
 
𝜇𝑥1 𝜎𝑥1
𝜇𝑥2 𝜎𝑥2

𝛾𝑥1 Γ𝑥1
𝛾𝑥2 Γ𝑥2

𝜇𝑥3 𝜎𝑥3
… …
𝜇𝑥𝑛 𝜎𝑥𝑛

𝛾𝑥3 Γ𝑥3
… …
𝛾𝑥𝑛 Γ𝑥𝑛]

 
 
 
 

 

(5-8) 

𝓜𝒚
𝑈𝑅𝑄 =

[
 
 
 
 
𝜇𝑦1
𝜇𝑦2

𝜎𝑦1
𝜎𝑦2

𝜇𝑦3
…
𝜇𝑦𝑙

𝜎𝑦3
…
𝜎𝑦𝑙 ]
 
 
 
 

 

(5-9) 

Without loss of generality, this is illustrated in Figure 5-3. In this case, the original 

workflow has two inputs and two outputs, while the outer workflow has eight inputs 

and four outputs. 
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3. Reversal of the outer workflow: The third step utilises AirCADia’s workflow 

reversal capability to swap the inputs’ standard deviations with those of the outputs. 

The reversed workflow is illustrated in Figure 5-4, where 𝜎𝑦1 , 𝜎𝑦2 have now become 

the inputs and 𝜎𝑥1 , 𝜎𝑥2  have been swapped to be the outputs. The designer can set 

values for 𝜎𝑦1 , 𝜎𝑦2, and calculate 𝜎𝑥1 , 𝜎𝑥2 as the results of the reversed workflow 

 

Figure 5-3 Example of an Outer Workflow 

 

Figure 5-4 Reversal of an Outer Workflow 
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5.4 Validation 

The validation is conducted via a series of numerical experiments. The proposed 

method is tested with progressively more complex test-cases, which includes two 

analytical examples and one practical design case study. 

The analytical examples are proposed based on linear and non-linear algebraic 

equations. Given the target output variances, the theoretical input variances could be 

calculated and compared with the numerical results produced by the proposed method.  

The practical design case study is based on an aircraft sizing problem, with considerable 

scale and complexity. In this case, theoretical values are not available, therefore the 

results of inverse propagation (input variances) are sent again to a forward propagation, 

to validate if the target output variances could be achieved. 

5.4.1 Analytical Test-cases 

The analytical test-cases are defined by:  

{
𝑦1 = 𝑥1 + 2𝑥2
𝑦2 = 3𝑥1 − 4𝑥2

 
(5-10) 

{
𝑦3 = 𝑥3

2 + 𝑒𝑥4

𝑦4 = 𝑠𝑖𝑛 (𝑥3) + 𝑥4
 

(5-11) 

In both cases the 𝑥’s will be considered as the inputs and 𝑦’s are taken as the outputs. 

The distributions of input variables are shown in Table 5-2. 

Table 5-2. Distributions of the input variables 

Variables Distributions 

𝑥1 Gaussian 

𝑥2 Gaussian 

𝑥3 Uniform 

𝑥4 Uniform 

For the first case, based on the linear combination of independent normal distributions, 

it could be analytically obtained that, 

𝜎𝑦1 = √𝜎𝑥1
2 + 4𝜎𝑥2

2 
(5-12) 
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𝜎𝑦2
= √9𝜎𝑥1

2 + 16𝜎𝑥2
2 

(5-13) 

Therefore, if the target output standard deviations are given, the theoretical input 

standard deviation (non-negative) for input variables could be calculated as: 

𝜎𝑥1 =
√
𝜎𝑦2

2 − 4𝜎𝑦1
2

5
 

(5-14) 

𝜎𝑥2 =
√
9𝜎𝑦1

2 − 𝜎𝑦2
2

20
 

(5-15) 

Here due to the square roots, 𝜎𝑦1 and 𝜎𝑦2 should follow: 

0 < 2𝜎𝑦1
≤ 𝜎𝑦2

≤ 3𝜎𝑦1
 (5-16) 

For validation, a series of target 𝜎𝑦1 and 𝜎𝑦2  are given as shown in Table 5-3. The 

theoretical values of 𝜎𝑥1  and 𝜎𝑥2  (obtained from equation (5-14) and (5-15) are 

compared with the results from the proposed inverse propagation method. It should be 

mentioned that although in this case 𝜇𝑥1  and 𝜇𝑥2  do not influence the standard 

deviations, we need to set their values to execute the workflow. In this test, both of the 

values are set as 1. 

Table 5-3. Results of the first analytical test case. 

Output Standard 

Deviations (Target) 

Input Standard Deviations (Theoretical and from the Inverse 

Propagation) 

𝜎𝑦1  𝜎𝑦2  𝜎𝑥1: 

Theoretical 

𝜎𝑥1: Inverse 

Propagation 

𝜎𝑥2: 

Theoretical  

𝜎𝑥2: Inverse 

Propagation  

0.05 0.12 0.0296648 0.0296666 0.0201246 0.0201254 

0.7 1.7 0.4312772 0.4312772 0.2756810 0.2756810 

1 2.5 0.6708204 0.6708204 0.3708099 0.3708099 

2 5 1.3416408 1.3416407 0.7416198 0.7416199 

3 8 2.3664319 2.3664319 0.9219544 0.9219544 

From Table 5-3, it can be seen that the proposed method is able to provide considerable 

accuracy for such linear models. 

It should be mentioned that the coefficients in equation (5-10) are selected arbitrarily. 

Given a general linear system defined as: 
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[
 
 
 
 
𝑦1
𝑦2
𝑦3
…
𝑦𝑙 ]
 
 
 
 

=

[
 
 
 
 
𝑎11 𝑎12 𝑎13 … 𝑎1𝑛
𝑎21 𝑎22 𝑎33 … 𝑎2𝑛
𝑎31 𝑎32 𝑎33 … 𝑎3𝑛
…    …   …    …    …

𝑎𝑙1 𝑎𝑙2 𝑎𝑙3  …  𝑎𝑙𝑛 ]
 
 
 
 

[
 
 
 
 
𝑥1
𝑥2
𝑥3
…
𝑥𝑛]
 
 
 
 

 

(5-17) 

If the input distributions are all normal, the standard deviations of outputs can be 

calculated as: 

[
 
 
 
 
 
𝜎𝑦1

2

𝜎𝑦2
2

𝜎𝑦3
2

…
𝜎𝑦𝑙

2
]
 
 
 
 
 

=

[
 
 
 
 
 
𝑎11
2 𝑎12

2 𝑎13
2 … 𝑎1𝑛

2

𝑎21
2 𝑎22

2 𝑎33
2 … 𝑎2𝑛

2

𝑎31
2 𝑎32

2 𝑎33
2 … 𝑎3𝑛

2

…    …   …    …    …

𝑎𝑙1
2 𝑎𝑙2

2 𝑎𝑙3
2  …  𝑎𝑙𝑛

2 ]
 
 
 
 
 

[
 
 
 
 
 
𝜎𝑥1

2

𝜎𝑥2
2

𝜎𝑥3
2

…
𝜎𝑥𝑛

2
]
 
 
 
 
 

 

(5-18) 

To ensure the existence of solution, the following condition must be fulfilled (Williams, 

1978): 

𝑟𝑎𝑛𝑘(𝓐) = 𝑟𝑎𝑛𝑘(𝓐|𝒃), (5-19) 

where 𝓐 is the matrix of coefficients, and 𝓐|𝒃 is the augmented matrix: 

𝓐 =

[
 
 
 
 
 
𝑎11
2 𝑎12

2 𝑎13
2 … 𝑎1𝑛

2

𝑎21
2 𝑎22

2 𝑎33
2 … 𝑎2𝑛

2

𝑎31
2 𝑎32

2 𝑎33
2 … 𝑎3𝑛

2

…    …   …    …    …

𝑎𝑙1
2 𝑎𝑙2

2 𝑎𝑙3
2  …  𝑎𝑙𝑛

2 ]
 
 
 
 
 

, 

(5-20) 

𝒃 = [𝜎𝑦1
2, 𝜎𝑦2

2, 𝜎𝑦3
2, … , 𝜎𝑦𝑙

2]
𝑇

 
(5-21) 

If 𝑟𝑎𝑛𝑘(𝓐) = 𝑛, the solution will be unique, otherwise (𝓐 is singular), there will be 

multiple solutions (Williams, 1978). In the latter case, the solver will converge to the 

solution which is closest to the initial values of 𝜎𝑥𝑖
2’s (as discussed in Section 5.2.2).  

It should also be noted that, as the solutions are all standard deviations, only non-

negative values are of interest. If 𝓐 is square matrix (𝑛 = 𝑙), a sufficient condition for 

positive solution is given by (Kaykobad, 1985): 

𝑎𝑖𝑖
2 > 0, 𝑖 = 1,2,3, … , 𝑛 (5-22) 



 

103 

𝜎𝑦𝑖
2 >∑𝑎𝑖𝑗

2
𝜎𝑦𝑗

2

𝑎𝑗𝑗
2

𝑛

𝑗=1
𝑗≠𝑖

 
(5-23) 

Further discussion of the problem is beyond the scope of the current research. In 

practice, the models maybe provided as black-boxes and the check of solution should be 

conducted as a post-process. 

For the second test-case, the relationship between input and output standard deviations 

is given by: 

𝜎𝑦3
2 =

(𝜇𝑥3 + √3𝜎𝑥3)
5
− (𝜇𝑥3 − √3𝜎𝑥3)

5

10√3𝜎𝑥3
−
[(𝜇𝑥3 +√3𝜎𝑥3)

3
− (𝜇𝑥3 −√3𝜎𝑥3)

3
]
2

108𝜎𝑥3
2

+

𝑒2𝜇𝑥4 (𝑒2√3𝜎𝑥4 −
1

𝑒2√3𝜎𝑥4
)

4√3𝜎𝑥4
−

𝑒2𝜇𝑥4 (𝑒√3𝜎𝑥4 −
1

𝑒√3𝜎𝑥4
)
2

12𝜎𝑥4
2  

(5-24) 

𝜎𝑦4
2 =

sin(2𝜇𝑥3 − 2√3𝜎𝑥3) − sin(2𝜇𝑥3 + 2√3𝜎𝑥3)

8√3𝜎𝑥3
+
1

2

−
[cos(𝜇𝑥3 −√3𝜎𝑥3) − cos(𝜇𝑥3 + √3𝜎𝑥3)]

2

12𝜎𝑥3
2 + 𝜎𝑥4

2  

(5-25) 

In this case, it is difficult to represent the input standard deviations (𝜎𝑥3 and 𝜎𝑥4) as 

functions of the output ones (𝜎𝑦3 and 𝜎𝑦3). The validation will be conducted by firstly 

setting 𝜎𝑥3  and 𝜎𝑥4  to calculate 𝜎𝑦3  and 𝜎𝑦4  from equation (5-24) and (5-25). Then, 

these values of 𝜎𝑦3 and 𝜎𝑦4 will be considered as targets for inverse propagation. Ideally 

the same 𝜎𝑥3  and 𝜎𝑥4  should be achieved. In this case, 𝜇𝑥3 and 𝜇𝑥4 will also have an 

impact on the values of 𝜎𝑦3 and 𝜎𝑦4. The settings are shown in Table 5-4. 

Table 5-4. Results of the second analytical test case. 

Mean 
Output Standard 

Deviations (Target) 

Input Standard Deviations (Theoretical and from the Inverse 

Propagation) 

𝜇𝑥3 𝜇𝑥4 𝜎𝑦3  𝜎𝑦4  
𝜎𝑥3: 

Theoretical 

𝜎𝑥3: Inverse 

Propagation 

𝜎𝑥4: 

Theoretical 

𝜎𝑥4: Inverse 

Propagation 

1 0.7 1.3365 0.4803 0.5 0.5006 0.4 0.3996 

1.2 1 1.1466 0.2515 0.4 0.4002 0.2 0.1998 
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1.4 1.2 2.7179 0.5461 0.7 0.7057 0.5 0.4963 

1.6 0.8 1.7575 0.3184 0.5 0.5002 0.3 0.2994 

2 1.5 3.6073 0.5756 0.65 0.6536 0.5 0.4979 

1.7 3 17.1104 0.7188 0.6 0.5618 0.7 0.7032 

1.3 1.6 3.3117 0.5587 0.7 0.7653 0.5 0.4793 

1.7 2 6.3964 0.7051 0.4 
Not 

Converged 
0.7 Not Converged 

As could be seen from Table 5-4, while most of the settings produce satisfactory results, 

the last three groups show relatively low accuracy. For the last one, the solver did not 

converge to the theoretical value. By running a sensitivity analysis, it is noted that for 

these three settings, the output uncertainty is very sensitive to 𝜎𝑥4 due to the relatively 

large value of 𝜇𝑥4. This makes it more difficult for the solver to find a solution. Future 

work will involve determining the limitations of the solver and proposing adequate 

solvers for highly non-linear problems. 

5.4.2 Realistic Design Case Study 

To demonstrate a practical application, we applied the method to an aircraft sizing code, 

USMAC (Ultra Simplified Model of Aircraft), which was provided by an industrial 

partner, in the context of the European project, Value Improvement through a Virtual 

Aeronautical Collaborative Enterprise
2
 (VIVACE). In this code, aircraft performances 

are calculated based on the top level requirements and geometry specification defined 

by the designer.  

The following scenario is used to demonstrate the inverse uncertainty propagation. 

Among the performance outputs, attention has been focused on the range 𝑅  and 

Maximum Take-Off Weight (𝑀𝑇𝑂𝑊), where the requirements are given as: 

𝑅 ≥ 9500 𝑘𝑚  

𝑀𝑇𝑂𝑊 ≤ 104460 𝑘𝑔 

(5-26) 

Five sources of uncertainty are considered as shown in Table 5-5. The first two are 

model uncertainties, regarding the estimation of drag coefficient 𝐶𝐷 and Specific Fuel 

Consumption (𝑆𝐹𝐶 ). The method to account for model discrepancy is explained in 

                                                 

2
 Project webpage: https://cordis.europa.eu/result/rcn/47814_en.html 
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Section 2.4, where the original outputs are randomised with factors (𝑟𝑣𝐶𝐷 and 𝑟𝑣𝑆𝐹𝐶). 

Here Gaussian and triangular distributions are chosen for these random factors. 

Temperature at cruise (𝑇𝑐𝑟𝑧) is considered as the external source of uncertainty, which is 

modelled as a Gaussian distribution. Uncertainties associated with the two design 

variables: Bypass Ratio (𝐵𝑃𝑅) and Sea Level Static Thrust (𝐹𝑁𝑠𝑙𝑠𝑡) are caused by lack 

of definition at early stage of the design. For these two uncertainties, uniform 

distributions are used which represent the ranges of reasonable values. For all these 

distributions, the parameters are arbitrarily assigned. It should be emphasised that the 

purpose of this study is to validate the proposed method, rather than conduct an 

investigation into the merits of the particular aircraft design. In a real design scenario, 

the distributions could be based on historical data or expert elicitations. 

Table 5-5. Sources of Uncertainty 

Source  Type Distribution Standard Deviation 

Drag Model Model Uncertainty Normal 

𝜇𝑟𝑣𝐶𝐷
= 1 

𝜎𝑟𝑣𝐶𝐷
= 0.05 

0.05 

SFC Model Model Uncertainty Triangular 

𝐿𝐵𝑟𝑣𝑆𝐹𝐶 = 0.97 

𝑈𝐵𝑟𝑣𝑆𝐹𝐶 = 1.03 

𝑀𝑉𝑟𝑣𝑆𝐹𝐶 = 1 

0.0122 

Temperature at Cruise (K) Input Uncertainty Normal 

𝜇𝑇𝑐𝑟𝑧 = 218 

𝜎𝑇𝑐𝑟𝑧 = 10.9 

10.9 

Bypass Ratio Input Uncertainty Uniform 

𝐿𝐵𝐵𝑃𝑅 = 7.5 

𝑈𝐵𝐵𝑃𝑅 = 8.5 

0.2886 

Sea level static thrust (N) Input Uncertainty Uniform  

𝐿𝐵𝐹𝑁𝑠𝑙𝑠𝑡 = 123500 

𝑈𝐵𝐹𝑁𝑠𝑙𝑠𝑡 = 136500 

3752.7767 

A Monte Carlo simulation (MCS) was conducted a priori to propagate uncertainty from 

the five sources. The results are shown in Figure 5-5 and Figure 5-6, where the mean 

values 𝜇𝑅 and  𝜇𝑀𝑇𝑂𝑊 are indicated by red lines and the constraints defined in equation 

(5-26) are showed by the black ones. Based on the ratio of sampling points meeting the 

requirements, over the total sampling points of the MCS, the inferred probabilities of 

meeting these constraints are 84.36% and 83.89%, respectively.  
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Figure 5-5. Histogram of the Range (𝑚) 

 

Figure 5-6. Histogram of the maximum take-off weight (𝑘𝑔) 

The inverse uncertainty propagation is motivated, for example, if the designer wished to 

increase both probabilities of constraint satisfaction to 90%. Therefore the distributions 

of these two output variables should be ‘narrowed’ and the problem becomes how much 

uncertainty is allowed from the five sources listed in Table 5-5. 

The first step is to construct the outer workflow. In this case, 20 input variables and 4 

output variables will be automatically generated in the software, which are illustrated as 

green and red ovals in Figure 5-7. 
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Figure 5-7. Outer workflow for USMAC in AirCADia 

The second step is to set the targets of output standard deviations. The method (Padulo 

and Guenov, 2011) discussed in Section 2.5.2 is used to quickly approximate these 

standard deviations based on probabilities, in which: 

ℙ {|𝑦𝑖 − 𝜇𝑦𝑖| ≥ 𝑘𝑃𝑦𝑖
𝜎𝑦𝑖} ≤ 1 − 𝕡 𝑦𝑖 

(5-27) 

Here 𝑦𝑖 is a stochastic output which could be 𝑅 or 𝑀𝑇𝑂𝑊 in this case. 𝕡 𝑦𝑖  is a function 

of 𝑘𝑃𝑦𝑖
 and the detailed formulation is according to the shape of the distribution of 𝑦𝑖. 

According to Table 2-2, for unimodality distributions (in this case, the distribution of 

𝑅): 

𝕡 𝑅 =
9𝑘𝑃𝑅

2
+ 5

9𝑘𝑃𝑅
2
+ 9

 
(5-28) 

Therefore, for 𝕡 𝑅 = 90% 

𝑘𝑃𝑅 = 1.8559 (5-29) 

𝜎𝑅 ≤
𝜇𝑅 − 9500

𝑘𝑃𝑅
= 271.1957 = 𝜎𝑅

∗  
(5-30) 

For unimodality and symmetry distributions (In this case, the distribution of 𝑀𝑇𝑂𝑊): 

𝕡 𝑀𝑇𝑂𝑊 = 1 −
2

9𝑘𝑃𝑀𝑇𝑂𝑊
2  

(5-31) 

Therefore, for 𝕡 𝑀𝑇𝑂𝑊 = 90%, 𝑘𝑃𝑀𝑇𝑂𝑊 = 1.4907 

𝜎𝑀𝑇𝑂𝑊 ≤
104460 − 𝜇𝑀𝑇𝑂𝑊

𝑘𝑃𝑀𝑇𝑂𝑊
= 198.4718 = 𝜎𝑀𝑇𝑂𝑊

∗  
(5-32) 
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In Figure 5-5 and Figure 5-6, the original standard deviations and the target ones are 

indicated by the blue and green lines respectively, and the values are summarised in 

Table 5-6. 

Table 5-6. Original and target standard deviations of the outputs 

Standard Deviations Original Value Target Value 

𝜎𝑅 (km) 511.7080 271.1957 

𝜎𝑀𝑇𝑂𝑊  (kg) 274.6514 198.4718 

Before reversing the workflow, two of the five input standard deviations are chosen, 

based on the results of sensitivity analysis. In this particular case Fourier Amplitude 

Sensitivity Test (FAST) (Cukier, 1973) is utilised and the results are plotted in Figure 

5-8.  

 

Figure 5-8. First order sensitivity indices of different inputs for 𝑀𝑇𝑂𝑊 (left) and 𝑅 (right) 

From the figure, it can be seen that 𝑅𝑉𝑑𝑟𝑎𝑔 and 𝐹𝑁𝑠𝑙𝑠𝑡 are the main contributors to the 

variances of selected outputs. The outer workflow is then reversed by switching 𝜎𝑀𝑇𝑂𝑊 

and 𝜎𝑅 with 𝜎𝐹𝑁𝑠𝑙𝑠𝑡 and 𝜎𝑅𝑉𝐶𝐷
. The reversed workflow is shown by Figure 5-9, where 

the switched input/output variables are indicated by red dashed-line blocks. 

 

Figure 5-9. Reverse workflow in AirCADia 
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The target standard deviations in Table 5-6 are now given to the reversed workflow, 

which calculates 𝜎𝑅𝑉𝐶𝐷
∗  and 𝜎𝐹𝑁𝑠𝑙𝑠𝑡

∗  as 0.0236 and 2924.5705, respectively. Using these 

values, the updated distributions of 𝑅𝑉𝐶𝐷 and 𝐹𝑁𝑠𝑙𝑠𝑡 are shown in Figure 5-10. 

 

Figure 5-10. Original and allowable distributions of 𝑅𝑉𝐶𝐷  and 𝐹𝑁𝑠𝑙𝑠𝑡 

For validation, the new values of 𝜎𝐹𝑁𝑠𝑙𝑠𝑡′ and 𝜎𝑅𝑉𝐶𝐷
′ are put back into Monte-Carlo 

forward propagation (1000000 runs) to check if the desired output uncertainty can be 

achieved. The results are shown in Table 5-7, which demonstrated the accuracy of the 

proposed method. 

Table 5-7. Validation of the results 

Output Variables Target std Achieved std Error 

𝑀𝑇𝑂𝑊 (𝑘𝑔) 198.4718 198.6092 0.0692% 

𝑅 (𝑘𝑚) 271.1957 271.4027 0.0763% 

5.5 Summary and Conclusions 

Presented in this section is a novel method for inversed propagation of uncertainty.  It 

incorporates enablers for the reversal of computational workflows and for the efficient 

propagation of uncertainty. This contributes towards the identification and allocation of 

desired variance to design inputs. The methodology is illustrated with representative 

analytical and numerical examples. The results have demonstrated the accuracy of the 

method.  

Mathematically, the objective function based on actual and target statistical moments 

(defined in equation (5-6)) can be considered as equivalent to the ones presented in 

(Congedo et al., 2012; Zabaras and Ganapathysubramanian, 2008) (defined in equations 
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(3-13) and (3-16), respectively). However compared with the latter, several advantages 

can be achieved with the proposed method: 

 The first is the simplicity of implementation. With the proposed method, the 

inverse propagation can be constructed on-the-fly, for various computational 

workflows, and various setup of the problem. The designer does not need to be 

heavily involved with the numerical setup of the problem and the explorations 

can be conducted interactively.  

 The workflow reversal capability has integrated several techniques to improve 

the convergence of the inverse propagation. For instance, the strategies to select 

between a global and local reversal, the strategies to select from several solvers, 

and the ability to assess if a reversal is feasible a priori.  

 The computational cost of URQ is significantly lower than the numerical 

treatment in the existing methods, which will leads to a reduction in the overall 

computational cost.  

Future work includes four aspects:  

 The first is regarding the robustness of the workflow reversal capability. In the 

second analytical test-case as presented in Section 5.4.1, some of the setups 

caused a failure of the numerical solver. Further research is needed to investigate 

the solver’s numerical limitations.    

 The second is to perform a more rigorous study to compare the proposed method 

with existing techniques, regarding the numerical accuracy, computational cost, 

and convergence speed.  

 The third is to implement this approach with other forward uncertainty 

propagation techniques, apart from the URQ. Currently, the method considers 

only the standard deviation for inverse propagation. With the generalised 

Taguchi method (Seo and Kwak, 2002), for instance, it is feasible to inversely 

propagate the skewness and kurtosis as well.  

 Last but not least is to investigate further the scenario of many-to-many 

reversals (regarding the broader picture of uncertainty allocation). Specifically, 

the following two cases can be considered: 
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o Underdetermined Case: There are multiple combinations of the input 

standard deviations, which can lead to the same output ones. In this case, 

additional constraints should be added, for instance, by specifying a 

proportion between the reductions of different input standard deviations. 

Alternatively, a method has been proposed by Molina-Cristóbal to 

explore a set of solutions and conduct trade-off studies (Molina-Cristóbal 

et al., 2018). 

o Overdetermined Case: There are no feasible combinations of the input 

standard deviations, which can exactly lead to the target output ones. If 

the problem is overdetermined, the designer would like to be as close as 

possible to the target values. The values of |〈𝑦
𝑖

𝑗〉 − 〈𝑦
𝑖

𝑗〉∗| ’s are to be 

minimised but there is no tolerance to be specified (or a gradually 

increased tolerance following a try-and-error process). The solver will 

stop according to the pre-defined limits on computing resources (e.g. 

number of interactions or optimization time).  
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6 Efficient Method for Variance Based Sensitivity Analysis 

6.1 Introduction 

This chapter presents a method for variance based sensitivity analysis. According to the 

literature review, most of the current techniques are computational expensive, especially 

for large scale design problems and high fidelity simulations. Although some improved 

techniques are proposed, there are still different ways to address the problem, which 

have not been investigated. 

In this research, we propose a general approach to approximate the sensitivity indices 

based on the formulation from Saltelli (Saltelli et al., 2008). As been explained in 

Section 3.4.3, this formulation is not suitable for the traditional MSC approach, due to 

the nested loops in the formulation. However by using approximation techniques, such 

nested loops become computationally affordable. In particular, we propose one 

implementation with the URQ method as presented in Section 5.2.1. Compared with 

traditional quadrature techniques, in which the computational cost grows exponentially 

with the dimensions, the URQ method requires a much lower number of sampling 

points. Thus it is especially suitable for analysis of large scale problems.  

The remaining part of this chapter is structured as follows. Section 6.2 reviews the 

formulations of variance based sensitivity analysis. In Section 6.3, the general approach 

for approximation is presented, followed by the detailed implementation based on the 

URQ method. The proposed method is evaluated in Section 6.4, using a number of test-

cases and is compared to the traditional (benchmark) MCS approach. Finally, 

conclusions and future work are presented in Section 6.5. 

6.2 Background 

The Variance Base Sensitivity Indices can be classified as first order indices 𝑆𝑖, higher 

order indices 𝑆𝑖𝑗, and total effect indices 𝑆𝑖
𝑇. The deduction of the first order indices has 

been explained in Section 3.4.2, based on Eq. (3-19) to (3-21). In this section, the final 

formulation is repeated for the reader’s convenience. Similar to the Section 3.4.2, 

𝑦 = 𝑓(𝒙) is considered to be the only output of the function. In the general case of 

multiple outputs, the following process shall be repeated for each variable in the vector 
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𝒚, and correspondingly, different sets of Sobol’ indices (𝑆𝑖, 𝑆𝑖𝑗, and 𝑆𝑖
𝑇) will be obtained 

for different outputs. As mentioned above, this situation will not be demonstrated in this 

thesis, therefore no additional notations will be introduced to represent Sobol’ indices 

for multi-output functions.  

6.2.1 First-order Indices 

The first-order index accounts for the portion of variance caused by uncertainty from 

only one of the input variables. For instance, regarding the 𝑖𝑡ℎ  input variable 𝑥𝑖 , its 

corresponding first-order Sobol’ index can be defined as: 

𝑆𝑖 =
𝑉(𝑦) − 𝐸𝑋𝑖 (𝑉𝑥~𝑖( 𝑦|𝑥𝑖=𝑋𝑖))

𝑉(𝑦)
 

(6-1) 

By further expansion and derivation, equation (6-1) could be reformulated to the 

following forms:  

𝑆𝑖 = 
𝐸𝑋𝑖(𝐸𝑥~𝑖

2 ( 𝑦|𝑥𝑖=𝑋𝑖)) − 𝐸
2(𝑦)

𝑉(𝑦)
 

(6-2) 

𝑆𝑖 = 
𝑉𝑋𝑖(𝐸𝑥~𝑖( 𝑦|𝑥𝑖=𝑋𝑖))

𝑉(𝑦)
 

(6-3) 

𝑆𝑖 = 
𝐸(𝑓+(𝒙+𝒊)) − 𝐸

2(𝑦)

𝑉(𝑦)
 

(6-4) 

The reader is referred to (Saltelli et al., 2004, 2008) for more details on the derivation of 

equation (6-3), and to (Ishigami and Homma, 1990; Saltelli, 2002) for the derivation of 

equations (6-2) and (6-4). 

It should be noted that in equation (6-4), the problem is converted into a single loop 

expectation of the new function 𝑓+(𝒙+𝒊), which is defined as:  

𝑓+(𝒙+𝒊) = 𝑓(𝑥1, 𝑥2, … , 𝑥𝑖, … 𝑥𝑛) ∙ 𝑓(𝑥1
′ , 𝑥2

′ , … 𝑥𝑖−1
′ , 𝑥𝑖 , 𝑥𝑖+1′, … 𝑥𝑛′), (6-5) 

where 𝒙+𝒊 is the new input vector, which consists of 2𝑛 − 1 variables. In this vector, 𝑥𝑟 

and 𝑥𝑟′ are considered as independent variables (for each 𝑟 = 1,2, … , 𝑛; 𝑟 ≠ 𝑖) but with 

the same PDF. Also note that there is no 𝑥𝑖′ in vector, 𝒙+𝒊:  
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𝒙+𝒊 = [𝑥1, 𝑥2, … , 𝑥𝑖 , … 𝑥𝑛, 𝑥1
′ , 𝑥2

′ , … 𝑥𝑖−1′, 𝑥𝑖+1′, … 𝑥𝑛′] (6-6) 

6.2.2 Second-order Indices 

The interaction effect refers to the portion of variance caused by particular combinations 

of the input variables (Saltelli et al., 2004, 2008). This effect is captured by the high 

order index. For instance, the second order index 𝑆𝑖𝑗  refers to the interaction effect 

between the 𝑖𝑡ℎ and the 𝑗𝑡ℎ input variables. Note that this interaction effect refers to a 

portion in the output variance, while 𝑥𝑖  and 𝑥𝑗  are still independent as inputs. In this 

research, only the second order indices are considered, but the same principle could also 

be applied to calculate other higher order indices. 

Similar to the first order indices, 𝑆𝑖𝑗 could be calculated by solving the expectation of 

conditional variance with regard to two input variables. It can be proven that this 

formulation also includes the first order effects (Saltelli et al., 2004, 2008), therefore the 

first order indices need to be subtracted. The final equation becomes: 

𝑆𝑖𝑗 =
𝑉(𝑦) − 𝐸𝑋𝑖,𝑗 (𝑉𝑥~𝑖,𝑗 ( 𝑦|𝑥𝑖=𝑋𝑖,𝑥𝑗=𝑋𝑗))

𝑉(𝑦)
− 𝑆𝑖 − 𝑆𝑗 

(6-7) 

Some alternatives formulations (Saltelli et al., 2004, 2008) include, 

𝑆𝑖𝑗 =
𝐸𝑋𝑖,𝑗 (𝐸𝑥~𝑖,𝑗

2 ( 𝑦|𝑥𝑖=𝑋𝑖,𝑥𝑗=𝑋𝑗))− 𝐸
2(𝑦)

𝑉(𝑦)
− 𝑆𝑖 − 𝑆𝑗 

(6-8) 

𝑆𝑖𝑗 = 
𝑉𝑋𝑖,𝑗(𝐸𝑥~𝑖,𝑗( 𝑦|𝑥𝑖=𝑋𝑖,𝑥𝑗=𝑋𝑗))

𝑉(𝑦)
− 𝑆𝑖 − 𝑆𝑗 

(6-9) 

𝑆𝑖𝑗 = 
𝐸 (𝑓++(𝒙++𝒊𝒋)) − 𝐸

2(𝑦)

𝑉(𝑦)
− 𝑆𝑖 − 𝑆𝑗 

(6-10) 

Using similar reasoning as applied to equations (6-4) - (6-6), 𝑓++(𝑥++𝑖𝑗) is defined by 

multiplying the original function 𝑓(𝑥)  with itself, taking two different sets of 

independent inputs, but this time sharing the same 𝑥𝑖 and 𝑥𝑗 in both sets. 

𝑓++(𝒙++𝒊𝒋) = 𝑓(𝑥1, 𝑥2, … , 𝑥𝑖 , … , 𝑥𝑗 …𝑥𝑛) ∙ 𝑓(𝑥1′, 𝑥2′, … , 𝑥𝑖−1′, 𝑥𝑖 , 𝑥𝑖+1′, … , 𝑥𝑗−1′, 𝑥𝑗 , 𝑥𝑗+1′, … , 𝑥𝑛′) (6-11) 
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Here 𝑥++𝑖𝑗  is the corresponding input vector, consists of 2𝑛 − 2  variables. In this 

vector, 𝑥𝑟 and 𝑥𝑟′ are considered as independent variables (for each 𝑟 = 1,2, … , 𝑛;  𝑟 ≠

𝑖, 𝑗), but with the same PDF. However there is no 𝑥𝑖′ and 𝑥𝑗′ in this vector.  

𝒙++𝒊𝒋 = [𝑥1, 𝑥2, … , 𝑥𝑖 , … , 𝑥𝑗, … , 𝑥𝑛, 𝑥1′, 𝑥2′, … , 𝑥𝑖−1′, 𝑥𝑖+1′, … , 𝑥𝑗−1′, 𝑥𝑗+1′, … , 𝑥𝑛′] (6-12) 

6.2.3 Total Effect Indices 

The total effect index accounts for the variable’s first order effect and all its interactions 

with other variables (Saltelli et al., 2004, 2008). That is,  

𝑆𝑖
𝑇 = 𝑆𝑖 +∑𝑆𝑖𝑗

𝑛

𝑗=1
𝑗≠𝑖

+ ∑ 𝑆𝑖𝑗𝑟

𝑛

𝑗,𝑟=1
𝑟≠𝑗≠𝑖

+⋯ 
(6-13) 

Apart from by adding all the indices as shown in equation (6-13), which may become 

impractical when the number of inputs is high, this index is more widely calculated by 

using a nested structure as well: 

𝑆𝑖
𝑇 =

𝐸𝑿~𝒊 (𝑉𝑥𝑖( 𝑦|𝒙~𝒊=𝑿~𝒊))

𝑉(𝑦)
, 

(6-14) 

where all variables except 𝑥𝑖  are firstly fixed for the calculation of the conditional 

variance, and then are varied in the expectation loop. The reader is referred to (Saltelli 

et al., 2004, 2008) for more rigorous mathematical derivation. By expansion and further 

deduction, equation (6-14) could be transferred as the following alternatives: 

𝑆𝑖
𝑇 =  

𝑉(𝑦) + 𝐸2(𝑦) − 𝐸𝑿~𝒊(𝐸𝑥𝑖
2 ( 𝑦|𝒙~𝒊=𝑿~𝒊))

𝑉(𝑦)
 

(6-15) 

𝑆𝑖
𝑇 = 

𝑉(𝑦) − 𝑉𝑿~𝒊(𝐸𝑥𝑖( 𝑦|𝒙~𝒊=𝑿~𝒊))

𝑉(𝑦)
 

(6-16) 

𝑆𝑖
𝑇 = 

𝑉(𝑦) + 𝐸2(𝑦) − 𝐸(𝑓−(𝒙−𝒊))

𝑉(𝑦)
 

(6-17) 

Again, the same reasoning as applied to equations (6-4) - (6-6), 𝑓−(𝒙−𝒊) is defined by 

multiplying the original function 𝑓(𝒙) with itself. This time all the inputs are the same 

except 𝑥𝑖 and 𝑥𝑖′. 
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𝑓−(𝒙−𝒊)  = 𝑓(𝑥1, 𝑥2, … , 𝑥𝑖 , … 𝑥𝑛) ∙ 𝑓(𝑥1, 𝑥2, … , 𝑥𝑖−1, 𝑥𝑖′, 𝑥𝑖+1, … , 𝑥𝑛) (6-18) 

Therefore 𝒙−𝒊 consists of only 𝑛 + 1 variables. In this vector, 𝑥𝑖 and 𝑥𝑖′ are considered 

as independent variables, but with the same PDF. 

𝑥−𝑖 = [𝑥1, 𝑥2, … , 𝑥𝑖, … , 𝑥𝑛, 𝑥𝑖′] (6-19) 

6.3 Proposed Method 

6.3.1 General Approach 

The formulations reviewed in Section 6.2 are summarized in Table 6-1, where the 

equations are categorised into four options. In the traditional MCS approach (Ishigami 

and Homma, 1990; Sobol’, 1993), only Option 4 is adopted, because the other three 

options (1, 2, and 3) are computationally too expensive for MSC, due to the nested 

integrals in the formulations. 

Table 6-1. Equations used in four options to implement the proposed approach 

Index Option 1: 

Nested 

Expectation 

of Variance 

Option 2: 

Nested 

Expectations 

Option 3: Nested 

Variance of 

Expectation 

Option 4: 

Single Loop 

Expectation 

First Order: 𝑆𝑖 Eq. (6-1)  Eq. (6-2) Eq. (6-3) Eq. (6-4) 

Second Order: 𝑆𝑖𝑗  Eq. (6-7) Eq. (6-8) Eq. (6-9) Eq. (6-10) 

Total Effect: 𝑆𝑖
𝑇 Eq. (6-14) Eq. (6-15) Eq. (6-16) Eq. (6-17) 

The rationale of the proposed approach is that, since the nature of these integrals is to 

solve nested expectations/variances, the calculation can be transformed into a standard 

uncertainty propagation process. As there are plenty of more efficient uncertainty 

propagation techniques compared with MCS, Option 1, 2, and 3, may become 

computationally affordable. The critical part is to construct such nested loops of 

propagation, which is illustrated in Figure 6-1, by taking 𝑆𝑖 in Option 1 as an example.  

The uncertainty propagation is firstly applied to calculate the variance of the original 

model, as indicated by the number (1) in Figure 6-1. In this process, the 𝑖𝑡ℎ variable is 

temporarily fixed, thus the calculated variance is the conditional one as defined by 

equation (3-19).  
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Then this propagation process itself is taken as a ‘new model’, with 𝑥𝑖 as its input, and 

the conditional variances as the outputs.  Another propagation loop is conducted on top 

of this ‘new model’, regarding to the uncertainty of 𝑥𝑖, as indicated by the number (2) in 

Figure 6-1. This calculation provides the mean (expectation) of the conditional 

variances, which could be used to calculate the indices as defined by Eq. (6-1). For 

Option 2 and 3, similar approaches could be applied by modifying the sequence of 

calculating the means and variances.  

Option 4, as discussed previously, does not require any nested loops. The approach is to 

apply single-loop uncertainty propagation for the mean of 𝑓+(𝑥+𝑖) defined by Eq. (6-5). 

 

Figure 6-1. The general process, Illustrated with First Order Index Using Option 1 

6.3.2 Formulation with URQ 

Following the general approach, the specific formulation with URQ is deduced in this 

section, regarding the first order, second order, and total effect indices. To avoid 

repetition, only the derivation of Option 1 will be explained in detail. However all four 

options are implemented and compared in Section 6.4. The reader is referred to 

Appendix A.1 for the equations of Option 2, 3, and 4.  
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6.3.2.1 First-order Indices 

Given equation (6-1), as the computation of 𝑉(𝑦) via URQ has already been specified 

in equation (5-2), the following section will focus on the calculation of 

𝐸𝑋𝑖 (𝑉𝑥~𝑖( 𝑦|𝑥𝑖=𝑋𝑖)). 

To calculate the inner loop 𝑉𝑥~𝑖( 𝑦|𝑥𝑖=𝑋𝑖), firstly 𝑥𝑖 is temporarily fixed as a constant 𝑋𝑖. 

Compared to the original function 𝑦 = 𝑓(𝑥)  which has 𝑛  input variables, a new 

function 𝑓1
(~𝑖)

 can be defined, with  𝑛 − 1 input variables.  

𝑓1
(~𝑖)(𝑥1, 𝑥2, … , 𝑥𝑖−1, 𝑥𝑖+1, … , 𝑥𝑛) = 𝑦|𝑥𝑖=𝑋𝑖

= 𝑓(𝑥1, 𝑥2, … , 𝑥𝑖−1, 𝑋𝑖, 𝑥𝑖+1, … , 𝑥𝑛) 

(6-20) 

Equation (5-2) from URQ could be used to calculate the variance of this new function 

𝑓1
(~𝑖)

. 

𝑉𝑥~𝑖( 𝑦|𝑥𝑖=𝑋𝑖) = 𝑉(𝑓1
(~𝑖))

=∑

{
 
 

 
 

𝑊𝑟
+

[
 
 
 𝑓1
(~𝑖)(𝑥𝑟

(~𝑖)
+ ) − 𝑓1

(~𝑖)(𝜇𝑥
(~𝑖)

)

ℎ𝑟
+

]
 
 
 
2

𝑛

𝑟=1
𝑟≠𝑖

+𝑊𝑟
− [
𝑓1
(~𝑖)(𝑥𝑟

(~𝑖)
− ) − 𝑓1

(~𝑖)(𝜇𝑥
(~𝑖)

)

ℎ𝑟−
]

2

+𝑊𝑟
±

[𝑓1
(~𝑖)

(𝑥𝑟

(~𝑖)
+ ) − 𝑓1

(~𝑖)
(𝜇𝑥

(~𝑖)
)] [𝑓1

(~𝑖)
(𝑥𝑟

(~𝑖)
− ) − 𝑓1

(~𝑖)
(𝜇𝑥

(~𝑖)
)]

ℎ𝑟
+ℎ𝑟−

}
 
 

 
 

, 

(6-21) 

where 𝑊𝑟
+, 𝑊𝑟

−, 𝑊𝑟
± , ℎ𝑟

+, and ℎ𝑟
− are defined by the original URQ method (as shown in 

Table 5-1), while 𝜇𝑥
(~𝑖)

, 𝑥𝑟

(~𝑖)
+ , and 𝑥𝑟

(~𝑖)
− are defined by removing the 𝑖𝑡ℎ variable from 

the original input vectors, as shown in the following equations 
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𝝁𝒙
(~𝑖)

= [𝜇𝑥1 , 𝜇𝑥2 , … , 𝜇𝑥𝑖−1 , 𝜇𝑥𝑖+1 , … , 𝜇𝑥𝑛] 
(6-22) 

𝒙𝒓

(~𝑖)
+ = [𝜇𝑥1 , 𝜇𝑥2 , … , 𝜇𝑥𝑟 + ℎ𝑟

+𝜎𝑥𝑟 , … , 𝜇𝑥𝑖−1 , 𝜇𝑥𝑖+1 , … , 𝜇𝑥𝑛], 𝑟 ≠ 𝑖 
(6-23) 

𝒙𝒓

(~𝑖)
− = [𝜇𝑥1 , 𝜇𝑥2 , … , 𝜇𝑥𝑟 + ℎ𝑟

−𝜎𝑥𝑟 , … , 𝜇𝑥𝑖−1 , 𝜇𝑥𝑖+1 , … , 𝜇𝑥𝑛], 𝑟 ≠ 𝑖 
(6-24) 

Recalling the definition of 𝑓1
(~𝑖)

, since the value of 𝑋𝑖  is still not specified, equation 

(6-21) now becomes a function of 𝑋𝑖, which could be defined as, 

𝑔1(𝑋𝑖) = 𝑉𝑥~𝑖( 𝑦|𝑥𝑖=𝑋𝑖) 
(6-25) 

Then, the expected value of 𝑔1(𝑋𝑖) can be calculated employing Equation (5-1) from 

URQ method,  

𝐸𝑋𝑖 (𝑉𝑥~𝑖( 𝑦|𝑥𝑖=𝑋𝑖)) = 𝐸𝑋𝑖(𝑔1(𝑋𝑖))

= 𝑊0
(𝑖)
𝑔1(𝜇𝑥𝑖) +𝑊𝑖 [

𝑔1(𝜇𝑥𝑖 + ℎ𝑖
+𝜎𝑥𝑖)

ℎ𝑖
+ −

𝑔1(𝜇𝑥𝑖 + ℎ𝑖
−𝜎𝑥𝑖)

ℎ𝑖
− ], 

(6-26) 

where 𝑊𝑖, ℎ𝑖
+, and ℎ𝑖

− are defined in Table 5-1 and 𝑊0
(𝑖)

 is defined as: 

𝑊0
(𝑖)
= 1 +

1

ℎ𝑖
+ℎ𝑖

− 
(6-27) 

Substituting Equation (6-26) and (5-2) to Equation (6-1), the first order Sobol’ index is 

obtained as: 

𝑆𝑖 ≈

𝑉𝑈𝑅𝑄(𝑦) −𝑊0
(𝑖)
𝑔1(𝜇𝑥𝑖) +𝑊𝑖 [

𝑔1(𝜇𝑥𝑖 + ℎ𝑖
+𝜎𝑥𝑖)

ℎ𝑖
+ −

𝑔1(𝜇𝑥𝑖 + ℎ𝑖
−𝜎𝑥𝑖)

ℎ𝑖
− ]

𝑉𝑈𝑅𝑄(𝑦)
 

(6-28) 

In this equation, 𝑉𝑈𝑅𝑄(𝑦) is the total variance calculated by equation (5-2). 

6.3.2.2 Second Order Indices 

Given equation (6-7), the objective is to calculate 𝐸𝑋𝑖,𝑗 (𝑉𝑥~𝑖,𝑗 ( 𝑦|𝑥𝑖=𝑋𝑖,𝑥𝑗=𝑋𝑗)) . The 

process is similar to that presented in Section 6.3.2.1. Since two variables are now 
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involved in the nested loop, function 𝑓2
(~𝑖,𝑗)

 could be defined by fixing the 𝑖𝑡ℎ and 𝑗𝑡ℎ 

input variables.  

𝑓2
(~𝑖,𝑗)

(𝑥1, 𝑥2, … , 𝑥𝑖−1, 𝑥𝑖+1, … , 𝑥𝑗−1, 𝑥𝑗+1, … , 𝑥𝑛) = 𝑦|𝑥𝑖=𝑋𝑖,𝑥𝑗=𝑋𝑗

= 𝑓(𝑥1, 𝑥2, … , 𝑥𝑖−1, 𝑋𝑖, 𝑥𝑖+1, … , 𝑥𝑗−1, 𝑋𝑗, 𝑥𝑗+1, … , 𝑥𝑛) 

(6-29) 

By calling equation (5-2), the inner loop variance 𝑉𝑥~𝑖,𝑗 ( 𝑦|𝑥𝑖=𝑋𝑖,𝑥𝑗=𝑋𝑗) is calculated by, 

𝑉𝑥~𝑖,𝑗 ( 𝑦|𝑥𝑖=𝑋𝑖,𝑥𝑗=𝑋𝑗) = 𝑉 (𝑓2
(~𝑖,𝑗)

)

= ∑

{
 
 

 
 

𝑊𝑟
+

[
 
 
 𝑓2
(~𝑖,𝑗)

(𝑥𝑟

(~𝑖,𝑗)
+ ) − 𝑓2

(~𝑖,𝑗)
(𝜇𝑥

(~𝑖,𝑗)
)

ℎ𝑟
+

]
 
 
 
2

𝑛

𝑟=1
𝑟≠𝑖,𝑗

+𝑊𝑟
− [
𝑓2
(~𝑖,𝑗)

(𝑥𝑟

(~𝑖,𝑗)
− ) − 𝑓2

(~𝑖,𝑗)
(𝜇𝑥

(~𝑖,𝑗)
)

ℎ𝑟−
]

2

+𝑊𝑟
±

[𝑓2
(~𝑖,𝑗)

(𝑥𝑟

(~𝑖,𝑗)
+ ) − 𝑓2

(~𝑖,𝑗)
(𝜇𝑥

(~𝑖,𝑗)
)] [𝑓2

(~𝑖,𝑗)
(𝑥𝑟

(~𝑖,𝑗)
− ) − 𝑓2

(~𝑖,𝑗)
(𝜇𝑥

(~𝑖,𝑗)
)]

ℎ𝑟
+ℎ𝑟−

}
 
 

 
 

, 

(6-30) 

where 𝝁𝒙
(~𝑖,𝑗)

, 𝒙𝒓

(~𝑖,𝑗)
+ , and  𝒙𝒓

(~𝑖,𝑗)
−  are defined by removing the 𝑖𝑡ℎ and 𝑗𝑡ℎ variable from 

the original input vector, as shown in the following equations: 

𝝁𝒙
(~𝑖,𝑗)

= [𝜇𝑥1 , 𝜇𝑥2 , … , 𝜇𝑥𝑖−1 , 𝜇𝑥𝑖+1 , … , 𝜇𝑥𝑗−1 , 𝜇𝑥𝑗+1 , … , 𝜇𝑥𝑛] 
(6-31) 

𝒙𝒓

(~𝑖,𝑗)
+ = [𝜇𝑥1 , 𝜇𝑥2 , … , 𝜇𝑥𝑟 + ℎ𝑟

+𝜎𝑥𝑟 , … , 𝜇𝑥𝑖−1 , 𝜇𝑥𝑖+1 , … , 𝜇𝑥𝑗−1 , 𝜇𝑥𝑗+1 , … , 𝜇𝑥𝑛] ,

𝑟 ≠ 𝑖, 𝑗 

(6-32) 

𝒙𝒓

(~𝑖,𝑗)
− = [𝜇𝑥1 , 𝜇𝑥2 , … , 𝜇𝑥𝑟 + ℎ𝑟

−𝜎𝑥𝑟 , … , 𝜇𝑥𝑖−1 , 𝜇𝑥𝑖+1 , … , 𝜇𝑥𝑗−1 , 𝜇𝑥𝑗+1 , … , 𝜇𝑥𝑛] ,

𝑟 ≠ 𝑖, 𝑗 

(6-33) 
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Now taking 𝑋𝑖, 𝑋𝑗 as input variables, 𝑉𝑥~𝑖,𝑗 ( 𝑦|𝑥𝑖=𝑋𝑖,𝑥𝑗=𝑋𝑗) becomes a function of 𝑋𝑖, 𝑋𝑗: 

𝑔2(𝑋𝑖, 𝑋𝑗) = 𝑉𝑥~𝑖,𝑗 ( 𝑦|𝑥𝑖=𝑋𝑖,𝑥𝑗=𝑋𝑗) (6-34) 

Equation (5-1) from URQ could now be used,  

𝐸𝑋𝑖,𝑗 (𝑉𝑥~𝑖,𝑗 ( 𝑦|𝑥𝑖=𝑋𝑖,𝑥𝑗=𝑋𝑗)) = 𝐸𝑋𝑖,𝑗 (𝑔2(𝑋𝑖, 𝑋𝑗))

= 𝑊0
(𝑖,𝑗)

𝑔2 (𝜇𝑥𝑖 , 𝜇𝑥𝑗)

+𝑊𝑖 [
𝑔2(𝜇𝑥𝑖 + ℎ𝑖

+𝜎𝑥𝑖 , 𝜇𝑥𝑗)

ℎ𝑖
+ −

𝑔2(𝜇𝑥𝑖 + ℎ𝑖
−𝜎𝑥𝑖 , 𝜇𝑥𝑗)

ℎ𝑖
− ]

+𝑊𝑗 [
𝑔2(𝜇𝑥𝑖 , 𝜇𝑥𝑗 + ℎ𝑗

+𝜎𝑥𝑗)

ℎ𝑗
+ −

𝑔2(𝜇𝑥𝑖 , 𝜇𝑥𝑗 + ℎ𝑗
−𝜎𝑥𝑗)

ℎ𝑗
− ], 

(6-35) 

where 𝑊𝑖, 𝑊𝑗, ℎ𝑖
+, ℎ𝑗

+, ℎ𝑖
−and ℎ𝑗

− are defined in Table 5-1, and 𝑊0
(𝑖,𝑗)

 is defined by: 

𝑊0
(𝑖,𝑗)

= 1 +
1

ℎ𝑖
+ℎ𝑖

− +
1

ℎ𝑗
+ℎ𝑗

− 
(6-36) 

Substituting equations (6-36) and (5-2) into equation (6-7), the second order Sobol’ 

index is obtained: 

𝑆𝑖𝑗 ≈ {𝑉𝑈𝑅𝑄(𝑦) −𝑊0
(𝑖,𝑗)

𝑔2 (𝜇𝑥𝑖 , 𝜇𝑥𝑗)

+𝑊𝑖 [
𝑔2 (𝜇𝑥𝑖 + ℎ𝑖

+𝜎𝑥𝑖 , 𝜇𝑥𝑗)

ℎ𝑖
+ −

𝑔2 (𝜇𝑥𝑖 + ℎ𝑖
−𝜎𝑥𝑖 , 𝜇𝑥𝑗)

ℎ𝑖
− ]

+𝑊𝑗 [
𝑔2 (𝜇𝑥𝑖 , 𝜇𝑥𝑗 + ℎ𝑗

+𝜎𝑥𝑗)

ℎ𝑗
+ −

𝑔2 (𝜇𝑥𝑖 , 𝜇𝑥𝑗 + ℎ𝑗
−𝜎𝑥𝑗)

ℎ𝑗
− ]}

/𝑉𝑈𝑅𝑄(𝑦) − 𝑆𝑖 − 𝑆𝑗 

(6-37) 
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6.3.2.3 Total Order Indices 

Following equation (6-14), this time the inner loop 𝑉𝑥𝑖( 𝑦|𝒙~𝒊=𝑿~𝒊)  is calculated by 

varying only 𝑥𝑖. For this purpose, 𝑓3
(𝑖)

 is defined by fixing all the other variables, 

𝑓3
(𝑖)(𝑥𝑖) = 𝑦|𝒙~𝒊=𝑿~𝒊 = 𝑓(𝑋1, 𝑋2, … , 𝑋𝑖−1, 𝑥𝑖, 𝑋𝑖+1, … , 𝑋𝑛), 

(6-38) 

and 𝑉𝑥𝑖( 𝑦|𝒙~𝒊=𝑿~𝒊) is obtained as: 

𝑉𝑥𝑖( 𝑦|𝒙~𝒊=𝑿~𝒊)  = 𝑉(𝑓3
(𝑖)
)

= 𝑊𝑖
+ [
𝑓3
(𝑖)(𝑥𝑖

+) − 𝑓3
(𝑖)(𝜇𝑥𝑖)

ℎ𝑖
+ ]

2

+𝑊𝑖
− [
𝑓3
(𝑖)(𝑥𝑖

−) − 𝑓3
(𝑖)(𝜇𝑥𝑖)

ℎ𝑖
− ]

2

+𝑊𝑖
±
[𝑓3

(𝑖)(𝑥𝑖
+) − 𝑓3

(𝑖)(𝜇𝑥𝑖)][𝑓3
(𝑖)(𝑥𝑖

−) − 𝑓3
(𝑖)(𝜇𝑥𝑖)]

ℎ𝑖
+ℎ𝑖

−  

(6-39) 

Now 𝑉𝑥𝑖( 𝑦|𝒙~𝒊=𝑿~𝒊) becomes a function of all the variables, except 𝑥𝑖 

𝑔3(𝑋1, 𝑋2, …𝑋𝑖−1, 𝑋𝑖+1, …𝑋𝑛) = 𝑉𝑥𝑖( 𝑦|𝒙~𝒊=𝑿~𝒊) 
(6-40) 

By applying Equation (5-1)  on 𝑔3, the nested expectation could be calculated: 

𝐸𝑿~𝒊 (𝑉𝑥𝑖( 𝑦|𝒙~𝒊=𝑿~𝒊)) = 𝐸𝑿~𝒊(𝑔3(𝑋1, 𝑋2, … 𝑋𝑖−1, 𝑋𝑖+1, …𝑋𝑛))

= 𝑊0
(~𝑖)

𝑔3(𝝁𝒙
(~𝑖)

) +∑𝑊𝑟 [
𝑔3(𝒙𝒓

(~𝑖)
+ )

ℎ𝑟
+ −

𝑔3(𝒙𝒓

(~𝑖)
− )

ℎ𝑟−
]

𝑛

𝑟=1
𝑟≠𝑖

, 

(6-41) 

where 𝝁𝒙
(~𝑖)

, 𝒙𝒓

(~𝑖)
+ , and 𝒙𝒓

(~𝑖)
− have been defined in equation (6-22), (6-23), and (6-24), 

respectively. 𝑊0
(~𝑖)

 is given by: 

𝑊0
(~𝑖)

= 𝑊0 −
1

ℎ𝑖
+ℎ𝑖

− 
(6-42) 

Substituting equations (6-41) and (5-2) into equation (6-14), the total effect Sobol’ 

indices is obtained, 
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𝑆𝑖
𝑇 ≈

𝑊0
(~𝑖)

𝑔3(𝝁𝒙
(~𝑖)

) + ∑ 𝑊𝑟 [
𝑔3(𝒙𝒓

(~𝑖)
+ )

ℎ𝑟
+ −

𝑔3(𝒙𝒓

(~𝑖)
− )

ℎ𝑟−
]𝑛

𝑟=1
𝑟≠𝑖

𝑉𝑈𝑅𝑄(𝑦)
 

(6-43) 

6.3.3 Algorithm and Computational Cost 

In this section, the algorithm of the proposed method is given. Once again to avoid 

repetition, only Option 1 from Table 6-1 will be discussed, as Option 2 and 3 could be 

implemented in a similar way. The algorithm for Option 4 is a straightforward 

application of URQ.  

We start with the first order indices as presented in section 6.3.2.1; the overall process 

for calculating 𝐸𝑋𝑖 (𝑉𝑥~𝑖( 𝑦|𝑥𝑖=𝑋𝑖))   is illustrated in Figure 6-2, which could be 

considered as one specific realization of the general process in Figure 6-1 

 

Figure 6-2. Illustration of the computational algorithm 
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To execute the outer URQ loop, 𝑋𝑖 needs be sampled at 𝜇𝑥𝑖 , 𝜇𝑥𝑖 + ℎ𝑖
+𝜎𝑥𝑖,  and 𝜇𝑥𝑖 +

ℎ𝑖
−𝜎𝑥𝑖, for the term ①, ②, and ③, repectively. For each realization of 𝑋𝑖, the inner 

URQ loop need to sample the other  𝑛 − 1 variables at 𝜇𝑥𝑟 , 𝜇𝑥𝑟 + ℎ𝑟
+𝜎𝑥𝑟 , and 𝜇𝑥𝑟 +

ℎ𝑟
−𝜎𝑥𝑟, where 𝑟 ≠ 𝑖. It should be noted that in this nested loop, many samples could be 

reused. Therefore it is beneficial to evaluate the model at all the required points first, 

then to start the algebraic calculation of equation (6-21) and (6-26). The sampling 

includes: 

 When all the variables are at their mean values: one evaluation 

 When one variable is at its 𝜇 + ℎ+𝜎 value: 𝑛 evaluations 

 When one variable is at its 𝜇 + ℎ−𝜎 value: 𝑛 evaluations 

 When two variables are at their 𝜇 + ℎ+𝜎 values: (
𝑛
2
) = 𝑛(𝑛 − 1)/2 evaluations 

 When two variables are at their 𝜇 + ℎ−𝜎 values: (
𝑛
2
) = 𝑛(𝑛 − 1)/2 evaluations 

 When one variable is at its 𝜇 + ℎ+𝜎 value and another variable is at its 𝜇 + ℎ−𝜎 

value: 𝑛(𝑛 − 1) evaluations 

The total number of evaluations is therefore: 

𝑁𝑡𝑜𝑡𝑎𝑙 = 2𝑛
2 + 1 (6-44) 

For the second order indices, the process is similar. In Figure 6-2, replace equation 

(6-21) and (6-26) by equation (6-30) and (6-35), respectively. The outer URQ loop now 

has five terms. For each (𝑥𝑖, 𝑥𝑗) = (𝜇𝑥𝑖 , 𝜇𝑥𝑗) , (𝜇𝑥𝑖 + ℎ𝑖
+𝜎𝑥𝑖 , 𝜇𝑥𝑗) , (𝜇𝑥𝑖 + ℎ𝑖

−𝜎𝑥𝑖 , 𝜇𝑥𝑗) , 

(𝜇𝑥𝑖 , 𝜇𝑥𝑗 + ℎ𝑗
+𝜎𝑥𝑗), and (𝜇𝑥𝑖 , 𝜇𝑥𝑗 + ℎ𝑗

−𝜎𝑥𝑗), the inner URQ loop is calculated while the 

other 𝑛 − 2 variables are set to be 𝜇𝑥𝑟 , 𝜇𝑥𝑟 + ℎ𝑟
+𝜎𝑥𝑟 , and 𝜇𝑥𝑟 + ℎ𝑟

−𝜎𝑥𝑟 , where 𝑟 ≠ 𝑖, 𝑗, 

once at a time. It can be shown that the same set of samples used for the first order 

indices can also be used for the second order indices. 

For total effect indices, the outer URQ loop now has 2𝑛 − 1 terms, in these terms, each 

𝑥𝑟 ≠ 𝑥𝑖 is set as 𝜇𝑥𝑟, 𝜇𝑥𝑟 + ℎ𝑟
+𝜎𝑥𝑟, and 𝜇𝑥𝑟 + ℎ𝑟

−𝜎𝑥𝑟 one a time. In the inner URQ loop, 

only 𝑥𝑖  is sampled, at the values of 𝜇𝑥𝑖 , 𝜇𝑥𝑖 + ℎ𝑖
+𝜎𝑥𝑖 , and 𝜇𝑥𝑖 + ℎ𝑖

−𝜎𝑥𝑖 . Similar to the 

second order indices, no further sampling is required for the total effect indices.  
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The implementations of the Option 2 & 3 are similar, and also the same sampling points 

are required. Option 4, as discussed previously is a straightforward application of 

single-loop URQ for the mean of 𝑓+(𝒙+𝒊) defined by Eq. (6-5). This requires even less 

points as there is no nested structure in calculation. As 𝑓+(𝒙+𝒊)  has 2𝑛 − 1  input 

variables, the number of model evaluations for Option 4 is: 

𝑁𝑡𝑜𝑡𝑎𝑙 = 4𝑛 − 1 (6-45) 

A pseudo code for the first order indices using Option 1 is attached in Appendix A.2. A 

full Matlab code for the entire index using all the four options is attached in Appendix 

A.3. 

Because Option 1, 2, and 3 require the same set of sampling points (and Option 4 

requires a subset of these points), for each application, it is recommended to calculate 

four sets of indices using all the options. A potential way to compare the accuracy of 

these results (without knowing the true values) is to sum all the first order and high 

order indices from each option. Theoretically, for a set of indices from one option, the 

sum should be one, or slightly smaller if some higher order indices are neglected in 

implementation (assuming that the high order interactions are not significant). The 

option which gives the sum closest to one should be selected. 

6.4 Evaluation 

The evaluation is conducted via a series of numerical experiments. The proposed 

method is applied on a number of test-cases and the results are compared with 

theoretical values (where available) or with estimations from the traditional 

(benchmark) MCS approach. These include 18 analytical examples and one practical 

design case study. 

The analytical examples are based on single line algebraic equations so that the 

representative mathematical properties could be explored explicitly.  By contrast, the 

practical design case study is based on a complex engineering model. The purpose is to 

demonstrate the scaling potential of the proposed method. 
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6.4.1 Analytical Test Cases 

6.4.1.1 Problem Statement 

The typical mathematical properties, which may affect and limit the applicability of the 

proposed method include: 

 Non-linearity of the model; 

 Non-monotonicity of the model; 

 Type of the distribution; 

 Multi-modality of the distribution; 

 Interaction of variables; 

 Combinations of the above. 

In order to take into account these properties, the test-cases are intended to form a 

“control variable experiment”, which involves five models and various settings of 

several probability distributions. Although a large amount of experiments have been 

used for testing and evaluation, only the most representative ones are shown in this 

thesis. A summary of the test-cases are shown in Table 6-2, where the model and the 

corresponding distribution settings are indicated by the first and second number in the 

notation of the test-case. For example T1-3 indicates the combination of the first model 

and the third distribution settings. 

The first three test-cases (T1-1, T1-2, and T1-3) are based on a linear model, defined by 

equation (6-46). In T1-1, all the inputs follow the uniform distribution 𝑈(0,1). This is 

the simplest case which serves as a reference. In T1-2, the distributions are changed into 

Gaussian, triangular and uniform. T1-3 is designed to investigate the influence of 

multimodal distributions. The selected distribution is the mixed-Gaussian (McLachlan 

and Peel, 2000), which is represented as ℳ𝒢(𝜇1, 𝜇2, 𝜎1, 𝜎2, 𝜆1, 𝜆2), where 𝜇, 𝜎, and 𝜆 

are the mean, standard deviation, and proportions of two Gaussian distributions, 

respectively. It should be noted that in T1-2 and T1-3, the parameters of the 

distributions are arbitrarily selected. Also, as mentioned above, various other settings 

have been tested beside the ones reported here, and no influence on accuracy has been 

found for these linear cases. 
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Test cases T2-1, T2-2, T2-3, T2-4, T2-5, and T2-6 are based on the non-linear model 

defined by equation (6-47). In this model, there is no interaction effect between the 

variables. The influence of non-monotonicity is explored in T2-1, T2-2, and T2-3, in 

which the distributions of the input variables are gradually expanded from [0,1] to more 

non-monotonic regions. T2-4 and T2-5 are used to demonstrate the combination of non-

monotonicity and multi-modality. T2-6 covers other PDF shapes under non-linear cases. 

Test cases T3-1, T3-2, and T3-3 are proposed to evaluate the method on high order 

indices (interaction effects).  In these three cases, equation (6-48) is used and the 

expected interaction effects are dependent on the ranges of input variables. In T3-1, first 

order effect will be the main contributor of the total variance, while in T3-2 and T3-3 

more interactions are involved. 

Apart from the proposed functions, experiments have also been conducted on the Sobol’ 

G-Function specified in equation (6-49) (the original source is (Saltelli and Sobol’, 

1995), while the analytical solution is presented in (Saltelli et al., 2010)) and the 

Ishigami-Function in equation (6-50) (original source is  (Ishigami and Homma, 1990), 

analytical solution available in (Sobol’ and Levitan, 1999)). These two functions are 

considered as classic test-cases for sensitivity analysis.  

𝑓𝑇1(𝑥1, 𝑥2, 𝑥3) = 𝑥1 + 2𝑥2 + 3𝑥3 (6-46) 

𝑓𝑇2(𝑥1, 𝑥2, 𝑥3) = 𝑥1
2 + sin (

𝜋

2
𝑥2) + 𝑒

|𝑥3| 
(6-47) 

𝑓𝑇3(𝑥1, 𝑥2, 𝑥3) = 𝑥1𝑥3 + 𝑥1sin (
𝜋

2
𝑥2) + 𝑥2𝑒

|𝑥3| + 𝑥1𝑥2𝑥3 
(6-48) 

𝑓𝑇4(𝑥1, 𝑥2, 𝑥3) =∏
|4𝑥𝑖 − 2| + 𝜌𝑖

1 + 𝜌𝑖

3

𝑖=1

 
(6-49) 

𝑓𝑇5(𝑥1, 𝑥2, 𝑥3) = 𝑠𝑖𝑛(𝑥1) + 𝜃1 ∙ 𝑠𝑖𝑛
2(𝑥2) + 𝜃2 ∙ 𝑥3

4𝑠𝑖𝑛 (𝑥1) (6-50) 
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Table 6-2. Summary of the test-cases 

Notation Equation Distribution Settings Justification 

T1-1: Linear 

Model 

(6-46) 

𝑥1~𝒰(0,1) 

𝑥2~𝒰(0,1) 

𝑥3~𝒰(0,1) 

Simplest reference case 

T1-2: Linear 

Model 

(6-46) 

𝑥1~𝒩(1,1) 

𝑥2~𝒯𝓇𝒾(0,2,1.5) 

𝑥3~𝒰(0,2) 

Linearity and mixture of different 

distributions 

T1-3: Linear 

Model 

(6-46) 

𝑥1~ℳ𝒢(0,5,0.5,0.7,0.25,0.75) 

𝑥2~ℳ𝒢(1,3,0.5,0.5,0.5,0.5) 

𝑥3~ℳ𝒢(5,7,0.7,0.5,0.75,0.25) 

Linear and multi-modality 

T2-1: Non-Linear 

Model 

(6-47) 

𝑥1~𝒰(0,1) 

𝑥2~𝒰(0,1) 

𝑥3~𝒰(0,1) 

Non-linearity and monotonicity 

T2-2: Non-Linear 

Model 

(6-47) 

𝑥1~𝒰(−1,1) 

𝑥2~𝒰(0,2) 

𝑥3~𝒰(−1,1) 

Non-linearity and non-monotonicity 

T2-3: Non-Linear 

Model 

(6-47) 

𝑥1~𝒰(−1,1) 

𝑥2~𝒰(−2.5,2.5) 

𝑥3~𝒰(−1,1) 

Non-linearity and non-monotonicity 

T2-4: Non-Linear 

Model 

(6-47) 

𝑥1~ℳ𝒢(−0.5,0.5,0.2,0.2,0.75,0.25) 

𝑥2~ℳ𝒢(−2.2,2.2,0.5,0.5,0.5,0.5) 

𝑥3~ℳ𝒢(−0.5,0.5,0.2,0.2,0.25,0.75) 

Non-Linear and multi-modality 

T2-5: Non-Linear 

Model 

(6-47) 

𝑥1~ℳ𝒢(−0.5,0.5,0.2,0.2,0.75,0.25) 

𝑥2~ℳ𝒢(−1.8,1.8,0.6,0.6,0.5,0.5) 

𝑥3~ℳ𝒢(−0.5,0.5,0.2,0.2,0.25,0.75) 

Non-Linear and multi-modality 

T2-6: Non-Linear 

Model 

(6-47) 

𝑥1~𝒩(1,1) 

𝑥2~𝒯𝓇𝒾(−2,3,1) 

𝑥3~𝒰(−2,2) 

Non-Linear and mixture of different 

distributions 

T3-1: Non-Linear 

Model 

(6-48) 

𝑥1~𝒰(0,1) 

𝑥2~𝒰(0,1) 

𝑥3~𝒰(0,1) 

Non-linearity and moderate 

interaction effect 

T3-2: Non-Linear 

Model 

(6-48) 

𝑥1~𝒰(−0.5,1.5) 

𝑥2~𝒰(−0.5,1.5) 

𝑥3~𝒰(−0.5,1.5) 

Non-linearity and strong interaction 

effect 

T3-3: Non-Linear 

Model 

(6-48) 

𝑥1~𝒰(−1,1) 

𝑥2~𝒰(−1,1) 

𝑥3~𝒰(−1,1) 

Non-linearity, interaction effect  

T4-1:  Sobol’ G 

Function 

(6-49) 

𝑥1~𝒰(0,1); 𝜌1 = 0 

𝑥2~𝒰(0,1); 𝜌2 = 0 

𝑥3~𝒰(0,1); 𝜌3 = 0 

Classic Test Case 

T4-2: Sobol’ G 

Function 

(6-49) 

𝑥1~𝒰(0,1); 𝜌1 = 0 

𝑥2~𝒰(0,1); 𝜌2 = 3 

Classic Test Case 
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𝑥3~𝒰(0,1); 𝜌3 = 5 

T4-3: Sobol’ G 

Function 

(6-49) 

𝑥1~𝒰(0,1); 𝜌1 = 10 

𝑥2~𝒰(0,1); 𝜌2 = 30 

𝑥3~𝒰(0,1); 𝜌3 = 50 

Classic Test Case 

 

T5-1: Ishigami 

Function 

(6-50) 

𝑥1~𝒰(0,1); 𝜃1 = 7 

𝑥2~𝒰(0,1); 𝜃2 = 0.1 

𝑥3~𝒰(0,1) 

Classic Test Case: (𝜃1 and 𝜃2 from 

(Ishigami and Homma, 1990)) 

T5-2: Ishigami 

Function 

(6-50) 

𝑥1~𝒰(0,1); 𝜃1 = 7 

𝑥2~𝒰(0,1); 𝜃2 = 0.05 

𝑥3~𝒰(0,1) 

Classic Test Case: (𝜃1 and 𝜃2 

from(Sobol’ and Levitan, 1999)) 

T5-3: Ishigami 

Function 

(6-50) 

𝑥1~𝒰(0,1); 𝜃1 = 7 

𝑥2~𝒰(0,1); 𝜃2 = 0.01 

𝑥3~𝒰(0,1) 

Classic Test Case:  

 

6.4.1.2 Results 

For each test-case, all the four options (as summarized in Table 6-1) have been tested 

and the results are plotted in Figure 6-3 to Figure 6-7, with comparison to the 

theoretical/reference values. 

For most of the cases, theoretical values were obtained by using the equations from 

(Sobol’, 1993). Some parts of the integral were numerically solved using Matlab (and 

validated by MCS). In T1-3, T2-4, and T2-5, the theoretical values were difficult to 

obtain due to the distributions being used; therefore values from the MCS are used as 

references. The theoretical results of the adopted test-cases are obtained from relevant 

papers referred to above. 

 

Figure 6-3. Results of the linear model under different settings 

It can be seen from Figure 6-3 that the proposed method worked well on the linear 

model, regardless of the distributions used (including multi-modal distributions). The 
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results from the four options are almost the same and are very close to the 

theoretical/reference values. 

Regarding the first non-linear model, the proposed method was able to deliver accurate 

results when all the inputs are inside the monotonic region of the function, as shown by 

Figure 6-4(a). In test-case T2-2 (Figure 6-4(b)), as the input distributions are expanded 

to the non-monotonic regions, the errors increase. It can be seen that, Option 4 is the 

most affected one, resulting in negative values for 𝑆1 and 𝑆2. The results of the other 

three options are still relatively close to the theoretical/reference values. Figure 6-4 (c) 

shows an extreme case when 𝑆2 is not detectable by the proposed method.  

 

Figure 6-4. Results of the non-linear model 1 under different settings 

Figure 6-4 (d) and (e) represent the results of test-case T2-4 and T2-5. It can be seen 

that the accuracy of the former is considerably higher, especially regarding 𝑆2. This 

difference was initially unexpected, because in these two cases, the same model is used 

and the distribution settings are very close. The only slight difference is the distributions 

of 𝑥2, which still covers roughly the same region (from -4 to 4) in both cases. A further 

investigation on this effect will be shown in Section 6.4.1.3. 
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Figure 6-4 (f) shows the results of test-case T2-6, in which a number of different 

distributions are used. The results from the first three options are close and relatively 

accurate.  

 

Figure 6-5. Results of test cases with interaction effects 

The results of T3-1, T3-2 and T3-3 are shown in Figure 6-5. It could be seen that, the 

predicted first order and total effect indices are relatively accurate in test case T3-1, as 

plotted in Figure 6-5, (a) and (b). In T3-2, when the region of input is expanded to 

(−0.5,1.5), the accuracy has been reduced, especially for option 2 (Figure 6-5, (d) and 

(e)). In both T3-1 and T3-2, the second order indices do not come very close to the 

benchmark (Figure 6-5, (c) and (f)). T3-3 is an extreme case, when the proposed method 
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fails altogether. It should be noted that in Figure 6-5 (g), the reference values of 𝑆1 and 

𝑆3 are also zeros.  

The results of test-cases T4 and T5 are shown in Figure 6-6 and Figure 6-7, 

respectively. The quality of results is dependent on the selected coefficients in equations 

(6-49) and (6-50). Regarding the Sobol’ G-Function, when the 𝜌𝑖’s are all zeros, the 

proposed method could not produce any results as shown in Figure 6-6 (a), (b), and (c). 

As the values of 𝜌𝑖’s are increased, the first order and total order indices from option 1 

and option 3 become more accurate (Figure 6-6 (d), (e), (g), and (h)). Regarding the 

Ishigami Function, the smaller value of 𝜃2, leads to better predictions (Figure 6-7). For 

all the cases, the second order indices are still quite irrelevant. 

 

Figure 6-6. Results for test on the Sobol’ G-function 
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Figure 6-7. Results for tests on Ishigami Function 

6.4.1.3 Discussion 

The evaluation confirmed at large the effectiveness of the method, but also revealed 

some limitations. It was discovered that these are largely limitations of the URQ 

technique itself. The first limitation is due to aliasing, which could explain the low 

accuracy in T2-3 and T2-5.   

Considering T2-3, due to the selected distribution for 𝑥2~𝒰(−2.5,2.5) , URQ will 

sample 𝑥2 at the points of -1.9365, 0, and 1.9365 (corresponding to 𝜇𝑥2 + ℎ2
−𝜎𝑥2, 𝜇𝑥2, 

and 𝜇𝑥2 + ℎ2
+𝜎𝑥2 , respectively). At these three points, the variation of 𝑠𝑖𝑛 (

𝜋

2
𝑥2) are 

grossly underestimated, as illustrated in Figure 6-8. This directly leads to the disregard 
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of 𝑆2 and a reduction in the calculated total variance. The latter will also cause over-

estimation of 𝑆1 and 𝑆3 (Figure 6-4 (c)). 

 

Figure 6-8. Under-estimated variation for 𝑠𝑖𝑛 (
𝜋

2
𝑥2) 

For T2-4 and T2-5, although in both cases, the distributions of 𝑥2 have covered roughly 

the same region from -4 to 4, the subtle difference between the two PDFs has shifted the 

sampling points accordingly, as illustrated in Figure 6-9. Due to this shift, the accuracy 

of results in T2-4 (Figure 6-4(d)) is higher than that of T2-5 (Figure 6-4(e)).  

 

Figure 6-9. Comparison of the two PDFs and the relevant sampling points 
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The second limitation is that URQ cannot handle one specific feature of models. Figure 

6-10 illustrates a 2-dimensional example of 𝑦 = 𝑠𝑖𝑛(𝑥1) ∙ 𝑠𝑖𝑛 (𝑥2)  to visualise the 

problem. The model output will be zero, on the 𝑥1 or 𝑥2 axis. However URQ would 

perturb only one variable at a time and keep the others at their mean values. If the 

distributions happen to have the mean values at zero, all the URQ sampling points (as 

indicated by the red dots in Figure 6-10) will return zeros. Therefore the variance will 

be totally disregarded, which cannot be used as denominator to calculate the indices (the 

estimated mean is zero as well). In test case T3-3 and T4-1 the models have similar 

(multiplicative) features and the distributions of inputs are symmetric to the zero point. 

This is the reason why no results could be given by this method for these two cases. In 

the Ishigami function, this effect is caused by the component 𝜃2 ∙ 𝑥3
4𝑠𝑖𝑛 (𝑥1), therefore 

by using smaller values of coefficient 𝜃2, the effect will be weakened, which gives more 

accurate predictions (as shown by T5-1, T5-2, and T5-3).  

As the aforementioned limitations are largely due to the URQ technique itself, it is 

expected that the proposed approach could be improved by adopting alternative 

propagation techniques. For instance, by using the propagation technique proposed in 

(Seo and Kwak, 2002), additional sampling points will be used as indicated by the green 

dots in Figure 6-10. This will capture more information of the model response surface, 

and avoid disregarding the output variance. Another potential solution is to introduce 

coordinate transformations in future developments. 

 

Figure 6-10. Example of a 2D case 
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6.4.2 Practical Test Case 

6.4.2.1 Problem Statement 

The proposed method was applied on an example of an aircraft environmental control 

system (ECS), adopted from Pérez-Grande and Leo (Pérez-Grande and Leo, 2002) as 

shown in Figure 6-11. The objective is to demonstrate a practical application of realistic 

size and complexity. 

 

Figure 6-11. Schematic View of the ECS and core of a compact cross-flow heat exchanger 

(Adopted from (Pérez-Grande and Leo, 2002)) 

In this example, thermal characteristics of an ECS such as pressures, temperatures at 

different locations and the overall entropy generation rate are calculated using designer-

specified geometry properties. The latter include the heat exchanger dimensions, fin 

characteristics, and efficiencies of turbines, compressors, nozzles, and diffusers. There 

are 119 models in total,  adopted from (Pérez-Grande and Leo, 2002), including 59 

independent (inputs and parameters) and 120 dependent variables (intermediate 

variables and outputs), respectively. The details of the inputs and outputs of interest are 

listed in Table 6-3 and Table 6-4, respectively. 

While the original work of Pérez-Grande and Leo (Pérez-Grande and Leo, 2002) was 

focused on ECS optimization, the current study is concerned with sensitivity analysis of 

their optimal solution. Uncertainties have been considered for all the 42 input variables, 
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listed in Table 6-3. In the original paper (Pérez-Grande and Leo, 2002), some of these 

inputs were considered fixed parameters, while in the current test case, their variations 

are also taken into account. All the nominal values are adopted from the original paper 

and the uncertainty distributions are arbitrarily assigned, with combinations of uniform, 

Gaussian, triangular, and mixture-Gaussian (multi-modal) distributions. It should be 

emphasised that the purpose of this study is to validate the proposed method, rather than 

conduct an investigation into the merits of the particular ECS design. In a real design 

scenario, these distributions can be based on historical data or expert elicitations. 
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Table 6-3. Input Variables and Associated Uncertainties 

Components Inputs Symbols Probability Distribution 

Flight 

Condition 

Altitude (m) ℎ 𝒩(11000, 550) 

Mach Number 𝑀𝑎𝑐ℎ 𝒰(0.78, 0.82) 

Engine Bleed Pressure (kPa) 𝑃1 𝒰(250, 12.5) 

Engine Fan/Compressor 

Efficiency 
𝜂𝑒𝑐 𝒯𝓇𝒾(0.8, 0.98, 0.9) 

Overall 

Parameters 

Conditioning Mass Flow Rate 

(kg/s) 
𝑚̇ 𝒰(0.65, 0.75) 

Cooling Ratio 𝑟 𝒰(0.315, 0.385) 

Pre-cooler Length (m) 𝐿𝑥1  𝒰(0.09, 0.11) 

Width (m) 𝐿𝑦1  𝒰(0.27, 0.33) 

Height (m) 𝐿𝑧1 𝒰(0.3852, 0.4708) 

Wall Thickness (m) 𝑡𝑊1 𝒰(5.4𝑒 − 4, 6.6𝑒 − 4) 

Sheet Fin Thermal 

Conductivity (W/(m∙K)) 
𝑘𝑊1 ℳ𝒢(20,22,0.5,0.5,0.6,0.4) 

Pre-cooler Heat 

Transfer 

Surface (Main 

Stream side) 

Plate spacing (m) 𝑏1 𝒰(4.69𝑒 − 3, 5.73𝑒 − 3) 

Hydraulic Diameter (m) 4𝑟ℎ1 𝒰(1.38𝑒 − 3, 1.69𝑒 − 3) 

Fin Thickness (m) 𝛿1 𝒰(0.92𝑒 − 4, 1.12𝑒 − 4) 

Heat Transfer Area/Volume 

Between Plates (m
2
/m

3
) 

𝛽1 𝒩(2231, 111.55) 

Fin Area/Total Area (𝐴𝑓/𝐴)1 ℳ𝒢(0.8,0.9,0.03,0.03,0.59,0.41) 

Pre-cooler Heat 

Transfer 

Surface (Ram 

Air side) 

Plate Spacing (m) 𝑏1𝑟 𝒰(11.07𝑒 − 3, 13.53𝑒 − 3) 

Hydraulic Diameter (m) 4𝑟ℎ1𝑟 𝒰(3.07𝑒 − 3, 3.75𝑒 − 3) 

Fin Thickness (m) 𝛿1𝑟 𝒰(0.92𝑒 − 4, 1.12𝑒 − 4) 

Heat Transfer Area/Volume 

Between Plates (m
2
/m

3
) 

𝛽1𝑟 𝒩(1115, 55.75) 

Fin Area/Total Area (𝐴𝑓/𝐴)1𝑟 ℳ𝒢(0.8,0.9,0.03,0.03,0.38,0.62) 

Main Heat 

Exchanger 

Length (m) 𝐿𝑥2  𝒰(0.09,0.11) 

Width (m) 𝐿𝑦2  𝒰(0.315, 0.385) 

Height (m) 𝐿𝑧2 𝒰(0.2781, 0.3399) 

Wall Thickness (m) 𝑡𝑊2 𝒰(5.4𝑒 − 4, 6.6𝑒 − 4) 

Sheet Fin Thermal 

Conductivity (W/(m∙K)) 
𝑘𝑊2 ℳ𝒢(20,22,0.5,0.5,0.6,0.4) 

Main Heat 

Exchanger 

Heat Transfer 

Surface (Main 

Stream side) 

Plate spacing (m) 𝑏2 𝒰(4.69𝑒 − 3, 5.73𝑒 − 3) 

Hydraulic Diameter (m) 4𝑟ℎ2 𝒰(1.38𝑒 − 3, 1.69𝑒 − 3) 

Fin Thickness (m) 𝛿2 𝒰(0.92𝑒 − 4, 1.12𝑒 − 4) 

Heat Transfer Area/Volume 

Between Plates (m
2
/m

3
) 

𝛽2 𝒩(2231, 111.55) 

Fin Area/Total Area (𝐴𝑓/𝐴)2 ℳ𝒢(0.8,0.9,0.03,0.03,0.59,0.41) 

Main Heat 

Exchanger 

Heat Transfer 

Plate spacing (m) 𝑏2𝑟 𝒰(11.07𝑒 − 3, 13.53𝑒 − 3) 

Hydraulic Diameter (m) 4𝑟ℎ2𝑟 𝒰(3.07𝑒 − 3, 3.75𝑒 − 3) 

Fin Thickness (m) 𝛿2𝑟 𝒰(0.92𝑒 − 4, 1.12𝑒 − 4) 
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Surface (Ram 

Air side) 
Heat Transfer Area/Volume 

Between Plates (m
2
/m

3
) 

𝛽2𝑟 𝒩(1115, 55.75) 

Fin Area/Total Area (𝐴𝑓/𝐴)2𝑟 ℳ𝒢(0.8,0.9,0.03,0.03,0.38,0.62) 

Miscellaneous Main Stream Diffuser 

Efficiency 
𝜂𝑑 𝒯𝓇𝒾(0.85, 0.97, 0.95) 

Air Cycle Machine 

Compressor Efficiency 
𝜂𝑐 𝒯𝓇𝒾(0.7, 0.8, 0.75) 

Air Cycle Machine Turbine 

Efficiency 
𝜂𝑡 𝒯𝓇𝒾(0.7, 0.9, 0.8) 

Ram Air Section (m
2
) 𝐴𝑖 𝒰(1.08𝑒 − 2, 1.32𝑒 − 2) 

Ram Air Diffuser Efficiency 𝜂𝑟𝑑 𝒯𝓇𝒾(0.85, 0.97, 0.95) 

Ram Air Nozzle Efficiency 𝜂𝑛 𝒯𝓇𝒾(0.85, 0.97, 0.95) 

Table 6-4. Part of output variables 

Locations Outputs Symbols 

Main stream Bleed Temperature (K) 𝑇1 

Temperature at the Exit of Pre-cooler (K) 𝑇2 

Temperature after the Compressor (K) 𝑇3 

Temperature at the Exit of Main Heat Exchanger (K) 𝑇4 

Temperature after the Turbine (to the Cabin) (K) 𝑇5 

Pressure at the Exit of Pre-cooler (kPa) 𝑃2 

Pressure after the Compressor (kPa) 𝑃3 

Pressure at the Exit of Main Heat Exchanger (kPa) 𝑃4 

Pressure after the Turbine (to the Cabin) (kPa) 𝑃5 

Ram Air Temperature at the Exit of Ram Air Diffuser (K) 𝑇1𝑟  

Temperature at the Exit of Main Heat Exchanger (K) 𝑇2𝑟  

Temperature at the Exit of Pre-cooler (K) 𝑇3𝑟  

Temperature at the Exit of Ram Air Nozzle (K) 𝑇4𝑟 

Pressure at the Exit of Ram Air Diffuser (kPa) 𝑃1𝑟  

Pressure at the Exit of Main Heat Exchanger (kPa) 𝑃2𝑟  

Pressure at the Exit of Pre-cooler (kPa) 𝑃3𝑟  

Pressure at the Exit of Ram Air Nozzle (kPa) 𝑃4𝑟 

Overall Performance Entropy Generation Rate 𝑁𝑆 

Total Volume of Heat Exchangers (m
3
) 𝑉𝑇 

6.4.2.2 Results 

Given the complexity of the test case, it was deemed infeasible to calculate the 

theoretical Sobol’ indices. Thus the results of the proposed method are compared with 

reference values obtained from the traditional (benchmark) Monte-Carlo approach.  

Also as it is impractical to show the different sets of Sobol’ indices for all the 19 output 

variables, only 𝑁𝑠  is chosen for illustration purposes. In the original paper (Pérez-
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Grande and Leo, 2002), this output was used as the objective function in the design 

optimization.  

 

Figure 6-12. First order indices calculated from the four options, compared with the 

reference values 
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Figure 6-13. Total indices calculated from the four options, compared with the reference 

values 

Shown in Figure 6-12 and Figure 6-13 are the first order and the total effect indices 

calculated as per the four options from Table 6-1 (marked as red in each subplot), 

compared with the reference values from MCS (marked as blue). It can be seen that 

Option 1 and 3  produced relatively good matches with the reference values, for both 

first order (Figure 6-12 (a) & (c)) and total effect indices (Figure 6-13 (a) & (c)). While 

Option 2 and 4 would sometimes give negative values for 𝑆𝑖 (Figure 6-12 (b) & (d)) and 
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over-estimated values for 𝑆𝑖
𝑇  (Figure 6-13 (b) & (d))). The discrepancies are related 

mostly to the estimation of the insignificant factors, while the most influential ones are 

captured well.  

The interaction effects in this model turned out to be insignificant. Comparison of the 

results are not shown here, because all the values (both the calculated and reference 

ones) are very close to zero. 

6.4.2.3 Discussion 

Figure 6-14 illustrates the efficiency and the effectiveness of the proposed method with 

regard to the practical test case. The solid blue line represents the first order index for 

cooling ratio (𝑆𝑟) calculated from the traditional (benchmark) MCS approach, at 43000, 

215000, 430000, 860000, and 2150000 model evaluations. The red error bars indicate 

95% confidence intervals of the estimated values, obtained by using a boot-strap 

method from (Archer, Saltelli and Sobol, 1997). The straight black dash line is the value 

calculated by the proposed method (Option 1) at a computational cost of 3529 model 

evaluations. This is 623 times faster (compared with 2150000), at similar accuracy. 

 

Figure 6-14. Convergence of the first order index of cooling ratio 

Comparison with other available techniques has not been conducted yet. However it can 

be seen from Figure 6-14 that the result of the proposed method is already within the 
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95% confidence interval of the benchmark MCS study. This means that the other 

techniques should also provide similar results (assuming that all the methods are 

accurate).  

On the other hand, the cost of each technique can be predicted analytically using the 

equations in Table 3-1. The computational costs of various methods are plotted again in 

Figure 6-15, with comparison to the proposed method. In general, the proposed method 

is comparable to the RBD (Mara and Rakoto Joseph, 2008), Bayesian approach (Oakley 

and O’Hagan, 2004), intrusive PCE (Sudret, 2008) with low truncation order, and non-

intrusive PCE (using LSA (Cuneo, Traverso and Shahpar, 2017), low-rank tensor 

(Konakli and Sudret, 2016) and sparse grid (Xiu and Hesthaven, 2005)). One known 

limitation of the intrusive PCE is that it requires the modification of the original model, 

which will become prohibitive if the model is complex or even a black-box (Hosder, 

Walters and Perez, 2006). With regard to other methods, as their exact computational 

costs are also dependent on the required accuracy, a further comparison is planned for 

future work. 
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Figure 6-15. Number of evaluations required for different techniques 

6.5 Summary and Conclusions 

Presented in this paper is a method for efficient variance based sensitivity analysis. The 

main contribution can be considered in two levels. The first level is a general approach 

to transform the sensitivity analysis into an uncertainty propagation process, so that 
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various existing approximation techniques can be implemented to speed up the 

calculation. In the second level, formulations are proposed to implement the specific 

URQ technique, with four different options.  

As demonstrated through numerical experiments, the proposed method is very accurate 

in all linear or monotonic cases, under various probability distributions. For most non-

linear and non-monotonic conditions, this method still provides fairly accurate 

estimations of the first order and total effect indices. In general, Option 3 has the highest 

accuracy and robustness, followed by Option 1 and Option 2 which are close to each 

other. Option 4 is the least robust to non-linearity. Compared with other techniques, the 

particular strength is on the low computational cost, especially for large scale problems. 

This would enable the decision maker to quickly identify the most influential factors. 

On the other hand, there are limitations of the specific method (implemented with 

URQ). Interaction effects in the computational models will cause a decrease in the 

accuracy. The higher order indices are not yet usable and their computation needs 

further improvement. Apart from that, certain combinations of non-linearity, non- 

monotonicity, and shapes of the distributions will restrict the application of the current 

method. In particular: 

 Periodicity of the model, plus input distributions with span larger than half of 

the model period, will cause aliasing. 

 Multiplicative models with constant output values along the axes, plus the 

sampling points corresponding to the input distributions happen to be on the 

axes, will lead to disregard of the variance.  

In general, the proposed method could be used as a first assessment to identify the most 

influential factors, which will reduce the dimensionality of the original problem. If 

needed, further sensitivity analysis with more accurate, but computationally expensive 

methods such as MSC or FAST could be conducted within the reduced set of most 

influential factors.  

Future work will focus on three tasks: the first is to further develop the specific method 

implemented with URQ. This will involve more rigorous and explicit representation of 

the numerical errors. The second is to implement the general approach with other 
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approximation techniques. Some of the candidates may include: the unscented 

transformation [19], Gaussian Quadrature [20], generalised Taguchi method [21], etc. 

These implementations will also be compared with current techniques for sensitivity 

analysis. The third task is to organise these specific technique as a comprehensive 

system to perform sensitivity analysis, adapting to different types of computational 

models. 
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7 Summary and Conclusions 

7.1 Summary of Research 

The presented research was motivated by the industrial need for novel and improved 

UQ&M techniques, in response to the development of computational design for 

aerospace systems. Three specific problems were identified, as a result from the 

literature review and requirements of the European research project of TOICA. 

Objective 1 is motivated by the TOICA project, for an improved margin management 

policy. Margins have already been applied extensively in engineering practice. The 

project need is to integrate margins with UQ&M techniques, and to enable systematic 

trade-off between margins, performances, and probabilities of constraint satisfaction. 

The corresponding result is a comprehensive method presented in Chapter 4. In this 

method, activities are classified from the perspective of the designer and the uncertainty 

expert, so that analysis could be conducted simultaneously. From the UQ&M 

perspective, sensitivity analysis and propagation are used to support the allocation of 

deterministic margins. On the other hand, different types of trade-off (decision making) 

are identified and organised as three categories: margins versus margins, margins versus 

probability of constraint satisfaction, and margins versus performance. Several enablers 

have been developed to facilitate each of the trade-off studies. The overall approach is 

constructed with the philosophy of set-based design, which enables the designer to 

explore multiple solutions. In this process, design knowledge is gained regarding the 

design/margin space by assess explicitly the interaction between margins and other 

quantities. 

The method is demonstrated with an aircraft sizing problem which has two levels of 

models (aircraft level and subsystem level). In the test-case, the designer can 

interactively explore and trace the influence of each margin, and gradually narrow-down 

the set of solutions based on the available information. This test-case was implemented 

in AirCADia, and partially evaluated in the TOICA project. 

Objective 2 also initiates from the TOICA project, for a method to ‘allocate’ uncertainty 

in the design process. This is based on the assumption that part of the uncertainty 

involved in the calculation could be reduced by advanced but more expensive design 
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studies. Therefore it is beneficial for the designer to know how much uncertainty could 

be tolerated from different sources, given the acceptable level of uncertainty associated 

with the system outputs. 

Regarding this objective, a method is proposed for inverse uncertainty propagation as 

presented in Chapter 5. The method is enabled by constructing an optimization loop 

over a low-cost forward propagation process. Specifically, it is implemented with the 

URQ technique and the workflow reversal capability of AirCADia. By applying inverse 

propagation, the designer can specify the target variances of output variables, and 

inversely calculate those of the inputs.  

For validation of the method, the inverse propagation was tested with both analytical 

examples and an aircraft sizing case study. The results of these test-cases have proven 

the accuracy of the proposed method. In the TOICA project, the proposed method was 

also applied on several other industrial test-cases, with which, the usefulness was 

evaluated and confirmed through the project review process. 

Objective 3 is regarding the general need in this field, to reduce the computational cost 

of implementing UQ&M techniques. Specifically, sensitivity analysis is chosen as the 

problem area of interest. The reason is that sensitivity analysis is one of the most 

computationally demanding treatments of uncertainty, which requires more efficient 

methods, especially for high dimensional problems. Furthermore, by applying 

sensitivity analysis, computational cost of other UQ&M practice can be reduced as well, 

due to the reduction of problem dimensions.   

The method proposed in Chapter 6 corresponds to achieving this objective. The 

development can be divided into two levels: The first level is a general approach to 

transfer the sensitivity analysis into an uncertainty propagation process, so that various 

existing approximation techniques could be implemented to speed up the calculation. In 

the second level, specific formulations are proposed to integrate the URQ technique 

with variance based sensitivity indices, as one realization of the aforementioned general 

approach. 

For evaluation, the proposed method (URQ version) was applied on several test-cases, 

which include a series of analytical examples and an aircraft ECS case study. The 
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former were used to explore the applicability of the proposed method, regarding models 

with representative mathematical properties. The latter was applied to demonstrate the 

efficiency, on a practical design problem. For all the linear or monotonic cases, the 

proposed method achieved very high accuracy, under various probability distributions. 

For most non-linear and non-monotonic conditions, this method still provides fairly 

accurate estimations of the first order and total effect indices. In the practical test-case, 

the result is very close to the benchmark, and the efficiency of the proposed method is 

demonstrated by comparing the computational cost with other sensitivity analysis 

techniques. 

7.2 Contribution to Knowledge 

The contribution to knowledge is reflected on the novel methods developed in this PhD 

research, which include: 

 A method for margin allocation and trade-off, which enhances the management 

of traditional margins, in a more explicit, systematic, and interactive manner. 

 A method for inverse uncertainty propagation, which enables the designer to 

manage uncertainty interactively. 

 A method for sensitivity analysis, which has significantly reduced the relevant 

computational cost. Furthermore, a general approach is provided, which enables 

various other implementations to improve the efficiency. 

7.3 Current Limitations 

The limitations of this PhD research can be considered in two levels. In the narrow 

sense, the limitations are related to detailed implementation of each proposed method:  

 In margin allocation, full factorial design of experiment is applied for its 

simplicity. However, computational cost would grow significantly if the 

designer wants to treat a large number of margins simultaneously. 

 The URQ technique is restricted by highly non-linearity of computational 

model. As a result, the accuracy of the proposed methods for sensitivity analysis 

and inverse propagation can be affected. 
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In a broader sense, it has been pointed out that uncertainty exists both Within the 

Problem and About the Problem as illustrated by Figure 7-1 (Padulo and Guenov, 

2012). This research has been focused on the computational perspective which is largely 

within the problem. Behind the scenes of all the computation, it is the design 

knowledge, which reflects not only on the models, but also in the way that design 

problems are formulated. For instance, in the research and development (R&D) of novel 

concepts and technologies, (such as blended wind body airliners, more electric aircraft 

systems, etc.), due to the lack of experience and routines to follow, uncertainty about 

problem might be more influential. Such types of uncertainty might be non-parametric 

in representation, therefore are beyond the current probabilistic approach. 

 

Figure 7-1. A classification of uncertainty in Engineering Design (Padulo and Guenov, 

2012) 

7.4 Future Work 

Future research needs to consider not only the limitations as discussed in the previous 

section, but also development of new capabilities. Specifically: 

 Regarding margin allocation, more efficient sampling techniques (e.g. Latin 

Hyper Cube or Sobol’ sequence) can be used, to improve the scalability of the 

current method. Additionally, the method will consider the margin 
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decomposition from the top-down in the design hierarchy, and the evolution of 

margins during the design process. 

 Regarding inverse propagation, further investigation should be conducted on the 

solver robustness. Also, methods can be developed to handle the under-

determined and over-determined cases, in response to the broader problem of 

uncertainty allocation.  

 The method of sensitivity analysis can be improved, by implementing the 

approach with other approximation techniques. In addition, investigation will be 

conducted on more rigorous and explicit representation of the numerical errors. 

Regarding the broader picture of uncertainty Within the Problem and About the 

Problem, more advance mathematical theories should be adopted, for example the 

Generalized Information Theory (GIT) (Helton, Johnson and Oberkampf, 2004; Klir, 

2005; Klir and Smith, 2001; Klir and Wierman, 1999). To implement this mathematical 

framework, some problem areas may include: 

 Formalised representation of design knowledge, including assumptions, expert 

judgements, design routines, etc. 

 Quantifying the uncertainty associated with these pieces of information, using 

elicitation method. 

 Selecting proper mathematical tools for epistemic uncertainty analysis, for 

instance Possibility Theory (Zadeh, 1999), Evidence Theory (Dempster, 1967; 

Shafer, 1976; Zadeh, 1986), etc. 

 Aggregation of the uncertainty with a unified measure. 
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Appendices 

Appendix A Efficient Method for Variance Based Sensitivity 

Analysis 

A.1 Formulation 

The formulation of the first order, second order, total effect indices, adopting Option 2, 

3, and 4 are given in this section. Some formulas which can be reused are listed in Table 

A-1. 

Table A-1 Equations reused from the previous sections 

Variables Equation 

𝑓1
(~𝑖)

 (6-20) 

𝒙𝒓

(~𝑖)
+ , 𝒙𝒓

(~𝑖)
− , 𝝁𝒙

(~𝑖)
 

(6-22), (6-23), (6-24) 

𝑊0
(𝑖)

 (6-27) 

𝑊0
(~𝑖)

 (6-42) 

𝑓2
(~𝑖,𝑗)

 (6-29) 

𝒙𝒓

(~𝑖,𝑗)
+ , 𝒙𝒓

(~𝑖,𝑗)
− , 𝝁𝒙

(~𝑖,𝑗)
 

(6-31), (6-32), (6-33) 

𝑊0
(𝑖,𝑗)

 (6-36) 

𝑓3
(𝑖)

 (6-38) 

A.1.1 Option 2 

The first order index: 

𝑆𝑖 ≈ 

𝑊0
(𝑖)
(𝑔4(𝜇𝑥𝑖))

2

+𝑊𝑖[
(𝑔4(𝜇𝑥𝑖

+ℎ𝑖
+𝜎𝑥𝑖

))
2

ℎ𝑖
+ −

(𝑔4(𝜇𝑥𝑖
+ℎ𝑖

−𝜎𝑥𝑖
))
2

ℎ𝑖
− ]−𝐸𝑈𝑅𝑄

2 (𝑦)

𝑉𝑈𝑅𝑄(𝑦)
, 

(A-1) 

where:  

𝑔4(𝑋𝑖) = 𝑊0
(~𝑖)

𝑓1
(~𝑖)(𝝁𝒙

(~𝑖)
) +∑𝑊𝑟 [

𝑓1
(~𝑖)(𝒙𝒓

(~𝑖)
+ )

ℎ𝑟
+ −

𝑓1
(~𝑖)(𝒙𝒓

(~𝑖)
− )

ℎ𝑟−
]

𝑛

𝑟=1
𝑟≠𝑖

 

(A-2) 

The second order index: 



 

174 

𝑆𝑖𝑗 =

𝑊0
𝑖(𝑔5(𝜇𝑥𝑖 ,𝜇𝑥𝑗))

2

+𝑊𝑖

[
 
 
 
 (𝑔5(𝜇𝑥𝑖+ℎ𝑖

+𝜎𝑥𝑖
,𝜇𝑥𝑗

))

2

ℎ𝑖
+ −

(𝑔5(𝜇𝑥𝑖
+ℎ𝑖

−𝜎𝑥𝑖
,𝜇𝑥𝑗

))

2

ℎ𝑖
−

]
 
 
 
 

+𝑊𝑗

[
 
 
 
 (𝑔5(𝜇𝑥𝑖,𝜇𝑥𝑗+ℎ𝑗

+𝜎𝑥𝑗
))

2

ℎ𝑗
+ −

(𝑔5(𝜇𝑥𝑖
,𝜇𝑥𝑗

+ℎ𝑗
−𝜎𝑥𝑗

))

2

ℎ𝑗
−

]
 
 
 
 

−𝐸𝑈𝑅𝑄
2 (𝑦)

𝑉𝑈𝑅𝑄(𝑦)
− 𝑆𝑖 − 𝑆𝑗, 

(A-3) 

where:  

𝑔5(𝑋𝑖, 𝑋𝑗) = 𝑊0

(~𝑖,𝑗)𝑓2
(~𝑖,𝑗)

(𝝁
𝒙
(~𝑖,𝑗)) +∑𝑊𝑟 [

𝑓2
(~𝑖,𝑗)

(𝒙𝒓

(~𝑖,𝑗)
+ )

ℎ𝑟
+

−
𝑓2
(~𝑖,𝑗)

(𝒙𝒓

(~𝑖,𝑗)
− )

ℎ𝑟
−

]

𝑛

𝑟=1
𝑟≠𝑖,𝑗

 

(A-4) 

The total effect index: 

𝑆𝑖
𝑇 = 

𝑉𝑈𝑅𝑄(𝑦)+𝐸𝑈𝑅𝑄
2 (𝑦)−𝑊0

(~𝑖)
(𝑔6(𝝁𝒙

(~𝑖)
))
2

+∑ 𝑊𝑟

[
 
 
 
 
 
 
(𝑔6(𝒙𝒓

(~𝑖)
+ ))

2

ℎ𝑟
+ −

(𝑔6(𝒙𝒓

(~𝑖)
− ))

2

ℎ𝑟
−

]
 
 
 
 
 
 

𝑛
𝑟=1
𝑟≠𝑖

𝑉𝑈𝑅𝑄(𝑦)
, 

(A-5) 

where:  

𝑔6(𝑋1, 𝑋2, …𝑋𝑖−1, 𝑋𝑖+1, …𝑋𝑛) = 𝑊0

(𝑖)
𝑓
3

(𝑖)(𝜇𝑥𝑖) + 𝑊𝑖 [
𝑓
3

(𝑖)(𝑥𝑖
+)

ℎ𝑖
+

−
𝑓
3

(𝑖)(𝑥𝑖
−)

ℎ𝑖
−

] 
(A-6) 

A.1.2 Option 3 

The first order index: 

𝑆𝑖 ≈ 
{
 
 

 
 
𝑊𝑖
+[
𝑔4(𝜇𝑥𝑖

+ℎ𝑖
+𝜎𝑥𝑖

)−𝑔4(𝜇𝑥𝑖
)

ℎ𝑖
+ ]

2

+𝑊𝑖
−[
𝑔4(𝜇𝑥𝑖

+ℎ𝑖
−𝜎𝑥𝑖

)−𝑔4(𝜇𝑥𝑖
)

ℎ𝑖
− ]

2

+𝑊𝑖
±[𝑔4(𝜇𝑥𝑖

+ℎ𝑖
+𝜎𝑥𝑖

)−𝑔4(𝜇𝑥𝑖
)][𝑔4(𝜇𝑥𝑖

+ℎ𝑖
−𝜎𝑥𝑖

)−𝑔4(𝜇𝑥𝑖
)]

ℎ𝑖
+ℎ𝑖

−
}
 
 

 
 

𝑉𝑈𝑅𝑄(𝑦)
, 

(A-7) 

where 𝑔4(∙) is defined by Equation (A-2). 

The second order index: 
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𝑆𝑖,𝑗 = 

∑

{
 
 
 

 
 
 𝑊𝑟

+[
𝑔5(𝜇𝑥𝑟+ℎ𝑟

+𝜎𝑥𝑟)−𝑔5(𝜇𝑥𝑟)

ℎ𝑟
+ ]

2

+𝑊𝑟
−[
𝑔5(𝜇𝑥𝑟+ℎ𝑟

−𝜎𝑥𝑟)−𝑔5(𝜇𝑥𝑟)

ℎ𝑟
− ]

2

+𝑊𝑟
±[𝑔5(𝜇𝑥𝑟+ℎ𝑟

+𝜎𝑥𝑟)−𝑔5(𝜇𝑥𝑟)][𝑔5(𝜇𝑥𝑟+ℎ𝑟
−𝜎𝑥𝑟)−𝑔5(𝜇𝑥𝑟)]

ℎ𝑟
+ℎ𝑟

− }
 
 
 

 
 
 

𝑟=𝑖,𝑗

𝑉𝑈𝑅𝑄(𝑦)
− 𝑆𝑖 − 𝑆𝑗, 

(A-8) 

where 𝑔5(∙) is defined by Equation (A-4). 

The total effect index: 

𝑆𝑖
𝑇 = 

𝑉𝑈𝑅𝑄(𝑦)−∑

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 

𝑊𝑟
+

[
 
 
 
 
 𝑔6(𝒙𝒓

(~𝑖)
+ )−𝑔6(𝝁𝒙

(~𝑖)
)

ℎ𝑟
+

]
 
 
 
 
 
2

+𝑊𝑟
−

[
 
 
 
 𝑔6(𝒙𝒓

(~𝑖)
− )−𝑔6(𝝁𝒙

(~𝑖)
)

ℎ𝑟
−

]
 
 
 
 
2

+𝑊𝑟
±

[𝑔6(𝒙𝒓

(~𝑖)
+ )−𝑔6(𝝁𝒙

(~𝑖)
)][𝑔6(𝒙𝒓

(~𝑖)
− )−𝑔6(𝝁𝒙

(~𝑖)
)]

ℎ𝑟
+ℎ𝑟

− }
 
 
 
 
 
 
 

 
 
 
 
 
 
 

𝑛
𝑟=1
𝑟≠𝑖

𝑉𝑈𝑅𝑄(𝑦)
, 

(A-9) 

where 𝑔6(∙) is defined by Equation (A-6). 

A.1.3 Option 4 

The first order index: 

𝑆𝑖 = 
𝑊0
+𝑖𝑓2(𝝁𝒙)+∑ 2𝑊𝑟[

𝑓(𝒙𝒓
+)𝑓(𝝁𝒙)

ℎ𝑟
+ −

𝑓(𝒙𝒓
−)𝑓(𝝁𝒙)

ℎ𝑟
− ]𝑛

𝑟=1
𝑟≠𝑖

+𝑊𝑖[
𝑓(𝒙𝒊

+)𝑓(𝒙𝒊
+)

ℎ𝑖
+ −

𝑓(𝒙𝒊
−)𝑓(𝒙𝒊

−)

ℎ𝑖
− ]−𝐸𝑈𝑅𝑄

2 (𝑦)

𝑉𝑈𝑅𝑄(𝑦)
, 

(A-10) 

where:  

𝑊0
+𝑖 = 𝑊0 +∑

1

ℎ𝑟
+ℎ𝑟−

𝑛

𝑟=1
𝑟≠𝑖

= 2𝑊0 −
1

ℎ𝑖
+ℎ𝑖

− − 1 
(A-11) 

The second order index: 
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𝑆𝑖𝑗 = 

𝑊0
++𝑖𝑗

𝑓2(𝝁𝒙)+∑ 2𝑊𝑟[
𝑓(𝒙𝒓

+)𝑓(𝝁𝒙)

ℎ𝑟
+ −

𝑓(𝒙𝒓
−)𝑓(𝝁𝒙)

ℎ𝑟
− ]𝑛

𝑟=1
𝑟≠𝑖,𝑗

+∑ [
𝑓(𝒙𝒓

+)𝑓(𝒙𝒓
+)

ℎ𝑟
+ −

𝑓(𝒙𝒓
−)𝑓(𝒙𝒓

+)

ℎ𝑟
− ]𝑟=𝑖,𝑗 −𝐸𝑈𝑅𝑄

2 (𝑦)

𝑉𝑈𝑅𝑄(𝑦)
− 𝑆𝑖 − 𝑆𝑗, 

(A-12) 

where:  

𝑊0
++𝑖𝑗

= 𝑊0 + ∑
1

ℎ𝑟
+ℎ𝑟−

𝑛

𝑟=1
𝑟≠𝑖,𝑗

= 2𝑊0 −
1

ℎ𝑖
+ℎ𝑖

− −
1

ℎ𝑗
+ℎ𝑗

− − 1 
(A-13) 

The total effect index: 

𝑆𝑖
𝑇 = 

𝑉𝑈𝑅𝑄(𝑦)+𝐸𝑈𝑅𝑄
2 (𝑦)−𝑊0

−+𝑖𝑓2(𝝁𝒙)

−∑ 𝑊𝑟[
𝑓(𝒙𝒓

+)𝑓(𝒙𝒓
+)

ℎ𝑟
+ −

𝑓(𝒙𝒓
−)𝑓(𝒙𝒓

−)

ℎ𝑟
− ]−2𝑊𝑖[

𝑓(𝒙𝒊
+)𝑓(𝝁𝒙)

ℎ𝑖
+ −

𝑓(𝒙𝒊
−)𝑓(𝝁𝒙)

ℎ𝑖
− ]𝑛

𝑟=1
𝑟≠𝑖

𝑉𝑈𝑅𝑄(𝑦)
, 

(A-14) 

where:  

𝑊0
−+𝑖 = 𝑊0 +

1

ℎ𝑖
+ℎ𝑖

− 
(A-15) 
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A.2 Pseudo Code 

Input: First four moments of all the input variables, 𝜇𝑥𝑖, 𝜎𝑥𝑖, 𝛾𝑥𝑖, 𝛤𝑥𝑖, 𝑖 = 1,2,3,… , 𝑛; 

Output: First order indices, 𝑆𝑖, 𝑖 = 1,2,3,… , 𝑛; 

 

do Calculate all the coefficients; 

do Evaluate the model at all the required points 

 

for 𝑖 = 1: 𝑛 do 

 

for 𝑟 = 1: 𝑛; 𝑟 ≠ 𝑖 do 

𝑓1
(~𝑖)(𝝁𝒙

(~𝑖)
) = 𝑓(𝜇𝑥1

, 𝜇𝑥2
, … , 𝜇𝑥𝑖 , … , 𝜇𝑥𝑟, … , 𝜇𝑥𝑛); 

𝑓1
(~𝑖) (𝒙𝒓

+(~𝑖)) = 𝑓(𝜇𝑥1, 𝜇𝑥2 ,… , 𝜇𝑥𝑖 ,… , 𝜇𝑥𝑟 + ℎ𝑟
+𝜎𝑥𝑟,… , 𝜇𝑥𝑛); 

𝑓1
(~𝑖)(𝒙𝒓

−(~𝑖)) = 𝑓(𝜇𝑥1
, 𝜇𝑥2

, … , 𝜇𝑥𝑖 ,… , 𝜇𝑥𝑟 + ℎ𝑟
−𝜎𝑥𝑟,… , 𝜇𝑥𝑛); 

Execute Eq. (6-21); 

end 

 

for 𝑟 = 1: 𝑛; 𝑟 ≠ 𝑖 do 

𝑓1
(~𝑖)(𝝁𝒙

(~𝑖)
) = 𝑓(𝜇𝑥1

, 𝜇𝑥2
, … , 𝜇𝑥𝑖 + ℎ𝑖

+𝜎𝑥𝑖 ,… , 𝜇𝑥𝑟, … , 𝜇𝑥𝑛); 

𝑓1
(~𝑖) (𝒙𝒓

+(~𝑖)) = 𝑓(𝜇𝑥1
, 𝜇𝑥2

,… , 𝜇𝑥𝑖 + ℎ𝑖
+𝜎𝑥𝑖, … , 𝜇𝑥𝑟 + ℎ𝑟

+𝜎𝑥𝑟, … , 𝜇𝑥𝑛); 

𝑓1
(~𝑖)(𝒙𝒓

−(~𝑖)) = 𝑓(𝜇𝑥1
, 𝜇𝑥2

, … , 𝜇𝑥𝑖 + ℎ𝑖
+𝜎𝑥𝑖 ,… , 𝜇𝑥𝑟 + ℎ𝑟

−𝜎𝑥𝑟,… , 𝜇𝑥𝑛); 

Execute Eq. (6-21); 

end 

 

for 𝑟 = 1: 𝑛; 𝑟 ≠ 𝑖 do 

𝑓1
(~𝑖)(𝝁𝒙

(~𝑖)
) = 𝑓(𝜇𝑥1

, 𝜇𝑥2
, … , 𝜇𝑥𝑖 + ℎ𝑖

−𝜎𝑥𝑖 ,… , 𝜇𝑥𝑟, … , 𝜇𝑥𝑛); 

𝑓1
(~𝑖) (𝒙𝒓

+(~𝑖)) = 𝑓(𝜇𝑥1
, 𝜇𝑥2

,… , 𝜇𝑥𝑖 + ℎ𝑖
−𝜎𝑥𝑖, … , 𝜇𝑥𝑟 + ℎ𝑟

+𝜎𝑥𝑟, … , 𝜇𝑥𝑛); 

𝑓1
(~𝑖)(𝒙𝒓

−(~𝑖)) = 𝑓(𝜇𝑥1
, 𝜇𝑥2

, … , 𝜇𝑥𝑖 + ℎ𝑖
−𝜎𝑥𝑖 ,… , 𝜇𝑥𝑟 + ℎ𝑟

−𝜎𝑥𝑟,… , 𝜇𝑥𝑛); 

Execute Eq. (6-21); 

end 

 

Execute Eq. (6-26); 

Execute Eq. (6-28); 

 

end 
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A.3 Matlab Code 
function [S_1, S_2, S_T]=urqsobol(f,in) 

  

  
%f is the model 
%in is the input information in the following format: 
%   {   mean, std, skew, kurtosis; 
%       mean, std, skew, kurtosis; 
%       mean, std, skew, kurtosis; 
%       ... 
%       mean, std, skew, kurtosis;  } 

  
n=size(in,1); %number of var 
S_1=zeros(1,n);  %first order 
S_2=zeros(n,n); %Second order 
S_T=zeros(1,n);  %Total 

  
%URQ coefficient 
h_plus=zeros(1,n); 
h_minus=zeros(1,n); 
w=zeros(1,n); 
w_plus=zeros(1,n); 
w_minus=zeros(1,n); 
w_pm=zeros(1,n); 
x_mu=in(:,1); 

  
E=0; 
V=0; 
w0=1; 

  
f0=f(x_mu');  %first run    +1 
f_p=zeros(1,n);     % to store sampling points: one plus all others remain at mean 
f_m=zeros(1,n);     % to store sampling points: one minus all others remain at mean 
f_pp=zeros(n,n); 
f_mm=zeros(n,n); 
f_pm=zeros(n,n); 

  

  
%normal URQ 
for i=1:n     
    h_plus(i)=(in(i,3)/2)+sqrt(in(i,4)-3*(in(i,3)^2)/4); 
    h_minus(i)=(in(i,3)/2)-sqrt(in(i,4)-3*(in(i,3)^2)/4); 

     
    w0=w0+1/(h_plus(i)*h_minus(i)); 

     
    w(i)=1/(h_plus(i)-h_minus(i)); 
    w_plus(i)=(h_plus(i)^2-h_plus(i)*h_minus(i)-1)/((h_plus(i)-h_minus(i))^2); 
    w_minus(i)=(h_minus(i)^2-h_plus(i)*h_minus(i)-1)/((h_plus(i)-h_minus(i))^2); 
    w_pm(i)=2/((h_plus(i)-h_minus(i))^2); 

    
    x_plus=in(:,1); 
    x_plus(i)=x_plus(i)+h_plus(i)*in(i,2); 

  
    x_minus=in(:,1); 
    x_minus(i)=x_minus(i)+h_minus(i)*in(i,2); 

     
    %run for single plus        +n  
    f_p(i)=f(x_plus');    
    %run for single minus       +n         
    f_m(i)=f(x_minus');           

     
    E=E+w(i)*(f_p(i)/h_plus(i)-f_m(i)/h_minus(i));     
    V=V+(w_plus(i)*((f_p(i)-f0)/h_plus(i))^2+w_minus(i)*((f_m(i)-

f0)/h_minus(i))^2+w_pm(i)*((f_p(i)-f0)*(f_m(i)-f0)/(h_plus(i)*h_minus(i))));  
end 

  
E=E+f0*w0;   %w0 is not ready until the for loop finished 
%normal URQ 
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for i=1:n %a seperate loop is used as all the h_plus and h_minus are needed, and they 

are not ready until the previous loop finished  
    for j=1:n 
        if j~=i 
            x_plus_minus=in(:,1); 
            x_plus_minus(i)=x_plus_minus(i)+ h_plus(i)*in(i,2); 
            x_plus_minus(j)=x_plus_minus(j)+ h_minus(j)*in(j,2); 
            f_pm(i,j)= f(x_plus_minus');                            %run for plus and 

minus n(n-1) 
        end 

         
        if j>i 
            x_plus_plus=in(:,1); 
            x_plus_plus(i)=x_plus_plus(i)+ h_plus(i)*in(i,2); 
            x_plus_plus(j)=x_plus_plus(j)+ h_plus(j)*in(j,2); 
            f_pp(i,j)= f(x_plus_plus');                             %run for two plus       

n(n-1)/2 
            f_pp(j,i)=f_pp(i,j);                                    %for convenience 

             

             
            x_minus_minus=in(:,1); 
            x_minus_minus(i)=x_minus_minus(i)+ h_minus(i)*in(i,2); 
            x_minus_minus(j)=x_minus_minus(j)+ h_minus(j)*in(j,2); 
            f_mm(i,j)= f(x_minus_minus');                           %run for two minus      

n(n-1)/2   
            f_mm(j,i)=f_mm(i,j);                                    %for convenience 
        end 
    end  
end 

  
option = 4; %or 2,3,4 

  
switch option 
    case 1 
        %First order 
        for i=1:n 
            G1_1=V-(w_plus(i)*((f_p(i)-f0)/h_plus(i))^2+w_minus(i)*((f_m(i)-

f0)/h_minus(i))^2+w_pm(i)*((f_p(i)-f0)*(f_m(i)-f0)/(h_plus(i)*h_minus(i)))); 
            % V~xi 

  
            G1_2=0; 
            G1_3=0; 

  
            for j=1:n  
                if j~=i 
                    G1_2=G1_2 ... 
                        +w_plus(j)  *   ( ( f_pp(i,j)-f_p(i) ) / h_plus(j) )^2 ... 
                        +w_minus(j) *   ( ( f_pm(i,j)-f_p(i) ) / h_minus(j) )^2 ...  

%ith always plus 
                        +w_pm(j)    *   ( ( f_pp(i,j)-f_p(i) )*( f_pm(i,j)-f_p(i) ) / ( 

h_plus(j)*h_minus(j) ) );   

  
                    G1_3=G1_3 ... 
                        +w_plus(j)  *   ( ( f_pm(j,i)-f_m(i) ) / h_plus(j) )^2 ... 
                        +w_minus(j) *   ( ( f_mm(i,j)-f_m(i) ) / h_minus(j) )^2 ...  

%ith always minus 
                        +w_pm(j)    *   ( ( f_pm(j,i)-f_m(i) )*( f_mm(i,j)-f_m(i) ) / ( 

h_plus(j)*h_minus(j) ) );           
                end 
            end 
            EV=(1+1/(h_plus(i)*h_minus(i)))*G1_1+w(i)*(G1_2/h_plus(i)-G1_3/h_minus(i));      
            S_1(i)=(V-EV)/V; 
        end 
        %Second Order 
        for i=1:n-1 
            for j=i+1:n 
                %(1) 
                H1_1=V-(w_plus(i)*((f_p(i)-f0)/h_plus(i))^2+w_minus(i)*((f_m(i)-

f0)/h_minus(i))^2+w_pm(i)*((f_p(i)-f0)*(f_m(i)-f0)/(h_plus(i)*h_minus(i))))... 
                      -(w_plus(j)*((f_p(j)-f0)/h_plus(j))^2+w_minus(j)*((f_m(j)-

f0)/h_minus(j))^2+w_pm(j)*((f_p(j)-f0)*(f_m(j)-f0)/(h_plus(j)*h_minus(j)))); 
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                H1_2_i_plus=0; 
                H1_2_i_minus=0; 
                H1_3_j_plus=0; 
                H1_3_j_minus=0; 
                for k=1:n 
                    if ( (k~=i) && (k~=j) ) 
                    H1_2_i_plus=H1_2_i_plus... 
                          +w_plus(k)  *   ( ( f_pp(i,k)-f_p(i) ) / h_plus(k) )^2 ... 
                          +w_minus(k) *   ( ( f_pm(i,k)-f_p(i) ) / h_minus(k) )^2 ...  

%ith always plus 
                          +w_pm(k)    *   ( ( f_pp(i,k)-f_p(i) )*( f_pm(i,k)-f_p(i) ) / 

( h_plus(k)*h_minus(k) ) );   

  
                    H1_2_i_minus=H1_2_i_minus... 
                          +w_plus(k)  *   ( ( f_pm(k,i)-f_m(i) ) / h_plus(k) )^2 ... 
                          +w_minus(k) *   ( ( f_mm(i,k)-f_m(i) ) / h_minus(k) )^2 ...  

%ith always minus 
                          +w_pm(k)    *   ( ( f_pm(k,i)-f_m(i) )*( f_mm(i,k)-f_m(i) ) / 

( h_plus(k)*h_minus(k) ) );   

  
                    H1_3_j_plus=H1_3_j_plus... 
                          +w_plus(k)  *   ( ( f_pp(j,k)-f_p(j) ) / h_plus(k) )^2 ... 
                          +w_minus(k) *   ( ( f_pm(j,k)-f_p(j) ) / h_minus(k) )^2 ...  

%jth always plus 
                          +w_pm(k)    *   ( ( f_pp(j,k)-f_p(j) )*( f_pm(j,k)-f_p(j) ) / 

( h_plus(k)*h_minus(k) ) );   

  
                    H1_3_j_minus=H1_3_j_minus... 
                          +w_plus(k)  *   ( ( f_pm(k,j)-f_m(j) ) / h_plus(k) )^2 ... 
                          +w_minus(k) *   ( ( f_mm(j,k)-f_m(j) ) / h_minus(k) )^2 ...  

%jth always minus 
                          +w_pm(k)    *   ( ( f_pm(k,j)-f_m(j) )*( f_mm(j,k)-f_m(j) ) / 

( h_plus(k)*h_minus(k) ) );   
                    end 
                end 
                w0_ij=1+1/(h_plus(i)*h_minus(i))+1/(h_plus(j)*h_minus(j)); 
                V_alao=w0_ij*H1_1...   %V as long as others  
                    +w(i)*(H1_2_i_plus/h_plus(i)-H1_2_i_minus/h_minus(i))... 
                    +w(j)*(H1_3_j_plus/h_plus(j)-H1_3_j_minus/h_minus(j)); 
                S_2(i,j)=(V-V_alao)/V-S_1(i)-S_1(j);        
            end 
        end 
        %Total effect 
        for i=1:n 
            %all X~i = mu 
            G_mu=w_plus(i) *((f_p(i)-f0)/h_plus(i) )^2 ... 
                +w_minus(i)*((f_m(i)-f0)/h_minus(i))^2 ... 
                +w_pm(i)*(f_p(i)-f0)*(f_m(i)-f0)/(h_plus(i)*h_minus(i)); 
            EV=(w0-1/(h_plus(i)*h_minus(i)))*G_mu; 

  
            for j=1:n  %outter loop 
                if j~=i 
                    %Xj + 
                    G_j_plus=w_plus(i) *((f_pp(i,j)-f_p(j))/h_plus(i) )^2 ...   

%h_plus(i) is used, as in G_j_plus, xi is the variable 
                            +w_minus(i)*((f_pm(j,i)-f_p(j))/h_minus(i))^2 ...   %note 

that f_pm(j,i) is not a mistake, it means f(xi-,xj+) 
                            +w_pm(i)*(f_pp(i,j)-f_p(j))*(f_pm(j,i)-

f_p(j))/(h_plus(i)*h_minus(i)); 

  
                    %Xj - 
                    G_j_minus=w_plus(i) *((f_pm(i,j)-f_m(j))/h_plus(i) )^2 ...   

%h_plus(i) is used, as in G_j_minus, xi is the variable 
                             +w_minus(i)*((f_mm(i,j)-f_m(j))/h_minus(i))^2 ... 
                             +w_pm(i)*(f_pm(i,j)-f_m(j))*(f_mm(i,j)-

f_m(j))/(h_plus(i)*h_minus(i)); 

  
                    EV=EV+w(j)*(G_j_plus/h_plus(j)-G_j_minus/h_minus(j)); 
                end         
            end 
        S_T(i)=EV/V; 
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        end         
    case 2   
        %First order 
        for i=1:n 

  
            G2_1=(E-f0/(h_plus(i)*h_minus(i))-w(i)*(f_p(i)/h_plus(i)-

f_m(i)/h_minus(i)))^2; 
            % (E~xi)^2 

  
            G2_2=(w0-1/(h_plus(i)*h_minus(i)))*f_p(i); 
            G2_3=(w0-1/(h_plus(i)*h_minus(i)))*f_m(i); 
            for j=1:n  
                if j~=i 
                    G2_2=G2_2 ... 
                        +w(j)  *   ( f_pp(i,j) / h_plus(j) - f_pm(i,j) / h_minus(j) ); 

  
                    G2_3=G2_3 ... 
                        +w(j)  *   ( f_pm(j,i) / h_plus(j) - f_mm(i,j) / h_minus(j) ); 
                end 
            end 
            G2_2=G2_2^2; 
            G2_3=G2_3^2; 

  
            EE=(1+1/(h_plus(i)*h_minus(i)))*G2_1+w(i)*(G2_2/h_plus(i)-G2_3/h_minus(i));      
            S_1(i)=(EE-E^2)/V; 
        end 
        %Second Order 
        for i=1:n-1 
            for j=i+1:n 
                H2_1=E-( 1/( h_plus(i)*h_minus(i) ) + 1/( h_plus(j)*h_minus(j) ))*f0... 
                    -w(i)*(f_p(i)/h_plus(i)-f_m(i)/h_minus(i))... 
                    -w(j)*(f_p(j)/h_plus(j)-f_m(j)/h_minus(j)); 
                H2_1=H2_1^2; 

  
                H2_2_i_plus = ( w0 -( 1/( h_plus(i)*h_minus(i) ) + 1/( 

h_plus(j)*h_minus(j) ) ) )*f_p(i);         
                H2_2_i_minus = ( w0 -( 1/( h_plus(i)*h_minus(i) ) + 1/( 

h_plus(j)*h_minus(j) ) ) )*f_m(i);        
                H2_3_j_plus = ( w0 -( 1/( h_plus(i)*h_minus(i) ) + 1/( 

h_plus(j)*h_minus(j) ) ) )*f_p(j);        
                H2_3_j_minus = ( w0 -( 1/( h_plus(i)*h_minus(i) ) + 1/( 

h_plus(j)*h_minus(j) ) ) )*f_m(j); 

  
                for k=1:n 
                    if ( (k~=i) && (k~=j) ) 
                        H2_2_i_plus=H2_2_i_plus+w(k)*(f_pp(i,k)/h_plus(k)-

f_pm(i,k)/h_minus(k)); 
                        H2_2_i_minus=H2_2_i_minus+w(k)*(f_pm(k,i)/h_plus(k)-

f_mm(i,k)/h_minus(k)); 
                        H2_3_j_plus=H2_3_j_plus+w(k)*(f_pp(j,k)/h_plus(k)-

f_pm(j,k)/h_minus(k)); 
                        H2_3_j_minus=H2_3_j_minus+w(k)*(f_pm(k,j)/h_plus(k)-

f_mm(j,k)/h_minus(k)); 
                    end 
                end 

  
                H2_2_i_plus=H2_2_i_plus^2; 
                H2_2_i_minus=H2_2_i_minus^2; 
                H2_3_j_plus=H2_3_j_plus^2; 
                H2_3_j_minus=H2_3_j_minus^2; 

  
                EEo2=(1+( 1/( h_plus(i)*h_minus(i) ) + 1/( h_plus(j)*h_minus(j) ) 

))*H2_1... 
                    +w(i)*(H2_2_i_plus/h_plus(i)-H2_2_i_minus/h_minus(i))... 
                    +w(j)*(H2_3_j_plus/h_plus(j)-H2_3_j_minus/h_minus(j)); 

  
                S_2(i,j)=(EEo2-E^2)/V-S_1(i)-S_1(j); 
            end     
        end 
        %Total effect 
        for i=1:n 
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            %all X~i = mu 
            G_mu=(1+1/(h_plus(i)*h_minus(i)))*f0 ... 
                +w(i)*(f_p(i)/h_plus(i)-f_m(i)/h_minus(i)); 
            G_mu=G_mu^2; 
            EE=(w0-1/(h_plus(i)*h_minus(i)))*G_mu; 
            for j=1:n  %outter loop 
                if j~=i 
                    %Xj + 
                    G_j_plus=(1+1/(h_plus(i)*h_minus(i)))*f_p(j) ...  %xi = mu; xj = + 
                            +w(i)*(f_pp(j,i)/h_plus(i)-f_pm(j,i)/h_minus(i)); 
                    G_j_plus=G_j_plus^2;    

  
                    %Xj - 
                    G_j_minus=(1+1/(h_plus(i)*h_minus(i)))*f_m(j) ... %xi = mu; xj = - 
                            +w(i)*(f_pm(i,j)/h_plus(i)-f_mm(i,j)/h_minus(i)); 
                    G_j_minus=G_j_minus^2; 

  
                    EE=EE+w(j)*(G_j_plus/h_plus(j)-G_j_minus/h_minus(j)); 
                end         
            end 

  
            S_T(i)=(V+E^2-EE)/V; 
        end         
    case 3 
        %First order 
        for i=1:n 

  
            G2_1=E-f0/(h_plus(i)*h_minus(i))-w(i)*(f_p(i)/h_plus(i)-f_m(i)/h_minus(i)); 
            % (E~xi) 

  
            G2_2=(w0-1/(h_plus(i)*h_minus(i)))*f_p(i); 
            G2_3=(w0-1/(h_plus(i)*h_minus(i)))*f_m(i); 
            for j=1:n   %j is the counter for inner loop. that is all the variables 

other than the i_th 
                if j~=i 
                    G2_2=G2_2 ... 
                        +w(j)  *   ( f_pp(i,j) / h_plus(j) - f_pm(i,j) / h_minus(j) ); 

  
                    G2_3=G2_3 ... 
                        +w(j)  *   ( f_pm(j,i) / h_plus(j) - f_mm(i,j) / h_minus(j) ); 
                end 
            end 

  
            VE= w_plus(i)*((G2_2-G2_1)/h_plus(i))^2+w_minus(i)*((G2_3-

G2_1)/h_minus(i))^2+w_pm(i)*(G2_2-G2_1)*(G2_3-G2_1)/(h_plus(i)*h_minus(i));      
            S_1(i)=VE/V; 
        end 
        %Second Order 
        for i=1:n-1 
            for j=i+1:n 
                H2_1=E-( 1/( h_plus(i)*h_minus(i) ) + 1/( h_plus(j)*h_minus(j) ))*f0... 
                    -w(i)*(f_p(i)/h_plus(i)-f_m(i)/h_minus(i))... 
                    -w(j)*(f_p(j)/h_plus(j)-f_m(j)/h_minus(j)); 

  
                H2_2_i_plus = ( w0 -( 1/( h_plus(i)*h_minus(i) ) + 1/( 

h_plus(j)*h_minus(j) ) ) )*f_p(i);         
                H2_2_i_minus = ( w0 -( 1/( h_plus(i)*h_minus(i) ) + 1/( 

h_plus(j)*h_minus(j) ) ) )*f_m(i);        
                H2_3_j_plus = ( w0 -( 1/( h_plus(i)*h_minus(i) ) + 1/( 

h_plus(j)*h_minus(j) ) ) )*f_p(j);        
                H2_3_j_minus = ( w0 -( 1/( h_plus(i)*h_minus(i) ) + 1/( 

h_plus(j)*h_minus(j) ) ) )*f_m(j); 

  
                for k=1:n 
                    if ( (k~=i) && (k~=j) ) 
                        H2_2_i_plus=H2_2_i_plus+w(k)*(f_pp(i,k)/h_plus(k)-

f_pm(i,k)/h_minus(k)); 
                        H2_2_i_minus=H2_2_i_minus+w(k)*(f_pm(k,i)/h_plus(k)-

f_mm(i,k)/h_minus(k)); 
                        H2_3_j_plus=H2_3_j_plus+w(k)*(f_pp(j,k)/h_plus(k)-

f_pm(j,k)/h_minus(k)); 
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                        H2_3_j_minus=H2_3_j_minus+w(k)*(f_pm(k,j)/h_plus(k)-

f_mm(j,k)/h_minus(k)); 
                    end 
                end 

  
                VE  =w_plus(i) *((H2_2_i_plus -H2_1)/h_plus(i))^2 ... 
                    +w_minus(i)*((H2_2_i_minus-H2_1)/h_minus(i))^2 ... 
                    +w_pm(i) * (H2_2_i_plus -H2_1)*(H2_2_i_minus-

H2_1)/(h_plus(i)*h_minus(i))... 
                    +w_plus(j) *((H2_3_j_plus -H2_1)/h_plus(j))^2 ... 
                    +w_minus(i)*((H2_3_j_minus-H2_1)/h_minus(j))^2 ... 
                    +w_pm(i) * (H2_3_j_plus -H2_1)*(H2_3_j_minus-

H2_1)/(h_plus(j)*h_minus(j)); 

  

  
                S_2(i,j)=VE/V-S_1(i)-S_1(j); 
            end     
        end 
        %Total effect 
        for i=1:n 
            %all X~i = mu 
            G_j_mu=(1+1/(h_plus(i)*h_minus(i)))*f0 ... 
                +w(i)*(f_p(i)/h_plus(i)-f_m(i)/h_minus(i)); 

  
            VE=0; 
            for j=1:n  %outter loop 
                if j~=i 
                    %Xj + 
                    G_j_plus=(1+1/(h_plus(i)*h_minus(i)))*f_p(j) ...  %xi = mu; xj = + 
                            +w(i)*(f_pp(j,i)/h_plus(i)-f_pm(j,i)/h_minus(i)); 

  

  
                    %Xj - 
                    G_j_minus=(1+1/(h_plus(i)*h_minus(i)))*f_m(j) ... %xi = mu; xj = - 
                            +w(i)*(f_pm(i,j)/h_plus(i)-f_mm(i,j)/h_minus(i)); 

  

  
                    VE=VE  + w_plus(j) *((G_j_plus -G_j_mu)/h_plus(j) )^2 ... 
                           + w_minus(j)*((G_j_minus-G_j_mu)/h_minus(j))^2 ... 
                           +w_pm(j)*(G_j_plus -G_j_mu)*(G_j_minus-

G_j_mu)/(h_plus(j)*h_minus(j)); 
                end         
            end 

  
            S_T(i)=(V-VE)/V; 
        end         
    otherwise 
        %First order 
        for i=1:n 

  
            w0_ff=2*w0-1/(h_plus(i)*h_minus(i))-1; 
            E_ff=w0_ff*f0^2; 
            for j=1:n  
                if j~=i 
                    E_ff=E_ff+2*w(j)*(f_p(j)*f0/h_plus(j)-f_m(j)*f0/h_minus(j)); 
                else 
                    E_ff=E_ff+w(i)*(f_p(i)*f_p(i)/h_plus(i)-f_m(i)*f_m(i)/h_minus(i)); 
                end 
            end 

  
            S_1(i)=(E_ff-E^2)/V; 
        end 
        %Second Order 
        for i=1:n-1 
            for j=i+1:n 
                w0_ff_2=2*w0-1/(h_plus(i)*h_minus(i))-1/(h_plus(j)*h_minus(j))-1; 
                E_ff=w0_ff_2*f0^2; 
                for k=1:n  
                    if ( (k~=i) && (k~=j) ) 
                        E_ff=E_ff+2*w(k)*(f_p(k)*f0/h_plus(k)-f_m(k)*f0/h_minus(k)); 
                    else 
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                        E_ff=E_ff+w(k)*(f_p(k)*f_p(k)/h_plus(k)-

f_m(k)*f_m(k)/h_minus(k)); 
                    end 
                end 
        %         xxx =(1-2*w0)*f0^2-(  2*w(1)*(f_p(1)*f0/h_plus(1)-

f_m(1)*f0/h_minus(1))... 
        %                              +2*w(2)*(f_p(2)*f0/h_plus(2)-

f_m(2)*f0/h_minus(2))... 
        %                              +2*w(3)*(f_p(3)*f0/h_plus(3)-

f_m(3)*f0/h_minus(3))) 
        % xxx is the fix value                    

  

  
                S_2(i,j)=(E_ff-E^2)/V-S_1(i)-S_1(j); 
            end 
        end 
        %Total effect 
        for i=1:n 
            EF=(w0+1/(h_plus(i)*h_minus(i)))*f0^2; 
            for j=1:n 
                if j~=i 
                    EF=EF+w(j)*(f_p(j)^2/h_plus(j)-f_m(j)^2/h_minus(j)); 
                end 
            end 
            EF=EF+2*w(i)*(f_p(i)*f0/h_plus(i)-f_m(i)*f0/h_minus(i)); 
            S_T(i)=(V+E^2-EF)/V; 
        end         
end 
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