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Abstract

Although estimating the uncertainty of models used for modelling nitrate contamination of

groundwater is essential in groundwater management, it has been generally ignored. This issue

motivates this research to explore the predictive uncertainty of machine-learning (ML) models in

this field of study using two different residuals uncertainty methods: quantile regression (QR) and

uncertainty estimation based on local errors and clustering (UNEEC). Prediction-interval coverage
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probability (PICP), the most important of the statistical measures of uncertainty, was used to

evaluate uncertainty. Additionally, three state-of-the-art ML models including support vector

machine (SVM), random forest (RF), and k-nearest neighbor (kNN) were selected to spatially

model groundwater nitrate concentrations. The models were calibrated with nitrate concentrations

from 80 wells (70% of the data) and then validated with nitrate concentrations from 34 wells (30%

of the data). Both uncertainty and predictive performance criteria should be considered when

comparing and selecting the best model. Results highlight that the kNN model is the best model

because not only did it have the lowest uncertainty based on the PICP statistic in both the QR

(0.94) and the UNEEC (in all clusters, 0.85–0.91) methods, but it also had predictive performance

statistics (RMSE=10.63, R2= 0.71) that were relatively similar to RF (RMSE= 10.41, R2= 0.72)

and higher than SVM (RMSE= 13.28, R2= 0.58). Determining the uncertainty of ML models used

for spatially modelling groundwater-nitrate pollution enables managers to achieve better risk-

based decision making and consequently increases the reliability and credibility of groundwater-

nitrate predictions.

Keywords: Groundwater pollution; Uncertainty assessment; Nitrate concentration; Machine

learning; GIS.

1. Introduction

Nitrate pollution of groundwater can have severe impacts on human health, issues such as cancer

(e.g., esophageal, lymphatic, and gastric cancers) and methemoglobinemia in infants and pregnant

women (Suthar et al., 2009; Panagopoulos et al., 2011; Sajil et al., 2014), and on the environment,

such as causing ecological disruption and eutrophication throughout the hydrological system
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(Neshat et al., 2015; Wheeler et al., 2015; Stelzer and Scott, 2018). Groundwater-pollution

modelling can aid managers of water resources and environmental protection in their quests to

prevent groundwater pollution and to improve its quality (Almasri, 2008; Takizawa, 2008;

Locatelli et al., 2019).

Recent studies have adopted novel approaches to assess groundwater contamination and to map

nitrate hazards using different machine-learning (ML) and/or data-mining models including;

artificial neural networks (ANN) (Panagopoulos et al., 2011; Ostad-Ali-Askari et al., 2017),

boosted regression trees (BRT) (Ransom et al., 2017), support-vector machines (SVM)

(Rodriguez-Galiano et al., 2018), random forests (RF) (Anning et al., 2012; Nolan et al., 2014;

Rodriguez-Galiano et al. 2014, 2018; Wheeler et al., 2015), classification and regression trees 

(CART) (Rodriguez-Galiano et al., 2018), Dempster–Shafer (DS) (Rahmati and Melesse, 2016),

and multivariate discriminant analysis (MDA) (Sajedi-Hosseini et al., 2018). Nolan et al. (2015)

compared the capability of BRT, ANN, and Bayesian networks (BN) to predict nitrate

concentration (in shallow groundwater of the Central Valley, California), but did not investigate

or consider uncertainties. Sajedi-Hosseini et al. (2018) used ensemble modelling, including the

three ML models BRT, MDA, and SVM, to assess and produce groundwater-pollution qualitative

maps from a dataset that merely indicated the presence or absence of pollution. Ransom et al.

(2017) developed a hybrid ML model combining both numerical and empirical outputs for the

Central Valley Textural Model (CVTM) and the BRT groundwater reduction-oxidation (redox)

model to predict nitrate concentration in the Central Valley aquifer, California. Results from the

hybrid model which included 25 predictors (final model) provided a higher accuracy compared to

ordinary kriging, universal kriging, and multiple linear regression. In another study, Messier et al.

(2019) used the RF model for classification modelling using transformed nitrate values assigned 
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to three categories of <1 mg/L, 1–5 mg/L, and ≥5 mg/L to predict groundwater nitrate of 22,000 

private wells in North Carolina. The RF classification model had superior performance than

censored maximum-likelihood regression (CMLR), RF, SVM, ANN, OK, and gradient-boosted

machine (GBM) methods. Juntakut et al. (2019) estimated long-term nitrate concentrations in

groundwater using the CART model in eastern Nebraska. The CART model achieved success in

terms of both nitrate prediction and identification of the potential factors associated with higher

nitrate-contamination zones. Finally, Knoll et al. (2019) compared the performance of four ML

including MLR, CART, RF, and BRT for predicting nitrate concentrations of groundwater in

Hesse state, Germany. Their RF model outperformed the others.

Although most of these studies generally improved the ability to predict nitrate concentration in

groundwater, to the best of our knowledge, the assessment of uncertainty associated with

groundwater pollution modelling has been disregarded. Indeed, the above studies only evaluated

models’ performance and disregarded models’ uncertainties. It is well known that uncertainty is

inherent in modelling (Solomatine and Shrestha, 2009), and therefore it is critical to report it

transparently in decision-support tools (Uusitalo et al., 2015).

There are various sources of uncertainty; it can be related to predictors, model parameters, and

model structure, etc. (Solomatine and Shrestha, 2009). Importantly, most of the uncertainty-

assessment methods deal only with single sources of uncertainty. For instance, Bayesian methods

only analyze the uncertainty associated with input data and Monte Carlo methods only assess the

uncertainty in parameters (Solomatine and Shrestha, 2009). Since the contribution of different

sources of errors is not completely known and separating their roles is often difficult, especially in

hydrogeology, an overall assessment of uncertainty is, in practice, feasible. Understanding the total

model uncertainty rather than the uncertainty resulting from individual sources is more important
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for decision-makers, particularly those in water resources management (Solomatine and Shrestha,

2009). In this paper we consider two methods, quantile regression (QR) (Basset and Koenker,

1978) and uncertainty estimation based on local errors and clustering (UNEEC) (Shrestha et al.,

2006; Shrestha and Solomatine, 2006), to quantify the uncertainty of modelling groundwater

pollution. Although both methods account for all sources of uncertainty, they differ in their

methodological complexity. QR and UNEEC have been used in a broad range of applications:

hydrological studies (e.g., Weerts et al., 2011; López López et al., 2014; Dogulu et al., 2015),

economics (Taylor, 2007; Kudryavtsev, 2009), meteorology (Friederichs and Hense, 2007;

Cannon, 2011), wind forecasting (Møller et al., 2008), and agriculture (Barnwal and Kotani, 2013).

To predict groundwater-nitrate concentration, three state-of-the-art ML models – SVM, RF, and

kNN were used to model groundwater-nitrate concentrations spatially. The main objectives of this

research are to: 1) quantify the predictive uncertainty of different ML models –SVM, RF, and

kNN– to model groundwater-nitrate concentrations with QR and UNEEC; 2) determine the most

robust model in terms of predictive uncertainty and capability; and 3) assess the relationships

between geo-environmental factors and groundwater-nitrate concentration.

2. Material and Methods

2.1 Study area and data sets

The study area is the Andimeshk-Dezful region, Khuzestan province, Iran (Fig. 1). The region

covers an area of 2464.75 km2 between 48°01ꞌ and 48°46ꞌ E and 31°58ꞌ and 32°33ꞌ N and contains 

approximately 385,000 residents. Unconsolidated surface material in the region derives primarily

from the Quaternary as low-level pediment-fans and valley-terrace deposits (Qft2). This region is
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part of the Zagros Structural Zone (Heyvaert and Baeteman, 2007; Rahmati and Melesse, 2016).

The climate is semi-arid with about 341 mm of annual precipitation. Summer is usually hot and

dry. Winter is when the greatest portion of the region’s precipitation falls (about 200 mm). Mean

daily minimum temperature is 7.5 °C in winter and the mean daily maximum temperature is 46 °C

in summer. In Iran, groundwater is the primary water source; over 85% is used for drinking water

and for agriculture (irrigation). The study of the groundwater pollutants like nitrate can aid decision

makers’ control and management of water quality.

Groundwater-nitrate concentrations were measured by the Iranian Department of Water Resources

Management (IDWRM) at 114 locations during May 2017 (Fig. 1). The highest nitrate values (≥75

mg/l) are in the southern parts of the region. There are patches in the western and northwestern

sections of the study area that have nitrate concentrations that exceed the standard (≤50 mg/l) for

safe drinking water (WHO, 2011). Data describing several geo-environmental variables were

compiled for the study region: elevation (m), hydraulic conductivity (m/s), distance from stream

(m), lineament density (km/km2), and land use.

Fig. 1 Here

2.2 Methodology

The geo-environmental variables (Fig. 2) as inputs for modelling the groundwater nitrate

concentration using three ML methods including SVM, RF, and kNN (these models are described

in the section 2.2.2). The models were calibrated and validated (with a ratio 70 to 30) using the

target value of nitrate concentration and values of the predictive factors at the location of each

well. After ensuring the models’ performance, groundwater-nitrate concentrations were predicted
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for the other parts of the region (areas without recorded nitrate concentrations). More details of the

methods used are described below.

2.2.1 Groundwater nitrate conditioning factors

These five groundwater-nitrate conditioning factors –elevation, hydraulic conductivity (K),

distance from stream (DFS), lineament density, and land use– were input as potential predictors of

nitrate concentrations.

Elevation: A digital elevation model (DEM), with pixel size 10×10 m was obtained from IDWRM.

The region slopes from north to south; elevation varies from 253 to 16 m asl (Fig. 2a).

Hydraulic conductivity (K): Hydraulic conductivity influences subsurface flow rates, groundwater

recharge, and the mobility of contaminants in the saturated zone (Bouwer, 2002; Jiang et al., 2010).

Hydraulic conductivity data were obtained from the IDWRM and estimated based on a

combination of pumping test (with piezometers and observation wells) and geoelectrical

measurements (Fig. 2b).

Distance from stream (DFS): The interface between surface water and groundwater in rivers and

streams is an active area of nitrate removal and retention (Hedin et al., 1998), so DFS could be a

good predictor of nitrate concentrations. DFS was calculated using the DEM and the Euclidean

tool in ArcGIS, the maximum DFS in this study was 11705 m (Fig. 2c).

Lineament density: Lineament density indirectly reflects groundwater potential as lineaments

generally denote a permeable zone (Magesh et al., 2012). Detection of lineaments, surface-

subsurface structures (e.g., geologic faults, fractures, etc.), is regarded as necessary for

groundwater studies (e.g., Gupta and Srivastava, 2010; Oh et al., 2011; Nampak et al., 2014).

Lineaments have been defined by Hobbs (1904) as “significant lines of landscape that reveal the
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hidden architecture of the rock basement.” Lineament structures are formed by a variety of

geological and geomorphological processes and their nature are related to faulting in Earth's crust

(Jordan and Schott, 2005; Nkono et al., 2018). In this study, the automatic method (MATLAB-

based code) introduced by Soto-Pinto (2013) was used to detect lineaments patterns in Landsat 8

images (2015-2016) and to produce a density map using the line-density tool in ArcGIS software

(Fig. 2d).

Land use: A land use and land cover map of the study was obtained from IDWRM (Fig. 2e).

Surfaces are classified as bare land, dry farming, range land, riparian zone, urban, wetland, and

irrigated agriculture; this last category covers the largest portion of the study area (Fig. 2e).

Fig. 2 Here

2.2.2 Machine learning models

Three ML models (SVM, RF, and kNN) were selected that are commonly used in groundwater-

pollution modelling (e.g., Rodriguez-Galiano et al., 2018). It is beyond the scope of this study to

evaluate and compare the performance of the ML models used here, however, to quantify

uncertainties of the models, their predictive performance needs to be determined.

Support vector machine (SVM): SVM is a technique that uses statistical learning theory (Dixon

and Candade, 2008), first introduced by Vapnik et al. (1997). It is one of the most cogent prediction 

methods using the dimension theory of Vapnik Chervonenk and the structural-risk minimization

principle, and it can be used to solve problems in quadratic programming (Cortes and Vapnik,

1995). This classification method is a non-parametric statistical monitoring method (Mountrakis

et al., 2011) that forms and reforms the boundaries of classes using an optimization algorithm
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(Sajedi-Hosseini et al., 2018). In this study, the most popular kernel function (i.e., radial) was

implemented with the e1071 package (Meyer et al., 2017) in R software. The ‘tune’ function tunes

the kernel parameters with a grid search of parameter ranges. In this study, the best values for the

parameters Gamm and Cost were 0.041 and 9.19, respectively. They were determined using the

‘tune’ function in e1071.

Random forest (RF): RF, an ensemble-tree method developed by Breiman (2001), can identify

linear and nonlinear relationships between variables for classification and regression objectives

(Elith et al., 2008). For regression objectives, RF can accurately produce the conditional mean of

a dependent variable. It generates many decision trees and aggregates the predictions through

bootstrap aggregation by averaging the predictions obtained from multiple decision trees (Liaw

and Wiener, 2002; Hastie et al., 2009). In this study, RF was deployed in R software using the

‘randomforest’ package (Liaw and Wiener, 2002). The key parameters of the models, the number

of trees and the best size of the nodes, were optimized with the objective function of root mean

squared error (RMSE). The RF model explicitly measures the importance of variables through two

metrics: the mean decrease in the Gini Index (GI) and the percentage of increase in RMSE

(Hollister et al., 2016). Since the GI has a bias in its calculation of variable importance (Strobl et

al., 2007; Hollister et al., 2016), we measured the importance of variables through the percentage

of increase in RMSE using RF. The results of RF indicate that the optimum number of trees

considered is 2000 and the best node size is 13.

The k-nearest neighbor (kNN): kNN is a non-parametric model able to identify non-linear and

complex relationships among observations (McRoberts et al., 2007; Mansuy et al., 2014). In this

method, a metric (Euclidean distance) is used to measure the similarity of distances to the target.

In kNN there are two parameters, nearest neighbors (k) and the power term (p), that are used to
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design this approach. The value of k can be determined from a reference dataset and input

variables, while p is based on weight–distance relationships and measures the degree of similarity

of the contribution of each k to the simulation output (Botula et al., 2013). A trial-and-error

methodology was used to find the optimal value of the kNN model parameters to predict the nitrate

concentration. The best value for the power parameter in this study is 2.25 and for the number of

nearest-neighbors is 14 (based on the objective function of RMSE).

2.2.3 Accuracy assessment

After calibration, the models were validated with the 30% of cases that were not used for training.

Model accuracy was evaluated using RMSE and the coefficient of determination (R2). Moreover,

a graphical comparison was conducted using Taylor diagrams (Taylor, 2001), which enable

visualization of the models’ performances using correlation coefficients, RMSE, and standard 

deviations (SD) (Choubin et al., 2017).

2.2.4 Uncertainty assessment

The quantile regression (QR) and the uncertainty estimation based on local errors and clustering

(UNEEC) methods were used to assess the predictive uncertainty of the models. These methods

evaluate the model residuals and consider all sources of uncertainty, which is in contrast to the

classic methods (such as Monte Carlo-based methods) in which the estimate usually regards only

one source of uncertainty (Solomatine and Shrestha, 2009).
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The QR was originally developed by Basset and Koenker (1978) for economics applications. It

can be used to determine the distribution error. QR is a linear statistical method for estimating the

quantiles conditional functions, of the prediction and distribution, based on possible causal

relationships within the entire data set (Koenker and Hallock, 2001). The method describes the

conditional quantiles distribution as functions of observed covariates and does not make any

presumptions about the shape of the distribution the data. In this method, for each quantile τ, there 

is a linear relationship between the observed (y) and predicted (��) data as Eq. 1:

� = 	 ���� + �� (1)

where ��and �� are the slope and intercept of the QR, which are calculated by minimizing the sum

of residuals (Eq. 2):

���∑ ��
�
��� (�� − ������ + ���) (2)

where ��and ���are jth sample from a dataset, and �� is the QR function of the τth quantile:

���∈�� = �
(� − 1). ∈� , ∈�< 0

�. ∈� , ∈� ≥ 0
� (3)

The QR function (Eq. 3) is used for the residuals (∈�) which are the differences between the

observed and predicted data for the selected quantile τ (here quantiles of 5% to 95%). So, Eq. 3 

can be used for calculation of any quantile τ. To estimate uncertainty using QR, all individual ML

methods were trained using the training dataset (inputs and output variables) and the outputs

(nitrate-concentration values) for all cells in the study area were calculated. Then, for each desired

quantile (i.e., 0.05 and 0.95), the QR model was calibrated using the predicted nitrate values (from

each ML model) as input values and the observed nitrate values from training data set as output

values. Finally, the desired quantiles (i.e., 0.05 and 0.95) of the nitrate values were calculated with
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the calibrated QR model based on the predicated nitrate values (by each ML model) as inputs for

the whole study area. In this study, the QR was conducted in the R software using the ‘quantreg’

package (Koenker, 2013).

UNEEC, a non-linear regression model, was introduced by Shrestha et al. (2006) and Shrestha and

Solomatine (2006) and can be used to estimate the error-distribution quantiles. UNEEC deduces

the residual uncertainty relying on the status of the simulated system with a clustering method.

Fuzzy c-means clustering, a soft-clustering method, has the capacity to reduce the uncertainty in

identifying the members of a cluster (Dodangeh et al., 2014). Therefore, it was used in the UNEEC

method. There are several steps that occur (Solomatine and Shrestha, 2009): (i) training a ML

model based on the predictors (inputs) and the nitrate values (outputs) and calculated residuals,

(ii) clustering the input vectors (the values of the predictors for each sample) and associated

residuals using fuzzy c-means clustering, (iii) constructing the empirical probability distribution

function (pdf) of the model errors for each cluster. To construct the empirical probability

distribution function, the clusters were sorted, in ascending order, by the value of the error in each,

then, using Eq. 4, quantiles (for example pth quantile) were estimated:

���
�

= ��,							�:∑ ��,� <�
��� �∑ ��,�

�
��� (4)

where �� is error correspond to observation t, t is maximum value that satisfied the above

inequality, ��,� is membership value of tth observation to cluster i and ���
� is pth quantile

associated with cluster i.

The next step (iv), involved the calculation of the membership values of each input vector of the

training and testing datasets (in each cluster) and the estimation of the associated quantiles of

residuals using Eq. 5:
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��
�

=
∑ ��,�

�/��
��� ���

�

∑ �
�,�
�/��

���

(5)

where ��
� is value of pth quantile of errors for tth input vector, ���

� is value of pth quantile of errors

for cluster i, ��,�is the membership function of the tth input vector for cluster i, m is the smoothing

exponential coefficient, and c total number of the clusters. (vi) the prediction interval of the model

output (nitrate concentration) was constructed with Eq. 6 for each cell in study area:

��
� = 	 ��� + �� (6)

where ��
�

is pth quantile for tth output data (nitrate concentration). Quantiles 5% (��) and 95%

(���) are necessary to estimate 90% prediction interval. In the current research, UNEEC was run

with MATLAB software.

There are several statistical measures of uncertainty to evaluate and compare performances of QR

and UNEEC methods. In this study, two statistics, mean prediction interval (MPI) and prediction

interval coverage probability (PICP), were used as suggested by Shrestha and Solomatine (2006).

MPI is the average of the widths of the prediction intervals, where the lower values of MPI indicate

lower uncertainty (i.e., a value of zero indicates no uncertainty) (Eq. 7). PICP is the probability

that the observed values are within the prediction intervals (between 5% to 95%); each is computed

for a significance level of 1– α (e.g., 90 %) (Eq. 8). The method with a PICP near the confidence 

level (i.e., 90 % with some tolerance) is the best method. MPI and PICP values are calculated as:

��� =
�

�
∑ (���

������
��� − ���

�����) (7)

���� =
�

�
∑ ��
��� ,								� = �

1,���
����� < �� < ���

�����

0, ��ℎ������
� (8)
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where �� is observed value, ���
����� and ���

����� are lower and upper prediction limits

respectively.

The PICP is the more important measurement of uncertainty as it indicates the number of

observations that fall within the estimated interval (Dogulu et al., 2015). Therefore, MPI is used

as a supplementary metric: between models with similar PICP values, the one with a lower MPI is

regarded as the better model (Muthusamy et al., 2016).

3. Results and discussion

3.1 Spatial prediction of nitrate concentrations in groundwater

The groundwater-nitrate concentration maps generated by SVM, RF, and kNN show similar spatial

patterns; they each predict high nitrate concentrations in the southern part of the study area (Fig.

3). The spatial detail of the models differs. The SVM model produced nitrate concentrations

between 11 and 104 mg/l (Fig. 3a). Similar to the SVM, the RF model (Fig. 3b) predicted nitrate

concentrations increasing from north to south with levels ranging from 20 to 92 mg/l. The kNN

model also predicted nitrate concentrations increasing from north and east to the south with

amounts from 18 to 101 mg/l (Fig. 3c).

Fig. 3 Here

3.3 Uncertainty assessment

Uncertainty bands for each ML model were determined using UNEEC and QR methods (Figures

4 and 5). More observations fall within the estimated interval in kNN model than in the other two.
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In addition, the results of the UNEEC method and the values of PICP and MPI for all clusters were

summarized (Table 1). As explained above, the PICP metric is the most important value to assess

uncertainty. In the testing step, the kNN model had the lowest uncertainty in each cluster

(PICP=0.85–0.91), followed by SVM (PICP= 0.76–0.79) and RF (PICP=0.65–0.68). However,

the PICP was closer to the 90 % confidence level for kNN model than for either SVM or RF. Since

the PICP values for the models were not equivalent, the MPI measure was not considered in

judging the certainty of the models.

The QR, like the UNEEC method, calculated that the kNN model had the lowest uncertainty

(PICP= 0.94) compared to SVM (PICP=0.74) and RF (PICP=0.59) (Table 2). Since the PICP

measurements for the three models are very different, there was no need to compare the MPI

values. Thus, based on the results of both the UNEEC and QR methods, the kNN model contained

less uncertainty than did the other models.

Figure 4 Here

Figure 5 Here

Table 1 Here

Table 2 Here

3.4 Evaluating prediction performance

The goodness-of-fit and predictive performance of the models were also quantified using RMSE 

and R2 metrics (Table 3). In the training step, the RF model produced a better prediction of

groundwater-nitrate concentrations (RMSE=4.69, R2=0.96) than did SVM (RMSE= 8.76, R2=

0.82) and kNN (RMSE= 10.85, R2=0.74). The goodness-of-fit of the model shows how well the 

model fit the training dataset. The prediction and generalization abilities of the model cannot be 
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evaluated using the goodness-of-fit of the model because it is measured by the data that were used 

to calibrate the model (Henseler and Sarstedt, 2013). The predictive performance (i.e., the accuracy

of the model in the testing step) reflects the ability of the model to accurately predict. Results

indicated that the RF (RMSE= 10.41, R2= 0.72) performance was slightly better than that of the

kNN model (RMSE= 10.63, R2= 0.71) and the SVM (RMSE= 13.28, R2= 0.58). The visualization

of the models’ performance using the Taylor diagram also confirmed these results (Fig. 6).

According to the Taylor criteria (i.e., correlation, standard deviation, and RMSE), the RF and the

kNN had higher correlations with observed nitrate concentrations and lower RMSE compared to

the did the SVM model.

Fig. 6 Here

3.5. A ranking of the models

There are numerous ML models; each has weaknesses, strengths and assumptions. In reality there

is no single model that is absolutely correct and always best among the suite of models (Elith et

al., 2002). Similarly, different model structures can produce different results (Goetz et al., 2015).

Furthermore, models with similar predictive performance levels do not necessarily have similar

uncertainties; this attribute may affect environmental management and water resources planning

decisions. Therefore, it is difficult to identify the best ML algorithm. In this section, both predictive

performance and uncertainty criteria were considered simultaneously to rank the models.

Although the RF model had the highest performance for predicting nitrate concentrations, it

contained the greatest uncertainty (i.e., it ranked third). Though there are advantages to using RF

(e.g., Anning et al., 2012; Knoll et al., 2019), there are some limitations: i) it underestimates high

values and overestimates low values; and ii) it cannot predict beyond the range of response values
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because of the averaging that it does in all regression trees (Horning, 2010; Hengl et al., 2015;

Cheng et al., 2019; Shiferaw et al., 2019). That the uncertainty of models provides insight into

groundwater-nitrate pollution management is important. This study provides a practical analysis

of predictive performance and uncertainty of ML models to shed light on the spatial modelling of

groundwater-nitrate concentration.

SVM had the lowest predictive performance. But the SVM had lower uncertainty than the RF

model, but higher than the kNN. This result confirms the results of Rodriguez-Galiano et al. (2018)

which compared the performance of RF, SVM, and CART models for spatial predictions of nitrate

concentrations in groundwater. Their results indicated that the SVM was the least accurate of the

three.

The kNN can be regarded as the best model (of the three) for spatially modelling groundwater-

nitrate pollution as its predictive performance was similar to that of the RF model (i.e., which had

the highest predictive performance), but its uncertainty (based on UNEEC and QR analyses) was

the lowest of the three. These results affirm those of McRoberts (2012) and Zhang et al. (2013)

who demonstrated that kNN produces small error ratios and good error distributions. An advantage

of the kNN is that it does not need to prescribe detailed solutions to the input–output mapping (Liu

et al., 2016). Another advantage is its non-parametric nature, making it well suited to analyze non-

linear and complex relationships (Nemes et al., 2006; Abedi et al., 2018). Researchers have used

the kNN because of its capacity to predict a large set of attributes simultaneously (e.g., Mittal et

al., 2018; Kuang et al., 2019; Lee et al., 2019). Therefore, it is a cost- and time-effective modelling

approach to use in spatially extensive regions (Beaudoin et al., 2014). Though it has these

advantages, there are also drawbacks to using the kNN model. An important issue is the optimal

number of nearest neighbors (k) that can affect classification patterns (Jung et al., 2013). Another
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disadvantage is the underestimation and overestimation of values in the extremes of the range

(Magnussen et al., 2010; Beaudoin et al., 2014).

3.5. Variable importance

One of the main advantages of the RF model is it enables assessment of the importance of the

predictive factors used in the modelling process. Variable importance is assessed using the

calculation of the index of the percentage of increase of MSE (Figure 7). The higher the MSE

percentage, the higher is the importance of the variable considered. Results clearly showed that

hydraulic conductivity and elevation are the two most important variables for predicting nitrate

concentrations in groundwater with MSE equal to 117% and 95%, respectively, after removal of

the variable from the modelling.

Fig. 7 Here

These findings are consistent with those of Peña-Haro et al. (2001) who found that the hydraulic

conductivity factor has a strong influence on the spatial and temporal migration of nitrate

concentration in groundwater and, therefore, on the optimal N-fertilizer use rate. Regional

groundwater flow and the stream–aquifer interaction strongly depend on hydraulic conductivity

(Erdal and Cirpka, 2016). However, it is a spatially variable factor and is related to porosity and

aquifer characteristics (Salamon et al., 2007; Vrettas and Fung, 2015). Therefore, hydraulic

conductivity is an important factor for groundwater management and should be discerned using

different geostatistical techniques and field investigations (pumping tests, etc.) (Zhou et al., 2014).

Moreover, elevation regulates the flushing of nitrates, and it has an important effect on leaching

and export (from soil), and transference of nitrate (Creed and Band, 1998; Jiang et al., 2012).
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Lower elevations have more opportunities than high elevations to allow infiltration of nitrate into

an aquifer, as flat topography encourages water accumulation and allows more time to infiltrate 

(Sahoo et al., 2016; Shrestha and Luo, 2018). Also, agricultural lands are more often at lower

elevations. Nitrogen from agricultural land is therefore more likely available in areas with low

elevation. In the other words, highlands are not as favorable for agricultural activities, and thus see

lower amounts of nitrogen fertilizer; less nitrate contamination can occur in these areas. Other

important variables were land use, distance from stream, and lineament density (Fig. 7). Therefore,

the N-fertilizer application would be best guided by the spatial variation of hydraulic conductivity

and topographical characteristics.

4. Conclusions

Although several ML models have been used to spatially modelling nitrate concentrations in

groundwater, the uncertainty of these models has not yet been investigated in this field of study.

After evaluating the predictive capabilities of three ML models (kNN, SVM, and RF), the

uncertainty of each was determined using the QR and UNEEC methods. The following conclusions

can be drawn:

• The results demonstrate that in an evaluation of models in terms of both predictive

performance and uncertainty, the determination that a model is the absolute best remains

critical. In this study, the predictive performance of the kNN (RMSE= 10.63, R2= 0.71) was

similar to the RF (RMSE= 10.41, R2= 0.72) and more than the SVM (RMSE= 13.28, R2=

0.58), but its uncertainty determined with the QR and UNEEC methods was lowest. Although

the predictive performance of the RF model was superior (slightly better than the kNN), it was
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the inferior model in terms of the uncertainty. Therefore, the kNN is the relatively best model

for predicting nitrate concentrations in groundwater, considering both its predictive

performance and its level of uncertainty.

• Spatial prediction of nitrates showed that it was strongly correlated with the highest hydraulic

conductivity and the lowest elevations. The low elevations and high hydraulic conductivity

increase the leaching and transfer of the nitrates from the surface and subsurface to

groundwater in these regions.

• Because they use algebraic calculations, both QR and UNEEC methods have low running

times. Hence, both can be easily used to estimate predictive uncertainty in ML and data-

mining models when modelling nitrate concentration of groundwater.

• In this study, the proportions of the training (and validation) datasets (i.e., of well sampling

points) was selected according to the literature: 70% for training and 30% for validation

purposes. However, the training dataset size may affect model performance and predictive

uncertainties. Therefore, it is recommended that further research be conducted that uses other

training sample proportions to determine its effects on predictive uncertainty.

• Although the results of the ML models used in this study were good or excellent, the maps

produced cannot be regarded as representative for seasonal or interannual fluctuations. Due to

a lack of continuous sampling of nitrate concentrations, assessing seasonal and interannual

fluctuations of the concentrations is not possible. It was a main limitation of this research,

hence, further studies focusing on the role of spatio-temporal variations of nitrate and the

attendant uncertainties is suggested.
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Fig. 1 Map of the study area (Andimeshk-Dezful, Iran) showing the location of the 114 well

sampling points (W01 – W114).
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Fig. 2 The groundwater nitrate predictive variables: (a) elevation, (b) hydraulic conductivity (K),

(c) distance from stream (DFS), (d) lineament density, and (e) land use.
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Fig. 3 Observed versus modeled (SVM, RF, and kNN) Nitrate with 90 % confidential level (Cl)
using UNEEC and QR methods. (Blue area is uncertainty band width)

Fig. 4 Spatial prediction of nitrate concentrations (mg/l) using the SVM (a), RF (b) and kNN (c)

models.
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Fig. 5 Uncertainty band-width calculated by the UNEEC method.

Fig. 6 Uncertainty band-width calculated by the QR method.
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Fig. 7 Comparison of the models’ performance using the Taylor diagram
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Fig. 8 Importance plot for predictive variables based on the RF model.

Table 1 Summary of the model performance

Model
Training Testing

RMSE R2 RMSE R2

SVM 8.76 0.82 13.28 0.58

RF 4.69 0.96 10.41 0.72

kNN 10.85 0.74 10.63 0.71
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Table 2 Uncertainty results using the UNEEC method

Model
Uncertaint
y
statistic

Train Test

Cluster
2

Cluster
3

Cluster
4

Cluster
5

Cluster
2

Cluster
3

Cluster
4

Cluster
5

SVM
MPI 30.23 27.63 28.32 28.62 30.17 27.92 28.36 29.74

PICP 0.93 0.91 0.90 0.89 0.79 0.79 0.76 0.79

RF
MPI 17.84 16.71 16.93 16.41 17.83 16.82 17.10 16.66

PICP 0.91 0.88 0.88 0.88 0.68 0.65 0.65 0.65

kNN
MPI 36.02 36.08 37.21 35.62 35.91 36.30 37.52 36.13

PICP 0.91 0.93 0.94 0.93 0.85 0.88 0.88 0.91

SVM: Support vector machine; RF: Random forest; kNN: k-nearest neighbor; MPI: mean
prediction interval; PICP: prediction interval coverage probability.

Table 3 Uncertainty results using the QR method

Model Uncertainty statistic Train Test

SVM
MPI 30.77 31.76

PICP 0.93 0.74

RF
MPI 13.52 13.59

PICP 0.93 0.59

kNN
MPI 30.77 31.76

PICP 0.93 0.74

SVM: Support vector machine; RF: Random forest; kNN: k-nearest
neighbor; MPI: mean prediction interval; PICP: prediction interval
coverage probability.


