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Highlights 

 A single step ambient temperature reductive electroscrubbing  method was 

established for N2O removal 

 Nearly 95% N2O removal efficiency was achieved by electrogenerated Ni(I) 

 A new valuable product NH3 was achieved in the electroscrubbing process. 
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Abstract  

Direct catalysis is generally proposed for nitrous oxide (N2O) abatement but 

catalysis is expensive, requires high temperatures, and suffers from media fouling, which 

limits its lifetime. In the present study, an ambient temperature electroscrubbing method 

was developed, coupling wet-scrubbing with an electrogenerated Ni(I) ([Ni(I)(CN)4]3-) 

mediator, to enable N2O reduction in a single process stage. The initial studies of 10 ppm 

N2O absorption into 9 M KOH and an electrolyzed 9 M KOH solution showed no removal. 

However, 95% N2O removal was identified through the addition of Ni(I) to an electrolyzed 

9 M KOH. A change in the oxidation/reduction potential from -850 mV to -650 mV 

occurred following a decrease in Ni(I) concentration from 4.6 mM to 4.0 mM, which 

confirmed that N2O removal was mediated by an electrocatalytic reduction (MER) pathway. 

Online analysis identified the reaction product to be ammonia (NH3). Increasing the feed 

N2O concentration increased NH3 formation, which suggests that a decrease in electrolyzed 

solution reactivity induced by the increased N2O load constrained the side reaction with the 

carrier gas. Importantly, this study outlines a new regenerable method for N2O removal to 

commodity product NH3 at ambient temperature that fosters process intensification, 

overcomes the limitations generally observed with catalysis, and permits product 
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transformation to NH3. 
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1. Introduction 

Nitrous oxide (N2O) is stable in the atmosphere for prolonged periods, and is an 

approximately 310 times more potent greenhouse gas than carbon dioxide (CO2) [1]. 

Therefore, N2O has been categorized as the greatest contributor to stratospheric ozone 

depletion, and is regarded as the third most significant anthropogenic greenhouse gas [2-6]. 

The projected growth in N2O emissions is estimated to reach 14.49 Mt/y by 2020. The 

industrial sector is regarded as the most significant emission source after agriculture, where 

N2O is produced as a by-product during the manufacture of adipic acid and nitric acid, or as 

an intermediate in the biological nitrification of wastewater [7,8].  

 A range of abatement solutions can be used to control N2O emissions, such as 

thermal decomposition, adsorption, and direct catalysis [9]. Catalysis is generally favored, 

where N2O is reduced to nitrogen and oxygen. Although numerous catalysts have been 

trialed, high operating temperatures coupled with interference from the presence of other 

gases [10-22], and catalyst deactivation (or fouling), increase the process complexity, which 

can lead to technology failure, resulting in the need for frequent replenishment of the 

catalyst [6]. N2O is highly soluble because of the dipole-dipole interactions with water [23], 
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which has led to the study of N2O absorption (or scrubbing) using packed column 

technology [24]. Whilst effective for gas phase separation, the absorbed N2O is 

concentrated in the liquid phase but not transformed. Synergy between technologies has 

been investigated to provide process intensification, in which absorption is first employed 

to separate and concentrate N2O from the gas phase, after which N2O is then desorbed and 

exposed to a catalytic treatment to facilitate N2O conversion (a three-stage process). 

Weißbach et al. [23] used desorption technology to separate and concentrate liquid phase 

N2O emissions from wastewater, after which N2O was blended with biogas (rich in 

methane) and combusted within a combined heat and power engine. This enables the 

control of N2O emissions, whilst also increasing power generation by 37% through the 

exothermal release of energy from N2O (82 kJ mol-1). This method avoids the limitations 

attributed to catalysis, and proposes a new value to the final gaseous product. On the other 

hand, its application is limited explicitly to applications in which N2O emissions and biogas 

generation facilities are co-located (i.e. large centralized wastewater treatment facilities).       

 Besides catalytic removal operated at high temperature, electrochemical technique 

provided room temperature degradation of many greenhouse gases by green catalyst 

‘electron’, though the works done by fundamental cyclic voltammetry (CV) technique. At 

first step development to minimize the potential (or energy), electron mediators or catalyst 

were started to use because of many pollutants contain high oxidation/reduction potential 

such as N2O has thermodynamic potential of +1.77 V (vs SHE) [25]. The transition or noble 

metals as catalyst, here as electrode, have reduce the reduction potential of N2O to N2 to -

0.8 V (vs Ag/AgCl) [26]. On the other side, a solution phase electron mediators have used 

to reduce the N2O to N2 reduction potential to -1.15 V (vs NHE) [27] with the help of Ni2+ 

complex of [I5 or 14]aneN4 {[I5 or 14]aneN4 = 1,4,8,12(or 11)-tetra-azacyclopenta(or 

tetra)decane} in aqueous solution. Similar way, Ni or Pt catalyst modified gas diffusion 
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electrode and Co(II)/Co(I) redox process of tetraaminophthalocyaninatocobalt(II) 

(Co(II)TAPc) adsorbed on a graphite electrode were applied on N2O degradation to N2 

[28,29]. Note that the published works so far on electrochemical reduction of N2O done by 

basic CV method to understand the fundamental electron transfer and ended up N2 as a 

product. In recent investigations, the electrochemical technique stepped towards industrial 

practice for air pollutants removal by adopting paired electrolysis with wet scrubber 

column. Through the combination of paired electrolysis and wet scrubbing 

(electroscrubbing), many gas pollutants, such as benzene [30] and odorous gases [31] have 

been removed using electrogenerated oxidative mediators by MEO (mediated 

electrochemical oxidation). In addition, homogeneous [Ni(I)(CN)4]3- was generated 

electrochemically on a Cu metal electrode at cathodic half-cell by constant current 

electrolysis for the first time and used to remove gaseous CCl4 by MER (mediated 

electrochemical reduction) at electroscrubbing [32]. In a very recent study on carbon 

tetrafluoride (CF4) degradation, electrochemical production of mediator Cu1+ facilitated a 

regenerative chemical reaction at room temperature, resulting in product transformation to 

trifluoroethane and ethanol without HF using Cu1+[Ni2+(CN)4]1- [33]. Hence, 

electroscrubbing enables process intensification through the provision of separation and 

product transformation within a single stage, simultaneously generating a product of 

commercial value that can improve the return on investment.  

This paper proposes to build upon the successful development of MER, and introduces 

Ni(I) as a new reductive electrochemical mediator, that can facilitate the effective 

abatement of N2O through chemical transformation into a comparatively benign final 

product. The subsequent integration of MER into an electroscrubber, to form a single stage 

process introduces considerable process intensification versus conventionally applied 

methods and since MER can be operated at ambient temperature, as well as being 
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comparatively insensitive to fouling, this proposition overcomes the limitations commonly 

associated with gas phase catalysis. The nickel based complexes, mostly organic/aqueous 

mixture solvents or modified electrodes due to insolubility, are good in effective water 

splitting at reduced potential [34,35]. In similar way, high potential organic compounds are 

reduced at less potential of electrogenerated Ni(I) complexes [36]. In addition, a planar type 

orientation of electrogenerated Ni(I) complexes are more reactive either by nucleophilic vs 

radical type reactivity depending upon the ligand [37] and more specifically, a chemically 

reduced [Ni(I)(CN)4]3- used as hydrogenation catalysts in organic reactions [38]. Because of 

solubility restriction in aqueous medium, many nickel complexes used as modified 

electrode or dissolved in non-aqueous medium [39-42]. In reverse, [Ni(II)(CN)4]2- is quite 

soluble in alkaline media [32] and yields a reduction potential of -900 mV(vs Ag/AgCl) 

[43]. Therefore, use of aqueous soluble nickel based complex such as [Ni(II)(CN)4]2- may 

open possibilities in generation of commodity products during reduction of N2O. Ammonia 

is a critical building block for many industrial and pharmaceutical chemicals, foods, and 

fertilizer formulations. Currently, ammonia (NH3) is manufactured primarily through the 

Haber-Bosch process, which utilizes 19.3 kWh kgN-1 and is believed to consume 7% of 

natural gas globally [44]. Significant focus has recently been placed on identifying new 

sustainable sources of ammonia, to generate high value products from waste streams, such 

as the production of single cell protein [45].  

This study introduces and examines the reaction pathway of MER based  

[Ni(II)(CN)4]2-, specifically to identify the potential to transform N2O to NH3 as a high 

value end product that can improve both the return on investment and sustainability criteria 

of the process. The specific objectives of this study were as follows: (i) demonstrate N2O 

removal at room temperature in a single stage using electro-scrubbing; (ii) identify and 

quantify the N2O reduction products and propose a possible reaction pathway; (iii) 
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determine the mass transfer coefficient to describe the separation and conversion rate; and 

(iv) evaluate a sustainable operation in the form of reduced electron mediator Ni(I) 

regeneration.                  

 

2. Experimental 

The supporting information section outlines the following: complete experimental 

details for the preparation of nickel cyanide complex reported elsewhere [46]; electrolytic 

cell setup with a wet scrubber for the active electron mediator generation and removal of 

N2O gas (based on our experience [47,48] along with a schematic presentation (Fig.SI 1)); 

and the analysis type and conditions used in the present investigation. 

 

3. Results and discussion 

3.1 Identification of N2O removal at the electroscrubber 

The absorption of N2O into KOH was initially evaluated in the recycle from the 

catholyte tank but without activation of the electrochemical cell or inclusion of Ni(I) to 

observe only the physical separation of N2O (Fig.1). Gondal [49] reported that the solubility 

of N2O was higher in KOH (7817 kPa m-3 kmol-1, 1.79M KOH, 25°C) than in water (4199 

kPa m-3 kmol-1, 25°C). In this study, despite the initial N2O separation of >99%, a 

significant decrease in removal efficiency was observed after 5 minutes operation (Fig. 1A 

curve a), which can be attributed to the short empty bed residence time of the column 

(EBRT, 0.32 min.), subsequently promoting a high N2O solvent loading following a number 

of solution recycles. Although N2O reduction has been identified on Pt [26], metal complex 

adsorbed electrodes [50], gas diffusion electrodes [51], and cyclic voltammetry in acidic or 

basic pH, the reduction of N2O has never been evaluated in an electrolyzed solution 
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(without an electron mediator in solution) using a metal cathode. Electrolyzation of the 9 M 

KOH was undertaken to discern the impact of N2O reduction within the electroscrubber 

(Fig.1A, curve b). Because no dissolved electrogenerated electron mediator was present, the 

results are described in the form of a direct electrochemical reduction (DER). Similar to 

physical absorption, DER is described as the initial removal of approximately 60% N2O (10 

ppm removal in 5 min), followed by a rapid decline toward 0% removal, following 

continued recirculation of the solvent. A decrease in N2O removal to 60% (Fig.1A curve b) 

during use of only 9 M KOH electrolyzed solution could be due a prevention of N2O 

absorption into liquid, here possibly by electrogenerated molecular H2 gas. Therefore, 

limited N2O reduction occurred in the electrolyzed 9 M KOH solution, which showed that 

DER did not occur at the Cu electrode under the specified conditions.  

In contrast, the presence of an electrogenerated electron mediation [Ni(I)(CN)4]3- 

(Ni(I)) in 9 M KOH resulted in the near consistent 95% removal of N2O (Fig.1A curve c) 

from the initiation of the experiment and for more than an hour of operation, which shows 

that N2O removal is facilitated by MER (Eq. 5 and 6). A significant change in the ORP 

(oxidation/reduction potential) and Ni(I) concentration was observed while N2O removal or 

injection to the bottom of the electro-scrubber was undertaken (Fig.1B). The decrease in 

Ni(I) concentration from 4.6 mM to 4.0 mM initially observed at approximately 175 

minutes, which then declined further to 3.3 mM (Fig.1B curve a), indicates the consumption 

of Ni(I) sufficient to limit its reactivity. This was derived through changes in ORP 

measurements from -850 mV to -650 mV (Fig.1B curve b) while N2O gas added. 

3.2 Product analysis 

Online FTIR revealed an ammonia peak in the spectrum produced from the exit gas of 

the electroscrubber during the MER treatment (Fig.2 curve c). Although the moisture peak 
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dominated the spectrum, the NH3 region (768-1190 cm-1, the primary region for NH3 

evaluation) observed is coincident with that of the reference spectrum (provided in the 

MIDAC library, Fig. 2 curve a). Over the corresponding period, the N-O- symmetry region 

for N2O gas (2158-2271 cm-1, the primary region fixed to monitor N2O) decreased; an 

observation compounded when referenced to the feed FTIR spectrum (Fig.2, curve d; or 

N2O reference spectrum, Fig. 2, curve b). To the best of the authors’ knowledge, this is the 

first study to report the production of NH3 during the degradation of N2O, which includes 

methods, such as catalytic decomposition [52], dielectric plasma discharge [53], and cyclic 

voltammetry (electrochemical) [26]. In these comparative technologies, molecular N2 and 

O2 or OH was confirmed as the final product [26,52,53] depending on the method used. In 

the gas phase, catalytic decomposition forms N2 and O2 (eqn. 1-3), whereas in the solution 

phase, N2 and OH are produced through electrochemical reduction (eqn. 4) [26,52,53]: 

 

 

 

 

 

To confirm NH3 formation, online GC-BDI-TCD was employed to analyze the exit 

gas produced from MER. Confirmatory analysis was complementary to that of FTIR and 

identified NH3 and nitrogen dioxide (NO2) as products (Fig 3, curve a). The NO2 peak was 

evidently more intense than NH3. This suggests that the column temperature (280 C) 

coupled with carrier gas (N2) selection for GC analysis could initiate further chemical 

reactions because in the photochemical removal of N2O with air as the carrier gas, HNO3 
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was identified as an additional product to N2 and O2 [54] via OH and NO2 as potential 

intermediates. To investigate this further, the GC column temperature was reduced to 

100°C, resulting in a decrease in NO2 peak intensity (Fig.3 curve b). The carrier gas was 

also changed to Argon (Ar), which resulted in further minimization of the NO2 peak (Fig.3, 

curve c). This suggests that NO2 formation was an artefact of the GC analytical 

methodology. For corroboration, online FTIR analysis was conducted, in which no carrier 

gas or high temperature profile is required to facilitate analysis; only NH3 was identified as 

the product with no NO or NO2 (Fig.4). A potential explanation for NH3 formation during 

N2O reduction could be H+ ions or H+ radicals formed at the cathode through water 

splitting. The applied current density of 25 mA cm-2 and high cell potential (5.6 V) may 

promote water splitting to generate H2 via a radical reaction at the cathode. On the other 

hand, pure molecular H2 is not necessary for NH3 formation during MER because catalytic 

degradation in the presence of molecular H2 as the carrier gas identified only N2 and O2 as 

products [55]. The NH3 concentration observed by FTIR spectroscopy at 95% N2O removal 

was approximately 500 ppm (average), which is around 50 times higher than that of the 

feed N2O concentration (10 ppm) when N2 was used as the carrier gas (Fig.SI 2 curve a). 

GC recorded a comparable NH3 concentration of approximately 400 ppm (average) NH3 

under analogous conditions (Fig.SI 2 curve b). This elevated NH3 concentration from a 

comparatively small N2O (10 ppm) feed concentration suggests that further chemical 

reactions are facilitated with N2, H+ ion or H+ radicals (Eq. 5 and 6):  

 

 

Additional, detailed analyses to confirm this will be reported elsewhere. 
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3.3 Efficiency analysis 

Following an increase in N2O feed gas concentration, the N2O removal efficiency 

declined from almost 90% at 10 ppm N2O feed gas to 50% at 20 ppm N2O (Fig. 5) and 

further to 35% at 50 ppm N2O. To determine the rate limiting mechanism, mass transfer 

analysis was undertaken and demonstrated a linear increase in the rate of N2O conversion 

with increasing feed concentration (Fig. 6). An analysis of NH3 in the exit gas produced 

from N2O feed gas concentrations ranging 20 to 50 ppm N2O showed that an increased NH3 

yield was achieved at higher feed gas concentrations (Fig. SI 3). This provides confirmatory 

evidence for the increased reactivity achieved at higher feed gas concentrations; the linear 

increase in mass transfer with feed gas concentration suggests that the reaction and 

subsequent conversion of N2O to NH3 may be pseudo first order with respect to [N2O]. In 

packed column technology, mass transfer is generally described using two-film theory [56]. 

Although an increase in gas flow rate resulted in a small improvement in the mass transfer 

rate, the data suggests that the liquid phase may have exerted greater resistance to mass 

transfer. This was evidenced by the transient curves for the exit NH3 gas, which exhibited a 

larger decline at higher gas flow rates (Fig.SI 4), and is analogous to a higher solvent 

loading. The faster decline in conversion efficiency at higher gas flow rates was attributed 

to the combination of a shorter gas phase residence time and higher solvent loading (Fig. 7 

and Fig SI 4). The overall mass transfer coefficient was approximately 0.017 s-1. Although 

this cannot be compared directly with other studies on N2O due to the paucity of data in the 

literature, to contextualize the absorption rate determined in this study, this is analogous to 

the lower region of chemically reactive mass transfer recorded for CO2 separation in a 

similarly designed packed column technology [57]. The increasing resistance to mass 

transfer identified in the liquid phase could be solved by increasing the solvent recirculation 
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rate to promote replenishing of the reactant (i.e. Ni(I) complex) at the gas-liquid interface 

whilst simultaneously reducing the concentration boundary layer to improve N2O transport 

into the bulk solution. More study will be needed to confirm this. Regenerability of the 

Ni(I) complex was confirmed through consecutive electroscrubbing cycles for N2O removal 

(Fig.8). After each regeneration cycle, the Ni(I) concentration was recovered to the initial 

concentration through solution electrolysis induced after each batch N2O removal cycle. 

The energy required to remove N2O under the given conditions was 6.3 x 10-7 kg kWh-1, 

which is the energy also produced to form 1.38 x 10-5 kg h-1 NH3. Therefore, the energy 

spent can be minimized in the form of valuable product NH3. 

 

4 Conclusions 

The continuous removal of N2O at room temperature was demonstrated by integrating 

a mediated electrocatalytic mediator (MER) Ni(I) into the alkaline absorption solvent of a 

packed column. Absorption using only an alkaline or electrolyzed alkaline KOH solution 

showed that N2O absorption was unsustainable, which indicated that electrogenerated Ni(I) 

successfully mediates N2O removal in this electroscubber MER process. An extensive 

evaluation of the reaction pathway showed that MER can facilitate the transformation of 

N2O to NH3 in the presence of excess nitrogen. Therefore, such transformation is made 

possible only through a solution phase reaction; this provides an explicit advantage 

compared to conventional gas-phase technologies, and affords an opportunity to realize a 

new value proposition through NH3 product recovery. As MER is applied directly to the 

solution phase at ambient temperature, limitations, such as fouling and substantive thermal 

loads, are largely obviated and it should be simple to retrofit scrubbing technology to a 

conventional packed column, which is applied ubiquitously for industrial scale gas-liquid 
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separation.   
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Fig.1 A Removal efficiency of N2O with time during (a) only absorption by 9 M KOH, 

(b) during electrolysis of 9 M KOH, (c) during electrolysis in the presence of 50 

mM [Ni(II)(CN)4]2- in 9 M KOH at the wet scrubber. Conditions: Electrolyte 

volume = 600 ml; electrodes = Pt coated Ti anode (50 cm2) and Cu cathode (50 

cm2); Current density = 25 mA cm-2; Solution flow rate to cell = 2 L min-1; 

Solution flow rate to scrubber = 3 L min-1; Gas flow rate = 0.2 L min-1 with 10 ppm 

of N2O. 

 B ORP and [Ni(I)(CN)4]3- concentration change during the removal of N2O at the 

electroscrubber. The electrolysis and electroscrubbing experimental conditions 

were the same as those detailed in the legend of Fig.1A. 
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Fig.2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.2 Online FTIR output results (a) standard spectrum for N2O, (b) standard spectrum 

for NH3, (c) NH3 formation during N2O removal, (d) direct feed of N2O into 

scrubber at electroscrubbing process. The electrolysis and electroscrubbing 

experimental conditions were the same as those detailed in the legend of Fig.1A. 
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Fig.3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.3 Online GC output results during 10 ppm N2O removal under different conditions: 

(a) Removal by MER with a GC column temperature at 280 C; (b) Direct feed of 

10 ppm N2O into GC with a column temperature at 100 C; (c) Direct feed of 10 

ppm N2O with an Ar carrier gas at GC column temperature of 280 C. 

Experimental conditions for MER by electroscrubbing and gas flow rate were the 

same as those detailed in the legend of Fig.1A. 
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Fig.4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.4 Exit gas concentration variation at the electroscrubber during the removal of N2O 

by MER measured by online FTIR spectroscopy. The electrolysis and 

electroscrubbing experimental conditions were the same as those in the legend of 

Fig.1A. 
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Fig.5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.5 Removal efficiency variation of N2O with different feed N2O concentrations 

(mentioned in the figure) during MER by electrogenerated [Ni(I)(CN)4]3- in 9 M 

KOH at the electroscrubber. The electrolysis and electroscrubbing experimental 

conditions were the same as those in the legend of Fig.1A. 
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Fig.6 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.6 Mass conversion rate during N2O removal by the gas flow rate (a) and N2O feed 

concentration (b) at electro-scrubbing by electrogenerated [Ni(I)(CN)4]3 in 9 M 

KOH solution. The electrolysis and electroscrubbing experimental conditions were 

the same as those in the legend of Fig.1A. 
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Fig.7  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.7 Removal efficiency of N2O with different gas flow rates (mentioned in the figure) 

during MER by electrogenerated [Ni(I)(CN)4]3- in 9 M KOH at the electroscrubber. 

The electrolysis and electroscrubbing experimental conditions were the same as 

those in the legend of Fig.1A. 
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Fig.8  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.8 Variation of [Ni(I)(CN)4]3- concentration with electrolysis time and N2O removal 

time by electro-scrubbing for the four consecutive experimental batches towards 

sustainability. The experimental conditions were the same as those detailed in the 

legend of Fig.1A. 
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