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Abstract  

The rapidly rising industrial interest in hyperspectral imaging (HSI) has generated an 

increased demand for cost effective HSI devices. We are demonstrating a mobile and 

low-cost multispectral imaging system, enabled by time-multiplexed RGB Light 

Emitting Diodes (LED) illumination, which operates at video framerate. Critically, a 

deep Multi-Layer Perceptron (MLP) with HSI prior in the spectral range of 400-950nm  

is trained to reconstruct HSI data. We incorporate regularisation and dropout to 

compensate for overfitting in largely ill-posed problem of reconstructing the HSI data. 

The MLP is characterised by a relatively simple design and low computational burden. 

Experimental results on 51 objects of various references and naturally occurring 

materials show the effectiveness of this approach in terms of reconstruction error and  

classification accuracy. We were also able to show that utilising additional colour 

channels to the three R, G and B channels adds additional value to the reconstruction. 

Keywords: Hyperspectral imaging (HSI), deep learning, spectral reconstruction, LED 

illumination 

  

1. Introduction 

In addition to the traditional applications of Hyperspectral Imaging (HSI) in remote 

sensing [1–3], the recent and rapid rise of interest for HSI was focused on various 
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industrial applications, such as food quality monitoring [4–6], counterfeit detection [7] 

and artwork authentication [8,9]. Conventional HSI systems are, however, very cost  

intensive and require relatively complicated operation. Line scanning for HSI, 

frequently referred to as pushbrooming, is characterised by high spectral resolution due 

to the use of dispersive elements that split the incident light of a scanned line into 

hundreds of very narrow bands. Pushbrooming requires a linear translation of either the 

camera or the scanned objects, thus resulting in a lower spatial resolution. In contrast,  

area scanning is characterised by high spatial and low spectral resolution, determined 

by the number of filters utilised, and requires the objects to be static. Both technologies 

suffer from time consuming scanning processes and require careful operation to 

preserve geometric accuracy and minimise spectral smearing. A third approach that has 

overcome the issue of long integration period and found increasing interest in the last  

years is snapshot HSI. Recent advances in compressive sensing have led to technologies 

such as coded aperture [10], which even allows for Raman snapshot HSI [11]. Snapshot 

imaging, however, also suffers frequently from the requirement of very costly and high 

precision optical components, as well as reduced spectral and spatial resolution and 

overwhelming amounts of data in a short timespan [12].  

A recent and promising focus is the approximation of HSI data from Red, Green and 

Blue (RGB) or multispectral imaging (MSI). Light Emitting Diode (LED) technology 

is a very powerful and low-cost technology that is increasingly interesting for the 

development of multispectral devices [13]. Goel et al. [14] have proposed an MSI 

system that utilises a set of LEDs with 17 distinct peak wavelengths in the range of 450  

- 990nm to realise time-multiplexed illumination, which shows good results in various 

applications. The use of LEDs makes the system very cost effective and flexible, 

however the selection of peak wavelengths is hard-wired and lacks a generalised 

solution. Herrera-Ramirez et al. [15] proposes an LED based system with a considerable 

broader spectral range of 370 - 1630 nm, in which interpolation is used to recover  

hyperspectral information from 22 wavelengths. While the system is portable and low-

cost, interpolation runs the risk of overlooking specific spectral absorption peaks of 

materials not covered by the illumination source. Hyperspectral recovery from mere 

RGB images was proposed by Arad et al. [16], in which a sparse dictionary is trained 

on a database of hyperspectral prior. By matching CIE colour coordinates, a  



transformed RGB dictionary is generated to reconstruct the original HSI information 

from the RGB images. The system is, however, limited to RGB images and requires 

prior knowledge regarding the spectral sensitivity of the camera system, which is 

usually not available. Inspired by the concept of spatial super-resolution, Galliani et al. 

[17] have proposed a reconstruction algorithm from RGB images based on deep 70 

Convolutional Neural Networks (CNN). Can et al. [18] improved the reconstruction 

results by designing a simplified CNN with fewer layers and is less prone to overfitting 

and computationally less expensive. Nonetheless, CNNs evolve with an increasing 

complexity with respect to their design and often require GPUs to accommodate the 

excessive computation. Designing shallower networks can reduce the amount of GPU 75 

memory required, which, nevertheless, still poses a significant limit on the design. 

In this work, we are proposing an MSI system that is based on time-multiplexed 

RGB LED illumination. The advantages of the system are low-cost, high mobility, high 

framerate, and improved efficiency in hyperspectral data reconstruction. By mapping 

the collected MSI data to HSI prior to train a relatively shallow neural network, we aim 80 

to realise a computationally efficient algorithm for HSI data reconstruction. This work 

extends our presentation at the Hyperspectral Imaging Conference 2018 [19]. 

2. Proposed System 

2.1 Hardware architecture 

The architecture of the proposed system is schematically represented in Figure 1. It  

comprises a Basler ace U monochromatic camera with a spatial pixel resolution of 1280 

x 1024 pixel (HD), a framerate up to 200 fps and a USB 3.0 interface. The image 

integration is triggered by an Arduino Uno, which also controls an Adafruit Neopixel 

ring containing 24 WS2812B based RBG LEDs. The LEDs are programmed to produce 

eleven different colours in sequence and the image acquisition is triggered by the switch  

of colour, realising time-multiplexed illumination. The image data from the camera is 

recorded by the Single Board Computer Odroid X4U. Depending on the number of 

colour channels used, this allows for a recording speed from 18 (eleven channels) up to 



200 (one channel) images per second, which allows the system to operate in video 

framerate. Notably, the components amount to a cost less than GBP 1000.   

The selected eleven colours were chosen to emulate wavelengths between 400 - 650 

nm using colour matching emulation that match the CIE 1931 standard observer. The 

colours were selected to be approximately equally spaced at 25 nm in terms of 

wavelength in that region. The settings for the intensities of the three colour channels 

are illustrated in Figure 2. Note that RGB LEDs can only generate colours by mixing  

intensities of the three RGB lights with very distinct peak wavelengths at 465 - 467nm 

(B), 522 - 525 nm (G) and 620 - 625 nm (R) [20]. The irradiance of the generated 

colours was measured with a spectroscope and the results are shown in Error! 

Reference source not found..  It is apparent that the peak wavelengths remain the 

same, while the intensity combinations vary. We believe that varying the illumination  

colour (or intensity combinations), even without generating new wavelengths, increases 

variability within the data and therefore the accuracy of the predictive system. 

2.2 Hyperspectral reconstruction 

The reconstruction is performed by training a Multi-Layer Perceptron (MLP) defined 

as follows. An input matrix 𝐗 = {𝐱1, 𝐱2, … , 𝐱𝑛}𝑻  of the MSI vectors 𝐱𝑖 is mapped to 110 

an output matrix, 𝐘 = {𝐲, 𝐲2, … , 𝐲𝑘}𝑻, where 𝑘 is the number of objects and 𝑛 is the 

number of MSI observations per object. The MLP consists of four fully connected (FC) 

hidden layers 𝐱𝑖+1 =  σ𝑖(𝐖𝑖𝐱𝑖 + 𝐛𝑖)  with activation function 𝜎𝑖, weight matrix 𝐖𝑖 and 

bias 𝐛𝑖. The detailed architecture is visualised in Error! Reference source not found.. 

The fact that the input layer has no activation function, i.e. 𝜎1 =  𝑓(𝐱) = 𝐱 enforces the 115 

use of all MSI bands to further reduce fluctuations. For training, we define a loss 

function 𝒥(𝜃) of the parameter vector 𝜃 = {𝐖1, … , 𝐖𝑖, 𝐛1, … , 𝐛𝑖}, 𝑖 𝜖 1, … 5. For the 

predicted output 𝐘̂, a simple loss function can be defined as: 𝒥(𝜃) =  12𝑛 ‖𝐘̂ − 𝐘‖𝐹 

where ‖. ‖𝐹denotes the Frobenius norm. The problem, however, is highly ill-posed, as 120 

the input dimensionality is significantly lower than the output dimensionality and slight 

changes in the input can translate into a severe alteration at the output. Regularisation 



is a commonly used practice to compensate for these effects [21]. Introducing soft 

constraints on the parameters of the MLP can also help reduce the validation error and 

promote generalisation. Typically, regularisation is only applied onto the weights of the 125 

MLP [21], since the biases require less data to be fitted and regularising both may lead 

to significant underfitting. As the most common regularisation term, we introduce 𝐿2 

Norm regularisation on the weight, often referred to as weight decay with 

hyperparameter 𝛽 that controls the impact of the regularisation: 

𝒥(𝜃) =  12𝑛 ‖𝐘̂ − 𝐘‖𝐹 +  𝛽2 ∑‖𝐖𝑖‖𝐹5
𝑖=1  130 

For further regularisation, dropout is introduced here. Dropout is a computationally 

inexpensive way of approximating bagging, which describes the process of combining 

the results of several separately trained models [21]. It is achieved by effectively 

generating a binary mask of randomly sampled values multiplied with a non-output 

layer to remove certain nodes. The probability at which nodes are kept is called the keep 135 

rate and is another hyperparameter of the network. Dropout roughly doubles the number 

of iterations required for convergence [22]. 

2.3 Implementation details 

The implementation was done in the Tensorflow framework for Python, using the 

Adam Optimiser with the initial learning rate of 0.001. 𝛽 was set to 10−6 and a batch 140 

size of 128 was used for training. A keep rate of 0.6 for the dropout was used and in 

accordance with the definition of the popular AlexNet [22] only applied on the last 

hidden layer. Weight decay and dropout both minimise effects of overfitting and 

consequently enforce a relatively smooth output which satisfies smoothness 

characteristics of hyperspectral data. For optimally smooth results, we established 145 

empirically that 5,000,000 iterations are necessary. 



3. Experimental results 

To verify the system, the proposed camera was used to image 20 differently coloured 

fabrics such as cotton, wool and polyester in various shades including four different 

blacks, four very bright materials in white, grey, cream and bright yellow, two blue  

shades, turquoise and two green shades and seven different red, orange and pink shades. 

These fabrics were chosen to test for the discriminability between subtle changes in 

colour. Additionally, the Macbeth ColorChecker chart with 24 colour patches and seven 

different organic objects, including red and white grapes, bananas, apples, pears, 

spinach and tomatoes were imaged to include some naturally occurring materials. The  

imaged objects are illustrated in Error! Reference source not found.. In total, 51 

different objects were imaged with a HSI system covering the visible near infrared 

(VNIR) range from 400 - 950 nm in 256 bands. For each class, the mean spectrum was 

calculated and used to train the MLP. The same objects were imaged with the proposed 

MSI system, and equally 4000 measurements were used to train and evaluate the  

system. The MSI images were acquired in a dark room to minimise the effects of 

ambient lighting. For production use of the system, an ambient light image can be 

acquired and subtracted from all successive images to realise calibration. Both datasets 

were radiometrically calibrated and converted to reflectance using white and dark 

reference images. In theory, the MSI system only needs to be calibrated once, as the  

illumination is always constant. Given the influence of ambient light and the variable 

sensor sensitivity and LED radiance, it is still advisable to repeat the calibration before 

every imaging session. 

In the first experiment, we tried to analyse the effect different numbers of bands have 

on the quality of reconstruction. The results for the Root Mean Squared Error (RMSE)  

achieved after 1,000,000 iterations with 5 repetitions are shown in Error! Reference 

source not found.. The bands were chosen to be as equally spaced as possible out of 

the eleven totally recorded bands. Interestingly, it can be seen that at least 6 colour 

channels are required to minimise the reconstruction error. This leads us to the 

conclusion that adding more colour channels adds valuable information to the  

reconstruction. According to these results, we have compared the reconstructed 

spectrum profiles from three, six and eleven bands respectively in additional 



experiments, as both six and eleven channels produce an equally low RMSE but 

recording less bands also potentially increases the framerate of imaging. Both were 

compared with three channel reconstruction to highlight the additional information gain  

over RGB. The three channels that are closest to RGB were selected to highlight the 

information gain over plain RGB images. 

For quantitative evaluation, the 51 imaged objects were grouped in three groups; 

coloured fabrics, organic materials, and Macbeth chart patches. The reconstruction was 

evaluated using three different measures, The RMSE, Spectral Angular Mapper (SAM)  

and Spectral Information Divergence (SID) [23]. SAM is similar to the cosine distance 

as it measures the angle between spectra in an n-dimensional space and is therefore 

invariant to scaling. SID, in contrast, measures similarity by modelling the spectra as 

probability distributions, using information theory. A high SID value indicates great 

similarity. Reconstruction results after 5,000,000 iterations with both six and eleven  

channels are given in Error! Reference source not found.. The reconstruction using 

eleven bands performs generally the best. The coloured fabrics produces a higher 

similarity to the original HSI data, whereas both the fruit and vegetable and the Macbeth 

chart generate very similar errors for both six and eleven channels. This shows that the 

fabrics can be reconstructed very accurately, even though some of them only vary  

slightly in the shade of the respective colour. What we can also observe is that both six 

and eleven channels produce a significantly lower reconstruction error than the three 

plain RGB channels. This leads to the conclusion that adding more colour channels 

reduces noise and likely adds new information to the MLP and therefore improves the 

reconstruction significantly.     

 

 Fabric Organic Macbeth chart 

3 Channels 

RMSE 0.475 ± 0.500 0.947 ± 0.630 1.279 ± 0.279 

SAM 0.077 ± 0.028 0.114 ± 0.053 0.122 ± 0.011 

SID 14.808 ± 4.60 0.858 ± 0.386 0.435 ± 0.038 

6 Channels 

RMSE 0.277 ± 0.218 0.439 ± 0.211 0.502 ± 0.038 

SAM 0.065 ± 0.019 0.064 ± 0.021 0.075 ± 0.004 

SID 15.60 ± 3.420 3.594 ± 1.317 2.412 ± 0.405 

11 Channels 



 

 

 

  

 

 

 

 

  

 

The reconstruction is visualised in Error! Reference source not found.. Only 

representative classes of objects were chosen that display certain attributes of the 

reconstruction. The coloured fabrics have relatively distinct spectral signatures, due to 

differences in material and colouring, and thus can be quite accurately reconstructed.  

For black fabrics, the initially low signals lead to a less accurate reconstruction, as 

shown by a less smooth curve. The linen and the polyester display almost exactly the 

same spectral characteristics in the spectral coverage of the illumination, despite their 

differences in the spectral range from 700 nm upwards. our camera system is likely not 

to pick up on these features as the illumination does not cover this spectral range.  

Consequently, the reconstructed spectra of these two classes of objects are almost 

identical. The metrical differences to the original spectra are however still small, which 

leads to the high similarity in Error! Reference source not found.. 

For the fruit and vegetable, the input MSI data is more varied as the surfaces of the 

scanned materials are not homogeneous. As a result, the reconstruction shows some  

deviation from the original spectra but still adheres well to the HSI data. Specific 

features, such as the typical spike in reflectance from 680 - 730 nm caused by 

chlorophyll and referred to as the red-edge, is retained very well for the spinach. 

RMSE 0.128 ± 0.095 0.228 ± 0.143 0.219 ± 0.032 

SAM 0.032 ± 0.015 0.034 ± 0.013 0.046 ± 0.003 

SID 20.14 ± 3.436 5.553 ± 1.732 3.508 ± 2.912 

       Table 1: Reconstruction errors for the object groups. For 3 channels, channels 2, 6 and 

11 were used according to Figure 2 and for 6 channels these are 1, 3, 5, 7, 9 and 11. 



For the Macbeth chart, the colours show very distinct spectral reflectance and can 

therefore be reconstructed very accurately, reflecting the nature and the usage of the  

chart. Difficulties arise for the grey (neutral) and black patches, where the low intensity 

of the signal and their flatness leads to errors in the reconstruction. 

To further validate the quality of reconstruction, a Support Vector Machine (SVM) 

with a radial basis function (RBF) was trained to classify all 51 classes using 600 

samples of each object and 5% of each class trained and the rest to validate. The  

parameters C and 𝛾 of the SVM were trained using a grid search with 5-fold cross 

validation. The 51 classes were again grouped and the mean pixel-wise overall accuracy 

(OA) was calculated for each group and summarised in Table 2. 

 

  

 Original 3 Channels 6 Channels 11 Channels 

Fabrics 98.80 ± 2.89 86.84 ± 4.88 91.89 ± 3.28 93.10 ± 2.92 

Organic 99.81 ± 0.63 91.81 ± 1.78 98.62 ± 0.65 98.86 ± 0.57 

Macbeth chart 98.49 ± 2.89 98.55 ± 0.63 99.92 ± 0.08 99.91 ± 0.14 

OA 98.79 ± 2.58 93.22 ± 2.45 96.59 ± 1.41 97.45 ± 1.29 

Table 2: Comparison of classification using the original 256 bands; the reconstruction 

of these bands from 3, 6 and 11 channels. For 3 channels, channels 2, 6 and 11 were 

used according to Figure 2 and for 6 channels these were 1, 3, 5, 7, 9 and 11. 

SVMs were trained on the original 256 band HSI data and the reconstructed spectra 

using three, six and eleven channels from the MSI system. According to Table 2, we  

can again see that the reconstruction using eleven channels generates better results than 

the six-channel one. Specifically, the fabrics show the largest difference, 98.80% with 

the original data versus 86.84% with three channels, 91.89% with six-channel, and 

93.10% with eleven-channel. For the organic materials, the classification accuracy is 

almost the same for six and eleven channels but almost 7% lower with three channels.  

For the Macbeth chart, the classification seems to improve only by a small margin, even 

with three channels, a very high accuracy can be achieved. The decrease in 

classification accuracy for fabrics is likely attributed to the reduced intensity, as 

mentioned above, in the black fabrics. Even though the reconstructions are very close 

to the originals, they are almost identical to each other. Consequently, a low  



reconstruction error is achieved despite the decreased classification accuracy. When 

adding additional channels, subtler variances can be detected and signals with a low 

SNR can be better reconstructed. Likewise, for the organic materials, the surface of the 

objects is subject to more variation and simple RGB colour sensing does not seem to 

account for all the differences in the signals measured with an HSI system. For the  

Macbeth chart however, we see that the three RGB channels produce an almost identical 

classification after HSI reconstruction, which is likely due to the fact that the chart itself 

is designed to calibrate RGB imaging systems and therefore only displays spectra that 

are produced by primary colours. Using three RGB channels accounts for almost all 

variances, where adding additional channel only helps marginally improving the  

classification accuracy. 

4. Conclusion 

In conclusion, we have shown that customary and adaptive RGB LED illumination 

can be integrated with a monochromatic camera to achieve a very cost efficient and 

mobile MSI camera system. The training of a neural network that maps MSI data to  

HSI prior is conducted by reconstructing hyperspectral profiles of different objects. 

Despite RGB LEDs having only three distinct peak wavelengths, mixing them with 

various intensities allows the generation of sufficient variability to accurately 

reconstruct the HSI data and therefore adds additional information to the predicative 

system compared to only three-channel RGB illumination. The physical advantages in  

using RGB LED technology include its availability and maturity, cost effectiveness, 

and flexible configuration. Additionally, LED allows ring-shaped (or other 

arrangement) illumination that enables uniform lighting for each colour channel with 

no additional measures to eliminate artefacts such as chromatic shadows that are caused 

by angular non-uniformity. For optimal reconstruction, eleven channels were used with  

a framerate of 18 MSIs per second and a high spatial pixel resolution. The integration 

rate can be further increased by sacrificing some of the reconstruction quality. It is also 

shown that a reconstruction with six channels and a framerate of 33 MSIs per second 

still generate very good results. The reconstruction is tested on 3 groups of objects, as 



detailed in the experimental results. It shows that a highly accurate reconstruction is  

possible when the original HSI spectra are sufficiently distinct. Errors occur when the 

measured signal is low in intensity and with high similarity in the spectral range (400-

650 nm) covered by the RGB LEDs, regardless of the differences in the spectral region 

outside. A remedy or improvement is to increase LEDs to cover a broader spectral 

range. Due to the nature of supervised machine learning, this system is reliant on HSI  

prior and requires pre-training on spectral signatures of imaged objects to be functional. 

Given that many HSI applications are very specific and limited in the number of 

occurring spectra, this poses not a major disadvantage. 

Importantly, this prototype system promises a cost effective and mobile 

hyperspectral imaging setup with a high spatial pixel resolution and framerate. The  

setup is flexible in configuration and can be trained for various applications. Future 

work will further improve the illumination design to cover broader spectral peaks, 

especially the range above 650 nm, to enable more applications. 
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Figure 1: Architecture of the MSI system. a) Schematic architecture b) fron view 

with lens and LED ring c) top view showing all components.  

 

Figure 2: Measured irradiances that correspond to the colours indicated. 

 

Figure 3: Design of the neural network. Orange dots symbolise sigmoid activation 

functions.  

 

Figure 4: Reconstruction RMSE for different number of channels. 

 

Figure 5: Imaged objects are classified into the groups of a) coloured fabrics, b) fruit 

and vegetable, and c) Macbeth chart, with spectra of some representative objects.  
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