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Abstract: 

GMAW (Gas Metal Arc Welding) of titanium is not currently used in industry due to the high 

levels of spatter generation, the wandering of the welding arc and the consequent waviness 

of the weld bead. This paper reports on the use of laser welding in conduction mode to stabilize 

the CMT (Cold Metal Transfer), a low heat input GMAW process. The stabilization and 

reshaping of Ti-6Al-4V weld beads was verified for laser hybrid GMAW bead on plate 

deposition. The laser beam was defocused, used in conduction mode, and was positioned 

concentric with the welding wire and the welding arc (CMT). 

Finally, the results obtained for bead-on-plate welding were applied to an additively 

manufactured structure, in which a laser-hybrid stabilized sample was built and then evaluated 

against CMT-only sample. This work reveals that laser can be used to stabilize the welding 

process, improve the weld-bead shape of single and multiple layer depositions and increase 

the deposition rate of additive manufacture of Ti-6Al-4V from1.7 kg/h to 2.0 kg/h. 

Keywords: 

Laser welding, GMAW, stabilization, additive manufacturing, Ti-6Al-4V 

Introduction: 

Titanium is a metal highly used by the aerospace and aviation industries. These industries 

use very expensive subtractive techniques e.g. milling or turning to make final components, 

with loss of material of nearly 90% in swarf in some components (Allen, 2006).  

A shift in this paradigm is being introduced by additive manufacturing techniques; these can 

increase the usage of titanium by adopting the layer-by-layer approach, thus eliminating or 

minimizing material waste. This paper is focused on trying to solve the issues with Gas Metal 

Arc Welding (GMAW) of titanium (Ti-6Al-4V), to introduce it as an alternative arc technology 

for the deposition of this material by Wire plus Arc Additive Manufacture (WAAM). This 

freeform metallic additive manufacturing process consists of using a welding process and a 

robotic manipulator to make near-net-shape components, layer by layer. WAAM can use 

several metallic alloys e.g. steel, aluminium, copper and Ti-6Al-4V to generate its final 
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components. As reported by (Williams et al., 2016) WAAM uses either Gas Tungsten Arc 

Welding (GTAW) (Bermingham et al., 2019) or Plasma Transferred Arc (PTA) (Mcandrew et 

al., 2018) for deposition of Ti-6Al-4V. The choice cannot fall on GMAW due to the instability, 

wandering and spatter generated by a GMAW arc when welding Ti-6Al-4V. TIG and PTA are 

effective techniques to deposit Ti-6Al-4V but they introduce extra considerations when 

compared with GMAW welding, the wire feeding is external, and so not coaxial, making it 

difficult to predict accurately the deposition path for complex parts. Moreover, these welding 

processes (PTA and GTAW) have a lower productivity (deposition rate) when compared with 

GMAW deposition. All of these disadvantages made the present investigation relevant to 

increase the productivity of WAAM, by combining GMAW with a laser in conduction mode to 

stabilize the arc. 

Electric arc physics, in particular welding physics, have been studied for several years (Jüttner, 

1997). The cathode spot is the main place where the current is transferred through an electric 

arc (Shinn et al., 2005). When GTAW is used for titanium, the cathode spot is located at the 

tungsten electrode. For this reason it is standard procedure to sharpen the electrode prior to 

welding to obtain a pointed tip to maintain the cathode spot restricted to this particular position 

(Guile, 1971). The fixed position of the cathode spot generates a stable weld without any arc 

wandering and spatter generation. 

However, when GMAW is used, the polarity of the welding process is reversed and the 

cathode spot is now positioned on the titanium workpiece. Due to titanium’s properties (boiling 

temperature, work function, thermal conductivity, and emissivity) being of intermediate 

magnitude, and the current density needed to transfer metal from the electrode to the 

baseplate, a thermionic welding arc with a cathode spot is generated at the workpiece (Shinn 

et al., 2005). Thermionic spots cover a broader area of the cathode, unlike non-thermionic 

cathodic spots like steel and aluminium, in which the arc is constricted to one or several highly-

mobile spots, associated to enhanced evaporation. The welding arc has a single cathodic 

spot, with low period of oscillation, resulting in high level of instability and spatter generation 

to the deposited weld bead (Eagar, 1990). 

To address the issue of cathode spot wandering and inconsistent metallic deposition in GMAW 

deposition of Ti, several approaches have been considered: changing the welding waveforms 

or using auxiliary processes to root the cathode spot, such as a laser. 

(Li et al., 2001) used a modified active control to supress the spatter generated during pulsed 

GMAW of Ti. This control system consisted of a modified welding waveform, which uses a 

double-pulse of current that can detach the Ti droplet; this happens at lower levels of current 

when compared to traditional pulsed GMAW. Despite its success, this approach was only 

applicable to GMAW pulsed transfer, which generates higher heat-input than short-circuiting 

transfer. The higher heat-input can hinder the application of titanium welding to thin plates or 

some AM components. GMAW short-circuiting transfer was researched by (Sun et al., 2015) 

and was focused on droplet transfer in Cold Metal Transfer (CMT) on welding Ti-6Al-4V alloy. 

CMT is a low heat-input short-circuiting process that uses a reciprocating welding wire to 

control the droplet detachment into the weld pool. CMT has been successfully used as a 

deposition process to build WAAM components made of steel and aluminium (Kazanas et al., 

2012) (Sun et al., 2015), showing that in principle CMT could be used to deposit Ti-6Al-4V too. 

However, the authors found the phenomenon of arc blow, i.e. when the cathode spot is 

relocated from the baseplate to the top of the deposited weld seam. Even though this issue 
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was overcome by increasing the travel speed of the deposition, such solution could not be 

applied to WAAM due to the geometrical constrains of the weld bead shape and process 

parameters to maintain a stable deposition (Martina et al., 2012). 

(Li et al., 2009) studied high power hybrid laser-GMAW of commercially pure Ti and increased 

the productivity and mechanical properties of Ti welding, achieving a maximum welding speed 

of 9 m/min and a better combination of strength and ductility when compared to GMAW 

welding. Similar conclusions were found by (Murakami et al., 2012) with a maximum welding 

speed of 2 to 3 m/min when welding a single pass 6 mm thick commercially pure Ti; the authors 

also observed a strengthening effect in the joint. Hybrid laser-GMAW was not only investigated 

in terms of productivity increase and mechanical properties, but also to resolve the instability 

of GMAW welding (Denney et al., 2005). In the latter study, a Continuous Wave (CW) Nd:YAG 

laser was used at the leading edge of the weld pool to stabilize the GMAW cathodic spot. The 

laser power and beam diameter were varied, from 0.3 mm to close to 6 mm and from 200 W 

to 2000 W respectively to study the effect of each parameter on the stabilization of the cathode 

spot. The study showed that it was possible to use a CW laser to stabilize the weld bead 

deposition and to root the cathodic spot, preventing its lateral displacement and consequently 

prevent the waviness of the deposited weld bead. It was also shown that there is a minimum 

level of power density required to achieve the stabilization of the cathode spot and that this 

value is dependent on the laser beam diameter. This study was only for laser stabilization of 

Ti-6Al-4V welding, therefore no conclusions were drawn with regards to suitability for AM 

applications. 

The present work explores the possibility of using a CW fibre laser to stabilize the CMT single 

and multiple-layer depositions of Ti-6Al-4V. CMT welding was chosen for the hybrid laser-arc 

welding process due to its current application in WAAM of steel and aluminium components. 

CMT is used in WAAM of steel and Al due to its low heat input and consequently distortions 

and relative high deposition rate when compared to PTA. In addition to the stabilization of the 

Ti deposition, the influence of the hybrid process (laser) on the geometrical aspects of the 

CMT weld beads and the possibility of application of this hybrid technique to manufacturing of 

WAAM components will be evaluated. 

Experimental Procedure 

The welding torch was perpendicular to the substrate and the contact tip to workpiece distance 

was maintained constant at 13.5 mm. The welding equipment used was a Fronius Trans pulse 

synergic 5000 power source with CMT mode selected. The welding arc parameters (voltage 

and current) and wire feed speed were monitored by a Triton Electronics AMV5000 real time 

weld analyser at a frequency of 5000 Hz. The collected data was post-processed to verify the 

stability of the welding process. 

A Ti-6Al-4V welding wire of 1.2 mm diameter and matching 8 mm thick Ti substrate were 
used throughout the experimental work. 
 

Table 1 - Wire and substrate chemical composition in weight percentage 

 Ti Al V Fe O C N H Y 

Wire Bal 6.16 3.86 0.2 0.15 0.038 0.0079 0.0016 <0.0005 

Substrate Bal 6.28 4.13 0.13 0.13 <0.01 <0.01 0.006 <0.001 
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A CW IPG fibre laser with 8 kW of maximum power was used out of its focal position to achieve 

a 5 mm beam diameter.; The laser beam was concentric and aligned with the centre of welding 

arc (figure 1). The angle between the laser beam and the baseplate was set at 35°. 

 

Figure 1 – Experimental setup of the hybrid laser-CMT welding process a) schematic 

representation, b) picture from the experimental setup.  

A 200 mm long trailing shield, providing pure argon with a flow rate of 40 l/min, was attached 

to the CMT welding torch to prevent oxidation of the deposited metal. 

Several hybrid laser-CMT bead on plate welds and multi-layer depositions were produced. 

The corresponding deposition parameters are shown in table 2. 

 

Table 2 – Welding parameters for single layer and multilayer deposition. 

Sample 
Multilayer 
deposition 

CMT welding Laser welding 

Travel 
speed 

(m/min) 

Wire 
feed 

speed 
(m/min) 

Beam 
diameter 

(mm) 

Power 
(kW) 

Power 
density 

(kW/cm2) 

1 

No 
 0.5 

 
9.0 

 
5.0 

 

0.0 - 

2 1.0 5.1 

3 1.5 7.6 

4 2.0 10.2 

5 2.5 12.7 

6 3.0 15.3 

7 3.5 17.8 

8 
Yes 

0 - 

9 2.5 12.7 

 

The deposited samples (single and multiple layers) were sectioned and mounted in cold 

setting epoxy resin for metallographic analysis. These samples were then ground using an 

automatic grinding machine, using silicon carbide papers, and finally polished using a mixture 

of oxalic acid and a 0.04 µm suspension of colloidal silica. The samples were etched using 

hydrofluoric acid to enable observation of the microstructure and have better definition of the 

layering bands. The samples were observed under an optical microscope to evaluate their 

geometrical features. 
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Results: 

Weld bead stability 

The weld bead stability was determined by evaluating maximum and minimum deviations from 

the central line of each weld bead. The weld width changes with laser power therefore the 

relative waviness was calculated. The relative waviness was calculated by the difference 

between the maximum and the minimum point of waviness divided by the width of the weld 

bead.  

Table 3 – Evaluation of the waviness of single layer deposition samples. 

Sample Weld width 
variation 

(mm) 

Weld 
width 
(mm) 

Relative 
waviness 

(%) 

1 1.1 3.9 26.8 

2 0.5 6.3 8.5 

3 0.7 7.3 9.6 

4 0.6 8.0 7.7 

5 0.8 8.2 9.9 

6 0.9 9.3 10.2 

7 1.5 10.4 15.6 

 

The waviness of the weld bead is a direct measurement of the wandering of the cathode spot 

and consequently of the instability of the welding process. Sample 1 (no laser) had the 

maximum relative waviness, whilst all of the hybrid samples had lower relative waviness. This 

demonstrates that the application of laser energy stabilizes the deposition, with a significant 

decrease in the relative waviness of the deposited metal. 

The weld bead stability was also analysed based on the transient electrical waveforms 

obtained during deposition. Figure 2 shows the transient data from sample 1 for the interval of 

time between 5 and 5.5 seconds counting from the start of the deposition. 
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Figure 2 – Voltage and current transient waveform for sample 1 between 5 and 5.5 

seconds a) and between 5.1 to 5.13 seconds b). 

The CMT transient waveform is composed of two different pulses per cycle, one with lower 

current, corresponding to the short circuiting phase, and a second one where the current and 

voltage are higher during the arcing phase of the waveform. The same waveform pattern was 

also reported by (Sun et al., 2015) where the short circuiting increase in current was justified 

by the greater surface tension of Ti-6Al-4V when compared to steel. The stability of the CMT 

waveform was still acceptable without the use of any laser energy, however this was only true 

for a short section of the full transient data of the weld. To evaluate the stability of the full weld, 

scatter plots of the voltage and current were generated for all the transient points recorded for 

the entire weld bead. 
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Figure 3 – Voltage and current scatter plots with the increase in laser power density a) 

0 kW/cm2, b) 5.1 kW/cm2, c) 7.6 kW/cm2, d) 10.2 kW/cm2 e) 12.7 kW/cm2, f) 15.3 

kW/cm2and g) 17.8 kW/cm2. 

B 

A 
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These plots also show both phases of the waveform, short circuiting and arcing, depicted by 

the elliptical areas shown in the graph. The short circuiting phase has lower values of current 

and voltage and is depicted by the lower elliptical area of the plots (Figure 3 a – area A). The 

Arcing phase has higher values of current and voltage and so it is depicted in the voltage 

current plots by the elliptical area closer to the top of the graphs (Figure 3 a – area B). The 

plots reveal some instability in the two first welds due to the higher scatter in area B of (Figure 

3 a) and b). This shows that either when the laser is not in use, or the laser energy is low, the 

welding process is not completely stabilized. With the increase of the laser power density, the 

instability disappears and the scatter in the plots is reduced, showing better stability of the arc 

parameters (Figure 3 c to f). The maximum voltage of the ellipse B decrease with the increase 

in laser power. When the power density increases to its maximum (Figure 3 g), the scatter plot 

loses the two elliptical shapes, showing the loss of stability of the process in the arcing phase 

of the waveform and an increase in spatter was also noticed in this particular sample. This 

could be due to the formation of a keyhole by the addition of the laser and arc energy.  

The electrical instability match the wandering of the welding process in sample 1 and 7 (Figure 

3 a) and g). However, sample 2 (Figure 3 b) shows some electrical instability that is not verified 

by the wandering of the weld bead. The same result was observed by (Shinn et al., 2005) who 

found the necessity of having a minimum of 7 kW/cm2 of laser power density to stabilize the 

welded samples with a beam diameter between 3 and 5 mm. 
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Figure 4 – Video frames from a non-stabilized CMT weld and a laser hybrid CMT weld. 

Figure 4 shows images of samples from previous welds made as a preparation for this paper, 

they are not from the samples used in this paper. In these figures is possible to see the 

instability of the welding arc of a non-stabilized CMT welding arc, against a stabilized weld. 

The arc from the non-stabilized weld starts to the left of the welding wire line and finishes at 

3.84s at the right of it, restarting again at its left. This captures the lateral displacement of the 

welding arc during the CMT process and the waviness present in the resulting welds. The 

laser hybrid weld shows a very stable welding arc and no lateral movement during the full weld 

bead, resulting into a stable weld with lower waviness. As the laser energy is added to the arc 

region an increase in the temperature field particularly at the centre of the weld pool generates 

a hot spot that roots the cathodic spot and consequently the welding arc stopping its lateral 

wandering 

Weld bead geometry 

The weld bead geometry of the welded samples was changed during the experimental trials, 

the minimum weld width was verified by sample 1 (CMT only sample) with 3.9 mm of width. 

Sample 7 (CMT + laser) was the wider sample with 10.4 mm of width (Table 3). There is an 

evolution of the sample width with the increase in laser power for all the samples while the 

beam diameter was kept constant as 5 mm. The evolution of the weld width with the increase 

of the power density shows that the laser beam diameter is not controlling the width of the 
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welded samples and it is power density or the total energy of the process that determines the 

weld width. 

The energy values of the laser were calculated using the specific point energy: 

 𝐸𝑠𝑝 = 𝑃𝐷. 𝑡𝑖. 𝐴𝑟𝑒𝑎𝑏𝑒𝑎𝑚         (1) 

Where 𝐸𝑠𝑝 is the specific point energy (J), 𝑃𝐷 is the laser power density (kW/cm2), 𝑡𝑖 the 

interaction time (s) and 𝐴𝑎𝑟𝑒𝑎𝑏𝑒𝑎𝑚 (mm2) the area of the beam that irradiates the surface of 

the metal (Suder and Williams, 2011). The specific point energy is related to the full energy of 

the laser beam that is provided to the workpiece. 

In order to give a comparison of both energies (laser and arc), for CMT the heat input was 

normalised using the same diameter as the laser beam, by multiplying the heat input by the 

laser beam diameter: 

 𝐻𝐼 = 𝜂.
60.𝑉𝐼

1000𝑣
∗ 𝐷𝑏𝑒𝑎𝑚          (2) 

Where 𝐻𝐼 is the heat input (J/mm), 𝜂 is the efficiency of the welding process (for CMT the 

value is 0.85 used by (Pépe et al., 2011), 𝑉 is voltage (V) and 𝐼 is current (A), 𝑣 is the travel 

speed (m/min) of the weld and the 𝐷𝑏𝑒𝑎𝑚 is the laser beam diameter.  

Figure 5 shows how the energy within the laser spot area compares between the laser and 

the CMT processes, for different levels of laser power.  

 

Figure 5 – Arc and laser energies used during the experimental trials. 

The arc energy of the laser and CMT processes are similar when the laser power density is 

close to 10 kW/cm2. 

The weld bead shape is changed considerably since the first hybrid weld (5 kW/cm2 of power 

density) showing that is possible to reshape the weld bead without any significant increase in 

the global energy values (Figure 6). 
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Besides affecting the weld width, the laser influenced also the weld bead shape; indeed there 

was a decrease in the weld bead’s contact angle, revealing a better wetting of the substrate 

and, as shown before, also an increase in the width of the welded samples (figure 6).  

  

 

 

As the laser power density increases, the heat affected zone also increases due to the higher 

energy added to the sample. This can be seen in the macros shown in figure 6. 

Deposition rate 

The cross-sectional area of the weld bead also increased with the increase of the laser energy. 

Due to the higher laser energy, there was an increase in the penetration area of the weld bead. 

However, a slight increase in the reinforcement area was also observed.  

Figure 6 – Contact angle measured with the increase of laser power density, for single 

layer depositions. 
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Figure 7 – Cross sectional areas (reinforcement, penetration and total) with the 

increase of laser power density. 

This can only be explained by an increase in the wire feed speed automatically introduced by 

the welding power source, even though the wire feed speed was always set to the same value 

of 9 m/min. This automatic adjustment was caused by the increase in laser power density in 

the CMT + Laser hybrid process. The additional laser energy induced more melting of the Ti-

6Al-4V welding wire and therefore, to obtain the short circuiting phase characteristic of the 

CMT welding process, the wire feed speed was automatically increased. This happens 

because the control of the CMT process is focused on the welding wire movement. This can 

be verified in Figure 8 where the measured wire feed speed and pulsing frequency are plotted 

against the laser power density used during the single layer deposition. 

 

Figure 8 – Wire feed speed and frequency evolution vs laser power density. 

Figure 8 reveals a good relationship between short circuiting frequency and measured wire 
feed speed.  
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As mentioned before, the introduction of the laser energy is reducing the voltage of the main 
arcing phase. As consequence, and to maintain good welding conditions, the power source 
is increasing the wire feed speed to cope with the changes in heat input transferred to the 
work piece, thus effectively increasing the deposition rate of the process. With the measured 
wire feed speed it is possible to calculate the deposition rate: 
 

𝑑𝑒𝑝 𝑟𝑎𝑡𝑒 =  60. 𝜌. 𝑤𝑓𝑠. 𝑤𝑤𝑎 

Where ρ is material density (kg/m3), 𝑤𝑓𝑠 is wire feed speed (m/min) and 𝑤𝑤𝑎 is the welding 
wire cross sectional area (m2). Using 4420 kg/m3 as Ti-6Al-4V density the following plot can 
be generated. 

 

Figure 9 – Increase in deposition rate with the increase in laser power density.  

As the deposition rate is calculated taking into account the measured wire feed speed, the 

graph shows the same trend observed in Figure 9. There was an increase in the deposition 

rate with the laser power density, in spite of identical set-values of the wire feed speed (9 

m/min). The minimum deposition rate of 1.53 kg/h was obtained for simple CMT welding 

process; the maximum deposition rate of 1.95 kg/h was obtained for the hybrid process using 

a power density of 15.3 kW/cm2 (+27%). This is result can be compared with the results 

obtained by (Martina et al., 2012) who used PTA to obtain a maximum deposition rate of 1.8 

kg/h. 

Multiple layer deposition 

The same approach was applied for multiple layer deposition to understand if the same results 

were obtainable for the additive manufacturing of Ti-6Al-4V. Two walls were built with the 

parameters shown in table 2 (samples 8 and 9). Figure 10 shows that the deposition and heat 

input parameters were very consistent during multiple layer deposition.  ACCEPTED M
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Figure 10 – Deposition rate and CMT heat input for each layer of the multiple layer 

deposited samples (Sample 8 and 9).  

The multilayer depositions demonstrate once again that the variation in deposition rate by the 

hybrid laser-CMT welding is not due to changes in the arc heat input. Sample 9 (hybrid 

process) had an average of 10% lower arc heat input, however its deposition rate is 18% 

higher than sample 9.  
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Figure 11 – Cross sectional metallographic samples and side views for a) and c) 

multilayer CMT deposition and b) and d) multilayer CMT laser hybrid deposition.  

Figure 11 a) shows the typical waviness due to arc wandering in CMT welds in all of the 

deposited layers. On the other hand figure 9 b) shows a stable deposition in all of the deposited 

layers. The waviness present at the side of the wall in figure 9 a) is the main reason why CMT 

welding is not used in WAAM, as it decreases the effective wall width (Kazanas et al., 2012). 

After machining, the maximum width of the wall that could be produced by CMT process would 

be considerably less than that of the wall produced by hybrid laser-CMT (figure 9b). It would 

only be possible to obtain an effective wall width of 2.9 mm from a maximum wall width of 6.1 

mm for the CMT wall Figure 10 a), while it would be possible to extract an effective wall of 5.9 

mm from a 7.2 wall width for the hybrid wall. This shows an efficiency of 48% for the CMT 

deposition against an 82% efficiency for the hybrid wall. The dimensions of both walls are 

different even though the CMT parameters used were similar. The wall that was stabilized by 

the laser has lower height and is wider than the non-stabilized wall. This can be explained 

once again by the higher combined heat input of the hybrid laser-CMT building process 

compared to that of the single CMT process. The presence of columnar grains at the cross-

section of the wall produced by hybrid laser-CMT process reflects the higher heat input present 

during this build. (Donoghue et al., 2016) observed a correlation between the columnar grains 

and the heat flow for WAAM process of Ti-6Al-4Al. 
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Conclusions: 

This work shows that not only it is possible to stabilize a CMT weld of titanium using a fibre 

laser in conduction mode, but it is also possible to change the geometry and increase the 

deposition rate of the CMT process. This work also shows that all the above characteristics 

found for single layer process are also transferable to multiple layer deposition. 

In summary the main findings of this work are: 

 The stabilization of CMT welding of Ti-6Al-4V can be achieved by using a laser concentric 

with the arc and defocused on the substrate;  

 The concentricity of the laser beam and the welding wire can simplify the tool path creation 

for AM manufacturing when compared with off-axis deposition methods as PTA.  

 The hybrid laser-CMT process can be used to modify the weld bead shape or geometry of 

the deposited metal for single and multiple layer deposition;  

 The deposition rate of the CMT increased by 27% when the laser is added into the process. 

 WAAM of hybrid CMT has an increase in efficiency from 48% to 82% when compared with 

CMT WAAM of Ti-6Al-4V. 
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