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Abstract 

The accurate prediction of flow regimes is vital for the analysis of behaviour and operation of 
gas/liquid two-phase systems in industrial processes. This paper investigates the feasibility of a 
non-radioactive and non-intrusive method for the objective identification of two-phase gas/liquid 
flow regimes using a Doppler ultrasonic sensor and machine learning approaches. The 
experimental data is acquired from a 16.2-m long S-shaped riser, connected to a 40-m horizontal 
pipe with an internal diameter of 50.4 mm. The tests cover the bubbly, slug, churn and annular 
flow regimes. The power spectral density (PSD) method is applied to the flow modulated 
ultrasound signals in order to extract frequency-domain features of the two-phase flow. Principal 
Component Analysis (PCA) is then used to reduce the dimensionality of the data so as to enable 
visualisation in the form of a virtual flow regime map. Finally, a support vector machine (SVM) 
is deployed to develop an objective classifier in the reduced space. The classifier attained 85.7% 
accuracy on training samples and 84.6% accuracy on test samples. Our approach has shown the 
success of the ultrasound sensor, PCA-SVM, and virtual flow regime maps for objective two-
phase flow regime classification on pipeline-riser systems, which is beneficial to operators in 
industrial practice. The use of a non-radioactive and non-intrusive sensor also makes it more 
favorable than other existing techniques. 

Keywords: Doppler ultrasound, Support vector machine (SVM), Probability density function 
(PDF), Principal component analysis (PCA), S-shaped riser 

 
1 Introduction 

Two-phase gas-liquid flow is encountered frequently in industrial operations such as nuclear 

power plant steam generators, boilers, chemical reactors and petroleum transportation (Julia and 

Hibiki, 2011). The different types of interfacial structures between different phases of fluids, 

known as multiphase flow regimes, can be geometrically complex and varying. The flow can be 

steady or unsteady, turbulent or laminar, gas/liquid segregated or mixed. Gas can flow within the 

liquid as bubbles or liquid can flow within the gas as droplets (Falcone et al., 2002).  

The governing flow regime is influenced by many parameters such as gas/liquid superficial 

velocities, gas/liquid densities, gas/liquid surface tension, gas/liquid viscosities, pipe diameter, 
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and pipe inclination (Thorn et al., 2012). Traditionally, flow regime maps are used to illustrate the 

dependency of the flow regime on two quantities, which are usually the superficial gas and liquid 

flow rates (Falcone et al., 2009). Yet, characterising and measuring two-phase flow is still 

challenging due to its inherently complex nature. Thus, the problem of flow regime identification 

remains relevant. 

Flow regime identification methods can either be subjective techniques (direct observation) or 

objective techniques (scientific or indirect determination) (Rouhani and Sohal, 1983). Subjective 

or direct techniques involve the operator visually interpreting an image of the flow to classify it 

into a flow regime. Objective or indirect determination is a two-part process. The operator must 

first utilise a suitable experimental methodology to measure flow parameter features correctly and 

then analyse the flow features objectively to categorise the flow regime (Juliá et al., 2008).  

Currently, gas/liquid two-phase flow regime identification is mainly accomplished by subjective 

means such as direct visual observation and via cameras (Peddu et al., 2017). Hence, the accurate 

classification of flow regimes is yet to be standardised, and it mostly depends upon the 

interpretation of individual visual views, which can lead to inconsistency in flow regime 

identification due to human subjectivity. The main drawback of visual observations is that the 

pictures are often confusing and challenging to interpret, in particular when handling high flow 

velocities even with high-speed cameras. Moreover, flow channels are often opaque, so flow 

identification by visual means is impossible (Barnea et al., 1980). Although there are numerous 

flow regime identification approaches already studied for two-phase gas/liquid flow, industrial 

acceptance remains challenging. Subjective techniques cannot facilitate industrial automation 

where many important decisions depend on the governing flow regime. 

Significant efforts have already been made to develop flow regime identification using objective 

methodologies. Several research studies have used a phase distribution measurement approach. 

One of these methods is the use of invasive-point sensors such as pitot tubes, fibre-optic or 



 

 

electrical probes and hot-wire anemometers (Barnea, 1987). The major drawback to these 

methods is that the sensors disturb the flow fields during the measurement of void or pressure 

fluctuations (Dyakowski, 1996). Hence, non-invasive means must be deployed to differentiate the 

boundaries between diverse flow regimes. 

Objective flow regime identification using a clamped-on, non-invasive sensor is of great interest 

in many industries. Non-invasive methods are highly attractive as they eliminate the need for 

immersion of instrumentation in the flow. Jones and Delhaye (1976) investigated and summarised 

different measuring methods applied to a two-phase flow of which few are employed directly to  

characterise the flow regime. For instance, Barnea et al. (1980) used an enhanced electrical 

conductance probe in two-phase near horizontal, horizontal and vertical flows to identify flow 

regime.  

Among the non-invasive sensors, radiation attenuation methods are more widely used in many 

industrial applications due to their reliability. Jones and Zuber (1975) studied an X-ray void 

measurement system for vertical two-phase flow in a rectangular channel; Salgado et al. (2010) 

achieved flow regime identification using gamma-ray pulse height distributions (PHDS) and 

artificial neural networks (ANNs); Blaney and Yeung (2008) analysed  probability distributions 

using a self-organising feature map and gamma densitometer data for multiphase flow regime 

identification; Sunde et al. (2005) proposed an enhanced method, which compares the 

visualisation of the intensity of gamma ray measurements at every flow condition. Generally, 

radiation attenuation methods based on gamma rays, X-rays and neutrons are already established 

online measurement systems. When compared with each other, the gamma densitometer has 

merits, such as high penetration and cost-effectiveness (Chaouki et al., 1997). However, the major 

drawback to these methods is their radioactive nature, which is hazardous. The need to increase 

the gamma source strength with an increase in density or the pipe wall thickness requires 

increased radiation protection and hence minimises its portability. 



 

 

Chakraborty et al. (2009) presented a novel ultrasonic method for two-phase flow void fraction 

measurement using an ultrasonic sensor and two signal processing techniques established on the 

time series analysis approach: the logical signal space partitioning and symbolic filtering. 

Although the theory on symbolic dynamic filtering was established, identification using pulse-

echo mode is not a full classification method of flow regimes, but rather of flow patterns (Jha et 

al., 2012). It was noted that more research needs to be carried out on experimental and 

computational work before applying the method in the industry. Another drawback to this method 

is that the set-up is invasive even though the ultrasonic method itself is non-intrusive. As an 

extension of the work by Chakraborty et al., (2009), Jha et al. (2012) presented the concept of 

implementing ultrasonic pulse echoes in a clamped-on set-up in connection with symbolic 

dynamic filtering for deployment in the industries. 

Regardless of the prospect of using ultrasonic pulse-echo for flow regime identification, the 

method is based on computational models. The computational models apply a set of non-linear 

equations which are frequently simplified for flow regime identification. In practice, the 

simplified equations are difficult to implement since the knowledge of various flow parameters is 

required, such as pipe thickness and pipe diameter. The accuracy of these equations is also 

compromised when flow parameters deteriorate with time (Meribout et al., 2010). In addition, the 

ultrasound pulse-echo method is limited by the maximum velocity that it can measure due to the 

Nyquist criterion (Evans and McDicken, 2000). 

Doppler ultrasonic sensors can also achieve non-invasive flow velocity measurement. This 

technique is ubiquitous in the medical field. The method utilises the shift in frequency due to flow 

velocities to predict the flow regime (Übeyli and Güler, 2005). The applicability of continuous 

wave ultrasonic Doppler (CWUD) in two-phase flow velocity measurement was investigated by 

Kouam et al. (2003). They suggested the use of frequency resolution methods to resolve the issue 



 

 

of the presence of coloured noise in velocity measurement, which otherwise poses a severe 

problem to the classical frequency estimators.  

In this paper, a non-intrusive and non-radioactive method for the objective identification of two-

phase gas/liquid flow regime is proposed using output signals from a commercial CWUD flow 

metering device, and the machine learning (ML) approaches. The method is based on the 

assumption that the gas liquid flow patterns will have their unique signatures on the output signals 

of the CWUD device when subjected to the two-phase flows. On the other hand ML solutions to 

objective flow regime identification have already been proposed, such as (Xie et al., 2004; Hanus 

et al., 2017; Wang and Zhang, 2009; Trafalis et al., 2005). In this work, to better facilitate the 

applicability to industrial practice, principal components analysis (PCA) is used to visualise the 

information from intrinsic flow regime features in 2-dimensional space. To this end, a mapping 

is created so that in 2-dimensions, the mapped samples can be found clustered according to their 

respective flow regimes. Support Vector Machine (SVM) is then applied to the samples in the 2-

dimensional space to create boundaries between the clusters. This leads to a virtual flow regime 

map that serves as a visual aid to human operators for objective flow regime identification (Eyo 

et al., 2019). In summary, the main contributions of this paper are as follows: (i) we explore the 

feasibility of visualizing frequency-domain features from ultrasonic Doppler signals in a 2D 

virtual flow regime map; and (ii) we make the first known effort towards the applicability of 

continuous wave Doppler ultrasound and the SVM to objectively identify flow regime in an S-

shaped riser. By using safer and more advanced techniques for two-phase flow measurement and 

instrumentation, industries can enhance production, achieve better process performance, and 

hence, have economic advantages. 

This paper is organised as follows: Section 2 presents the sensor principle and the algorithm for 

CWUD. In Section 3, the experimental method used in this study is described. Signal analysis 



 

 

using ML approaches are also discussed. In Section 4, the results and discussion of the analysed 

data are presented. Finally, conclusions and future work are given in Section 5. 

 

 

2 Measurement Sensor and Algorithm 

The Doppler shift (or Doppler Effect) is the frequency variation of an acoustic wave when 

movement exists between the acoustic receiver and the source, where the change in frequency is 

proportional to the acoustic source velocity (Weinstein, 1982). Thus, the velocity of the acoustic 

source is obtained by calculating the frequency shift between the acoustic receiver and the source 

(see Fig. 1(b)). In the ultrasonic Doppler flowmeter, illustrated in Fig. 1(a), a fixed-frequency 

acoustic beam is released continuously from the transducer into the flow. The beam is then 

reflected by the moving scatterers in the fluid, which could be bubbles in the flow (Chivers and 

Hill, 1975). Another ultrasonic transducer receives the scattered acoustic beam so that the velocity 

of the fluid can be estimated with the frequency shift based on the Doppler Effect. The 

mathematical description could be found elsewhere, like e.g Evans et al (1989), but is included 

here for completeness. 

 

Figure 1: Ultrasound Doppler principle (Meire and Farrant, 1995) 



 

 

First, assume that the signal transmitted is  

 ��(�) = ��cos (���) (1) 

and that the corresponding received signal from one of the scatterers is 

 ��(�) = ��cos ({�� + ��}� + ��) (2) 

where �� = 2��� is the angular frequency of the transmitted signal,  �� = 2��� is the amount of 

shift in the angular frequency, and �� is the phase shift based on the scatterer distance between 

the receiver and the transducer (Evans et al., 1989). 

Multiplying the two signals electronically results in: 

 ��(�)��(�) = ���� cos(���) cos({�� + ��}� + ��) (3) 

 ��(�)��(�) =
����

2
[cos(��� + ��) + cos({2�� + ��}� + ��)]. (4) 

The resulting signal is then low-pass filtered to remove the 2�� source frequency, leaving only the 

desired Doppler signal (Evans et al., 1989): 

 ��(�) =
����

2
cos(��� + ��). (5) 

Additional signal processing may be needed since the received signal has reflected an ultrasound 

of amplitude greater than the signal backscattered from the moving scatterers. Finally, the 

relationship between the Doppler shift �� and the velocity of the scatterer can be described as 

follows (Sanderson and Yeung, 2002): 

 �� = 2�� �� cos � (6) 

where ��  is the Doppler frequency shift, �� is the transmitted ultrasound frequency, � is the flow 

velocity average, and � is the angle between the flow velocity and the ultrasound beam. 



 

 

The continuous-wave ultrasonic Doppler (CWUD) used in this work is a DFM-2, a commercial 

non-invasive flowmeter developed by United Automation Ltd, Southport, U.K., using 500 kHz 

ultrasonic transducers. The flow meter’s output signal ranges 0-5 volt for flow velocities 0 – 6.1 

m/s. In this study the analogue signal was sampled by using NI PCI-6040E, a NI data acquisition 

system. To achieve a suitable bond between the external conduit surface and the sensor, a 

glycerine gel was applied to avoid air cavities trapped between the sensor and the conduit surface. 

For this study, it is worth to note that the CWUD device often give “velocity” readings fluctuating 

from negative to positive values. Those readings do not necessarily reflect the true velocities of 

the gas-liquid flows. Instead, they suggest a very complex interfacial structure in the two-phase 

flow. 

3 Test Rig and Experimental Procedure 

 Two-phase flow test rig set-up 

The experiment was carried out on a 2-inch S-shaped riser of the three-phase flow loop at 

Cranfield University oil and gas centre. The 2-inch flow loop is made up of a 40-m horizontal 

pipeline, 5.5-m vertical lower section, 1.5-m down-comer, 5.7-m vertical upper section and 3.5-

m topside section. This test rig is operated using the DeltaV (Fieldbus based supervisory, control 

and data acquisition) software provided by Emerson Process Management. The schematic 

diagram of the test rig is presented in Figure 2. The air used was supplied from a bank of two 

compressors connected in parallel. When both compressors are run in parallel, a maximum air 

flow rate of 1410 m3/hr FAD at 7 bar can be supplied. The air from the two compressors 

accumulates in an 8-m3 capacity receiver to reduce the pressure fluctuation from the compressor. 

Air from the receiver passes through a bank of three filters (coarse, medium, fine) and then 

through a cooler where debris and condensates present in the air are stripped from the air before 

it enters the flow meters. The water flow rate was supplied from a 12.5-m3 capacity water tank. 

The water was supplied to the flow loop by two multistage Grundfos CR90-5 pumps. The water 

pump has a duty of 100 m3/hr at 10 bar. The speed control is achieved using frequency variable 



 

 

inverters. The water pumps are operated remotely using DeltaV, a fieldbus based supervisory, 

control, and data acquisition software (SCADA). The water flow rate was metered by a 1-inch 

Rosemount 8742 magnetic flow meter (up to 7.36 l/s) and 3-inch Foxboro CFT50 Coriolis meter 

(up to 30 kg/s). 

After the experiment, air and water were separated in an 11.12-m3 horizontal three-phase gravity 

separator. After the separation in the three-phase separator and cleaning, the air was exhausted 

into the atmosphere while water from the three-phase separator entered a 1.6-m3 coalescer, where 

the water is further cleaned before returning to the storage tank.  

The 2-inch S-shaped flow loop test facility used in this experiment has a 54.8-mm internal 

diameter, 40-m length and 1.5-m downcomer. The 2-inch S-shaped flow loop test section has a 

transparent pipe for flow regime observation. The air flow-rate was adjusted by controlling the 

valves through the DeltaV to achieve the desired flow regime. 

         



 

 

 

Figure 2: Schematic diagram of S-shape rig 

A clamp-on non-intrusive CWUD transducer with an excitation voltage of  ±10V, operating at a 

carrier frequency of 500 kHz was attached to the top-side of the S-shaped riser as illustrated in 

Fig. 2. The ultrasound beam incident angle was 58° with respect to flow direction on the S-shaped 

riser. It is essential to place the ultrasonic sensor on the pipe at least 10 diameters away from tees, 

valves, and bends to prevent measurement errors from cavitation, swirls and turbulent eddies. A 

gel coupling agent was applied between the pipe wall and the Doppler transducer to make the 

ultrasound energy transmission easier. The electronics of the CWUD flow meter was adapted to 

record the voltage signals converted from the Doppler frequency shifts, for further analysis (see 

Fig. 3).  

Ultimately, the process variable being measured by the ultrasound Doppler is average flow 

velocity. Based on the pipe scale and flow velocity range, it was estimated that the value of the 

flow velocity fluctuates at a frequency no more than 2 kHz. Hence, in the LabVIEW data 



 

 

acquisition system, a sampling frequency of 10 kHz is appropriate with respect to the Nyquist 

criterion, since this is five times the estimated upper limit frequency of the flow velocity 

fluctuations. 

 

Figure 3: Doppler ultrasonic sensor and its auxiliary instruments 

 Flow regime classification methodology 

3.2.1 Feature extraction from ultrasonic Doppler signals 

Feature extraction is the most crucial step for any flow regime identification method. This step 

aims to find any information from the measurement data that can be used to best distinguish 

among flow regimes. For high-frequency data, such as the ultrasonic Doppler signals, features 

can be extracted either from the time domain or frequency domain. In this work, the widely used 

frequency-domain power spectral density (PSD) features are adopted (de Kerret et al., 2017). 

Given a stationary discrete-time signal �(�), the power spectral density function ��(�) of this 

signal is defined as the Fourier transform of the autocorrelation sequence ��(�) (Xie et al., 2004): 

 ��(�) = � ��(�) exp �−2��� 
�����

����  (7) 



 

 

where �� is the sampling frequency. Since the signal is only measured on a finite interval [0, … ,� − 1], Welch’s method is adopted to obtain the PSD, which is given as 

 ���(�) = � ���(�) exp �−2��� 
�������

������  (8) 

where the autocorrelation is (Xie et al., 2004): 

 ���(�) =
1� � �(� + �)�(�)

�����
��� . (9) 

Using Welch’s method in the same way Abbagoni and Yeung (2016), the PSD features were 

analysed from each sample of ultrasonic Doppler signals at various gas-liquid flow rates as 

presented in Fig. 4. A total of 130 data samples of different superficial gas and liquid velocities 

were recorded. Different flow regime labels were assigned to each data sample by visual 

observation, and ambient temperature conditions were recorded at the same time. Each data 

sample acquired consists of Doppler frequency shift signals recorded for a period of 900s. The 

data set was sub-divided into 70% for training (91 samples) and 30% for testing (39 samples).  

With a sampling frequency of 10 kHz, a Hanning window with a length 1,024 and a 75% overlap 

were used in the Welch method. 



 

 

 

Figure 4: Gas and liquid flow rates of all samples from the experiment 

Typical power spectral estimates from each flow regime are presented in Fig. 5. The relevant 

frequency spectrum ranges from 0 to 1200 Hz. In this range, the PSD spectrum is distinct in each 

flow regime. To obtain the actual features that can distinguish between the flow regimes, bands 

of a length of 120 Hz were taken from the power spectrum, and, following Abbagoni and Yeung, 

(2016) the mean PSD was computed on each band. Also, the maximum peak of the PSD, the mean 

weighted frequency � ̅ of the spectral power, and the variance of the spectral power equation ��� 

were computed for each sample. The last two are computed as 

 � ̅ = ∑ ����(��)�∑ ��(��)�  (10) 

 ��� =
∑ ��� − � ̅����(��)� ∑ ��(��)� . (11) 

In total, 13 features are obtained from the power spectrum of ultrasound signals: the mean PSD 

for each of the 10 frequency bands, the maximum peak of the PSD, �,̅ and ���. This approach is 

commonly used to distinguish each flow regime using features in the frequency-domain 

(Abbagoni and Yeung, 2016; Drahos̆ and C̆ermák, 1989). Our work takes the further step of taking 



 

 

these features and visualising them in 2-dimensional space, before the flow regime is classified 

by an efficient pattern recognition technique. 

 

Figure 5: Typical power spectra of each flow regime 

3.2.2 Dimensionality Reduction for Visualization 

In unsupervised machine learning, dimensionality reduction is a family of methods used to 

express the same information from a high-dimensional data set using only a few dimensions. In 

the previous subsection, the information as expressed in 13 features (dimensions) was taken from 

ultrasound Doppler signals for flow regime identification. Here, the same information is to be 

retained using only two dimensions by performing a dimensionality reduction method. Since this 

step is unsupervised, the information about the flow regime labels of the samples is not used yet. 

Nonetheless, the benefit of reducing the data to two dimensions is the ability to visualise the 

information in a 2-dimensional space. This leads to the realisation of a virtual flow regime map 

completely from ultrasound Doppler data.  

In our work, principal components analysis (PCA) is used for linear dimensionality reduction, 

which is by far the most popular (Van Der Maaten et al., 2009). In PCA, the information is 



 

 

retained in a set of latent variables that are linear combinations of the original set of features. The 

PCA algorithm is outlined as follows. 

Given an �-dimensional data set of � samples, �� ∈ ℜ�, � = 1,2, … �, PCA proceeds by first 

normalising the data to zero mean and unit variance, yielding  �� ∈ ℜ�×�. The sample covariance 

matrix of this data set is computed as  

 ��� =
1� − 1

����� ∈ ℜ�×� . (12) 

The eigenvalue decomposition of the covariance matrix can be written as 

 ��� = ���� (13) 

where � ∈ ℜ�×� is the matrix of eigenvectors on each column and � ∈ ℜ�×� is the diagonal 

matrix of decreasing eigenvalues. The columns of matrix � represent the principal directions that 

successively explain the maximum variance in the data, while the eigenvalues in � are scaling 

factors equivalent to the data variance values themselves. The projection matrix is given by: 

 � = ����/� ∈ ��×�. (14) 

By using only the first two columns of �, denoted as matrix ��, the dimensionality of the data is 

reduced to two while preserving as much information possible. The projections are then applied 

to the covariance matrix to obtain latent variables � as 

 � = ������ ∈ ℜ�×�. (15) 

After the application of Eq. (15), each training sample is now represented by every column of �, 

which has two features that can be plotted in a 2-dimensional space. A machine learning technique 

for classification can then be used to create decision boundaries objectively between the samples 

in 2-dimensional space. 



 

 

3.2.3 Support Vector Machine for Classification 

This paper proposes the use of a support vector machine (SVM) for objectively classifying flow 

regimes in an S-shape riser using 2-dimensional features from the ultrasonic Doppler data.  

Cortes and Vapnik, (1995) originally proposed the SVM for binary classification. Given � data 

samples of features �� ∈ ℜ� each belonging to either of two classes, labelled �� ∈ {+1,−1}, the 

aim of binary classification is to learn a mapping function that can be used to predict the unknown 

class of a new sample. SVM solves this by searching for a linear separating hyperplane in the �-

dimensional feature space that maximises the margin of separation between samples from each 

opposing class. This separating hyperplane can then serve as a decision boundary between classes. 

To achieve nonlinear separations, kernels can be used to first transform the original feature space 

using nonlinear projections, prior to seeking the separating hyperplane (Cristianini and Shawe-

Taylor, 2014). The idea of “maximum margin of separation” is the logic offered by the SVM 

approach, which replaces the human subjectivity in flow regime classification. Hence, using 

SVM, an objective flow regime classifier can be developed. 

More specifically, the dual formulation of kernel binary SVM classification is posed as the 

following convex quadratic programming problem (Cristianini and Shawe-Taylor, 2014): 

 
max � ���

��� − 1

2
� � ���������(��, ��)

�
���

�
���  (16) 

 
subject to      

� �����
��� = 0,

0 ≤ �� ≤ �, � = 1, … , � 

 

where �� ∈ ℜ� , � = 1,2, … , �  is the �  training samples with �  features, ��  are Lagrange 

multipliers, �(⋅ ,⋅) is a kernel function, �� ∈ {+1,−1} are the known labels for each sample, that 

is positive or negative, and � is a regularisation parameter. To project the data into the kernel 

feature space, the widely used radial basis kernel function is adopted: 



 

 

 �(�, ��) = exp �−‖� − ��‖��� � (17) 

where �� is the kernel width. The advantage of SVM over other pattern recognition models is 

that the solution to Eq. (16) is unique and can be calculated efficiently. On the other hand, ANNs 

require an iterative gradient descent solution, which may converge to local minima. Our 

application area has no issue with large data sets since the number of training samples is only in 

the order of 102 and the number of features is in the order of 10. This setting is ideal for an SVM 

solution. Once the problem in Eq. (16) is solved, the optimal values ��∗ are obtained, wherein the �th training samples �� that correspond to ��∗ > 0 are deemed support vectors. Support vectors 

participate in creating the boundaries between two classes, defined by the decision function: 

 �(�) = � ����∗�(��, �)�∈�� + �∗ (18) 

where �� is the set of support vectors and �∗ is a bias term calculated so that ���(��) = 1 for any � with 0 < ��∗ <  � (Cristianini and Shawe-Taylor, 2014). For any test sample �, the function � = sign(�(�)) outputs either +1 or -1 to signify if the sample belongs to the positive or the 

negative class. Accordingly, the exact boundary between the two classes consists of the points � 

where the SVM decision becomes indifferent, that is sign��(�)� = 0. 

In the case of the experiment, samples belong to one of the four classes: (1) Bubbly Flow, (2) 

Slug Flow, (3) Churn Flow, or (4) Annular Flow. Thus, multi-class SVM needs to be 

implemented. Various strategies for multi-class classification have been proposed, such as one-

against-one and one-against-rest. Here, an efficient one-against-one strategy proposed by Platt et 

al., (2000) called DAGSVM, is adopted. It has been reported that DAGSVM retains the accuracy 

offered by other approaches, but it is faster to train and evaluate (Platt et al., 2000). Previously, 

DAGSVM has been adopted in the objective identification of two-phase flow regimes using 

electrical capacitance data (Wang and Zhang, 2009). 



 

 

In this work, DAGSVM is employed by training six binary classifiers, one for each possible pair 

of distinct flow regime classes, e.g. 1-vs-2, 1-vs-3, 1-vs-4, 2-vs-3, and so on. Training a binary 

classifier involves solving for a decision boundary between two classes in the form of Eq. (18). 

The classifiers are then arranged in a decision directed acyclic graph (DDAG) as presented in Fig. 

6. The DDAG structure is key to the efficiency of DAGSVM, which makes it advantageous over 

other multi-class classification strategies. 

 

Figure 6: DDAG for Multi-class SVM classification 

In the DDAG, any new incoming sample goes through the decision at each node, always starting 

from the 1-vs-4 node. Each node represents the binary decision of which class the sample is 

definitely excluded from, for example, the 1-vs-4 node classifies the sample as either “Not 1” or 

“Not 4”. The branch corresponding to the decision of the current SVM classifier is then traversed. 

As the downward traversal progresses, the sample is continuously being classified at every node 

visited by eliminating the excluded class, until only a single class is retained. At this point, the 

bottom of the DDAG is reached and the sample has been associated to a single flow regime. The 

implementation of DAGSVM used in this work is available online in Pilario, (2018).  

By taking the 2-dimensional data from ultrasound Doppler signals after dimensionality reduction, 

with the flow regime labels of each sample, the DAGSVM is used to create exact boundaries 



 

 

between the flow regimes. This completes the virtual flow regime map for use in objective flow 

regime classification. The summary of the methodology is given in Fig. 7. 

 

 

Figure 7: Proposed methodology for objective flow regime identification 

4 Results and Discussions 

Flow regime data samples were acquired experimentally from the S-shape riser system described 

in Section 3.1, and preliminary results are presented  in Fig. 5. In this section, we proceed with 

the proposed approach for data analysis and discussion of the results. 

 PCA Visualisation 

Figure 8 presents the resulting 2D visualisation of the ultrasound Doppler data for each training 

sample after applying PCA. The benefit of PCA visualization can be demonstrated by establishing 

the relationship between Fig. 8 and Fig. 4. These figures are similar in that they both represent a 

map where every point location is associated with a distinct gas-liquid flow rate value pair.  

In Fig. 8, Annular Flow samples (high gas flow rate and low liquid flow rate) are found at the 

lower left corner of the map, while Bubbly Flow samples (low gas flow rate and high liquid flow 

rate) are found at the right and upper right corners of the PCA map. The Slug Flow and Churn 

Flow samples are found in a specific order in the middle region. The direction of increasing gas 

flow rate can be elucidated from right to left in the PCA map, while the direction of increasing 



 

 

liquid flow rate results from bottom to top. These directions correspond to the axes of the flow 

regime map in Fig. 4. Because of this relationship, PCA was able to discover the gas-liquid flow 

rate information of every sample using only the PSD features obtained from the ultrasound 

Doppler experiment. Thus, PCA can arrange the Doppler data meaningfully in 2D space, further 

enabling the construction of a virtual flow regime map. 

However, there is no clear gap or boundary between the samples from different flow regimes in 

the PCA map. By comparing it with Fig. 4, it was found that these samples lie mostly in the 

transition regions. Hence, a soft margin SVM can be used to establish the boundary between the 

various flow regimes, by setting the value of � to be less than ∞. By further varying the SVM 

parameters, �� and �, one can control the complexity of the boundaries between flow regimes. 

This investigation is carried out in Section 4.2. 

 

Figure 8: PCA visualisation of training samples of ultrasound Doppler signals 

Another benefit of PCA visualisation of data is the detection of outliers. The consistency of the 

human expert in labelling flow regimes may be impeded by certain factors, leading to the presence 

of outlier data samples. One obvious case is the sample at 10 Sm3/hr air flow rate and 3.5 kg/s 

water flow rate, which was observed to exhibit churn flow (see Fig. 4), yet which is found between 



 

 

bubbly and slug flow regime samples. In the PCA visualisation of ultrasound Doppler data (see 

Fig. 8), this specific data point lies at a position near (4.0, -1.0) on the 2D map, also between 

bubbly and slug flow samples. Hence, this data point is considered an outlier. Other outliers 

confirmed in the same way in our training dataset include those at air-water flow rates of 200 

Sm3/h, 4.5 kg/s and 10 Sm3/h, 2.5 kg/s. Ultimately, the degree to which these outliers are tolerated 

by the subsequent SVM classification is dictated by setting appropriate parameters of �� and �. 

 SVM classification 

Figure 9 is a sample flow regime map for kw = 7 and C = 100 where the samples of both the 

training and test data are superimposed. On this map, the background colours denote the results 

from the SVM classification, for example, SVM identified the Slug Flow regime for every point 

location in the L-shaped region between Bubbly and Churn Flow regime. Superimposed on this 

map are the training data samples (circles) and test data samples (triangles). By noting the 

mismatch between the sample colours and background colours, the training and test data 

classification accuracies are found to be 85.7% and 84.6% respectively. Without counting the 

confirmed outliers in the training samples, the accuracy in the training data is 88.6%. These results 

depict the capability of the SVM approach for objective classification of two-phase flow regime 

based on Doppler ultrasound data. 



 

 

 

Figure 9: Virtual flow regime map using SVM at �� = � and � = ���. The background 
colours denote the SVM identification results. A mismatched sample colour and background 

colour indicates misclassification. Legend: Circles – training samples; triangles – test samples 

For completeness, a case of empty pipe was included in the test samples. Interestingly, this sample 

was identified as churn flow by the SVM. Although this result is unexpected, the fact that the 

PCA mapping placed the empty-pipe ultrasound Doppler signal data at the bottom of the map 

validates that the direction of increasing liquid flow rate occurs upward in the PCA visualisation.  

 SVM Performance at Different Parameters 

The list of misclassified samples in Fig. 9 is presented in Table 1. Some disparities in using the 

proposed identification method were observed. In particular, the objective classifier identifies 

some Slug Flow samples as Churn Flows samples. This misclassification is related to the 

parameter choice issues in the SVM objective classifier. Various settings for ��  and �  give 

varying classification performance. The SVM accuracy over a grid of parameter values, such as �� ∈ {1,3, … ,9} and � ∈ {1,10, … , 10�}, is presented in Fig. 10.  

 



 

 

Table 2: List of Misclassified Samples in Fig. 9 

Misclassified Training Samples (13 out of 91)  

Vsg (Sm3/h) Vsl (kg/s) SVM Classification Actual Classification Outlier? 

10 2.5 Slug Flow Bubbly Flow Y 

10 3.5 Bubbly Flow Churn Flow Y 

20 2 Churn Flow Slug Flow N 

20 4 Slug Flow Bubbly Flow N 

30 4 Bubbly Flow Slug Flow N 

50 2 Churn Flow Slug Flow N 

50 3 Churn Flow Slug Flow N 

50 4.5 Bubbly Flow Slug Flow N 

120 1 Annular Flow Churn Flow N 

120 4 Slug Flow Churn Flow N 

200 4.5 Slug Flow Bubbly Flow Y 

300 0.1 Churn Flow Annular Flow N 

300 1.5 Churn Flow Annular Flow N 

Misclassified Test Samples (6 out of 39)  

Vsg (Sm3/h) Vsl (kg/s) SVM Classification Actual Classification  

5 0.5 Churn Flow Slug Flow  

20 0.5 Churn Flow Slug Flow  

30 2 Churn Flow Slug Flow  

50 0.1 Churn Flow Slug Flow  

300 0.5 Churn Flow Annular Flow  

0 0 Churn Flow Empty Pipe  

 

Accurate classification of training data can be obtained by adjusting ��  and �  towards the 

direction of overfitting (lower ��  and higher � ). However, overfitting demonstrates poor 

generalisations of unseen test data. Concisely, overfitting makes the classification biased towards 

the training samples. On the other hand, at high �� and low �, under-fitting occurs. In the case 

of under-fitting, the boundaries tend towards linearity at the expense of higher misclassification 

rates. In general, the only way to increase the level of confidence with the resulting flow regime 

map is to validate it against as numerous unseen test data samples as possible. With only the 

available data, the choice of  �� = 7 and � = 100 already provides useful results for objective 

flow regime classification, while striking a balance between overfitting and underfitting. 



 

 

 

Figure 10: Accuracy of SVM classification at various parameter settings of kw and C   

With the virtual flow regime map at hand, further analysis on the flow regime transitions and 

uncertainties can be performed. More importantly, online objective flow regime identification can 

be developed from the approach proposed in this work. Using a continuous feed of ultrasound 

Doppler-based flow velocity information, PCA-SVM can automatically visualise the frequency-

domain features and classify the flow regime at every sampling instant. Hence, the proposed 

approach has broad potential for industrial applications. 

 

5 Conclusion and future works 

In this paper, the necessity of objective, non-invasive and non-intrusive measurement methods 

for flow regime identification in industrial practice is highlighted. Specifically, this work proposes 

the use of non-invasive clamp-on continuous wave ultrasound Doppler (CWUD) and machine 

learning approaches for objective two-phase gas/liquid flow regime identification. From the 

ultrasonic signals, Power Spectral Density (PSD) features were extracted and subjected to 

principal components analysis (PCA) to project the data in 2-dimensional space. A multi-class 

support vector machine (SVM) classifier is trained to establish exact boundaries between the flow 

regimes in the reduced data space. In the end, the objective classifier accuracy for both the training 

and testing data samples was 85.7% and 84.6% respectively. More importantly, the generation of 

virtual flow regime maps provided useful data visualisations of the Doppler signals, which can 



 

 

aid in detecting outliers and explain the decisions made by the SVM classifier. These results 

justify the suitability of our approach for flow regime identification in industrial practice. 

To improve this work, the proposed approach must be tested against many other test rigs and 

configurations to determine if the generated virtual flow regime maps are indeed capable of 

visualising flow regime patterns from the CWUD data. In addition, the feature extraction and 

dimensionality reduction steps are deemed the most important steps in the entire procedure. Many 

other techniques for these steps must be tested to see if various samples from different flow 

regimes can be clearly separated. 

Further research can also be done in applying the proposed approach to examine two-phase water-

oil flow, mostly to address the necessity of clamp-on non-invasive ultrasonic flow monitoring for 

oil well testing.  
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