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Abstract: This work investigated the decomposition of anisole (methoxyl-based lignin model

compound) in a fluidized bed reactor over no catalysts and a series of HZSM-5 zeolite

catalysts with different Si/Al atomic ratios. Transmethylation reaction was identified as the

initial step of the thermal decomposition of anisole, leading to the prominent production of

phenolic compounds. Methyl phenols were identified as the main products, with the yield of

o-cresol being higher than that of p-cresol at the temperatures below 600˚C. The 

transmethylation reaction over HZSM-5 zeolite catalyst was found to occur at temperatures

150˚C lower than those for non-catalytic reaction, with the yield of the phenolic compounds 

being promoted by 2.5 times. Production of the main phenolic compounds during the

catalytic decomposition of anisole was enhanced to different extents depending on the Si/Al

ratio. The highest selectivity of 79 wt. % was achieved over the zeolite catalyst with a Si/Al

ratio of 80. The Brønsted acid sites of the catalyst played a significant role in both the

preferential formation of phenolic compounds and preservation of the methyl group.
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Highlights

• Catalytic decomposition of anisole was investigated with regard to liquid products.

• Catalyst preserves more methyl groups on the compounds.

• Mechanism for non-catalytic and catalytic transmethylation was proposed.

• Major methyl transfer orientations were o- and p-positions on a phenolic molecule.



1. Introduction

Renewable energy has attracted tremendous interests due to its potential in alleviating

energy supply risk and climate change[1]. In particular biomass resources have been

identified as adequate feedstock for the synthesis of fuels and chemicals which are not

hazardous to the environment[2]. Lignin, one of the three main components in

lignocellulosic biomass, has drawn increasing attention in recent years as the major aromatic

source of the bio-based economy[2–7]. Pyrolysis of lignin coupling with catalytic reforming

of the bio-oil precursors vapours to produce aromatic hydrocarbons is a promising approach

to realise effective utilisation of biomass[8]. Fast pyrolysis of lignin and bio-oil upgrading

have been intensively studied[9–14]. However, the complex composition of the primary

liquid products derived from the fast pyrolysis of lignin requires further studies in order to

accurately establish the reaction pathways followed by each compound and oxygen

functionality.

Bio-oil from lignocellulosic biomass has abundant compounds containing methoxy functional

group (anisole, guaiacol, syringol and their derivatives). These compounds decompose into

phenolics (Ph) and aromatic hydrocarbons (AH) compounds both in-situ during the fast

pyrolysis process and ex-situ in subsequent catalytic reforming process. Since the methoxy

group is the only functionality of the molecule, anisole (or methoxybenzene) is used as

prototype model compound to investigate the reactivity of methoxyl-based compounds

present in the liquids from fast pyrolysis of lignin[15]. Most of the existed research on

anisole decomposition is focused on reducing coke generation and the deoxygenation

process of the phenyl-oxygen bond[16–19]. Open literature about transmethylation as

reaction occurring prior to deoxygenation is less extensive, and its mechanism is unclear

despite it is essential to understand the entire process of anisole decomposition[20].

Transmethylation is a disproportionation reaction which involves the intramolecular (or

intermolecular) transfer of a methyl group cleavage. In the case of anisole decomposition at



relatively low temperatures, transmethylation is considered to be primary reaction aiding

the subsequent formation of aromatic hydrocarbons[21–25]. The combined function of

Brønsted and Lewis acid sites is usually considered to promote the transmethylation

process[21,26,27]. Zeolites present abundantly and well-dispersed surface acid sites and are

widely used as catalyst supports for organic compounds decomposition. In fact, the catalytic

performance of zeolites on the conversion of lignin-related compounds from biomass to

aromatic hydrocarbons and phenolic compounds during pyrolysis has been reported[28–35].

Due to its unique structure and content of acid sites, HZSM-5 has been described as one of

the best zeolite catalysts in order to achieve high conversion and selectivity to aromatic

hydrocarbons[16,28,29].

The aim of this work is to investigate the primary steps of the reaction mechanism of non-

catalytic and catalytic decomposition of anisole, and to address the differences between

both processes. The decomposition of anisole was carried out in a fluidised bed reactor, and

HZSM-5 zeolite was used as catalyst. In order to address the effect of the acid sites on the

catalytic decomposition, the performance of a series of HZSM-5 zeolite catalysts with

different Si/Al atomic ratio was studied. The distribution of products in the liquid fraction,

with particular focus on the phenolic compounds, was evaluated in order to explain the

catalytic activity of the HZSM-5 zeolite on the transmethylation process compared to the

non-catalytic reaction. In addition, changes in coke deposition were investigated.

2. Materials and methods

2.1 Materials

Pure anisole was used as reactant and supplied by Aladdin Reagents Co., Ltd. The silica sand

used as inert material of the fluidised bed was purchased from Kermel Laboratory

Equipment Co., Ltd, China. The HZSM-5 zeolite catalyst with different Si/Al atomic ratios in

composition (i.e. 25, 50, 80, and 200) was provided by Nankai University Catalyst Co., Ltd,



China. The HZSM-5 catalysts were labelled as HZ(25), HZ(50), HZ(80) and HZ(200),

respectively. Before being used in the experiments, the catalyst samples were calcined in a

muffle furnace at 500˚C for 3 hours, and subsequently crushed and sieved to a particle size 

range between 0.18 and 0.25 mm. The surface acidity of the HZSM-5 zeolites was

characterized by infrared study of the pyridine absorbed on the catalysts by using a

PerkinElmer Frontier FT-IR spectrometer.

2.2 Methods

Non-catalytic and catalytic anisole decomposition experiments were carried out in the bench

scale fluidised bed reactor (D*H (mm) = 32*600) sketched in Fig.1. Nitrogen was used as

fluidising gas. The minimum fluidisation velocity (Umf) was determined by means of Eq. 1[36],

and was 0.043m/s for the experiments performed with only zeolite catalyst and 0.062m/s

for the experiments with no catalyst (only silica sand). Actual experimental flow velocity was

adjusted by running cold experiments, and set to approximately two times the Umf.

Eq. 1

where Umf is the minimum fluidisation velocity (m/s), ψ is the particle sphericity (1 was

adopted in the calculation for an ideal sphericity), dp is the particle diameter (m), μ is the gas

viscosity (kg/m·s), g is gravitational acceleration 9.81m/s2, ρc and ρg are the densities of

particle and gas respectively (kg/m3), and Ԑmf is porosity at the minimum fluidisation velocity.

Non-catalytic experiments were performed at temperatures between 500˚C to 800˚C, with 

increasing intervals of 50˚C. 50 g of silica sand (SiO2) were placed inside the reactor and

fluidised by a N2 flow rate of 360 L/h. The amount of sand was set from preliminary

experiments in order to ensure adequate contact between the anisole and bed material. A

total amount of 8.3 g of liquid anisole was place in a syringe pump at the beginning of the

experiment and pumped into the reactor at a constant flow rate of 50 g/h. Reaction time



was 10 min. Catalytic decomposition experiments were carried out in a temperature range

between 200˚C and 800˚C, with increasing intervals of 100˚C. 50 g of fresh pre-calcined 

HZSM-5 catalyst with a Si/Al ratio of 25, HZ(25), were placed inside the reactor and fluidised

by a N2 flow rate of 240 L/h (no inert sand was added). Anisole flow rate and reaction time

were similar to those for the non-catalytic experiments. The effect of the catalyst acidity on

the anisole conversion was investigated at 400˚C by testing HZSM-5 with different Si/Al 

atomic ratios in composition, i.e. 25, 50, 80, and 200. N2 flow rate, anisole flow rate, and

reaction time were 240 L/h, 50 g/h, and 10 min, respectively. For all the experiments, the

outflow stream was passed through a three stages ethanol quench traps in order to collect

the liquid product, and the sample was diluted to a constant volume of 150ml after each

experiment. The liquid fraction was then analysed by GC-MS in an Agilent GC7890 gas

chromatograph-mass spectrometer equipped with a capillary column DB-5ms (30 m x 250

μm x 0.25 μm). The injector temperature was kept at 270˚C. The column was programmed 

from 40˚C (3 minutes) to 180˚C (2min) with the heating rate of 5˚C/min, and finally to 280˚C 

with the heating rate of 10˚C/min. Entire running time for each GC-MS test was 45min. The 

mass spectra were operated in electron ionization (EI) mode at 70 eV, and were obtained

from m/z 35-550. The products were quantified by total ion and were identified based on

the database of NIST library, and was calibrated with an external standard. All detected

compounds (peak threshold value: 18) were utilised for the calibration. The amount of

carbonaceous deposits on the catalyst was determined by thermogravimetric analysis with

Setsys Evolution TGA Instrument. Yields of the liquid fraction and carbon deposits were

determined as a percentage of the initial weight of the anisole sample. Duplicated

experiments and system deviation analysis are shown in the supplementary materials (Table

S1 and S2).



3. Results and discussion

3.1 Influence of catalyst on the decomposition of anisole

The conversion of anisole at different temperatures in non-catalytic and catalytic

decomposition of anisole is shown in Fig. 2. In both sets of experiments, the anisole

conversion values increased with temperature. In the case of non-catalytic experiments, the

conversion increased from approximately 30.54%% at 200°C up to 99.8% at 650°C, and

remained constant for higher temperatures. It was noticed that little anisole conversion was

observed at 400°C and below when no catalysts was used, and that the conversion was not

towards liquid at temperature 550°C. In the case of catalytic experiments with catalyst

HZ(25), conversion increased from 73.6% at 200°C to around 99.4% at 400°C, which was

maintained at higher temperatures. As can be seen, in the presence of the HZ(25) catalyst,

the complete conversion of anisole was achieved at lower temperature than in the case of

non-catalytic decomposition. This reflects the catalyst effect in lowering activation energy of

reactions.

Fig. 3 (a) and (b) presents the yields of products in the liquid fraction at different

temperatures in non-catalytic and catalytic decomposition of anisole. The specific di- and

trimethyl-phenols are detailed in Fig. 3 (c) and (d). Table 1 shows the grouped yields of the

aromatic hydrocarbons and phenolic compounds for each experiment. Yields of specific Ph

compounds, i.e. phenol and methyl phenols (mono-, di- and trimethyl-phenols) are also

summarized.

Both for non-catalytic and catalytic reactions, maximum yield of liquid products was

observed at the minimum temperature required for achieving the complete conversion; i.e.,

650°C for non-catalytic decomposition and 400°C for catalytic decomposition. These

temperature values are referred as “key temperatures” in this work. Phenolic compounds

were the primary products at the key temperature and below. The maximum yield of

phenolic compounds was 27.4 wt. % at 650°C in non-catalytic decomposition process (shown



in Table 1). The yield increased up to 70.0 wt. % when the HZ(25) was used while the

temperature at which this maximum value was obtained decreased in 150°C (maximum at

400°C). This reflects the decrease in the activation energy of the reactions producing

phenolic compounds when adding the catalyst. Considering particular Ph compounds, only

phenol and n-methyl phenols (ortho-cresol and para-cresol) were produced during the non-

catalytic decomposition of anisole. Ortho-cresol was first formed at 550°C, while p-cresol

appeared at 600°C. Yields of both compounds increased with temperature and peaked at

650°C. Moreover, o-cresol yield was higher than p-cresol yield at 600°C, while the opposite

was observed at 650°C. In the case of anisole catalytic decomposition, o- and p-cresols were

also the main compounds in the methyl phenolic fraction. The yield of o-cresol and p-cresol

was promoted by approximately 8 and 7 times respectively when HZ(25) was used as

catalyst. Similar to non-catalytic decomposition, o-cresol yield was higher than that of p-

cresol at low temperatures (between 200 and 350°C), while p-cresol yield was larger at 400

and 500°C. In addition, multi-methyl phenols, such as 2,6-dimethylphenol, 3,4-

dimethylphenol and 2,4,6-trimethylphenol, were abundantly produced over HZ(25) at

temperatures below the key temperature.

Aromatic compounds dominated over phenolics at temperatures higher than the key

temperature. In non-catalytic decomposition process, AH were present in the whole range

of tested temperatures but the maximum yield of 7.3 wt. % was observed at the key

temperature of 650°C. The yield then decreased to 4.9 wt.% at 800°C following the decrease

in the liquid product fraction, as high temperatures usually result in increasing gaseous

products yield[14]. A significant increment of AH yields was observed at temperatures higher

than the key temperature when catalytic decomposition over HZ(25) was performed (1.9

wt. % at 400 oC and 33.5wt. % at 600 oC). In this case, the maximum AH yield was not

observed at the key temperature but at a higher temperature of 600 oC. Moreover,

maximum AH yield improved by almost 5 times compared to that obtained from non-



catalytic experiments. The temperature at which the maximum AH yield was obtained

decreased 50 oC when using a catalyst.

Fig. 4(a) shows the influence of temperature on the deposition of carbon for both non-

catalytic decomposition and catalytic decomposition over HZ(25) of anisole. Carbonaceous

deposits yields were higher when catalytic decomposition was conducted because the acid

sites on HZSM-5 promote the absorption of anisole and accelerate the reaction rates which

in turn results in more carbon deposition[37]. For non-catalytic decomposition, the yield of

carbonaceous deposits was found to increase fast with temperature. Interestingly, in the

case of catalytic decomposition, the carbon deposits increased up to a maximum at 600 oC,

and then decreased at higher temperature. This trend is similar to that followed by the

aromatic hydrocarbons, and has been previously reported[34,35,37,38].

The results on liquid and solid yields and liquid product distribution suggest that

transmethylation occurs as the main reaction at the range of low temperatures when anisole

conversion is not complete either with or without catalyst. Moreover, the formation of

aromatic hydrocarbons as non-primary products depends both on temperature and acid

catalytic effect, and deoxygenation as secondary step during anisole decomposition requires

higher energy to take place. As explained above, complete anisole conversion and maximum

yield of Ph compounds were simultaneously reached at 400 oC over zeolite HZ(25).

Maximum yield of AH compounds was observed at 600 oC. In the case of non-catalytic

decomposition, although the complete conversion of anisole was attained at 600 oC,

maximum yields of both Ph and AH compounds were obtained at 650oC. In other words, the

presence of the catalyst lowered the temperature at which Ph yield peaked approximately

150 oC, while in the case of maximum yield of AH compounds the temperature decreased

only approximately 50 oC. Indicates that HZSM-5 is better at promoting the transmethylation

reaction than the deoxygenation process. Notably, in the catalytic decomposition process,

the steep decrease of phenolic compound yields coincided with the sharp increase of AH



yields, which implies that phenolics are precursor compounds for the formation of AHs. At

high temperatures (around 600 oC and higher) polycondensation of AH is favoured which can

lead to coke deposition. Simultaneously, cracking of macromolecules from polycondensation

of AH over zeolite is enhanced, increasing gas yields and decreasing carbon and liquid

yield[14].

3.2 Influence of the catalyst Si/Al ratio on the decomposition of anisole

HZSM-5 catalysts with four different Si/Al ratio were tested in order to evaluate the effect of

catalyst properties on transmethylation in terms of its acidic properties, i.e. the density,

strength, and type of acid sites[39]. Decomposition of anisole over HZSM-5 with Si/Al ratios

of 25, 50, 80 and 200 was studied at the key temperature of 400°C, based on the results

obtained over HZ(25) related to the transmethylation reaction. The anisole conversion was

approximately 99.5% in all cases, which exhibits the limited effect of the change in Si/Al ratio

on the total conversion. However, slight changes on liquid product yield and distribution

were observed at different Si/Al ratios (see Table 1 and Fig. 5). As observed in the case of

HZ(25), phenol and n-cresol were major products in the Ph fraction for all the tested Si/Al

ratios. Formation of xylenols (or dimethyl phenols) was also significant. Increasing of Si/Al

ratio to 80 promoted Ph products yield from 70 wt. % to 79 wt. %. Nevertheless, further

increment of Si/Al ratio to 200 resulted in a decrease of the Ph compound yields to

approximately 68 wt. %, especially for phenol and n-cresol. In the case of n-cresol, p-cresol

yield was slightly higher than that of o-cresol over HZ(25). However, the opposite was

observed when Si/Al ratio increased. This result points that a decrease in the acid density of

the zeolite favoured the preferential attack of ortho-positions because of the lower energy

requirement. At 400°C, AH were not major products from anisole catalytic decomposition

for any of the tested zeolites. In fact, in the case of HZ(80) and HZ(200), AH yields were

negligible. Fig. 4(b) shows the yield of carbonaceous deposits at different Si/Al ratios. As can

be seen, carbon deposition was also influenced by the acidity of the surface catalyst with a



minimum value reached over HZ(80). The trend observed for the yield of carbon deposits

was opposite to that observed for the yield of phenolic compounds. Thus, the lowest and

highest yield of carbonaceous deposits and phenolic compounds respectively were obtained

over the zeolite with Si/Al ratio of 80. Similar result was observed by Du et al. when

producing AH by catalytic pyrolysis of microalgae with zeolites[40].

It has been reported that the activity and stability of zeolites as catalysts depend on the

amount and proportion between Brønsted and Lewis acid sites[41]. Brønsted acid are known

to play a vital role in the catalytic transmethylation due to easier group exchange compared

to Lewis acid[21]. At the same time, Lewis acid sites have been found to aid catalytic stability

due to lower coking rates[41]. In order to properly address the effect of the surface acidity

of the zeolite on its catalytic performance, pyridine-FTIR analysis was carried and the acid

density distribution of Brønsted and Lewis sites was identified. As can be seen in Table 2, the

acid density of the zeolite decreases when the Si/Al ratio increases, which corresponds to

the decline of acid sites due to the aluminium dispersion in the silica framework. It is also

observed that the amount of Brønsted acid sites is higher than the Lewis acid sites for HZ(25)

and HZ(50). However, the density of the Brønsted acid sites decreased faster with the Si/Al

ratio than that of Lewis acid sites, and consequently Lewis acid sites predominate at high

Si/Al ratio (HZ(80) and HZ(200)).

Similar to results previously obtained for the catalytic pyrolysis of microalgae and

glucose[32,40], the experiments in this work showed higher Ph yields over HZ(80) than those

over HZ(25) and HZ(50). Zeolites with low Si/Al ratios present enhanced initial catalytic

performance because of the high surface acid density[39]. However, the presence of large

amount of acid sites, particularly strong acid sites as in the case of HZ(25), also favours the

rapid deposition of carbon and subsequent catalyst deactivation due to the blockage of the

pore mouth and limited access of reactant and intermediate molecules to the active

sites[32,41]. The high Ph yield obtained over HZ(80) can be related to its improved catalytic



stability. Coking rate for HZ(80) drops compared to that of HZ(25) and HZ(50) because of the

reduced amount of Brønsted acid sites [41]. Moreover, S. Qu et al [41] reported that when

Si/Al increased carbon deposits are more likely to build uniformly in the pore walls instead of

plugging the pore-mouth, the rapid deactivation of the catalyst being prevented. On the

other hand, the higher Ph yield obtained over HZ(80) compared to HZ(200) may be related

to the Lewis to Brønsted acid sites ratio. Although both HZ(80) and HZ(200) present low

amount of Brønsted acid sites, the former exhibits significantly higher Lewis to Brønsted acid

sites ratio. The relatively larger amount of Lewis acid sites in HZ(80) compared to that in

HZ(200) seems to better promote the formation of the phenolic compounds[41]. Therefore

it can be concluded that acid sites with relatively low density and medium strength are

preferred for enhancing liquid production and reducing carbon deposition[23,39,41].

Analogous conclusions from investigations of the catalytic activity of zeolites with different

Si/Al ratios have been previously stated[42–44].

3.3 Mechanism of anisole decomposition at “key temperature”

Fig. 6 shows the proposed mechanisms for the non-catalytic and catalytic decomposition of

anisole at the key temperatures. Transmethylation is the main reaction occurring during the

process of anisole decomposition at this range of temperatures, as observed from the

experimental results on the liquid fraction compositions. In other words, results exhibit that

anisole decomposition is initiated via the transmethylation reaction.

In the case of catalytic decomposition (Fig. 6a), a plausible mechanism is that the anisole is

first converted into phenol (reaction 1) followed by the relocation of the methyl radical to

form o-cresol (reaction 2) and p-cresol (reaction 3). At temperatures between 200 and 350

oC, the ortho-position transfer is predominant. However, at 400 oC, both ortho- and para-

position transfers are promoted. It can be inferred that the transfer of methyl groups to

ortho-position has lower energy costs than that to para-positions since the o-cresol was

formed at lower temperatures. Moreover, the slight decrease of relative yield of o-cresol to



p-cresol at the key temperature may be attributed to the formation of o-toluene via

deoxygenation of o-cresol. Interestingly, formation of methyl anisole is observed at the

lowest tested temperature, i.e. 200 oC, which indicates that transfer of methyl groups in the

anisole molecule is possible before this is largely converted. The addition of another methyl

radical to the n-cresol molecule gives rise to the formation of xylenols (Reaction 4). This

reaction occurs at temperatures of 300 oC or higher. Ortho-position transfer (positions 2 and

6 of the benzene ring) is favoured over para-position (position 4 of the benzene ring). Meta-

position transfer also occurs although to a small extent. In addition, the rearrangement to

trimethyl phenols (Reaction 5) is observed to a lesser extent. The larger yields of xylenols

indicate that these compounds act as the precursors of the transmethylation transfers for

trimethyl-phenol formation. As in the case of cresols and xylenols, the major orientations for

transmethylation are the ortho- and para-positions, and are favoured by the increase in

temperature.

In the case of the non-catalytic decomposition of anisole (Fig. 6b), the most probable

conversion route also involves the formation of phenol (reaction 1). Contrary to the catalytic

decomposition, the transfer of the methyl radical to form n-cresols (reaction 2) is not a

significant conversion route. Moreover, the relocation of other methyl radicals to form di-

and trimethyl phenols does not occur under thermal decomposition conditions. This implies

that methyl groups are preserved and transmethylation is favoured in the case of catalytic

decomposition due to the acid environment provided by the presence of the catalyst. At

temperatures below the key temperature, when thermal decomposition of anisole is not

complete, the yield of AH is in the same order as that for Ph compounds. This points to the

conversion of phenol into benzene (Reaction 3), followed by the formation of toluene

(Reaction 4) and ethylbenzene (Reaction 6), which increase with temperature. It is also

possible that toluene is produced by cresols through deoxygenation (Reaction5). In addition,



as temperature increases, formation of benzofuran may occur through cyclization with the

junction of C-O bond (reaction 7)[45].

4 Conclusion

In this work, the non-catalytic and catalytic decomposition of anisole in a fluidized bed was

investigated. A series of zeolite HZSM-5 with different Si/Al atomic ratios was tested as

catalyst. Transmethylation was found to be primary reaction in the decomposition of anisole

at low-to-moderate temperatures, leading to the formation of phenolic compounds. Ortho-

cresol and para-cresol were the most abundant substances containing a methyl group in the

products. Experimental results indicated that complete conversion of anisole is achieved at

650 °C in the absence of a catalyst and at 400 °C in the presence of HZSM-5. The presence of

the catalysts reduced the energy cost by aiding a decrease in the temperature for

transmethylation of 150˚C, promoting the transmethylation process, and increasing in the 

yield of phenolic compounds by 2.5 times. Reaction mechanisms for non-catalytic and

catalytic decomposition at key temperatures were proposed to explain the main conversion

pathways of anisole and other intermediate products. In the case of the catalytic

decomposition of anisole, acidity of the catalyst contributed to preserve methyl groups and

resulted in larger selectivity towards compounds containing methyl functionality. This was

particularly remarkable in the case of multi-methyl phenolic products whose formation was

only observed in the presence the zeolite catalyst. In the case of catalytic decomposition of

anisole, the highest yield of phenolic compounds was observed over HZSM-5 with a Si/Al

ratio of 80. The enhanced anisole conversion and reduced coking rate exhibited by HZ(80)

was related to the balanced proportion between Brønsted and Lewis acid sites, which

resulted in improved catalytic stability.
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Table 1: Grouped yields of aromatic hydrocarbons and phenolic compounds (wt. % of reactant)

T
(

o
C)

Catalyst
Anisole

Conversion

(%)

Aromatic
Hydrocarbons

Phenolic Compounds

Total Phenol
o- &

p-cresol
Xylenols

Trimethyl
phenols

200

No
catalyst

30.5 0.3 0.0 0.0 0.0 0.0 0.0

HZ(25) 73.6 0.0 27.4 18.3 6.8 2.1 0.2

300

No
catalyst

38.2 0.4 0.0 0.0 0.0 0.0 0.0

HZ(25) 92.2 0.0 52.6 27.5 15.1 8.0 2.0

350 HZ(25) 98.0 0.8 60.6 27.9 18.7 10.8 3.2

400

No
catalyst

39.8 0.7 0.0 0.0 0.0 0.0 0.0

HZ(25) 99.4 1.9 70.0 28.6 24.3 13.8 3.3

HZ(50) 99.7 2.4 73.4 29.1 25.7 14.5 4.1

HZ(80) 99.5 0.3 78.9 30.1 27.2 17.1 4.5

HZ(200) 99.5 0.0 67.8 26.7 22.2 14.6 4.3

500

No
catalyst

62.8 0.3 0.0 0.0 0.0 0.0 0.0

HZ(25) 100.0 31.2 10.0 5.7 4.3 0.0 0.0

550
No
catalysts

65.5 1.2 3.5 3.1 0.4 0.0 0.0

600

No
catalyst

77.0 4.3 8.0 6.9 1.1 0.0 0.0

HZ(25) 100.0 33.5 0.0 0.0 0.0 0.0 0.0

650
No
catalyst

99.8 7.3 27.4 24.0 3.4 0.0 0.0

700

No
catalyst

100.0 5.2 2.1 2.1 0.0 0.0 0.0

HZ(25) 100.0 27.6 0.0 0.0 0.0 0.0 0.0

800

No
catalyst

100.0 4.9 1.1 1.1 0.0 0.0 0.0

HZ(25) 100.0 16.5 0.0 0.0 0.0 0.0 0.0



Table 2: Surface acidity of HZSM-5 zeolites with different Si/Al ratio as determined by Pyridine-FTIR analysis

Acid density (mmol of pyridine/g of zeolite)

Brønsted Lewis

Si/Al ratio total weak strong total weak strong

25 0.280 0.181 0.099 0.139 0.099 0.040

50 0.237 0.148 0.089 0.076 0.056 0.020

80 0.038 0.029 0.009 0.081 0.053 0.028

200 0.041 0.033 0.008 0.051 0.037 0.014
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Fig. 3: Yields of main products in the liquid fraction at different temperatures in (a) non-catalytic decomposition,

and (b) catalytic decomposition over HZSM-5 [HZ(25)] of anisole; and yield of methyl-phenols at different

temperatures in (c) non-catalytic decomposition, and (d) catalytic decomposition over HZ(25)



Fig. 4: Change of yields of carbonaceous deposit with: (a) temperature in non-catalytic decomposition and

catalytic decomposition over HZ (25); and, (b) the Si/Al ratio in the zeolite for catalytic decomposition at 400
o
C
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Fig. 5: Yield of (a) main products in the liquid fraction, and (b) multi-methyl phenols obtained over HZSM-5 with

Si/Al ratios of 25, 50, 80 and 200
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Fig. 6: Reaction mechanism for (a) catalytic (HZSM-5), and (b) non-catalytic transmethylation of anisole

decomposition



Supplementary material

Table S1: Peak area and relative percentage of the identified products based on the results of gas chromatograph-mass spectrometer for non-catalytic

decomposition of anisole at 650oC

Peak substance

Duplicated tests comparison

A650(1) A650(2) A650(3)

peak area Percent in Total (%) peak area Percent in Total (%) peak area Percent in Total (%)

1 1,3-Cyclopentadiene, 5-methyl- 9.33E+06 0.37 9.83E+06 0.40 8.73E+06 0.35

2 1,4-Cyclohexadiene 8.54E+06 0.34 9.43E+06 0.39 8.33E+06 0.33

3 Benzene 2.89E+08 11.60 2.97E+08 12.19 3.10E+08 12.39

4 Toluene 1.30E+08 5.22 1.29E+08 5.28 1.41E+08 5.65

5 Ethylbenzene 2.61E+07 1.05 2.53E+07 1.04 2.69E+07 1.08

6 Styrene 2.61E+07 1.05 2.52E+07 1.03 2.85E+07 1.14

7 anisole 2.03E+07 0.82 1.92E+07 0.79 2.10E+07 0.84

8 Phenol 1.17E+09 46.89 1.13E+09 46.55 1.14E+09 45.73

9 Benzofuran 2.48E+08 9.96 2.44E+08 10.00 2.76E+08 11.06

10 Phenol, 2-methyl- 9.99E+07 4.01 9.62E+07 3.94 9.94E+07 3.98

11 Phenol, 4-methyl- 1.30E+08 5.21 1.22E+08 5.01 1.14E+08 4.57

12 2-Propenal, 3-phenyl- 2.53E+07 1.02 2.47E+07 1.01 2.78E+07 1.11

13 Naphthalene 1.45E+07 0.58 1.41E+07 0.58 1.58E+07 0.63

14 Ethanone, 2-ethoxy-1,2-diphenyl- 1.74E+08 6.96 1.73E+08 7.08 1.71E+08 6.82

15 Biphenyl 3.53E+07 1.41 3.34E+07 1.37 3.35E+07 1.34

16 Dibenzofuran 8.75E+07 3.51 8.12E+07 3.33 7.45E+07 2.98



Table S2: Deviation analysis for the duplication tests of non-catalytic decomposition of anisole at 650oC

Peak substance

Duplicated tests comparison

A650(1) A650(2) A650(3)

peak area Percent in Total (%) peak area Percent in Total (%) peak area Percent in Total (%)

1 1,3-Cyclopentadiene, 5-methyl- 0.39 -0.33 5.69 7.32 -6.08 -0.33

2 1,4-Cyclohexadiene -2.53 -3.24 7.54 9.18 -5.01 -3.24

3 Benzene -3.16 -3.80 -0.48 1.11 3.64 -3.80

4 Toluene -2.39 -3.01 -3.50 -1.93 5.88 -3.01

5 Ethylbenzene -0.08 -0.72 -3.02 -1.45 3.09 -0.72

6 Styrene -1.87 -2.48 -5.25 -3.70 7.13 -2.48

7 anisole 0.72 0.09 -4.89 -3.34 4.16 0.09

8 Phenol 1.75 1.08 -1.23 0.35 -0.52 1.08

9 Benzofuran -3.06 -3.67 -4.84 -3.29 7.90 -3.67

10 Phenol, 2-methyl- 1.43 0.77 -2.36 -0.79 0.93 0.77

11 Phenol, 4-methyl- 6.37 5.66 0.03 1.61 -6.40 5.66

12 2-Propenal, 3-phenyl- -2.36 -2.97 -4.84 -3.28 7.20 -2.97

13 Naphthalene -1.94 -2.55 -4.76 -3.20 6.69 -2.55

14 Ethanone, 2-ethoxy-1,2-diphenyl- 0.75 0.07 0.24 1.83 -0.99 0.07

15 Biphenyl 3.51 2.83 -2.00 -0.43 -1.51 2.83

16 Dibenzofuran 7.99 7.26 0.12 1.70 -8.11 7.26

Notes:

1)* Deviation =100% x (eigenvalue – average value)/average value

2)* Deviation were all within 10%, and most of them were within 5%. Deviations more than 5% have been highlighted

3)* Apart from this set, other sets of experiment were all implemented twice
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