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Low open fraction coded masks for x-ray backscatter

imaging
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Abstract. Previous research has indicated that coded masks with open fractions <0.5 are optimal for imaging
some types of far-field scenes. The open fraction, in this case, refers to the ratio of open elements in the mask,
with values <0.5 considered as low open fraction. Research is limited by the sparsity of <0.5 open fractions
masks; thus a further 94 lower open fraction arrays are calculated and presented. These include the dilute
uniformly redundant array and singer set, along with information on imaging potential, array sizes, and open
fractions. Signal-to-noise ratio reveals the 0.5 open fraction modified uniformly redundant array to be the optimal
coded mask for near-field x-ray backscatter imaging, over the lower open fraction singer set, dilute uniformly
redundant and random array. © 2018 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.0E.57.9.093108]
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1 Introduction

Coded mask (CM) or coded aperture (CA) imaging can be
traced back as far as the 1960s when they were primarily
used for high-energy astronomy.'? Other applications of
coded mask imaging (CMI) are found in medical imaging,’
defense, and security.4 CMs are based on two-dimensional
(2-D) binary arrays of 1 and O elements. Each 1 element
of the array represents an open region or aperture in the
physical mask, whereas Os are regions opaque to radiation.
The ratio of open elements in the array to the total number of
elements is known as the “open fraction,” “aperture transmis-
sion,” or “aperture density.” Patterns such as the modified
uniformly redundant array (MURA)® have an open fraction
(pg) of 0.5 and are arguably the most common type used in
CMLI. This is because the MURA'’s theoretical point spread
function (PSF) is ideal for imaging, containing flat side-lobes
and plateau/background.

Previous publications have proposed a possible relation-
ship between open fractions and capacity to image different
scenes. The uniformly redundant array (URA)’ contains
“higher” open fractions of py > 0.5, which allow a greater
throughput of radiation and are ideal for low-intensity
sources.” An aperture density pyp <0.5 is termed “lower
open fraction” (LOF) and has been postulated to produce
optimum results with low background scenes for a point
source.® Studies using simulated results from the “Satellite
per Astronomia a raggi X (satellite for x-ray astronomy)
wide field camera (SAX-WFC) reveal optimum signal-to-
noise ratio (SNR) for LOFs between p, = 0.25 and 0.33
for faint sources.” It must be noted that the above research
was based on point source or far-field imaging. Concerning
imaging in the near-field (at closer ranges) with complex
scenes, research using a p, = 0.5 MURA presented superior
results over LOF arrays such as the no-two-holes-touching
(NTHT) version of a MURA!? and “new system” array.'":
Similar findings were also found when comparing the

*Address all correspondence to: Andre Arelius Marcus Mufoz, E-mail:
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pp =05 MURA with the other LOF arrays used for
x-ray backscatter imaging.'®

The py = 0.5 URA exhibits perfect PSF properties and
has advantages over most, if not all LOF arrays published
to date. Indeed, finding LOF masks with similar PSF as
the URA is challenging, and none of them are known to
exist thus far.>*!>!* Also, the number of published LOF
arrays with good PSF is limited in vector size (except
the random array). A publication of “LOF URAs” from
Busboom et al.’ and the singer set array (Shutler et al.'”)
demonstrates the limited number of such arrays, with a
total of ~99 different array sizes of varying open fractions.
Based on these findings, this paper seeks to address limita-
tions by presenting design rules for additional 94 LOF arrays
in the form of the singer set and dilute uniformly redundant
array'® (DURA). Also, x-ray backscatter exposures from
a p, = 0.5 MURA, p, = 0.43 DURA, p, = 0.33 singer
set, and py = 0.33 random array (RANDA) are presented,
with the SNR calculated, analyzed, and compared. The
implications of this research are important because CMs
can significantly decrease the exposure time of a backscatter
imaging system and increase image potential. Therefore, by
understanding the properties of various CMs, this may help
x-ray backscatter imaging to evolve for various applications.

2 Method

2.1 Modified Uniformly Redundant Array

As the URA’s name suggests, each open region in the array
is spaced equally, which makes the URA ‘“uniformly
redundant.”'” The MURA is part of the URA family and
inherits the benefits of ideal imaging properties. An advan-
tage of the MURA is that its vectors (p and ¢g) do not obey
the twin prime rule of p £ g = 2 that is subjected to the
URA. Consequently, the MURA’s vectors can be comprised
of any prime number and follow the equation p + ¢ = 0."
All MURAs have an open fraction of ~0.5° that can be
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symmetrical or nonsymmetrical. 2-D MURA patterns begin
with a vector length (L), which is based on prime numbers

[see Eq. (1)]:

{4m + 1 for symmetric

. } where,
4m + 3 for nonsymmetric

m=1,23... (D

A new sequence was generated [see Eq. (2)] from the vec-
tor length and then used to form a one-dimensional (1-D)
binary sequence.

A=A 2)

The binary sequence must follow the condition in Eq. (3),
rendering all 1s in the sequence a quadratic residue
modulo L:°

0 ifi=0
A= { 1 if iis a quadratic residue modulo L . 3)
0 otherwise

Once the 1-D binary sequence was generated, an inverse
was created for the mapping process. Subsequently, all 1 s in
the sequence become O s, and all 0 s become 1 s [see Eqgs. (4)
and (5), for example, with a five vector MURA 1-D
sequence]:

A;=1 10 0 1, “)

Al=0 0 1 1 0. 5)

The final coded array pattern is constructed by mapping
the 1-D sequence A; onto a 2-D array (M), where i and j are
the components of the array’s x and y vectors, respectively.
Namely, the 1-D sequence was mapped in accordance with
A;; = A, as shown in Fig. 1(a). Both A; or A/ were then
mapped on rows of the 2-D array, where the first element
matched those of the corresponding first column vector
[see Figs. 1(b) and 1(c)]. To complete the 2-D array,
A;1 =1, and then A, ; = 0 [see Fig. 1(d)], and a circular-
shift by L /2, which was rounded down to the nearest natural

(@) (b) ()
110011 1001 [1 1001
1 1 11001
0 001 10/|00T1T10
0 0 00110
I B 11001

(d) (e)
00000101011
1100 1[0 1110
1011000000
1011001110
1100110101

Fig. 1 (a)-(d) Mapping process of a 1-D sequence onto a 2-D array.
(e) 5 MURA. (f) 5 centred MURA.
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number resulting in a centered MURA [see Figs. 1(e) and
1(f)]. In this case L =5 and hence, indicating a circular
shift of 2.5 that is rounded down to 2. The array in
Fig. 1(d) is shifted down twice and to the right twice. An
example is seen with element A, which is represented
as a bold “0” in Fig. 1(d) is shifted to a central position
Aj; in Fig. 1(e).

2.2 Random Array

When the elements of an array are randomly generated, it
is then termed a random array (RANDA).” The PSF of
RANDAs presents a raised plateau due to noise inherent
to the array. Despite this, the prospect of imaging with
the RANDA is rather good. Random arrays have an advan-
tage over all other CMs in that they are versatile because
nearly any open fraction, and array size can be generated.
The random array used in this paper was generated in
MATLAB®'® by creating an array of zeros. An inbuilt
MATLAB® function then determined which elements of
the array would be changed to ones, based on a given
open fraction.

2.3 Dilute Uniformly Redundant Array

A dilute URA (DURA) also exhibits “uniformly redundant”
properties. This is evident in the constant spacing between
open regions. The 1-D sequence of a DURA is based
on known Barker codes'®!"” and limited in number. The
sequence can be used to generate higher open fraction
(>0.5) and LOF 2-D arrays, with the PSF sharing similar
characteristics with a URA (having a flat plateau or “back-
ground”) and nonredundant array (NRA).® The NRA’s
PSF contains a flat plateau and featured sidelobes that
oscillate beyond some distance, according to previous
literature.'®!?! The term “nonredundant” refers to the
spacing distance in open regions that do not repeat. This is
only achieved with lower open fraction arrays. Published
1-D sequences for DURAs are limited to lengths (L) 13,
21, 31, 57 and 73, that follow the expression in Eq. (6),
where K is the number of open elements with the sequence:

L=KK-1)+1. (6)

Little has been published on the construction process for
2-D DURAs, apart from Munoz et al.'* which only gave
information on a 2-D 13 DURA. In this paper, 2-D
DURAs were generated from 1-D sequences to produce
15 arrays with different vector sizes and open fractions
(see Appendix for PSF). All arrays were constructed
using a mapping process similar to that of the MURA in
Figs. 1(a)-1(c). However, this would result in a DURA
with open fractions >0.5. Therefore, to produce arrays of
LOF, the initial sequence was inverted similar to Egs. (4)
and (5), respectively. Consequently, Fig. 1(a) began with
the inverted sequence and Figs. 1(b) and 1(c) were comple-
mented by the original 1-D sequence. As a result, all DURAs
from the 1-D sequence constructed in this manner were
lower in open fraction.

2.4 Singer Set

Singer set arrays are part of the family of cyclic different
sets’>?? and are sometimes referred to as “singer URASs,”

September 2018 « Vol. 57(9)
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or singer, even though the arrays are not necessarily uni-
formly redundant. However, the term “URA” may derive
from similar PSFs in some cases. The singer set poses good
imaging qualities; however, they usually contain PSFs with
a nonperfect and raised plateau (see Fig. 2). Shifting the
vectors of a py = 0.5 15 X 17 singer set array demonstrated
achieving PSFs that are coherent with those from a URA.
Circular shifting of individual vectors alters the original
sequence (see Fig. 2). Note, this does not appear to be
the case with lower open fraction singer sets thus far.
Therefore, singer sets may be considered a “URA like”
array as referred to in Skinner,”! possibly from having
good imaging properties from its PSF.

Singer sets range in open fraction from 0 < p,, < 0.5 with
coprime vectors. A feedback shift register is used to generate
the 1-D sequence (M) as in Eq. (7), where N is the number
of shifts and ¢ defining the reciprocal of the open fraction:

)

For generating the singer set in Fig. 2, a computer pro-
gram “cdsgen.exe” was used to create the cyclic different
sets (CDS) 1-D sequence.'> (This can be found in the
Appendix section of the article.) The CDS sequence from
Eq. (7) was then converted to binary following the conditions
in Eq. (8) and subsequently transformed from a 1-D
sequence to a 2-D array:

0 ifi>0
MO_{I ifi=0 ®

Singer set array vectors are coprime.'> Therefore, M,
must follow the conditions in Eq. (9) for the folding process
to be successful, where m and n are coprime, and p is a pad
value. Note, | is the mathematical divisor symbol stating that
there is a perfect division with no remainder and 4; is when
a perfect division is not possible:

_ MO 1fm|M0
mxn_{Mo—i-p it miM, [ ®)

Unlike the MURA and DURA, which is mapped from a
relatively short 1-D sequence, singer sets are folded from
long 1-D sequences into a 2-D array similar to the sequence
(M) in Fig. 3.

" "

Intensity

x

Ce, [O,-

(@) (b)

M=1,2,345,6,728910. - M=

N B~ W~
— O 00 J O

Fig. 3 The folding process of a hypothetical sequence M.

2.5 Lower Open Fraction Array Limitations

The notion of optimum LOF arrays for use with different
imaging scenes date back as far as the 1970s, with
Gunson and Polychronopulos,® and other publications in
more recent times.”'? Ultimately, the candidate array
would be a URA due to its PSF properties or at the very
least an array with a similar PSF. For the URA, this is argu-
ably nonexistent and leaves candidates with “URA like”
qualities, which are still rather limited in vector size and
open fraction. This was demonstrated by Busboom et al.’
Also, a nonexhaustive list of singer sets has been published
by Shutler et al.'* who presented a plot of the 14 LOF singer
sets of up to 100 elements (see Appendix). It must be clear
that LOF arrays are not limited to those presented by
Busboom and Shutler et al.,, and some arrays published
elsewhere were not included, such as the NRA and DURA.

2.6 Encoding and Decoding Process

A selection of coded arrays was chosen based upon their PSF
and relative vector sizes. This included a 19 random array
with p, = 0.33, 13 DURA with p, = 0.43, 17 X 21 singer
set with p, = 0.33,and a 19 MURA p,, = 0.5 used as a stan-
dard of measure. Physical coded masks of different sizes
with their smallest elements size measuring 2 mm were
fabricated from the array patterns, using three-dimensional
(3-D) printed polylactic acid and a tungsten/epoxy.’>**
The advantages of this over the traditional machined drilled
tungsten versions are that they retain their true open fraction
value and the apertures have an ideal square aspect ratio.
This is critical when comparing open fractions because
NTHT versions naturally change the open fraction of the
original mask to a lower value.

The equipment used in the experiment was a VJ
Technology® x-ray source producing radiation at 100 kV
and 5 mA. Also, a Photonic-Sciences® Gemstar’® x-ray sensi-
tive 1.4 megapixel detector was used to expose backscattered

0.8

0.6

Intensity

0.4

0.2

(c) (d)

Fig. 2 (a) 15 x 17 singer set and (b) PSF. (c) 15 x 17 singer set with vectors circular shifted to achieve

symmetry along the Y-axis, along with (d) PSF.
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Encode

Decode

Fig. 4 Encoding and decoding process, where the object (O), encod-
ing array (A), detector (D), decoding array (G), and reconstructed
image (R) are presented.

x-rays. Two five second x-ray backscatter exposures (D) of
a scene/object (O), which was four blocks placed in front of
a lead screen to provide a uniform background, were cap-
tured with each CM (A), which completed the encoding
process (see Fig. 4).”” One exposure was taken with the
CM in its normal orientation and another rotated at 90 deg.
The purpose of this was to sum both exposures, intensifying
the signal and reducing/canceling noise within the final
image.?® All masks were mosaicked by repeating the original
unit or base pattern twice in the X- and Y-directions of the
array so that a total of four patterns were present. The mosaic
had one row and one column removed, so only one full unit
pattern (full cycle) was present. Subsequently, the overall
aim was to minimize the effects of partially coded field of
view.*?

Encoded exposures were ultimately cropped to the size of
the unit or base pattern of the encoding array. Such an act
was performed to remove artifacts presented by the
mosaic.”” Due to imaging at close range, near-field magni-
fication (N,,) was applied to the encoded exposure [see
Eq. (10)], where (a) was the distance from O to A and (b)
represented the distance from A to D (see Fig. 4):

b
N, =410 (10)
a

Image reconstruction (R) took place using normalized
cross correlation of both the D and decoding array (G),
where the bar over D and G representing the mean [see
Eq. (11)]. Every step in R was automated using MATLAB®:'®

_ Zx._v [G()C, y) - Gu.vHD(x —uy- U) - E] ]
XZ[G(% ¥) =G, PY[D(x —u,y - v) - DP?

X,y

R(u,v)

(11)

The SNR was calculated using Eq. (12) for each recon-
structed image.® The mean signal (ug) was chosen as
a sampled region of interest from the object within the
image. The background of the imaging scene was sampled
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from an area of the lead screen, and the standard deviation
(o) was taken to calculate the SNR:

SNRyp = 1010g10<g—s>. (12)
B

3 Results

When addressing the limitation of LOF CMs, an additional
79 previously unreported singer set arrays of varying vector
sizes and open fraction have been identified. These cover the
full range of open fractions and are presented in Figs. 5,
12-15. An additional contribution of 15 CMs are presented
in the form of DURAs and their open fractions (see Fig. 6
and the Appendix for the DURAs PSF). Combining the pre-
vious 79 singer set arrays and 15 DURAs yields a total of 94
additional LOF CMs.

DURAS can be divided into five different groups of 13,
21, 31, 57, and 73, which represent a vector length or width

110 T T T T
100 - + 0 R
X
90, + + o X .
+>< o
80T x ° 0 1
8+ o + )
70 - o o ]
S T " +
§ 60 ok t 0 b
> O oy +
1 507 u} Eh T
* o
> * DEE +  x
401 48 %0 o o 0.0<p¢<=0.1 ]
o
30t og o © o 0.1<p,<=02|-
Re) =
20l *x-%( x 0.2<p¢< 03] ]
+ 03<p,<=04
# [
10+ + 04<p <=05]
0 L 1 1 L 1 L 1 1 1

0 10 20 30 40 50 60 70 8 90 100
X-Vector

Fig. 5 Seventy-nine previously unpublished singer set arrays of open
fractions <0.5 from research presented in this paper.

100 T T T
e
x py=0.
80 [ e} p¢:0.38 B
+ o o o ol + p,=036
70+ [ ]
o p¢:0.34
P : s 0,731
b4 50 - “ pé_o‘ d
> + p, =028
N [
40 o py=027|4
30l 5 5 o f: p¢=0.24 |
a p¢=023
20 + * + o p¢=0.22 8
r
10 - a
0 L L L L 1 Il 1 1

0 10 20 30 40 50 60 70 80 90 100
X-Vector

Fig. 6 Previously unpublished 2-D DURA arrays and their open
fractions presented in this paper.
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14 T T T T T T T T T T T T T T T
% #— Group 1 (X-Vector = 13)
13 \ —— Group 2 (X-Vector = 21)
\ Group 3 (X-Vector =31)
120 #— Group 4 (X-Vector = 57)
\ Group 5 (X-Vector = 73)
11F \
)
\
<) 10+ \\
a2 ) X —
Z 9 \ \ —
% \
8t
7t >
6 AN 7
S
5 Il 1 1 L 1 1 L 1 Il 1 1

Fig. 7 Theoretical SNR of all 15 2-D DURAs.

in the 2-D array. For example, the first group of 13 contains
arrays 13 x 13, 13 x 21, 13 x 31, etc. When analyzing SNR
of each array, a trend was revealed. Square arrays for each
group outperformed rectangular arrays, and this was consis-
tent with all four groups (excluding the 73 DURA, which is
the only array in its group). In addition, the 13 DURA
yielded the most desirable imaging properties (see Fig. 7).
Reconstructed x-ray backscatter CM exposures of a quad-
rant of blocks are shown in Fig. 8, which were calculated
using Eq. (11). The quadrant of blocks was comprised of
aluminum and wax in the upper left and right quarters,

(© (d)

110
100 % . ¢ o
90 | @ °© %o o ¢ [o1e] © o o
o o o o o
800 o o ° ° oy,
R R S
3.4 70 o m 8 C e 0 ey
2 6oko + S & () o o v x© 1
3 A A A o s O
> 50 1 ©0° o %; o |
! o
o & o 8 e x ©  Singer URA's
40F oo @ o 008800 5 04 o Perfect binary arrays
+ 0 x dratic residue URA's
x" g e Quadratic resi
30 2 @ 80 + McFarland URA's
sols? R s + Other URA's |
o @ & Singer, Shutler et al (2013)
10k o g ¢ Singer set contribution
Egj%% 2 DURA contribution
0 o | | | | I | | | |
0 10 20 30 40 50 60 70 8 90 100

X-Vector

Fig. 9 Combined previously reported and contributed <0.5 low open
fraction arrays.’

and a cylindrical PVC block and copper in the lower left
and right quarter. The wax block and PVC have a bright
appearance in the images due to the low atomic nature of
their composition. The SNR was calculated using Eq. (12)
for each reconstructed images that are as follows:

1. py = 0.50, 19 MURA with SNR = 13.6 dB.

2. py =0.33, 17 X 21 singer set with SNR = 10.0 dB.
3. py = 0.43, 13 DURA with SNR = 9.6 dB.

4. py = 0.33, 19 RANDA with SNR = 9.2 dB.

(e)

Fig. 8 X-ray backscatter expose a quadrant of blocks using 3-D printed CMs (a) 19 MURA, (b) 13 DURA,
(c) 19 RANDA, and (d) 17 x 21 singer set. (e) An optical image of the imaging scene with a lead backdrop

for the background. The CM unit pattern size determined the different sizes or field of view for each
image. The white bar is a scale indicator representing 100 mm.

Optical Engineering 093108-5 September 2018 « Vol. 57(9)
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4 Discussion

When comparing x-ray backscatter imaging results from the
Py = 0.5 19 MURA with LOF CMs in the experiment, the
MURA outperformed its competitors. This trend was consis-

tent with Accorsi et al.'> and Munoz et al.,'> and can be

13 DURA
1
0.8
& 0.6
g
= 0.4
0.2
j»
< 0
[/C’C;OI‘ X\IeC\O(
13 x 13 DURA
0.8
= 0.6
5
RS 0.4
0.2
& 0
VeC[Or N e
13 x 73 DURA
0.8
g 0.6
5
= 0.4
0.2
VeC[OI C\o( 0
21 x 31 DURA
1
0.8
2
E 0.6
= 0.4
0.2
VO[O] qd}‘oﬁ
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seen in Fig. 8. The method of obtaining SNR in Munoz
et al.,"” involved using data from 2*! Am radioactive source.
Conversely, x-ray backscatter exposures formed the data for
the experiment in this paper. Nonetheless, the trend remained

consistent.

13 x 21 DURA
0.8
2
o 10.6
8
k= 104
0.2
eCfO] QC\O( 0
13 x 57 DURA
0.8
z 0.6
g
E 0.4
|0.2
0010’ c\o‘
21 DURA
1
0.8
z 10.6
g 04
2 .
‘ i 02
}»
0
60[01 \0‘
21 x 57 DURA

Intensity

q

Fig. 10 13 to 21 x 57 DURA with PSF.
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Similar findings were displayed in Munoz et al.,'* how-
ever, with the DURA performing slightly better than the
singer. Results overall confirm the p, = 0.5 MURA to
have optimum near-field imaging properties over lower
open fraction CMs. Nonetheless, it is essential to consider
the possibility that the results may be specific to mask
type rather than open fraction.

Limitations on the existence and abundance of URA like
LOF CMs have been reported™”'*!* in previous literature.

21 x 73 DURA

Intensity

Vs
Nz
e op

o

31 x 57 DURA

0.8

0.6

Intensity

0.4

0.2

The singer set has been at the forefront of good candidates
for LOF CMs with URA qualities. However, details on the
exact size and open fractions are limited, unlike the URA that
is known to be p; = 0.5 and based on any prime number.
Previous publications have addressed such issue with
information on singer set array sizes and open fraction.>'
Nevertheless, variation remains limited. This paper helped
solve this by declaring an additional 79 unpublished (to
the best of the author’s knowledge) singer sets and of various

31 x31 DURA

0.8
g 0.6
5
k= 1104
0.2
}»
: 0
|7 cc, [O]- qu ec\0§
31 x 73 DURA
0.8
2 0.6
g ‘
= 0.4
0.2
}/
< 0
VC’C[ (o8 X«\] ec\o‘
57 x 73 DURA
0.8
>
% 0.6
= 0.4
0.2

Fig. 11 21 x 73 to 73 DURA with PSF.
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array sizes and LOF (see Fig. 5). Also, contributions to the
list of LOF CMs have been made by presenting 15 2-D
DURASs of varying array sizes and open fractions (see
Fig. 6) in addition to information on their imaging properties.

5 Conclusion

The p=0.5 MURA demonstrated superior near-field
imaging capabilities over the LOF CMs. Research results
appear consistent with previous work from other literature,
with implications of assisting the research community to
better understand the optimum mask type or open fraction
for near-field x-ray backscatter imaging. The p, = 0.33
17 x 21 singer set ranked second to the MURA, which
may demonstrate  URA like imaging properties. The
pp = 0.43 13 DURA followed behind the singer in SNR
and could indicate the potentials of this array being a com-
petitive candidate for imaging. Suggested future experiments
would compare open fractions of the same mask type with
similar array sizes. For example, using singer set masks with
varying open fractions. A further contribution of 94 LOF
CMs has been presented in this paper along with their

10 x 13 10 x 31 10 x 37 10 x 59

11 x36

11 x 100 11 x 25 11 x29
E -
12 x 43

12 x 65 12 x91

Fig. 12 Previously unpublished singer arrays presented in this paper
with vectors sizes 10 x 13 to 12 x 91.
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open fractions, array sizes, and construction processes.
The significance of additional arrays may encourage further
LOF experiments, with a more extensive choice of different
arrays and open fractions. The overall impact of this research
could enhance or change the way backscattered x-ray images
are formed, with applications in medical imaging, industrial
applications or defense, and security. The extensive range
of CMs now available include many with large vector
sizes that while difficult to employ in x-ray applications
could find application at other wavelengths (e.g., visible
light), where the demands of mask thickness are easier to
accommodate.

Appendix

The known <0.5 arrays from Shutler et al. and Busboom
et al.>'5 are presented in Fig. 9, which include the 94 pre-
viously unreported arrays introduced earlier in this study.
The array patterns and PSF for the 15 2-D DURAs are
shown in Figs. 10 and 11. Also, the 79 previously unpub-
lished singer arrays presented in this paper are found in
Figs. 12-15.

14 x 97

16 x 19

Fig. 13 Previously unpublished Singer arrays presented in this paper
with vectors sizes 13 x 20 to 16 x 8.
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17x 18 17 x 21

19 x43

Fig. 14 Previously unpublished Singer arrays presented in this paper
with vectors sizes 17 x 18 to 31 x 44.
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