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Abstract: When closed loop product lifecycle management was first introduced, much effort focused on 

establishing ways to communicate data between different lifecycle phase activities. The concept of a smart 

product, able to communicate its own identity and status, had a key role to play to this end. Such a concept 

has further matured, benefiting from internet things-enabled product lifecycle management advancements. 

Product data exchanges can now be brought closer to the point of end use consumption, enabling users to 

become more proactive actors within the product lifecycle management process. This paper presents a 

conceptual approach and a pilot implementation of how this can be achieved by superimposing middle of 

life relevant product information to beginning of life product views, such as a 3D product CAD model. In 

this way, linked maintenance data and knowledge become visual features of a product design 

representation, facilitating a user’s understanding of middle-of life concepts, such as occurrence of failure 

modes. The proposed approach can be particularly useful when dealing with product data streams as a 

natural visual analytics add-in to closed loop product lifecycle management.  
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1. INTRODUCTION 

Internet of things (IoT) -enabled products lend themselves to 

closing information loops between different product lifecycle 

phase activities (Kiritsis, 2011), implementing the early vision 

of closed loop product lifecycle management (PLM) between 

beginning of life (BOL), middle of life (MOL), and end of life 

(EOL) activities (Kiritsis et al., 2003). As a result, relevant 

research focused on mapping the IoT layered stack to product 

data exchange modelling for PLM, up to the application layer 

(Framling et al., 2014). In order to bring product data 

exchanges closer to the point of consumption by end-user 

applications, data interoperability along the IoT stack needs to 

be established. This encompasses both lower level exchanges, 

such as sensor readings, all the way to higher, application layer 

information and knowledge (Yoo et al., 2016). Semantic 

interoperability across connected product internetworking 

layers has become a key ingredient for closed loop PLM.  

From a user viewpoint, product lifecycle data at the application 

layer are best exchanged with application layer relevant 

means, for example with visually enhanced product views. 

This paper presents a conceptual approach to achieve this by 

superimposing MOL relevant product data to BOL product 

views, such as a 3D product CAD model. In this way, linked 

maintenance data become visual features of a product design 

representation, facilitating the design-side understanding of 

MOL concepts, such as failure modes. Such an approach can 

be useful when dealing with real data streams from products 

as a natural visual analytics extension to closed loop PLM. The 

rest of the paper is structured as follows. Section 2 places the 

current research against the backdrop of related work in the 

field. Section 3 outlines the overall concept of visual analytics 

through blended application layer product representations. The 

concept is implemented on a laboratory based test rig and 

details are provided in section 4. Section 5 offers a conclusion, 

and outlines future research paths.  

2. RELATED WORK 

2.1 Product Lifecycle Management Data Flows 

In early research efforts, which introduced the concept of 

closed loop PLM (Kiritsis et al., 2003), much attention was 

placed on establishing ways to communicate data between 

different lifecycle phase activities (Jun et al., 2007). Physical 

aspects of such exchanges were handled with radio frequency 

identification (RFID) technology through product embedded 

information devices (Kiritsis et al., 2008), largely focusing on 

identification and basic product data. Work in this area 

converged with the concept of smart products (Meyer et al., 

2009) or intelligent assets (Brintrup et al., 2011). With such a 

concept increasingly becoming mainstream, enhanced 

products were recognised as key to enabling integration of 

operations, maintenance, and logistics (VanBelle et al., 2011), 

as well as monitoring and control functions (Meyer et al., 

2009). This in turn required a different level of data exchanges 

to be established, driving efforts to establishing semantic 

interoperability of connected systems. As a result further 

research looked into how semantic (Cassina et al., 2008) and 

ontology based modelling (Matsokis and Kiritsis, 2010) can 

achieve this level of product information sharing. This in turn 

led to establishing appropriate, standardized, and semantically 
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enriched data flows within different product lifecycle phase 

activities (Främling et al., 2013)(Kubler et al., 2015a).  

When dealing with integrating MOL with BOL product 

information, one of the key objectives is to understand already 

at the design stage how the product will perform and be 

managed during operations and maintenance. To achieve this, 

operations and maintenance – related data need to be fed back 

to design stage PLM activities. Moving beyond asset tracking 

and lightweight product data exchanges, feeding back such 

middle of life information can be challenging. Additional 

concerns are related to the efficiency of the radio frequency 

(RF) part of the data exchange, as well as increased asset 

monitoring needs, to accommodate for sensing modalities of 

considerable bandwidth. Sensor networking protocols, such as 

those linked to IEEE 802.15.4, have seen early adoption in 

wireless sensor network applications for asset monitoring 

(Emmanouilidis and Pistofidis, 2010). The need to process 

locally acquired information on sensing nodes enabled asset-

embedded intelligence beyond tracking and identification  

(Emmanouilidis, et al., 2009) (Liyanage et al., 2009) to be 

embedded on sensor board nodes. This expands the ability of 

asset data exchanges to higher added value embedded data 

processing (Emmanouilidis and Pistofidis, 2010), featuring 

some level of product self-awareness (Katsouros et al., 2015). 

Such level of awareness is aligned with an agent-based view 

of intelligent assets (Leitão et al., 2013). Thus, monitored 

assets are empowered to sense, react and even proactively 

manage their functionality to serve specified objectives.  

The confluence of internetworking connectivity, local, 

distributed and cloud-based computational capabilities, with 

the ability to semantically enrich product information has 

therefore emerged as a key enabler for introducing connected 

and smart products in extended enterprise value chains 

(Kiritsis, 2011). Product avatars (Wuest et al., 2015), product 

shadows (Vermesan and Friess, 2016), and digital twins 

(Vermesan et al., 2011) are all terms employed to describe the 

digital counterpart of a physical asset, and jointly compose an 

entity or system, which acts as a smart agent (Leitao et al., 

2016) or intelligent product in a cyber-physical world of 

interconnected assets (Leitao et al., 

2016). This capacity of coupling 

physical assets with digital 

representations (Wuest et al., 2015) 

enable substantial advancements in 

enterprise information systems, 

increasingly empowered to integrate 

product data and knowledge (El Kadiri 

et al., 2016). Furthermore, it elevates 

the capability to close PLM data loops 

at higher semantic layers via enriched 

data and knowledge (Yoo et al., 2016).  

Linking data and knowledge produced 

by human and non-human actors is 

consistent with the semantic web 

paradigm of linked data, taking the 

form of linked product knowledge 

(Pistofidis et al., 2016)(Kiritsis, 

2016). While application layer PLM 

considerations based on interoperable modelling of product 

data is aligned with a product-centric viewpoint, a user 

perspective still needs to be brought in. The concept a user-

centric view of Industrie4.0 technology for user augmentation 

and involvement in production activities has recently gained 

attention, with terms such as ‘Operator 4.0’ been used to 

denote the social nature of human involvement in related 

production activities (Romero et al., 2017). A key relevant 

concept is information context management, discussed next.  

2.2 Context Fusion and Data Value Chains 

The hyper-connected world of products, human actors, and 

operating environments, enabled by IoT technologies, creates 

a potential for explosive growth in the generation of product – 

related data streams. It is not sufficient anymore to seek to 

integrate such information centrally. Instead, part of the 

information integration is best performed at the point of data 

consumption. For such integration to produce meaningful 

results, the complexity of relevant product information needs 

to be managed. Directly relevant to establishing efficient 

architectures, indexing, and big data management capabilities 

for IoT -generated data is the key concept of context, adopted 

in context aware computing (Perera et al., 2014). The principle 

of context information management is that at the point of 

consumption only contextually relevant information, 

knowledge and services need to be made available. In asset 

management, for example, context can be composed by factors 

quite specific to the application domain. Nonetheless, these 

may fall under the broad categories of asset, user, business, 

environment and system context, which at a high abstraction 

level can be considered as having cross-domain relevance 

(Emmanouilidis et al., 2013)(Fig. 1). In production 

environments, contextual relevance is needed to resolve the 

high variability in the background circumstances, defining the 

decision making landscape (El Kadiri et al., 2016). Different 

levels of product related information processing are employed 

in a product data value chain, wherein at each stage of 

processing, the data value is enriched through analytics, 

visualisation, and dedicated application services. 

Fig. 1. Context in Asset Management 



 

 

     

 

The enhanced value of product data across such a data value 

chain justifies the viewpoint that data is to be considered a 

value adding asset itself (Kubler et al. 2015b). Contextually 

relevant information management could be viewed as a scaled 

extension of information fusion in the IoT world (Snidaro et 

al., 2015). IoT technologies enable to connect human and non 

– human actors, and therefore integrate the human in the loop 

of asset and PLM activities. This is a key target for such 

knowledge-intensive activities (Pistofidis et al., 

2016)(Emmanouilidis et al., 2016). The need to deliver 

context – based product views with application – layer relevant 

means is linked to context dissemination (Perera et al., 2014). 

Context dissemination effectively translates context data to 

actionable context. A natural approach to achieve this is via 

blended digital product representations, as introduced next. 

3. IOT - ENABLED PRODUCT VISUAL ANALYTICS 

From the early days of exploratory data analysis (Tuckey, 

1962, 1977) till modern day big data analytics (Idreos et al., 

2015), part of the power of data analysis lies with the 

preparatory phase of obtaining different descriptions and 

representations of data, to enable greater insight. Early 

computer-based data analysis offered limited ways of user 

interaction with data. Among the data exploration techniques, 

visual analytics empowers data analysts with tools to facilitate 

and steer their expert judgement to visually presented aspects 

of data characteristics (Thomas and Cook, 2005). Such data 

views are often easier to comprehend, as human perception 

naturally favours visual features compared to reviewing raw 

data (Endert et al., 2014). Bringing the human in the loop is 

already at the heart of modern PLM tools, offering context-

dependent product views, aiding interaction with contextually-

relevant product representations. The need for human 

interaction in via relevant software tools is such that justifies 

the expression “the human is the loop” (Endert et al., 2014).  

Visual analytics employ simple but cognitively powerful ways 

of embedding semantics in the visual data representations. 

From a user viewpoint the requirement is to share not only 

product lifecycle data but to do so with application – layer 

relevant means: that is via visually enhanced product views. A 

conceptual approach of how this can be achieved is introduced 

in this paper. Considering that the most user-friendly product 

representation is in most cases a 3D product model, the key 

idea is to employ such a design – stage product representation 

together with MOL product information, related to product 

condition monitoring. By superimposing MOL relevant 

product information to BOL product views, such as a 3D 

product CAD model, linked maintenance data and knowledge 

(Pistofidis et al., 2016) become visual features of a product 

design representation, facilitating a user’s understanding of 
MOL concepts, such as the occurrence of failure modes, within 

a design viewpoint. The concept is illustrated in (Fig. 2), 

wherein the target is to link maintenance related data with a 

design-stage digital product representation. A data processing 

chain is presented, starting with the initial data generation, 

comprising the original CAD design for an asset, along with 

sensor data collected from asset operation. The next step is to 

process the data so as to extract key features to aid tasks such 

event detection and diagnostics. Data quality management and 

data curation is handled at the next stage. The way to manage 

and store both raw and processed data is handled by the data 

storage management approach, which may include local and 

edge node data management, distributed data storage or central 

repository approaches. Finally, the data is converted to a form 

relevant to application layer views and user interaction, which 

may comprise visual analytics and enhanced product views, as 

discussed in more detail in the next section.  

 

Fig. 2. IoT-enabled product visual analytics value chain 

Each processing stage adds value to the data. Thus, the end 

user application conveys enriched information to the user, 

facilitating for example the cognitive task of interacting with a 

PLM tool. While on-the-job activities are known to be 

effective knowledge triggers, blended lifecycle product 

representations in PLM can bring some of the on-the-job 

advantages, carried through interaction with digital product 

views. This is potentially valuable when dealing with real data 

streams from IoT – enabled products. It serves as a natural 

visual analytics extension to closed loop PLM views. The 

concept of IoT- enabled product visual analytics is quite broad 

but this paper specifically looks into it as a means to deliver 

visual analytics for linked knowledge in maintenance and 

PLM. It is a natural extension to earlier approaches for 

managing linked knowledge in maintenance (Pistofidis et al., 

2016), seeking a direct integration with PLM tools. The next 

section presents an instantiation of the blended digital product 

visual analytics on a laboratory testbed arrangement. 

4. PILOT IMPLEMENTATION 

The concept of blended digital product visual analytics was 

demonstrated on a laboratory test arrangement. This was a 

mechanical transmission rig, comprising a motor, a lower shaft 

with four, 42-tooth gears, driven by a motor, and an upper shaft 

with one larger 62-tooth gear, which is driven by the first shaft 

through meshing the upper shaft gear with any of the lower 

shaft gears (Fig. 3). Loading conditions can be adjusted with a 

brake, attached to the upper shaft, while the rotational speed is 

controlled by adjusting the motor speed. The lower shaft gears 

are initially identical. Defects are introduced to gears 1-3, 

while keeping one gear in normal condition for reference. The 

defects are intended to emulate pitting, growing from smaller 

scale on gear 1 to a level consistent with the end effects of 

extensive spalling, causing tooth pieces to fall apart (Fig. 4). 

The aim was to produce an instantiation of the concept of 

linked knowledge in maintenance and PLM, with knowledge 

superposition to product views. 

data generation 

& acquisition
data procesing

data curation 

and quality 

management

data storage 

management

visual analytics 

for linked 

maintenance 

and PLM

Data Communication



 

 

     

 

 

Fig. 3. Gearbox test rig 

 

Fig. 4. Defect introduction 

To achieve this, a low cost IoT – enabled monitoring solution, 

implementing data acquisition and basic diagnostics, was 

introduced. Rather than developing a thorough engineered 

solution, the demonstration objective focused on instantiating 

the basic data process chain for the blended digital product 

visual analytics concept of Fig. 2. This chain comprises  

a. data generation process, via a prototype data acquisition  

b. a data processing stage, wherein acquired data are 

converted to monitoring parameters 

c. a basic diagnostic stage, wherein acquired parameters are 

translated into asset conditions 

d. blended visual analytics, jointly handling MOL data (e.g. 

diagnostics) with BOL (3D product model) product views  

There is a correspondence between steps ‘a’-‘d’ with the 
process chain of Fig. 2. Specifically, ‘a’ and ‘b’ correspond to 
the 1st and 2nd stages of the figure. Stage ‘c’ weakly contributed 

to stage ‘3’, essentially annotating data with diagnostic 

information. The ‘knowledge outcome’ of step ‘c’ is 

communicated to the end user, via colouring the part of the 

CAD design (component, assembly or sub-assembly) with a 

colour carrying a semantically meaningful metaphor, ie ‘red’ 
indicating ‘alert’ status, if a failure mode is diagnosed on the 
studied component, leading to triggering an alert.  

The data generation process was implemented through an 

Arduino UNO board and two MPU 6050 accelerometers to 

capture gearbox vibration (Fig. 5). While this is not a sufficient 

set up for an industrially relevant solution, it is adequate for 

demonstrating the proposed concept. The data processing 

stage was implemented on a Raspberry Pi 3 Model B board on 

Python, employing the SciPy library. This included signal 

averaging and extraction of standard statistical parameters 

from the acceleration signal. These were as in (Katsouros et 

al., 2015) and comprised the signal RMS, skewness, kurtosis, 

shape factor, crest factor, peak value and impulse factor. A 

stream of data acquired in this way are a sequence of vectors 

x𝑖 ∈ ℝ7: x𝑖 = [𝑟𝑚𝑠𝑖 , 𝑠𝑘𝑖 , 𝑘𝑖, 𝑠𝑓𝑖 , 𝑐𝑓𝑖 , 𝑝𝑖 , 𝑖𝑓𝑖]𝑇   
with 𝑖 = 1, … , 𝐾, wherein the vector parameters correspond to 

the parameters described above and K is the number of 

samples in a data stream. A Fast Fourier Transform (FFT) 

representation of the vibration signal is also calculated on 

board, after adequate filtering and windowing. The focus in 

this paper is not specifically on the condition monitoring 

functionality but on incorporating the diagnostic outputs in an 

environment offering a visual analytics view of the product. 

Any other monitoring setup can be incorporated instead.  

 

Fig. 5. Experimental setup arrangement on the test rig 

An example of the overall test arrangement can be seen in Fig. 

5. Reference data acquisition experiments were performed 

with different gear coupling setups, starting with gear without 

defects to obtain reference data from normal operating 

condition. Data were acquired with each one of the other lower 

shaft gears coupled with the upper shaft gear, to obtain 

representative samples from a gradual fault progression. The 

difference between reference samples from normal and 

progressing fault conditions were employed to set simple 

threshold levels for each one of the vibration parameters to 

distinguish between different conditions. More advanced 

signal processing and pattern recognition techniques can be 

employed instead. However, the focus is on offering a visual 

analytics view of the product, based on the data processing 

chain and not the exact signal and pattern analysis. 

The visualisation application was developed in the Processing 

environment, an Open Source Development Environment for 

Interactive Visualisation. The application presents a range of 

options for interactive visualisation. The application can 

produce reports and visual analytics graphs for the raw signal, 

the measured parameters and the FFT of the raw vibration 

signal, as well as motor temperature (Fig. 6). The comparison 

of threshold values estimated from reference data and 

parameters extracted from subsequent observations is passed 

to the visualization layer of the application. This offers a 3D 



 

 

     

 

model of the test rig highlighting visual features by colours, 

conveying contextual meaning. For example, sensor locations 

are marked in blue colour. The diagnosis outcome is 

communicated by superimposing fault conditions features on 

the 3D CAD product representation, wherein mechanical 

components are highlighted in red to indicate faulty condition. 

Visual features such as the above can be seen in an example 

screen captured from the visualisation application (Fig. 7). 

 

Fig. 6. Visual analytics example from the demo application 

 

Fig. 7. Measurement locations and diagnosed failure modes  

Typical monitoring systems already convey measurement data 

and faults to users. However, blending visual features in 3D 

product representations further aids a user to interact with 

product relevant data in a way relevant to non-monitoring 

contexts, such as when reviewing historical data and FMECA 

knowledge (Pistofidis et al., 2016). Maintenance linked 

knowledge can be actionable when shared in a contextually 

relevant way. In this example, a user handling FMECA 

knowledge is supported with visual features to understand the 

context of timelines of knowledge-rich events, and is thereby 

better aided to perform a FMECA revision cycle (Pistofidis et 

al., 2016). Thus, a design-stage tool, namely FMECA, is 

looked upon together with MOL data and disseminated in 

visually relevant ways, contributing to upper layer context 

management, ie context dissemination (Perera et al., 2016).  

5. CONCLUSION AND FURTHER WORK  

PLM tools now provide advanced features that enable teams 

to share context-specific product views and manage different 

lifecycle phase data and activities. The early vision of closed 

loop PLM was to integrate data from different lifecycle phases. 

Such a vision was greatly advanced by the introduction of the 

smart product concept, able to communicate its identity and 

status. The deeper penetration of IoT technologies and the 

emergence of IoT- enabled products has made the smart 

product concept a reality. Product data exchanges enable users 

to become more proactive actors within the PLM process. This 

paper introduced a conceptual approach and a pilot 

implementation of how this can be achieved by superimposing 

MOL relevant product information to BOL product views, 

such as a 3D product CAD model. Coupled with a range of 

visual analytics features, linked maintenance data and 

knowledge become visual features of a product design 

representation, assisting the understanding of MOL concepts, 

such as occurrence of failure modes. The approach can be 

useful when dealing with product data streams as a natural 

visual analytics add-in for closed loop PLM.  

In the present work the diagnostic outcomes are produced as a 

result of simplistic processing. However, any other approach 

can be integrated, including streaming analytics (Katsouros et 

al., 2015) or off-line diagnostics (Emmanouilidis, Jantunen 

and MacIntyre, 2006). Furthermore, such features can be 

linked with an appropriately populated Failure Modes, Effects, 

and Criticality Analysis (FMECA) knowledge tool, as for 

example presented in (Pistofidis et al., 2016). Another natural 

extension would be to project digital product views, blending 

maintenance related with 3D product views on a virtual or 

augmented reality application (VR or AR). Visual analytics 

can also become a natural extension and context dissemination 

mechanisms of simulated, rather than acquired data. While 

simulation is already part of the design – stage product design 

toolset, the closure of information loops between MOL and 

BOL data can also be performed on simulated processes, 

enabling a better understanding of the functional performance 

of components and products before manufacturing and 

operating them, thus bringing together model and simulation 

based approaches with data driven ones. The overall approach 

can be integrated within a complete PLM process, which is 

targeted in our current project on IoT and Big Data in PLM.  
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