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Abstract

We propose a multi-modal multi-discipline strategy
appropriate for Automatic Target Recognition (ATR) on
Synthetic Aperture Radar (SAR) imagery. Our architecture
relies on a pre-trained, in the RGB domain, Convolutional
Neural Network that is innovatively applied on SAR imagery,
and is combined with multiclass Support Vector Machine
classification. The multi-modal aspect of our architecture
enforces the generalisation capabilities of our proposal, while
the multi-discipline aspect bridges the modality gap. Even
though our technique is trained in a single depression angle of
17°, average performance on the MSTAR database over a 10-
class target classification problem in 15°, 30° and 45°
depression is 97.8%. This multi-target and multi-depression
ATR capability has not been reported yet in the MSTAR
database literature.

1 Introduction

The Moving and Stationary Target Acquisition and
Recognition (MSTAR) dataset is the most cited Synthetic
Aperture Radar (SAR) imagery database used for Automatic
Target Recognition (ATR) purposes. ATR is attempted based
on various concepts such local feature matching [1],
Compressive sensing [2], Sparse classification [3],
Convolutional Neural Networks (CNN) [4]–[8] or Neural
Networks (NN) [9]. CNN’s, have been proven an extremely
valuable asset for target recognition achieving state of the art
performance. A downside of current approaches is that they
rely on handcrafted CNN that have to be trained based on a
limited number of public available SAR images. To
compensate that, most current CNN based solutions populate
the training images either by creating variants e.g. rotated
versions of the existing templates or by sampling patches.

In contrast to the limited SAR imagery available, RGB
images are easily found and in fact, literature suggests a great
number of sophisticated and multi-layered pre-trained CNNs.
Urged from that, we propose a multi-discipline and multi-
modal architecture that combines the concepts of CNN and
multiclass Support Vector Machine (SVM) classification. Our
intention is to transfer the already proven classification
capability of the AlexNet from the RGB domain to the X-

band SAR. This operation is not straightforward as directly
activating the AlexNet with data of a different modality i.e.
SAR imagery, is a suboptimal solution. Therefore, we bridge
the data-modality gap by introducing a multi-discipline
architecture.

2 Proposed architecture

Krizhevsky [10] with his pioneering work, has brought a new
era in machine vision, setting new standards in pattern
recognition. His CNN, named AlexNet is a 23-layered
network that encapsulates from an RGB image features that
vary from low-level corners and blobs, in the initial stages, up
to high-level RGB oriented features in the last layers.
Although AlexNet is powerful, it has been trained on RGB
images that are completely different to SAR based imagery.
In fact, AlexNet is trained on RGB colour bands while SAR
imagery contains radar reflections of the scene. Therefore
directly applying AlexNet on SAR imagery is not an optimum
solution.

Thus, we group the 23 layers of AlexNet into eight clusters of
varying feature description capability, introducing the
clustered AlexNet architecture that is presented in Figure 1.

Figure 1: Clustered AlexNet architecture
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Our clustered AlexNet CNN has a variable feature description
capability that extends from low-level corners and blobs up to
RGB specific features, depending on the cluster activated.
Cluster nine includes the last two layers of the original
AlexNet i.e. the CNN’s decision-making process which we
will not exploit. Our CNN architecture uses the same
parameters as in the original AlexNet [10]. Since AlexNet
requires as input RGB imagery i.e. tri-layered data, we
replicate each SAR image such as to imitate each colour-
layer.

Then given a training set of the MSTAR dataset, we activate
one of the clustered layers of the AlexNet, based on their pre-
trained weights in the RGB domain. These activation
responses are then used to train a multiclass SVM
classification scheme. Final classification is based on a
SoftMax function which is applied on the response of the
SVM. Our ATR pipeline is depicted in Figure 2. An analysis
of the optimum clustered layer selection is presented in
section 4.1.

Figure 2: Proposed architecture

3 MSTAR database

We use the publicly available subset of the MSTAR database
[11] that includes 10 different classes of ground targets as
presented in Figure 3. Each class contains chips of 15° and
17° depression angles using an X-band SAR sensor, while
some classes contain additional 30° and 45° viewings.

In any case, all chips cover a full 0°-360° azimuth orientation.
For compatibility reasons with the current literature we follow
the methodology of [11] and establish a training set based on
the 17° chips and a testing set containing the 15°. Even
though up to date literature [4]–[7], [12], [9] strictly follows
that evaluation scheme, we perform an extra batch of trials in
which we evaluate the performance on all available
depression angles i.e. 15°, 30° and 45°. This is challenging
because from Figure 3(b) it can be clearly seen that the
target’s X-band reflection and thus its SAR fingerprint
changes substantially.

2S1 BMP2 BRDM2 BTR60

BTR70 D7 T62 T72

ZIL131 ZSU23-4
(a)

15° 17° 30° 45°
(b)

Figure 3: (a) 10 classes of the public MSTAR database at 17°
depression angle (b) the 2S1 target at various depression
angles while at same azimuth

4 Experiments

The 10-target classes have an unevenly distributed amount of
images. Hence, we avoid settling the neural network into a
local minimum by randomly duplicating the images of each
class to meet the class having most instances. This
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methodology populates our training set from 2747 SAR chips
to 2890.

4.1 Optimising the Clustered AlexNet performance

Intuitively selecting a low-level cluster layer is not optimum
and therefore we evaluate the performance of each cluster

layer acl by activating it on the 17° training set and then

evaluating it on the two testing sets i.e. 15° and 15°, 30° and

45°. Notation acl refers to the cluster layer activated with

 1,2,3,4,5,6,7,8a . This means, for instance, 4cl activates

AlexNet’s clustered layer 4 while the remaining layers

 5,6,7,8,9 are discarded. Equally to [4]–[7], [12],

performance is measured by the mean Accuracy metric (mA)
over the 10-target classes.

The performance our our proposal is shown in Figure 4. As
expected, exploiting all layers of the AlexNet does not pose
an optimum solution as this CNN has been trained on
encoding high level features belonging to 2D data of a
different modality. As we are moving towards lower level
feature extraction layers, performance improves because the
basic nature of these encoders can handle the SAR modality.
Peak perfromance of 98.1% mean Accuracy is obtained by

activating 2cl . Athough activating 1cl gains high

performance, the features encoded are too generic and thus
not disctinctive among the 10-target classes. Similarly to the
standard evaluation set (chips of 15°) our proposal can also
handle well depressions that exceed quite a lot the training
images (chips of 15°, 30° and 45°) which is unique in the
MSTAR literature. This happens, because the low-level

features of cluster layer 2cl in combination with the relatively

small training set and the multiclass SVM, enforce

generalisation and avoid overfitting. In specific, 2cl manages

97.8% mean Accuracy, while the overall performance has the
same trend as for the 15° evaluation set enforcing the rigidity
of your proposal. That multi-target multi-depression angle
capability of our architecture is very significant because it
substantialy extends the ATR capabilities.

Figure 4: Recognition performance per cluster layer of the
modified AlexNet

4.2 Comparison with state-of-the-art solutions

We compare and contrast the performance of the suggested

clustered AlexNet at 2cl with current state-of-the-art

architectures. To the best of our knowledge, none of the
current solutions tackles the simultaneous multi-target and
multi-depression problem. In addition, in contrast to the vast
majority of current SAR ATR oriented CNN’s or NN’s that
use a handcrafted network1, our proposal is based on the well
established AlexNet. Although the ATR performance of each
architecture is presented in Table 1, a direct comparison is not
trivial. For example, even though AFRLeNet [8] achieves
99% while our clustered AlexNet 98.1% (on the same testing
set), the former includes only 210 testing images while our
trials involve 3203. Another important point is the amount of
SAR imagery data required during the training stage of each
architecture. For example, A-ConvNet [7] manages 99.1% but
it uses 27000 training images compared to 2890 of our
suggested CNN architecture, which reveals that our
suggestion is more effective as it requires fewer SAR images.
Urged from that, we introduce the network effectiveness
metric that exposes under a single value the ATR
performance of a CNN in relation to the training and testing
images used:

#

#

testing images
Effectiveness mA

training images
 (1)

Algorithm
training
images

testing
images

Depression
angle

mA
(%)

15° 30° 45°

Chen [5] 2747 2425 84.7
A-

ConvNet
[7]

27000 2425 99.1

DCNN [4] 12146 5378 99.5
Morgan [6] 3671 3203 92.3
SGD [12] 3671 3203 97.1
AdaGrad

[12]
3671 3203 88.0

AdaDelta
[12]

3671 3203 97.4

AFRLeNet
[8]

1410 210 99.0

SAE [9] 2747 2426 95.4
Ours 2890 3203 98.1
Ours 2890 3794 97.8

Table 1: mA performance along with training, testing and the
depression angle of the test scenarios evaluated. Our
architecture is the only that reports such a wide depression
angle ATR capability

1 AFRLeNet [8] is also a mainstream CNN, but it has a low effectiveness
as discussed in the current section
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Figure 5 depicts the network effectives of each CNN
presented in Table 1, where the higher the value the better.
For fairness, we take into account the core SAR training set
before manipulating it for better performance. That is, 2747
for the A-ConvNet2, 6073 for the DCNN3 and 2747 for our
proposal. From Figure 5 we clearly observe that our CNN
architecture (green bar) is the most effective in the 15° trials
as it achieves high performance, while is the only one that has
a smaller SAR chip training set compared to the evaluation
set. Considering our multi-depression evaluation (blue bar),
this has an even greater effectiveness as it uses the same
training dataset of 17° while the testing one is 18.5% larger
including chips from three depression angles instead of only
one. Least efficient is the AFRLeNet because even though it
perfroms well (in absolute numbers), its evaluation is based
on only 210 images.

Figure 5: Network effectiveness per CNN architecture

5 Conclusion

We present a CNN architecture that is appealing for SAR
ATR applications. Our strategy efficiently extends the pre-
trained AlexNet from the RGB domain into the X-band SAR
by clustering its neuron layers, obtaining the activation
response from a training subset of the MSTAR dataset, and
finally exploit these responses to train a multiclass SVM
classification scheme.

Compared to current state-of-the-art CNN based
architectures, ours is the only one that has multi-target multi-
depression ATR capabilities. Depression angles extend from
15° up to 45°. This is feasible because our CNN strategy has
the highest network effectiveness of all competitor CNN’s
which reveals its strong generalisation capabilities.
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