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ABSTRACT

The fabrication of an optical cavity at the distal end of an optical fiber has been

achieved by Langmuir-Blodgett (LB) deposition of tricosanoic acid, the technique

allowing nanometer-scale control over the cavity length to a total thickness of ca.

0.5 m. The cavity has been shown to act interferometrically and, thus, has

potential sensing applications.
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Fabry-Perot interferometers formed at the end of optical fibers have been used as

sensor elements to measure a range of measurands including temperature,

vibration and pressure1. Particularly attractive are the short gauge lengths that

provide high spatial resolution and the potential for fast response to external

measurands. Several methods have been reported for the fabrication of an optical

cavity, where the cavity material may be air, metal or an organic film, on the end

of an optical fiber2. In general it is difficult to obtain high precision in the film

thickness for short cavities (< 2 m), but a recently reported method, using

ionically self-assembled monolayers3 (ISAM) has demonstrated thickness control

of ca. 5 nm layer-1 to a total film thickness of 1 m.

In this letter, we present an alternative to the ISAM process for fabricating

multilayer films with nanometer thickness control. The method is based on the

Langmuir-Blodgett (LB) technique which allows the layer-by-layer deposition of

multilayer structures 4-6 and control of the thickness at the molecular level. It also

permits the cavity to be fabricated from a single chemical species, this

homogeneity not being available to other fabrication techniques, such as ISAM3,

which require alternate layers of oppositely charged materials.

Previously we have shown that LB films can be deposited onto side-polished

optical fibers to form overlay waveguides7. These have been shown to act as
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wavelength filters8, chemical sensors9 and to offer an effective method for

generating waveguide second-harmonic generation in non-centrosymmetric

films10. In this letter we report the deposition of LB multilayers on the end of an

optical fiber, thus forming an optical cavity in which the optical fiber/LB interface

forms the first mirror (M1), and the LB film/air interface forms the second mirror

(M2).

From the Fresnel equations, the reflectance (Ri), at M1 and M2 are given by:
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where the effective refractive index of the fiber-core is n1, the cavity is n2, and air

is n3. Figure 1 shows a schematic of the optical cavity and the refractive index

designations. In general, if the molecular length is l and the number of bilayers is

m, then the cavity length is d = 2 m l cos  where  is the tilt angle of the

molecules when deposited onto the substrate. The optical phase change

experienced by light undergoing a double pass through the cavity is

λ
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where  is the free space wavelength of the source.
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From Fabry-Perot theory, assuming a phase shift between transmitted and

reflected waves (valid strictly only for lossless mirrors), the ratio of reflected to

transmitted amplitude, rFP, summing over multiple passes through the cavity11 is

njφd-2
2

n
1

jφd-2
1121 )expexpr(rexpexpttrrrFP

  jj (3)

assuming jari and ati to be the reflected and transmitted amplitudes at each mirror,

(where a is the amplitude coefficient), and exp-2d is the attenuation due to each

double pass of the cavity. As the fabricated cavity has low reflectance at both M1

and M2, in the limit as r1 tends to zero, the transfer function will be cosinusoidal,

of the form

 φcosV1II 0  (4)

where V is the visibility, as in a dual beam interferometric arrangement.

The cavity material, tricosanoic acid [CH3(CH2)21CO2H], was spread from dilute

chloroform solution (0.1 mg cm-3) onto the pure water subphase of one

compartment of a Nima Technology LB trough (model 2022), left for 10 min at

ca. 20oC, and compressed at 0.5 cm2 s-1 (ca. 0.1 % s-1 of total surface area).

Transfer on to the end of the fiber was achieved by vertical deposition, at a surface

pressure of 30 mN m-1 and a rate of 1 cm min-1. The fiber was alternately raised

and lowered through the floating monolayer, with its cleaved face orthogonal to

the plane of the film, using a modified dipper mechanism. Y-type structures, in
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which the amphiphilic molecules pack head-to-head and tail-to-tail, (Figure 2),

were obtained by multiple passes through the film.

The experimental layout shown in Figure 1 was used to monitor the formation of

the cavity, the light source being a super-luminescent diode with a central

wavelength of 830 nm and a 3 dB bandwidth of 30 nm. This was coupled to the

cavity via a 3 dB directional coupler using single mode optical fiber (Fibercore

PS750, cut-off wavelength 730 nm). As the cavities formed were of the order of 1

m in length, a broad band source with a coherence length of 15 m was sufficient

to monitor their fabrication. The optical power of the source and the reflected

signal from the cavity were monitored on separate matched photo-detectors.

Following the deposition of each bilayer, at an incremental thickness of ca. 5 nm,

the ratio of the reflected to incident intensity was recorded. This ratio is plotted

versus number of bilayers in Figure 3.

The reflected signal varies with the cavity thickness, having a period of ~ 49  1

bilayers, assuming transfer upon every pass through the floating monolayer, and

clearly showing the interferometric nature of the cavity, (Figure 3). From this

period and the refractive indices of fatty acids, i.e. n = 1.43 0.02 from

reflectometry studies12, the calculated thickness is 2.9  0.2 nm layer-1. This is in

reasonable agreement with the thickness from X-ray synchatron diffraction
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measurements13, i.e. 2.68 nm layer-1 for films deposited under identical conditions

on to silicon wafers. In this case, the slight difference may result from variations in

the thickness when films are deposited on to large planar substrates and the end of

an optical fiber.

The optical fiber data are similar to those reported for ISAM3, showing attenuation

with cavity thickness owing to absorption and scattering within the film. There is

some asymmetry, (Figure 3), probably resulting from incomplete deposition of the

multilayer, and this should affect thickness calculations. Assuming transfer upon

every pass through the floating monolayer, 96 bilayers were deposited to a cavity

thickness ca. 0.5 m.

The visibility is dependent on the refractive index difference between the LB/fibre

and LB/ air interfaces. In this experiment the refractive index of the LB film was

approximately 1.43 giving a theoretical visibility of approximately 0.06. The

measured visibility is approximately 0.03. The discrepancy arises due to the

difficulty in obtaining accurate refractive index values for the fibre and LB film at

the wavelengths used and also due to scattering loses in the cavity. Future work

will investigate materials with with higher refractive indices to create cavities with

higher visibility. Knowledge of the dispersion of the material would allow the

cavity to be monitored at different wavelengths and thus facilitate signal
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processing of the cavity when deployed as a sensing element. The facility to

control the optical thickness of the cavity on a nanometer scale permits the

formation of high spatial resolution optical fiber sensors and the potential for

sensors with fast response times.

In addition to the above, LB film-forming materials may be designed to form non-

centrosymmetric films and change their optical characteristics when reacting to a

particular chemical species. Such materials have been synthesised and deposited

on side-polished optical fibers7-10. Using the technique presented here, optical

cavities of such materials could be fabricated on the end of an optical fiber

opening up the potential for non-linear optics based sensing.

In this letter, the deposition using the LB technique of tricosanoic acid with an

estimated thickness of 2.9 nm layer-1 has allowed the fabrication of an optical

cavity ca. 0.5 m in length at the end of an optical fiber. The LB technique

permits nanometer-scale control over the cavity length. The cavity has been shown

to act interferometrically. This technique may facilitate the fabrication of novel

optical sensing devices with high spatial resolution.

We are grateful to Dr. I.R.Gentle (University of Queensland) for calculating the

layer thickness of the LB film from the X-ray synchatron diffraction data and the
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Captions to Figures

Figure 1

(a) Experimental setup, where SLD is a superluminescent diode light source, OPM

1 and OPM 2 are the inputs of a dual channel optical power meter, C is the 3 dB

directional fiber coupler and the cavity is fabricated using the LB trough. (b) The

cavity formed at the end of the fiber, and the designated refractive indices.

Figure 2

The Langmuir-Blodgett technique (a) a monolayer film of aliphatic molecules –

represented by hydrophilic circles and hydrophobic rods - is formed on the pure

water surface. (b) The fiber is passed up through the film, depositing one layer. (c)

Deposition of the seventh layer after six passes though the film.

Figure 3

Plot of reflected optical power against number of bilayers deposited.
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(top) Figure 3, N.D.Rees, Optics Letters
%

R
ef

le
ct

ed
O

pt
ic

al
Po

w
er

0 20 40 60 80 100

3.0

3.1

N u m b e r o f B i l a y e r s


