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Abstract—This paper presents recent advances in the devel-
opment of HEMP waveforms with causal responses suitable for
implementation in Finite Difference Time Domain models. New
time-domain implementations of the HEMP environment are
proposed using direct and indirect employment of the HEMP
waveform. Numerical instabilities of the waveform are addressed
and a new stable waveform matched to the IEC standard has been
evaluated. It is concluded that the implementation of the quotient
exponential model provides a stable and accurate waveform for
time-domain modelling.

Index Terms—HEMP, Electromagnetic Pulse, FDTD, Time Do-
main, Double Exponential, DEXP, QEXP, Quotient Exponential.

I. INTRODUCTION

Recent events have renewed interest in the susceptibility
of electronics and electromagnetic systems to High-Altitude
Electromagnetic Pulses (HEMP). The high power and low-
frequency characteristics of HEMP waveforms increase the
difficulty in simulating the effects of a HEMP in real-world
environments. Consequently, little research effort has been
directed at HEMP numerical waveform modelling over the
last 30 years. The advent of accessible high-performance
computing and improved time-domain modelling techniques
has improved the opportunity to conduct accurate and efficient
modelling of EMP waveforms in large-scale scenarios.

II. HEMP WAVEFORMS

The HEMP standard environment is described using three
waveforms, the early-time (E1), intermediate-time (E2) and
late-time (E3) pulses. Together these represent the entirety of
the HEMP environment. The extant HEMP standard utilises
a Double Exponential (DEXP) waveform that suffers from
temporal instability. An alternative waveform using Quotient
Exponentials (QEXP) has been developed which provides
a stable alternative to the IEC standard when implemented
directly in numerical simulations. Similarly, the use of a
matched Gaussian can provide accurate pulse characteristics
in a simplified model.

A. Evaluating the IEC 61000 Waveform

The current IEC standard for the description of the HEMP
environment utilises a double exponential (DEXP) waveform

[1]. Both the temporal and spectral waveforms are described
in 1.

ED(t) = E0k
(
e−α(t−t0) − e−β(t−t0)

)
u (t− t0)

ED (ω) = E0k
(

(jω + α)
−1 − (jω + β)

−1
)
e−jωt0 (1)

Where E0 is the peak E-field strength (V/m), t is the time (s),
t0 is the time delay (s), α and β are the pulse decay and rise-
time constants respectively (rad/s), k is a normalisation factor,
ω is the radial frequency (rad/s) and u(t− t0) is a Heaviside
step function that “switches on” the waveform at t = t0. The
stability of the time-domain waveform can be evaluated using
Taylor’s theorem such that if the second-order derivative is
continuous the waveform is stable [2]. An unstable waveform
is likely to instigate small errors in the model resulting in an
oscillating E-field response that increases exponentially. The
second-order derivative of the DEXP waveform can be shown
to be discontinuous due to the presence of the Heaviside step-
function as shown in 2.

d2

dt2
(u(t)) =

d

dt
(δ(t)) = undefined (2)

When the Heaviside function is removed, the DEXP is shown
to be stable, as shown in 3.

d2

dt2

(
E0k

(
e−α(t−t0) − e−β(t−t0)

))
= E0k

(
α2e−α(t−t0) − β2e−β(t−t0)

)
(3)

The DEXP withour Heaviside step-function is, however,
quixotic and rapidly tends to −∞ before t = t0. The DEXP
waveform is therefore not implementable in Time-Domain
models.

B. New HEMP Proposed Waveform

An alternative HEMP environment, as proposed by Baum
[3], uses a quotient exponential (QEXP) waveform as de-
scribed in 4.

EQ (t) =
E0ku (t− t0)

eβ(t−t0) + e−α(t−t0)

EQ (ω) =
E0kπ

α+ β
cosec

(
π
jω + β

α+ β

)
e−jωt0 . (4)
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Again this utilises a Heaviside step-function, however, when
this is removed, the waveform rapidly tends to 0 before t = t0.
Further the waveform is continuous in its second derivative,
as shown in 5.

(5)

d2

dt2

(
E0k

eβ(t−t0) + e−α(t−t0)

)
= E0k

(
2
(
αe−α(t−t0) − βeβ(t−t0)

)2(
e−α(t−t0) + eβ(t−t0)

)3
− α2eα(t−t0) + β2eβ(t−t0)(

e−α(t−t0) + eβ(t−t0)
)2
)

Two QEXP waveforms have been previously proposed by
Baum and Leuthauser. Neither of these HEMP environments
include E2 or E3 waveforms and the waveforms themselves
have significantly different profiles to the IEC standard as
shown in Fig. 1. The QEXP waveform can be fitted to the
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Fig. 1. Normalised IEC DEXP, Baum QEXP and Leuthauser QEXP HEMP
waveforms.

IEC waveform using a simple Gauss-Newton Least-Square
Errors (LSE) regression across the time domain. The waveform
can be simplified into a function of the decay and rise-time
coefficients (α and β) and time (t). E0 is a constant and can
be removed from the regression analysis, k is a normalisation
factor raising the peak to 1. This can be calculated from the
rise-time and decay coefficients as shown in 6.

k = eβtpeak + eαtpeak (6)

Where, tpeak is the peak time of the pulse, and can be
calculated from the rise-time and decay coeffcients as shown
in 7

tpeak =
ln |α/β|
α+ β

(7)

The QEXP function can therefore be rewritten as shown in 8

EQ(α, β, t)norm =
eβ

ln|α/β|
α+β + e−α

ln|α/β|
α+β

eβt + e−αt
(8)

This can be implemented in a Gauss-Newton LSE regres-
sion with 10,000 time steps to fit all three DEXP HEMP
waveforms, shown in Fig. 2 and Fig. 3. This new QEXP
waveform is directly implementable in Time-Domain models
and is matched to represent the DEXP waveform.
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Fig. 2. IEC 61000-2-9 DEXP HEMP and proposed matched QEXP HEMP
model in the time domain.

10−4 10−1 102 105 108

10−6

10−4

10−2

100

E1

E2
E3

Frequency (Hz)

E
-fi

el
d

St
re

ng
th

(V
/m

)/
H

z
IEC DEXP
New QEXP

Fig. 3. IEC 61000-2-9 DEXP HEMP and proposed matched QEXP HEMP
model in the frequency domain.

C. Matched Gaussian Waveform

An alternative to direct implementation of a HEMP wave-
form, is to use a matched Gaussian pulse. For this analysis
the Gaussian pulse is matched in the time domain for imple-
mentation in the model, after which the frequency response is
convolved with a matching function to reconstruct the DEXP
waveform. The Gaussian can be matched to the pulse width,
peak time and peak-field as shown in 9.

Eg(t) = E0 · e
−(t−(tp+t0))2

t21 (9)

Where t1 is the pulse-width of the DEXP waveform, tp is the
peak time of the DEXP waveform and E0 is the peak E-field
strength of the DEXP waveform. The matched Gaussian is
shown in Fig. 4. The Fourier transform can be calculated as
shown in 10.

EG(ω) = E0t1
√
πe−ω

2t21/4e−jω(t0+tp) (10)

The DEXP waveform can be reconstructed from the Gaussian
using a matching function M as described in 11.

M(ω) =
ED(ω)

EG(ω)
(11)
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Fig. 4. IEC 61000-2-9 DEXP HEMP and matched Gaussian (time domain).

This is inferred from the Matched Gaussian and DEXP wave-
form as shown in 12.

M(ω) =
k(β − α)

t1
√
π
· e

ω2t21+j4ωtp
4

(jω + α) (jω + β)
(12)

The matched Gaussian and matching function is shown in Fig.
5.
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Fig. 5. IEC 61000-2-9 DEXP HEMP, matched Gaussian and Matching
Function.

III. WAVEFORM IMPLEMENTATION AND EVALUATION

The above waveforms have been implemented in two propa-
gation scenarios; a homogenous dielectric with low conductiv-
ity simulating a lossless propagation and a lossy material with
complex permittivity. The FDTD numerical models employ an
8-layered Berenger Perfectly Matched Layer (PML) absorber
described by Hagness [2].

A. Lossless Material Model

The lossless material properties and model characteristics
are detailed in table III-A.

The expected frequency response is shown in Fig. 6. Im-
plementing the simulation using a Finite Difference Time Do-
main (FDTD) with maximum frequency 10GHz, the temporal
response (shifted in time for presentation) is shown in Fig. 7.
This demonstrates that both the Gaussian and QEXP wave-

TABLE I
LOSSLESS MATERIAL SIMULATION PARAMETERS.

Property Value
Permittivity (εr) 88
Permeability (µr) 1
Conductivity (σ) 10× 10−6 W−1m−1

Length (L) 100 m
Maximum Frequency (fmax) 10 GHz
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Fig. 6. Frequency response through lossless material.

forms are stable in the simulation. The DEXP waveform suf-
fers dampened oscillations throughout it’s temporal response,
artificats of the discontinuous DEXP waveform. The DEXP
waveform is therefore discounted as an unrealistic implemen-
tation of the HEMP environment. The spectral response is
calculated using the Fourier Transform of the temporal output
from the simulation. The DEXP waveform can be reconstituted
from the Gaussian using the matching function as described
earlier. These spectral waveforms are shown in Figure 8.
This shows good agreement between the Gaussian and QEXP
waveform. The reconsituted DEXP suffers from exponential
error after 10kHz most likely caused by the errors induced
in numerical approximation of the Gaussian waveform. This
may be mitigated against by reducing the Gaussian pulse
width, however the errors will likely still be induced at a
higher frequency, requiring windowing to eliminate the high-
frequency errors.

B. Lossy Material Model

The lossy material properties and model characteristics are
detailed in table III-B. A similar temporal response is seen

Property Value
Permittivity (εr) 88 + 1i
Permeability (µr) 1
Conductivity (σ) 10× 10−6 W−1m−1

Length (L) 2 m
Maximum Frequency (fmax) 20 GHz

in the DEXP waveform with oscillations occuring due to the
inherent instability of the pulse. The QEXP waveform shows
greater stability and should provide higher accuracy in the
higher-frequency spectral response. The temporal output of the
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Fig. 7. FDTD Temporal Response of HEMP E1 Waveforms.
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Fig. 8. FDTD Spectral Response of HEMP E1 Waveforms.

FDTD model is shown in Figure 9. A simple analytic model
using identical parameters for the paropagation path material
has been used to validate the spectral response of the FDTD
waveforms.

The difference in E-field responses is shown across the
frequency domain and similar errors are seen in both DEXP
and QEXP waveform with the exception of an increased
difference between analytic and FDTD responses seen in the
DEXP waveform above 100 kHz. This shows a noticeable im-
provement in accuracy of directly injected HEMP waveforms
using the QEXP expression. The spectral response is shown
in Fig. 10. The majority of the discrepency between FDTD
and analytic results can be attributed to the limitations in the
implementation of FDTD using low-performance processing,
limitations in the granularity of the temporal and spacial
grids increase the high frequency error and limitations in the
domain length increase the low frequency error. However the
small difference between QEXP and DEXP accuracies above
100kHz show the QEXP waveform to be more practical and
implementable in time-domain models. Improvements in the
FDTD model will show greater discrepency between QEXP
and DEXP waveforms and as such the QEXP will be signifi-
cantly more accurate in high-performance implementations of
FDTD.
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Fig. 9. FDTD Temporal Response of HEMP E1 Waveforms Through Lossy
Material.
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Fig. 10. FDTD Spectral Response of HEMP E1 Waveforms Through Lossy
Material with Error.

IV. CONCLUSION

Three matched HEMP waveforms have been compared
using different mathematical expressions. The QEXP matched
waveform shows the greatest stability and highest accuracy
when implemented in time-domain models. Limitations in
the implementation of the Finite Difference Time Domain
model limit the improvemen seen using a QEXP waveform,
however this waveform will show significantly higher accuracy
when implemented in large-scale models parallelised on high-
performance processing arrays.
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