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Abstract: Relaxor ferroelectrics with high energy storage performances are very attractive for

modern applications in electronic devices and systems. Here, it is demonstrated that large energy

densities (0.52 ~ 0.58 J/cm3) simultaneously with high efficiencies (76% ~ 82%) and thermal stabilities

(the variations of efficiencies: 7% from 323 to 423 K) have been achieved in the lead-free (1-x)(BCT-

BMT)-xBFO relaxor ferroelectric ceramics prepared using a conventional solid-state reaction method.

Large dielectric breakdown strengths and great relaxor dispersions around the dielectric peaks are

responsible for the excellent energy storage performances. The energy storage performance of as-

prepared ceramics at high BFO doping amount (x = 0.06 and 0.07) was deteriorated seriously due to

the decrease of dielectric breakdown strengths. However, they could be greatly improved when aged,

since the operable electric field was significantly enhanced from 10 kV/cm of as-prepared samples to

100 kV/cm of aged samples due to the reduced concentration of oxygen vacancies during the aging

process. The excellent energy storage performance may make them attractive materials for applications

in energy storage systems in a broad temperature range.
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1. Introduction

Recently, with the development of electronic, information and technology toward miniaturization,

dielectric capacitors have aroused widespread interests due to the high power density, extremely high

charge/discharge speed (< 1 μs)(1-3), low cost, long cycling life, high thermal and mechanical stability

compared with linear dielectric polymer materials(2, 4). For ferroelectric (FE) materials, the most of

energy charged is dissipated during the depolarization process because of the large remnant

polarization, and only a small portion can be released(5), leading to a low energy storage efficiency.

Therefore, they are not good candidates for energy storage applications. For antiferroelectric (AFE)

materials, they are unable to withstand hundreds of charge-discharge cycles because of the appearance

of some fatal microcracks induced by large phase change stress between the AFEs and the FEs. Like

wisely, they are not suitable for energy storage applications, neither(6). For relaxor ferroelectrics, the

high energy storage density, high energy storage efficiency and long charge-discharge cycling life

altogether make them be more potential for applications in energy storage systems(7, 8).

The research on the energy storage effect of relaxor ferroelectric materials mainly focuses on lead-

based ceramics and their thin films, such as the Pb(Mg1/3Nb2/3)O3-PbTiO3 (0.47 J/cm3 at 70 kV/cm)(9),

the 0.2Pb(Mg1/3Nb2/3)O3-0.8Pb(Sn0.36Ti0.64)O3 (0.85 J/cm3 at 70 kV/cm)(10) and the

Pb0.97La0.02Zr0.8Sn0.145Ti0.055O3 (4.38 J/cm3 at ~230 kV/cm) ceramics(11), the Pb(Nb0.04Zr0.384Ti0.576)O3

(20 J/cm3 at 1878 kV/cm)(12) and 0.4Bi(Ni1/2Zr1/2)O3-0.6PbTiO3 (~56.1 J/cm3 at 2167 kV/cm)(13) thin

film, etc. Under the response of the European "RoHS/WEEE" environmental and health protection

directive, the uses of lead-based relaxor ferroelectric materials will be restricted because of the strong

toxicity of lead. Thus, it is imperative to develop environment-friendly lead-free materials. So far,

many new lead-free materials have been reported and great progress in the energy storage performance



has been made(14, 15). For example, some ceramics or thin films with large energy storage density have

been obtained, such as 0.95 J/cm3 in the 0.82[0.92Bi0.5Na0.5TiO3-0.08BaTiO3]-0.08SrZrO3-

0.10NaNbO3 ceramic at 110 kV/cm(16), 1.5 J/cm3 in the 0.94K0.5Na0.5NbO3-0.06Sr(Zn1/3Nb2/3)O3

ceramic at 175 kV/cm(17), as well as 42.9 J/cm3 in the 0.89Na0.5Bi0.5TiO3-0.06BaTiO3-0.05BiFeO3 thin

film at 1720 kV/cm(18) and 51 J/cm3 in the 0.4Bi1.05Fe0.995-Mn0.005O3-0.6SrTiO3 thin film at 3600

kV/cm(19), etc. Moreover, some ceramics with high efficiency (η) have also been synthesized to satisfy

the needs of practical applications in energy storage, such as 93.3% in 0.8BaTiO3-0.2BiYbO3 ceramic

at 100 kV/cm(20), 87.7% in the ZnO-Li2O modified Ba0.4Sr0.6TiO3 ceramics at 198.8 kV/cm(21) and 90%

in the BT@ST ceramic at 47 kV/cm(22). In addition to large Wenergy and η, good thermal stability should

also be an important parameter required for practical applications in energy storage. However, to our

knowledge, the thermal stability of lead-free materials has not been greatly improved. For example,

although a large Wenergy (∼ 0.81 J/cm3) with a high efficiency (η > 94%) was obtained in 0.86BaTiO3-

0.14Bi(Zn0.5Ti0.5)O3 ceramic(23), the thermal stability (the variations of efficiency: 17%) is not high

enough to meet practical applications.

Previous research work has revealed that a near-plateau relative permittivity (835 ± 40) in a broad

temperature range of 65°C - 550°C can be obtained in 0.5Ba0.8Ca0.2TiO3-0.5BiMg0.5Ti0.5O3 lead-free

ferroelectric ceramics(24, 25). This result indicates that it could be a potential candidate in energy storage.

It has been well-known that the BiFeO3 multiferroic has the highest theoretical spontaneous

polarization (P > 100 µC/cm2) in ferroelectrics as reported so far(26). Therefore, it has often been

considered as a favoring dopant to enhance the performance of ferroelectrics.

In this work, large energy densities (0.52 ~ 0.58 J/cm3) simultaneously with high efficiencies (76% ~

82%) and thermal stabilities (the variations of efficiencies: 7% from 323 to 423 K) were reported in



the lead-free BiFeO3-doped 0.5Ba0.8Ca0.2TiO3-0.5BiMg0.5Ti0.5O3 relaxor ferroelectric ceramics

prepared using a conventional solid-state reaction method. The excellent energy storage performances

are attributed to the large dielectric breakdown strengths and great relaxor dispersion around the

dielectric peaks. Moreover, it is also found that the aging has a great impact on the enhancement of the

energy storage performance of ceramics with a higher BFO doping amount (x = 0.06 and 0.07). These

breakthroughs make the materials very attractive for practical applications in energy storage systems.

2. Experimental procedures

BiFeO3-doped 0.5Ba0.8Ca0.2TiO3-0.5BiMg0.5Ti0.5O3 (abbreviated as (1-x)(BCT-BMT)-xBFO, where x

= 0.0, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06 and 0.07) ceramics were fabricated using BaCO3 (99%), CaCO3

(99%), Bi2O3 (99%), TiO2 (98%), MgO (98.5%) and Fe2O3 (99%) as raw materials. Bi2O3 and MgO

with 3 wt% excess were added because of the volatility of Bi and Mg. The raw materials were milled

in a nylon tank with the zirconia balls as media in ethanol for 12 h. The dried slurries were calcined at

900 °C for 6 h and re-milled for another 12 h to reduce the component segregation. After dried and

recalcined at 910 °C for 6 h, the powders were milled and dried again to obtain homogeneous powders.

The powders were subsequently compacted into green pellets with a diameter of 8 mm and they were

pressed isostatically at 260 MPa. All pellets were sintered at 1200 °C for 6 h with a heating rate of 3

ºC/min in air, and then cooled to 800 °C with a cooling rate of 5 ºC/min, and finally cooled to room

temperature naturally. To reduce the loss of bismuth and magnesium elements during the sintering

process, all pellets were buried in the powders with the same composition.

The microstructures of ceramics were examined by the field emission scanning electron microscopy

(FE-SEM, SU8220, Hitachi Co). The crystal structures of ceramics were analyzed by the X-ray



diffraction (XRD, PANalytical XʼPert PRO) using Cu Kα radiation (λ = 1.5406 Å). Room temperature 

Raman Spectra were carried out by the Laser Micro Raman system (DXR, Thermo Fisher Scientific).

For the measurements of electrical properties, silver paste was painted both sides on the polished

ceramics as the electrodes and fired at 600 °C for 30 min. The temperature dependence of the dielectric

permittivity (εr), dielectric loss (tanδ) and impedance of ceramics were measured using an impedance

analyzer (HP 4192A). The hysteresis loops between polarizations and electric fields (P-E loops) at 1

Hz were obtained using a ferroelectric analyzer (TF-2000, AixACCT, Aachen).

3. Results and analysis

3.1 Structure and morphology

Fig. 1a) shows the X-ray diffraction (XRD) patterns of the BFO-doped BCT-BMT ceramics. All

samples exhibited good crystallinities and pure perovskite structures with the coexistence of

orthorhombic and tetragonal phases. When the amount of BFO increased, the diffraction peaks shifted

slightly towards the left, as shown in the enlarged parts in Fig. 1b). The intensity of the (101�)�, (111�)�

and (020)� peaks gradually decreased, while the intensity of the (002)� peak gradually increased,

indicating that the rate of the orthogonal phase to tetragonal phase decreased. As x > 0.04, the

diffraction peaks shifted back slightly toward the right, and the intensity of the (101�)� , (111�)� and

(020)� peaks gradually increased but the intensity of the (002)� peak gradually decreased,

indicating that the rate of the phase change from orthogonal to tetragonal phase increased. The above

results indicate that the compositions of samples are all located at the MPB.

Fig. 1c) shows the Raman spectra of the BFO-doped BCT-BMT ceramics at room temperature. There

are no new peaks on the Raman spectra, indicating that no new phases generate with the addition of



BFO. All spectra were fitted and deconvoluted into individual Guassian components to obtain the

information of each peak. These Raman peaks can be divided into three main regions, including A-

site, B-O bond and the BO6 Octahedra. The mode of 185 cm-1 is related to the A-O vibrations (A: Ba2+,

Ca2+ and Bi3+ cations)(27). The modes of 200 cm-1 and 315 cm-1 are related to A1(TO2)O/T and

E(TO3)/B1O/T, respectively(25). The mode of 515 cm-1 is related to A1(TO3)/E(TO)T caused by the O-Ti-

O symmetric stretching vibrations. The mode of 718 cm-1 is related to the A1(LO3)/E(LO4)T activated

by the structural distortion of the lattice(28). The mode of 780 cm-1 is related to the A1g (octahedral

breathing mode), which is symmetrical and Raman inactive in A-site doped BaTiO3-based ceramics

but asymmetric and Raman active in one of B-site doped(29). It should be noted that the new band mode

on the Raman spectra represents the high-pressure Raman spectra of Ba-based relaxor ferroelectric

ceramic. The evolutions of the band center position, full width at half maximum (FWHM) and height

were quantitatively extracted, as shown in Fig. 1d) and Fig. S1. It is observed that the FWHM of the

A1(TO3)/E(TO)T mode increases sharply with the increasing BFO and reaches a maximum value at x

= 0.03, but it decreases sharply with further increasing BFO and gets a minimum value at x = 0.04.

The FWHM of E(TO3)/B1O/T mode increases sharply with the increase of BFO and reaches a maximum

value at x = 0.04, but it decreases sharply with further increasing BFO. These results indicate that the

rate of the orthogonal phase to tetragonal phase changed significantly around the contents of x = 3 and

4, consistent with the results of XRD analysis. Moreover, it is found that the phase transition from

orthogonal to tetragonal also plays an important role on the dielectric properties and energy storage

performance of ceramics, as shown by the subsequent part of the paper.

Fig. 2 shows the surface SEM images of BFO-doped BCT-BMT ceramics after thermal etching at 1100

°C for 4 h. All samples were well crystallized and exhibit dense microstructures. With increasing x,



grain boundaries of samples gradually turned from angular into circular arc, due to the decreasing

melting point as increasing the doping amount. For x = 0 to 0.04, especially x = 0.04 (see Fig. 2e)),

some small particles (ceramic powders left during the polishing process) dwelled on the surface of

samples. They disappeared with increasing x, as shown in Fig. 2f) - 2h). The insets in Fig. 2a) - 2h)

show the statistic distributions of the grain sizes in ceramics calculated from Fig S2. With increasing

x, the average grain size of samples increased gradually from 7.04 µm at x = 0 to 13.60 µm at x = 0.07,

indicating a decreasing melting point in the BFO-doped BCT-BMT ceramics.

3.2 Dielectric properties

Fig. S3 shows the temperature dependences of the dielectric permittivities (ε(T)) and the dielectric

losses (tan δ(T)) of the BFO-doped BCT-BMT ceramics, including the prepared and aged (3 days in

air). The dielectric peaks of samples can be clearly observed at high enough frequencies such as 1MHz,

however, they gradually disappear with the decreasing frequency because of the effects of some defects

such as the oxygen vacancies and space charges, etc., especially for those of aged samples, as shown

in Fig. S3b), S3d), S3f), S3h), S3j), S3l), S3n) and S3p). The dielectric permittivities of all as-prepared

samples at room temperature change slightly, indicating a negligible effect of the BFO doping. All

samples also behavior as dielectric relaxors, namely the Tm and the ��
� shift towards higher

temperature with increasing frequency(30, 31). As the temperature increases to the Tm, the peak values

of the dielectric permittivities of all samples almost unchanged (~ 1600 at 1 MHz). The dielectric peaks

become more and more diffused and broadened with the increasing content of BFO. The dielectric

relaxation behavior of samples around the peaks can be described by the Lorentz-type empirical

relation(32, 33), ��/� = 1 + (� − �� )�/2��
�, where TA (TA ≠ Tm) and �� are the parameters that define



the temperature of the dielectric peak and the extrapolated value of T = TA, respectively. The parameter

δA is frequency independent at high enough frequencies and represents the relaxor diffuseness of the

dielectric peak. The larger �� is, the greater the relaxation is. Table 1 lists the parameter �� of the

(1-x)(BCT-BMT) -xBFO ceramics including the as-prepared and aged ceramics at 1 MHz. The �� of

as-prepared samples with x = 0 to 0.04 is smaller than that of corresponding aged samples, whereas

the �� of as-prepared sample with x = 0.05 is larger than that of corresponding aged sample. The

minimum parameter δA obtained around the dielectric peak of x = 0.04 is 106.58 which is close to that

(103.6) of the prototypical relaxor Pb(Mg1/3Nb2/3)O3 ceramics, indicating that all samples exhibit great

relaxor dispersion(33).

3.3 Energy Storage

Fig. 3 and Fig. S4 show the P-E loops of the (1-x)(BCT-BMT)-xBFO as-prepared and aged ceramics

at selected electric fields and room temperature. To avoid dielectric breakdown, conservative electric

field are applied to samples. As the electric field increases, all P-E loops of samples (x = 0 to 0.05)

including the as-prepared and aged exhibit slim loops with four week I-E peaks, as shown by the

arrows in the insets of Fig.3 and Fig.S4, which are ascribed to the pinning and depinning of the

domains walls by defects such as bismuth and oxygen vacancies. Bad looking P-E loops (see the

ellipses in Fig. 3c) and Fig.3e) and their right lower corner insets) of as-prepared samples of x = 0.06

and 0.07 are obtained under a very low operable electric field (only 10 kV/cm), indicating a low

dielectric breakdown strength and a high leakage current. However, for the aged samples of x = 0.06

and 0.07, the operable electric field can be improved obviously with the increase of aging time, as

shown by the Fig. S7c) to S7h). Meanwhile, the P-E loops become more and more slim, indicating an



enhanced dielectric breakdown strength and a depressed leakage current. Good looking P-E loops can

be achieved when they were aged for a week and then heated at 300 °C for 30 min, as shown in Fig.

3d) and Fig.3f). Previous research works have pointed that oxygen vacancies (��
··)′ can be generated

during the sintering process(34), and tend to deteriorate the dielectric breakdown strength. However,

they can also be eliminated under moderate conditions. For the aged samples of x = 0.06 and 0.07, the

residual oxygen vacancies prefer to be transformed into �� and left holes by the environmental

oxygen when aged for a time, as shown by the equation (2). These holes can be neutralized by

electrons in the BFO-doped BCT-BMT ceramics, as shown in the equation (3), resulting in a reduction

of oxygen vacancies. Accordingly, the recombination of electrons and holes leads to an improvement

of insulating properties (see the larger Z″ in the left upper corner insets of Fig. 3c) and Fig.3e) in the

aged samples, especially for x = 0.06 and 0.07. Thus, an enhanced dielectric breakdown strength was

achieved, leading to an improved operable electric field with the increase of aging time.

�

�
�� + ��

·· → �� + 2h· (2)

2Fe��
����

�⎯⎯� 2����
· + 2� ¢ (3)

Fig. S6 shows the AC conductivity (σac) of (1-x)(BCT-BMT) -xBFO as-prepared and aged ceramics

of x = 0 to 0.07 at selected temperatures. For aged samples, as the temperature decreases, the magnitude

of the decrease of the σac is large than that of as-prepared samples, especially the samples with a higher

doping content, indicating that the samples become more insulative. The room temperature dielectric

constant (ε) and dielectric loss (tan δ) as a function of frequency of as-prepared, aged and oxidized

samples (annealed in a tube furnace and in oxygen) are illustrated in Fig. S7. It can be found that the ε

values of aged and oxidized samples of x = 0.06 and 0.07 are higher than that of as-prepared samples

at low frequencies, and the increased magnitude of ε in oxidized samples is higher than that in aged



samples. These results indicate that the reduced concentration of oxygen vacancies plays a key role in

the enhancement of the dielectric breakdown strength and the improvement of the operable electric

field of the (1-x)(BCT-BMT)-xBFO ceramics, especially for the x = 0.06 and 0.07.

The recoverable energy density (Wenergy) of a dielectric-based material is estimated from the P-E loops

and calculated with the following equation

������� = ∫ �
����

��
��, 0 ≤ � ≤ ���� (4)

where E is the applied electric field that causes variation in the electric polarization P, Pr the remnant

polarization, and Pmax the maximum polarization under the applied field(2, 3, 35). According to equation

(4), materials simultaneously possessing smaller Pr, larger Pmax, and higher dielectric breakdown

strength are more favorable for energy storage. For practical applications, in addition to a large Wenergy,

a high energy storage efficiency (η) is also desired. The η is defined as the ratio of the discharging

(output) energy to the charging (input) energy

h =
�������

�������������
(5)

where Wloss is the energy loss density, calculated by the numerical integration of the closed area of the

hysteresis loops(36). The electric field dependence of Wenergy, Wloss and η of BFO-doped BCT-BMT

based ceramics as-prepared and corresponding aged at selected electric fields are shown in Fig. 4a),

4b), 4c) and 4d). It can be seen that the Wenergy, Wloss and η values of all samples increase with the

increasing applied electric field. For as-prepared samples of x = 0 to 0.05, the Wenergy values change

from 0.53 to 0.58 J/cm3 at 100 kV/cm, indicating that the BFO doping amount has a weak effect on

the performance of the energy storage. However, for as-prepared samples of x = 0.06 and 0.07, the

performance of the energy storage is very bad, due to the low dielectric breakdown electric field. When

they were aged for a week and then heated at 300 °C for 30 min, the energy storage performance is



improved significantly, due to the increased dielectric breakdown electric field as shown in Fig. 4 b)

and 4d). The improved Wenergy values of x = 0.06 and 0.07 are as high as 0.52 J/cm3, and the η values

are 75.7% and 79.6%, respectively. The maximum η of as-prepared and aged samples are 82.21% (x

= 0.05) and 81.97% (x = 0.05) at 100 kV/cm, respectively. They are better than those of other bulk

ceramic systems: BiFeO3-BaTiO3-Ba(Mg1/3Nb2/3)O3 (η ~ 75%, 125 kV/cm)(37), 0.90(Bi0.5Na0.5TiO3-

BaTiO3)-0.10NaTaO3 (η ~ 74.8%, 100 kV/cm)(38), 0.85(BaZr0.2Ti0.8)O3-0.15 (Ba0.7Ca0.3)TiO3 (η ~ 72%,

170 kV/cm)(6) and 0.9Pb(Mg1/3Nb2/3)O3-0.1PbTiO3 (η ~ 78.3%, 70 kV/cm)(9).

In order to further study the variation law of the energy density of the (1-x)(BCT-BMT)-xBFO ceramics

under the electric field, a functional expression is defined here:

� =
�

��
=

∫ ���
��
�

��
=

�∫ ���
��
� �

��
, 0 ≤ � ≤ �� ≤ ���� (6)

Q represents the energy storage density of the material under the unit electric field. The relationships

between Q and applied electric field are given in Fig. 4e) and 4f). There is no obvious change in the Q

value of as-prepared samples. A maximum Q value (0.0058 J/cm2⋅kV) can be obtained for as-prepared

samples at x = 0.01 and 0.04. However, when aged, the maximum Q value is obtained only at x = 0.04.

Similar to the Wenergy and the η, the Q value of the aged samples at x = 0.06 and 0.07 have also been

improved significantly, and they are 0.00524 J/cm2⋅kV and 0.00522 J/cm2⋅kV, respectively.

The thermal stability of energy storage performance should also be considered for real capacitor

applications. Fig. 5 shows the P-E loops of the (1-x)(BCT-BMT)-xBFO ceramics in a wide temperature

range of 303 - 453 K, which is measured at 80 kV/cm, slightly lower than 100 kV/cm to protect the

samples from being thermally destroyed. The insets of Fig. 5 summarize the temperature dependence

of the Wenergy, Wloss, η and Q. It is found that the thermal stability of the energy storage performance

first increases slightly with the increase of doping BFO content, and reaches the best at x = 0.04, and



then decreases slightly. For as-prepared sample at x = 0.04, the Wenergy, η and Q increase rapidly from

room temperature (0.39 J/cm3, 82%, 0.0048 J/cm2⋅kV) up to 383 K (0.45 J/cm3, 98 %, 0.0057 J/cm2⋅kV)

and then decreases slightly. Especially, the variation of η from 323 K to 423 K is about within 7%, as

shown by the black and blue dot-solid line of the inset of Fig. 5, indicating good thermal stability. The

good thermal stability may be related to the great relaxor dispersion as described in the dielectric

properties. For aged samples, especially for those aged for a week and then heated at 300 °C for 30

min, not only the energy storage performances but also the thermal stabilities have also been improved

significantly, as shown in Fig. 5g) and 5h). All in all, the sample x = 0.04 will be a very promising

environmental-friendly material with high thermal stability for modern energy storage technology,

especially in electronic and electric systems.

4. Conclusion

Large energy density (0.52 ~ 0.58 J/cm3) simultaneously with high efficiency (76% ~ 82%) and

thermal stability (variation between 7% at 80 kV/cm from 323 to 423 K) have been achieved in the

lead-free (1-x)(BCT-BMT)-xBFO relaxor ferroelectric ceramics prepared using a conventional solid-

state reaction method. The excellent energy storage performances were accomplished by the large

dielectric breakdown strengths and great relaxor dispersion around the dielectric peaks. The energy

storage performance of ceramics at high BFO doping amount (x = 0.06 and 0.07) can be improved

significantly, due to the reduced concentration of oxygen vacancies during the aging process. The

excellent energy storage performances may make them a promising environmental-friendly material

for modern energy storage devices.
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Figure Captions:

Figure 1. a) XRD patterns of BFO-doped BCT-BMT-based ceramics. b) enlarged (110), (111) and

(002) profiles of XRD patterns, respectively. c) Raman spectra of BFO-doped BCT-BMT-based

ceramics at room temperature. d) Variations of height, center and width of A1(TO3)/E(TO) mode.

Figure 2. Surface SEM images of BFO-doped BCT-BMT-based ceramics after thermal etched at

2 K magnification. a) x = 0, b) x = 0.01, c) x = 0.02, d) x = 0.03, e) x = 0.04, f) x = 0.05, g) x = 0.06

and h) x = 0.07. Insets of Fig. 2a) - 2h): the statistic distributions of the grain sizes in ceramics.

Figure 3. P-E loops of BFO-doped BCT-BMT-based as-prepared and corresponding aged

ceramics. a) and b) x = 0.05; c) and d) x = 0.06; e) and f) x = 0.07. The left upper corners insets of c)

and e): complex impedance plots of as-prepared and corresponding aged ceramics at room temperature.

The left upper corners insets of d): The left upper corners insets of d): schematic diagram of aged

samples at x = 0.06 and 0.07 heated at 300 °C for 30 min. The right lower corner insets of a), b), c), d),

e) and f): I-E loops.

Figure 4. Wenergy, Wloss, η and Q of BFO-doped BCT-BMT-based as-prepared and corresponding

aged ceramics at selected electric fields. a) Wenergy, b) Wloss, c) η and Q.

Figure 5. P-E loops of BFO-doped BCT-BMT-based ceramics at 303 - 453 K and 1 Hz. a) x = 0,

b) x = 0.01, c) x = 0.02, d) x = 0.03, e) x = 0.04, f) x = 0.05. The left upper corners insets of a), b), c),

d), e) and f): η(T) and Q(T). The right lower corners insets of a), b), c), d), e) and f): Wenergy(T) and

Wloss(T).

Table 1. Lorenz-type fitting results of the dielectric peaks of BFO-doped BCT-BMT-based ceramics

including the as-prepared and aged ceramics at 1MHz.
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Table 1

sample

TA(K) εA δA

as-prepared aged as-prepared aged as-prepared aged

0 513.20 509.67 1407.25 2271.80 134.23 146.99

0.01 512.58 516.20 1420.89 1934.92 132.99 159.22

0.02 513.07 514.97 2061.50 2348.84 156.80 169.62

0.03 517.74 527.66 1228.40 1182.53 130.87 139.43

0.04 512.39 515.09 907.33 1256.37 106.58 125.92

0.05 514.94 518.97 1549.21 1187.92 142.90 130.14

0.06 515.11 520.30 1515.97 1687.89 143.13 159.66

0.07 520.17 527.30 887.04 1408.41 121.14 152.54
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Figure Captions:

Figure S1. Variations of height, center and width at different Raman shift, respectively. a) A1(TO2)

and E(TO3)/B1 mode, b) New band and A1(LO3)/E(LO4) mode, c) A1g mode.

Figure S2. Surface SEM images of BFO-doped BCT-BMT-based ceramics after thermal etched at 1

K magnification. a) x = 0, b) x = 0.1, c) x = 0.02, d) x = 0.03, e) x = 0.04, f) x = 0.05, g) x = 0.06 and

h) x = 0.07.

Figure S3. ε(T) and tan δ(T) of BFO-doped BCT-BMT-based as-prepared and corresponding

aged ceramics. a) and b) x = 0; c) and d) x = 0.01; e) and f) x = 0.02; g) and h) x = 0.03; i) and j) x =

0.04; k) and l) x = 0.05; m) and n) x = 0.06; o) and p) x = 0.07.

Figure S4. P-E loops of BFO-doped BCT-BMT-based as-prepared and corresponding aged

ceramics. a) and b) x = 0; c) and d) x = 0.01; e) and f) x = 0.02; g) and h) x = 0.03; i) and j) x = 0.04.

Insets: I-E loops.

Figure S5. P-E loops of BFO-doped BCT-BMT-based ceramics at different aging times. a), c), e)

and g) x = 0.06; b), d), f) and h) x = 0.07. The right lower corners insets: I-E loops.

Figure S6. Frequency dependences of ac conductivity σac for BFO-doped BCT-BMT-based as-

prepared and corresponding aged ceramics at selected temperatures. a) and b) x = 0; c) and d) x

= 0.01; e) and f) x = 0.02; g) and h) x = 0.03; i) and j) x = 0.04; k) and l) x = 0.05; m) and n) x = 0.06;

o) and p) x = 0.07

Figure S7. ε(f) and tan δ(f) of BFO-doped BCT-BMT-based ceramics at room temperature. a)

and b) as-prepared; c) and d) aged; e) and f) oxidized.
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