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Abstract 

The structural integrity of large diameter wind turbine bearings have been investigated using 

the built-in ‘contour integral’ tool in ABAQUS finite element software package by modelling 

three-dimensional penny-shaped cracks and evaluating the stress intensity factors. In order to 

sub-model a crack and investigate the fracture mechanics of the rolling contact between the 

rollers and the raceway, a python script is developed and implemented in the analysis. 

Important steps to build the crack model are detailed and recommendations are made for 

further use of the finite element modelling tool in compressive mixed mode fracture 

mechanics assessment of wind turbine bearings. Moreover, the influence of initial residual 

stresses due to induction hardening of the raceway is also investigated and discussed in this 

paper. For frictionless contacts between the two crack faces, ‘contour integral’ in ABAQUS 

appears to be a suitable method to obtain accurate stress intensity factor solutions for mode II 

and III. The results from this study are validated through comparison with the analytical 

solutions available in the literature and are expected to facilitate numerical life assessment of 

wind turbine bearings. 

Keywords: Rolling contact, Contact between crack faces, Penny-shaped crack, Subsurface 

crack, Mixed-mode fracture mechanics, Sub-modelling. 

Nomenclature 

𝑎 

𝛽 

𝜃 

𝑓𝑐 

𝜈 

𝜎 

𝑃ℎ 

𝐸 

𝐺 

𝐽 

𝐾 

∆𝐾 

Penny-shaped crack size (radius)  

Crack angle (with the rolling axis) 

Crack tip angle 

Friction coefficient at the crack surface 

Poisson’s ratio 

Stress 

Hertz pressure for the contact 

Elastic Young’s modulus 

Shear modulus 

Elastic-Plastic fracture mechanics parameter 

Stress intensity factor 

Stress intensity factor range 
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𝜀 Strain 

FEA 

XFEM 

SIF 

LEFM 

RS 

RCF 

Finite Element Analysis 

Extended Finite Element Method 

Stress intensity factor 

Linear Elastic Fracture Mechanics 

Residual stress 

Rolling Contact Fatigue 

1 Introduction 
The continuously increasing demand of clean energy is more and more focused on higher 

power density outputs from renewable energy sources. In 2016, the installed wind power 

capacity in the EU reached 153.7 𝐺𝑊 [1], and European countries have agreed on a 27% 

renewable energy target by 2020 [2]. Therefore, wind turbines, which produce electricity 

from one of the most reliable sources of clean energy: wind, are now constructed with higher 

rated power capacities and in larger sizes. Hence, the improvement of the integrity 

assessment of these structures is an essential requirement for the expansion of renewable 

energy electricity generation from onshore and offshore wind sources. 

Wind turbines are comprised of structures such as the foundation, the blades and the slewing 

bearings which are subjected to complex loading conditions [3]. A breakdown of the five 

bearings in wind turbine head is demonstrated in Figure 1; one yaw bearing, three for the 

blades and one bearing for the rotor, which are often subjected to severe loading conditions 

[4]. The fabrication process employed in preparation of these wind turbine components 

results in introduction of strain misfit due to thermal expansion, especially during the 

hardening process. Therefore, residual stresses are induced [5] in the material, which need to 

be analysed and considered in structural integrity assessments. The main failure mechanism 

in these bearings is the contact fatigue which occurs between the rolling elements and the 

raceway [6]. Raceways are typically produced by seamless rolled ring, often made of 

42CrMo4 medium carbon steel, and then hardened on the surface to carry the high dynamic 

wind load [7]. The manufacturing process of large diameter raceways is schematically 

illustrated in Figure 2, and as shown in this figure, the material is forged, hardened and 

quenched. Therefore, during the manufacture of raceway, formation of damage in the form of 

flaws is inevitable. Depending on the size of the inclusions, their position and the flaw 

density in the material, the raceway is approved or rejected for installation in a wind turbine. 

These calculations involve fracture mechanics considerations and can assume the inclusion to 

behave like a crack. By knowing the critical stress intensity factor of the material used for the 

rings, engineers can perform preventive fracture mechanic assessments. 

Inclusions in the raceway of large diameter bearing may lead to a catastrophic failure in case 

of a fracture mechanics misjudgement. The complex compressive loading state, resulting 

from the rolling contact, makes a pure analytical analysis approach very difficult. Despite 

huge progresses made in Finite Element Analysis (FEA) during the last few decades, 

consideration of mixed-mode fracture mechanics in the presence of residual stresses is still a 

significant challenge in numerical structural integrity assessment. The current study aims to 

fill in the knowledge gap by building up a reliable and easy method to assess cracks under 

complex compressive loading conditions in large diameter bearings by considering the 

residual stress effects. The present study assumed a penny-shaped crack which is a typical 

crack shape in life assessment of rolling contact fatigue problems [8]. The results from this 
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study are validated through comparison with the analytical solutions available in the literature 

and are expected to improve the life assessment of wind turbine bearings. 

2 Stress Intensity Factor Solutions for Penny-Shaped Cracks  
In order to characterise the rolling contact fatigue (RCF) behaviour in large diameter bearings 

used in wind turbines, the linear elastic fracture mechanics (LEFM) theory and the stress 

intensity factor solutions associated with the penny-shaped crack (see Figure 3), which is 

commonly employed in rolling contact applications, must be reviewed and understood. For a 

given crack size and crack angle, the stress intensity factor solution depends on the point 

considered on the crack tip. Moreover, the stress intensity factor solution depends on the 

loading conditions e.g. tension or compression and also the fracture mechanics mode. 

2.1 Stress Intensity Factors Solutions for Tensile Loading Conditions 

The stress intensity factor (SIF) solutions for penny-shaped cracks in an infinite body and 

under uniaxial tensile loading conditions are derived by Kassir and Sih and Nejati [9], [10] 

and are summarised in Equation 1, Equation 2, Equation 3 for mode I, II and III, respectively. 

In these equations, 𝑎 is radius of the circle crack (i.e. penny shaped-crack size), 𝛽  is crack 

orientation, v is the Poisson’s ratio, 𝜎 is the applied stress and 𝐾𝐼, 𝐾𝐼𝐼 and 𝐾𝐼𝐼𝐼 are mode I, II 

and III stress intensity factor solutions, respectively. In these equations, the normal stress 

component on the crack surface 𝜎𝑌𝑐𝑌𝑐
= 𝜎 ∙ 𝑐𝑜𝑠²(𝛽) contributes to mode I fracture mechanics 

(i.e. crack opening mode) whereas the shear stress component 𝜏𝑌𝑐𝑍𝑐
=

𝜎

2
∙ 𝑠𝑖𝑛(2𝛽) contributes 

to mode II (shearing mode) and mode III (tearing mode) fracture mechanics.  

𝐾𝐼 = 2√
𝑎

𝜋
∙ 𝜎 ∙ cos²(𝛽) Equation 1 

𝐾𝐼𝐼 = 2√
𝑎

𝜋
∙ 𝜎 ∙

1

2 − 𝜈
∙ sin(2β)cos(𝜃) Equation 2 

𝐾𝐼𝐼𝐼 = 2√
𝑎

𝜋
∙ 𝜎 ∙

(1 − 𝜈)

2 − 𝜈
∙ sin (2𝛽)sin(𝜃) Equation 3 

2.2 Stress Intensity Factor Solutions for Compressive Loading Conditions 

The SIFs for the uniaxial compressive cases are also studied by Kassir, Sih and Nejati [9], [10] 

and are summarised in Equation 4, Equation 5 and Equation 6 for mode I, II and III, 

respectively. Note that under a compressive loading condition, the crack is closed, therefore 

the opening mode (i.e. mode I) does not exist anymore and the SIF for mode I is equal to zero. 

As for the shear stress component, it takes into account the contact between the two crack 

faces. Considering the Coulomb law [11] for the friction coefficient 𝑓𝑐 , the stress derived 

from a slipping contact is 𝜏𝑐 = 𝑓𝑐 ∙ 𝜎𝑌𝑐𝑌𝑐
, with 𝜎𝑌𝑐𝑌𝑐

= 𝜎 ∙ 𝑐𝑜𝑠²(𝛽). The penny-shaped crack 

SIF for mode II (i.e. shearing mode) and mode III (i.e. tearing mode) are derived from the 

total shear stress 𝜏𝑡𝑜𝑡𝑎𝑙 = 𝜏𝑌𝑐𝑍𝑐
− 𝜏𝑐, with 𝜏𝑌𝑐𝑍𝑐

=
𝜎

2
∙ 𝑠𝑖𝑛(2𝛽). The analytical equations for 

the SIFs, which are summarised below, are valid as long as the contact between the crack 

faces is not locked (i.e. for a locked contact:|𝜏𝑌𝑐𝑍𝑐
− 𝜏𝑐| < |𝑓𝑐 ∙ 𝜎𝑌𝑐𝑌𝑐

|). 

𝐾𝐼 = 0 Equation 4 

𝐾𝐼𝐼 = 2√
𝑎

𝜋
∙ 𝜎 ∙

1

2 − 𝜈
∙ cos(𝜃) ∙ [2𝑓𝑐 ∙ 𝑐𝑜𝑠2(𝛽) − sin(2𝛽)] Equation 5 

𝐾𝐼𝐼𝐼 = 2√
𝑎

𝜋
∙ 𝜎 ∙

(1 − 𝜈)

2 − 𝜈
∙ sin(𝜃) ∙ [2𝑓𝑐 ∙ 𝑐𝑜𝑠2(𝛽) − sin(2𝛽)] Equation 6 
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2.3 Evaluation of Stress Intensity Factors using Numerical Modelling 

Techniques 

The eXtended Finite Element Modelling “XFEM” and “Contour integral” are the common 

approaches available in ABAQUS finite element modelling software package which is 

widely used to numerically calculate the stress intensity factor solution for a given geometry 

using a stationary crack analysis. Both XFEM and contour integral methods use the same 

principle to compute the elastic-plastic fracture mechanics parameter, J, and subsequently 

work out the SIF value [12]. The difference between these two numerical techniques lies in 

how the strain field singularity is introduced in the model to simulate a crack.  

The “Contour integral” technique is a built-in tool in ABAQUS to compute both J and K 

values in static crack analysis. This method is based on a seam crack definition, which 

requires careful consideration of the mesh size and type used around the crack tip. In this 

technique the crack front, as well as the crack line and the crack extension direction must be 

clearly defined. Then, fracture mechanics J parameter is calculated using the following 

equation  [13]. 

𝐽 = ∫ 𝑊 − 𝑇𝑖

𝜕𝑢𝑖

𝜕𝑥
𝑑𝑠

 

𝛤

 Equation 7 

where 𝛤 is a contour surrounding the crack tip with its both ends connected to the crack faces, 

𝑇𝑖 is as the external forces, 𝑢𝑖 is the displacements, 𝑤 is the elastic strain energy and 𝑑𝑠 is the 

contour element. Following the computation of J, SIFs are calculated using the following 

equation  [10].  

𝐽 =
1 − 𝜈2

𝐸
(𝐾𝐼

2 + 𝐾𝐼𝐼
2) +

1

2𝐺
𝐾𝐼𝐼𝐼

2 

 

Equation 8 

where G =
E

2(1+ν)
 is the shear modulus of the material. 

The “extended finite element method” was developed in 1996 to simulate discontinuities and 

singularities independently of the mesh [14]. This attractive method does not require the 

mesh to match with the crack tip geometry. As an extension of the classic solution, 

enrichment functions are added into the displacement calculation nearby discontinuities (e.g. 

a crack failure) or singularities (e.g. a crack tip) [15] as explained by the equation below. 

𝑢ℎ(𝑥) = ∑ 𝑁𝑖(𝑥)

𝑛

𝑖=1

∙ [𝑢𝑖 + 𝐻(𝑥) ∙ 𝑎𝑖 + ∑ 𝐹𝛼(𝑥) ∙ 𝑏𝑖𝛼

4

𝛼=1

] Equation 9 

There is no need to re-mesh the cracked component during a crack growth analysis when 

XFEM is employed in the analysis. This makes XFEM a cost-effective and efficient 

numerical simulation approach. In addition to time-saving for performing the simulation, the 

XFEM approach also saves the time required for re-meshing parts each time that the crack 

propagates. Since XFEM does not require a particular mesh for the crack tip, the initial crack 

positioning becomes also a straightforward task and a single mesh configuration can be used 

for different crack setups. In a static analysis, XFEM can be used in ABAQUS as a built-in 

tool for crack modelling. Then, numerical SIF outputs can be requested by simply defining a 

cracked geometry (e.g. a shell circle in the case of the penny-shaped crack) and a crack 

domain (e.g. the body of the component). But then, there is no difference with the “contour 

integral” method to compute the J value and extract the stress intensity factors. Reliable 
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XFEM models for calculation of stress intensity factors under a tensile stress field have been 

previously developed by other researchers as seen in [13], [16], [17] and [18]. However, for 

the static crack analysis, the contact definition between the crack faces has been made 

available only since the ABAQUS 2017 version was released. This recent development to 

include the contact definition as a built-in tool has simplified the employment of the XFEM 

technique for fracture mechanics analysis under compressive loads. 

In this study simulations were firstly performed with both methods, though XFEM 

encountered issues with the accuracy of 𝐾𝐼𝐼𝐼 and the contact between the crack surfaces (the 

contact issue was fixed in ABAQUS 2017). Therefore, it was decided to use the ABAQUS 

“contour integral” built-in tool for its capabilities to precisely adjust the mesh around crack. 

2.4 Calculation of Stress Intensity Factors in the Presence of Residual 

Stresses 

Both analytical and numerical approaches have been used by researchers to account for the 

residual stresses effect on the stress intensity factor mode I. The finite element analysis in [19] 

and the analytical line spring model in [20] show good results for the stress intensity factor 

mode I under a compressive residual stress field. However, the stress intensity factors under 

mode II and III have never been investigated in the presence of compressive residual stresses, 

such as those induced when the material is surface hardened. Weights or Green’s functions 

could be used to analytically compute these complex stress intensity factor solutions. These 

functions have the advantage to be only dependant on the shape of the crack. When the stress 

field is not as simple as the uniaxial loading, or when it includes residual stresses, analytical 

solutions can be computed by integrating the weight functions, multiplied by the stress field, 

all over the crack surface. Solutions have been worked out for mode I stress intensity factor 

of the penny-shaped crack, [21], [22], however, no appropriate weight function solution is 

available in the literature for the penny-shaped crack, for mode II and III fracture mechanics 

condition. 

3 Existing Fracture Mechanics Methods for Rolling Contact 

Applications 

3.1 Analytical and 2D FEA Approach 

Earlier attempts have been made by other researchers to calculate the stress intensity factors 

under rolling contact fatigue conditions [23], [24], [25], [26] and [27]. The analytical-based 

study of Hearle and Johnson [27] is the work which gathers the most conclusive solutions and 

information on this topic. Although the considered crack is in two-dimension (2D), the 

qualitative deductions remain unchanged. Komvopoulos and Cho proposed a 2D plane-strain 

FEA approach for rolling contact stress intensity factor calculation in [25]. In their proposed 

approach, the numerical SIFs are calculated using the relationship between the stresses near 

the crack tip and the K fracture mechanics parameter. Their study provides deeper 

conclusions on the crack mechanism thanks to the simulation of various friction coefficient 

and crack positions. The main findings from these studies are summarised below: 

 Crack propagation mode: Under rolling contact loading conditions, mode II is the 

dominant fracture mechanics failure mode. Mode I stress intensity factor is either equal to 

zero or negligible compared to KII, therefore only the shearing mode II is considered. The 

significance of fracture mechanics mode III is revealed only when 3D numerical studies 

are conducted. 
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 Cyclic loading: The rolling contact analysis assumes a cyclic movement of the load. 

Therefore, the stress intensity factor range ∆𝐾𝐼, ∆𝐾𝐼𝐼 and ∆𝐾𝐼𝐼𝐼 can be derived from the 

difference between minimum and maximum stress intensity factor values for mode I, II 

and III, respectively. The SIF range should be used in order to assess the fracture 

mechanics of the raceway subjected to rolling contact fatigue. 

 Crack length and depth: These parameters significantly affect the magnitude of the stress 

intensity factors solutions [27], [25]. Two types of behaviour are noticed: short cracks 

(the length of the crack is smaller than the depth) and long cracks (the length is at least 

two times the depth). SIF solutions given in these references show that the SIF is a 

function of the horizontal crack position and the solutions are symmetric in the case of 

short cracks. For long cracks, these solutions are not symmetric, and the SIF range ∆𝐾 is 

different between the trailing and leading tip [27]. The SIFs are dependent on the integral 

of the shear stress over the whole crack surface, and since the crack is long, the shear 

stress is not considered constant in the crack area. This explains the none-symmetry 

between the solution curves obtained at the two tip points. The solutions available in the 

literature show that the trailing tip maximum values are about 30% greater than those at 

the leading tip of the crack. 

 Rolling contact friction: If a rolling contact friction is considered, a tangential force is 

added to the normal force of the contact. This has the effect of increasing the maximum 

negative value at the entry of the rolling cycle, but decreases it at the exit. Therefore, it 

has no influence on the ∆𝐾 parameter [27]. 

3.2 3D FEA approach 

Three-dimensional (3D) numerical studies have been previously conducted by other 

researchers to calculate stress intensity factors under rolling contact fatigue conditions. An 

example of a study carried for a contact between a railway and a wheel is given in [28], using 

the displacement correlation method to calculate the stress intensity factor of the elliptical 

crack embedded in the wheel. The displacement correlation method was also found in a 

recent independent study [8] to investigate the friction influence on the SIFs, for a penny-

shaped crack. The results are very close to the analytical solutions given by Hearle and 

Johnson [27], and the 2D FEA by Komvopoulos and Cho [25]. In addition, this 3D FEA 

study brings new information concerning different crack tip points (i.e. different crack tip 

angle 𝜃, seen in Figure 3), while only the leading and trailing tip can be investigated with a 

2D FEA. The SIF solutions for mode III, which are not widely available in the literature, 

have also been investigated in [28] and [8]. These new considerations do not change the 

conclusion that shearing mode II remains the dominant mode of failure: mode II SIFs are 

about 30% higher than the mode III. Moreover, maximum absolute values of the SIFs are 

reached for the leading (𝜃 = 0°) and trailing (𝜃 = 180°) tips, these points are the same than 

those studied in 2D analysis. The mains literature findings brought by 3D analysis are 

gathered and summarised below: 

 Crack propagation mode: The study of mode III is made possible by considering a 3D 

crack. It reveals a dominance of the mode II failure mechanism. 

 Crack face friction: The SIF range is clearly reduced when the friction coefficient in 

between the crack faces is increased. Studies highlight also the existence of different slip 
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and stick stages between the crack faces, depending on the crack location [8], [25], [27] 

(3D) and [24], [26] (2D). 

 Tip point: The K value is dependent on the tip point considered in the analysis. In 2D 

analysis, only the ‘leading’ (𝜃 = 0°  in Figure 3, considering a roller moving in the Z axis 

direction) and ‘trailing’ ( 𝜃 = 180° ) tip can be investigated. 3D crack models can 

compute stress intensity factor all along the crack tip, hence it can consider different 

crack tip angle 𝜃, between 0° and 180°. Nevertheless, trailing and leading tip remain the 

main crack tip points for consideration in crack propagation behaviour, since these 

locations correspond to the maximum and minimum SIFs in mode II. Maximum SIFs for 

mode III are usually reached around the 𝜃 = 90° position. 

3.3 3D FEA approach Adopted in the Current Study 

The results and solutions available in the existing literature reveal that only parallel cracks 

have been considered so far in the past studies and a FEA built-in tool has been never used to 

accurately describe the rolling contact fracture mechanics problem. In this paper, it has been 

chosen to determine the SIFs using the contour integral tool, developed by ABAQUS. Tilted 

cracks are considered in the raceway, in addition to the typical parallel crack, to investigate 

the influence of the 𝛽 tilting angle on fracture mechanics SIF solutions. The main motivation 

for running the numerical simulations in the present study is to complete the work already 

done on the topic using previous approaches. The use of 3D models will also provide data for 

different crack tip point rather than only the leading and trailing tip and it further assists mode 

III solutions being investigated. Moreover, the residual stress (RS) effects on the SIF 

solutions have been investigated in this study. Although residual stresses should only 

influence the mean SIF values and have no influence on the SIF range, the purpose of this 

study is to explore the efficiency of a simple numerical tool for complex loading conditions 

(residual stresses added to the mechanical rolling contact), and for mixed mode fracture 

mechanics with contact in between the crack faces. 

4 Finite Element Modelling of the Rolling Contact Fatigue in 

Large Diameter Bearings 
In the present study, two ABAQUS models have been developed: a rolling contact analysis 

for large diameter roller bearings, and a coupled penny-shaped crack model. The ABAQUS 

model developed to simulate the contact between the roller and the raceway is shown in 

Figure 4. The main parameters of the model are the roller diameter, the roller length, the 

contact pressure, the roller profile (crowned or logarithmic profiles) and the residual stresses 

induced into the raceway. For computational efficiency, a quarter of the full geometry is 

simulated. A Hertz contact pressure 𝑃ℎ = 1600 𝑀𝑃𝑎 is chosen as it is above the fatigue limit 

of 1500 𝑀𝑃𝑎  given in the norm ISO 281 [29]. Finally a frictionless rolling contact is 

considered. The validity of this model has been investigated through comparison of the 

obtained FEA results with analytical elastic half space theory solutions [30] and [31], in 

Figure 5, without considering residual stresses. It can be seen in this figure that accurate 

results have been obtained from 3D simulations of the rolling contact and the model can be 

further used for the fracture mechanics analysis. 

4.1 Introduction of a Crack using the Sub-Modelling Technique 

Due to the gap size between the bearing (e.g. the raceway is about 2 𝑚 diameter) and the 

crack (e.g. 𝑎 = 0.2 𝑚𝑚), a sub-modelling method has been investigated and used for fracture 
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mechanics simulations with the rolling contact. There are two different ways to use the sub-

modelling method in ABAQUS; using the stress or the strain of the global model to drive the 

sub-model. As displacements are the most accurate variable in FEA software, the strain 

results of the rolling contact simulation are used in this work to constrain the sub-model 

block containing the crack. A boundary condition is created for each exterior surfaces of the 

sub-model, to allow the global model to drive these faces. After moving the sub-model block 

to the desired location considering the global model axis system, the software automatically 

recognises the global nodes and applies the displacements on the driven faces of the smaller 

model. The range of crack angles simulated is 𝛽 = −90°  to 𝛽 = +90° , where 𝛽 = 0° 

represents a parallel crack. Geometric limitations due to the use of sub-models, restrain the 

study of cracks too close to the boundaries of the raceway. Thus, the crack must lye below a 

depth of about 0.4 𝑚𝑚 (depending on the model). 

4.2 Finites Element Model for Fracture Mechanics Study 

Only half of the penny-shaped crack is simulated using the X-symmetry boundary condition, 

as demonstrated in the final geometry and partitions of the crack modelling problem in Figure 

6. The crack and its surrounding elements (crack line, crack front and nearby partitions) have 

to be carefully defined. Two tube partitions are designed along the crack line. The smaller 

tube will specifically contain the singular elements needed to model a crack and has a radius 

equal to 0.033 × 𝑎 . The element comprised in the bigger tube will be used for the SIF 

calculations and its radius is equal to 0.15 × 𝑎. The crack geometry built is fully proportional 

to the typical crack size 𝑎. Hence, every crack length can be studied in the same way and 

such cracks will be easy to implement in a python code. Special attention is also carried on 

the mesh design around the crack line and within the crack front tubes, as the nodes will be 

used in the J-integral calculations. Elements sharing nodes with the crack line must be 

defined as ‘WEDGE’ elements. In addition, others element of the crack front must be ‘HEX’ 

assigned. These element types are mandatory to request the SIF and J-integral field output at 

the end of the simulation. A suitable proportion for the number of elements within a slice of 

the crack front was found to be seven elements in the radial direction. Figure 7 shows a 

typical mesh used around the crack tip, viewed with a cut in the crack plane. 

In order to model a crack within the component, the mesh needs to be broken between the 

two crack surfaces to allow a relative movement of the crack faces’ nodes. ABAQUS will 

duplicate the nodes lying on this crack surface. Sharp cracks are complex to deal with, as they 

introduce singularity within the strain field. To ensure linear elastic fracture mechanics 

criteria is satisfied in the analysis, singularity has been assigned at the crack tip by choosing 

appropriate options in the software (single node for the collapsed element side, and ‘midside 

node parameter’ equal to 0.25, [12]). For the study of the embedded penny crack, q-vectors 

are specified as shown in Figure 7 to define the crack extension direction collinear to the 

radial direction of the circle. Coordinates of the q-vectors, written in the (𝑋, 𝑌𝑐, 𝑍𝑐) axis 

system follow the (𝑠𝑖𝑛𝜃, 0, 𝑐𝑜𝑠𝜃) format. After examining different distribution pattern for 

the q-vectors along the crack front, nineteen q-vectors were found to be a good proportion to 

mesh the cracked components in this study. Therefore, a ten-degree angle separates two 

successive q-vectors. Note that in ABAQUS, to enable the modification of every q-vector, the 

user must create an orphan mesh by importing the input file of the model. Finally, height 

contours were defined at the surrounding crack tip region to ensure convergence and 

accuracy in numerical contour values. In order to ensure the validity of the model and the 

accuracy of the results, the developed model was subjected to a mesh sensitivity analysis and 

the optimum global mesh size was found to be 0.05 mm. 
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4.3 The Contact between Crack Faces 

Under compressive loading conditions, the crack will be closed and the faces will be in 

contact. To simulate this behaviour through finite element modelling, a contact definition 

between the crack faces is required to prevent from overlapping each other. In ABAQUS, a 

contact requires a contact property setting, with both normal and tangential behaviour. The 

tangential behaviour includes the friction definition of the contact. In the normal behaviour 

tab, the user can choose between different algorithms. The convergence of the numerical 

calculations as well as the interactions between nodes of the contact pair are affected by the 

previous settings. In the present work, a ‘hard contact’ is used with the default algorithm. 

Then a contact property is assigned to the previous contact interaction, whereas both the 

‘master’ and ‘slave’ surfaces are specified. The node-to-surface method is chosen, as well as 

the small sliding formulation. This configuration makes possible an automatic recognition of 

the common nodes between the two faces, i.e. the crack tip nodes. Therefore, no constraint is 

formed for these nodes and the simulation can run without a fatal error. 

4.4 Introduction of Residual Stresses 

There are different techniques available to introduce residual stresses in finite element models. 

In the present work, ‘predefined stress field’ is used to assign a stress tensor to the desired 

cells. The compatibility of the SIF calculation and the use of this initial stress field is 

discussed by Yuebao Lei in [32]. The induction hardened raceway is discretised into several 

finite cells which slice the depth of the component; a stress tensor is then applied to the cells. 

The values of the stress tensor components are based on neutron diffraction residual stress 

measurements which vary through the depth of the raceway. The residual stress profile 

obtained is displayed in Figure 8. Studies which have used different measurements methods, 

present the results for residual stresses in induction hardened steel [33], [5]. The profiles and 

numerical values are similar to what is obtained for large diameter raceways [34], and 

therefore, can be used instead. Deeper details on the high strength low-allow steel 42CrMo4 

typically used in large diameter bearings are presented in [7]. This study provides different 

hardness and strength data for the three different layers (case, transition layer and core) 

resulting from the induction hardening process. 

4.5 Python Coded Model 

In order to speed up the simulation process, a python script has been coded, taking into 

account the configurations required for modelling including creation of the cracked geometry, 

creation of an orphan mesh, defining q-vectors, adding the residual stress state and post-

processing the simulation results. The purpose of the python script is to generate similar 

results for a wide range of crack situations, in a reduced amount of time. Simple analysis like 

the comparison between analytical solutions and FEA required only one simulation for each 

crack angle (Figure 9 and Figure 10). However, the rolling contact fatigue analysis could not 

be possible without a code. It required 21 different models to build Figure 16 in addition to 

21 more models for Figure 17 (one simulation to get one point). In Figure 19, a total of 2250 

simulations have been run to get the curves. The ABAQUS user guide [35] provides detailed 

script lines and helpful advices to build such a ‘contour integral crack’ model. The code 

developed in this study is directly derived from this guidance. 
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5 RESULTS AND DISCUSSION 

5.1 Comparison of Numerical Predictions with Analytical Solutions for 

Uniaxial Compressive Loading Conditions 

In order to validate the developed finite element model, analytical solutions of the SIFs, 

obtained from Equation 4, Equation 5 and Equation 6 are compared to ABAQUS simulation 

results obtained from the ‘contour integral’ technique. To compare with analytical equations, 

the finite element crack model must consider an infinite body under uniaxial loading 

conditions. The chosen crack (𝑎 = 1 𝑚𝑚) is embedded in the middle of a 20 𝑚𝑚 sized cube. 

This configuration is considered to be sufficient to satisfy the infinite body assumption.  

 

The stress intensity factor results, for mode II and mode III, obtained from FEA simulations 

are compared with the analytical solutions and the results are shown in Figure 9 and Figure 

10, respectively. The results presented in these two figures were obtained with an applied 

stress of 𝜎 = 100 𝑀𝑃𝑎 and a friction coefficient 𝑓𝑐 = 0. Three crack orientations are worked 

out: 𝛽 = 0°, 20° and 45°. Steel material properties are assigned to the body, with a Young’s 

modulus of 𝐸 = 210 𝐺𝑃𝑎 and Poisson’s ratio 𝜈 = 0.3 [7]. It can be observed in these two 

figures that there is a very good agreement between FEA predictions and analytical solutions 

for 𝐾𝐼𝐼  and 𝐾𝐼𝐼𝐼 . As seen in Figure 9, for 0° ≤ 𝜃 ≤ 180°, 𝐾𝐼𝐼  remains zero when 𝛽 = 0° , 

though for 𝛽 = 20° and 𝛽 = 45°, positive values of 𝐾𝐼𝐼 are obtained for 0° ≤ 𝜃 ≤ 90° with a 

decreasing profile and largest value at 𝜃 = 0°, whilst inversely mirrored trends (with respect 

to the horizontal axis) with negative 𝐾𝐼𝐼 values are obtained for 90° ≤ 𝜃 ≤ 180°. The results 

for 𝐾𝐼𝐼𝐼 values in Figure 10 show that similar to mode II, mode III SIF values remain zero for 

0° ≤ 𝜃 ≤ 180° when 𝛽 = 0°, whilst symmetric trends (with respect to the vertical line at 𝜃 =
90°) with an increasing profile and largest value at 𝜃 = 90° are obtained for 𝛽 = 20° and 

𝛽 = 45°. Also comparison of Figure 9 and Figure 10 reveals that 𝐾𝐼𝐼 values are positive only 

for 0° ≤ 𝜃 ≤ 90°  whereas 𝐾𝐼𝐼𝐼  are always positive for 0° ≤ 𝜃 ≤ 180° . In addition, no 

oscillation is observed for the numerical results and smooth trends are obtained from FEA 

simulations which are consistent with analytical solutions. 

 

Though not shown here for brevity, further FEA simulations were performed with friction 

coefficients of 0.1, 0.2 𝑎𝑛𝑑 0.3. The error analysis between FEA and analytical solutions for 

mode II and mode III SIF values has been conducted for these friction coefficients, and the 

results are summarised in Figure 11. As seen in this figure, for 𝑓𝑐 = 0, the maximum 𝐾𝐼𝐼 error 

is 0.46 % while this error increases to 1.29 % for 𝐾𝐼𝐼𝐼. As seen in Figure 11 the error in mode 

II and III SIF predictions compared to analytical equations exponentially increases to over 

400% as the friction coefficient increases to 0.3. 

 

Despite good results for mode II and III SIF, ABAQUS computes wrong negative values for 

the opening mode I. Considering that the crack is closed under uniaxial compression, the 

mode I stress intensity factor should be equal to zero for the whole range of 𝛽 angles. The 

biggest error is reached when the crack is parallel to the raceway and after discussion with the 

ABAQUS support service, it is concluded that the software is not able to take into account 

the stress generated by the contact between the two crack faces. This issue affects only the 

mode I coefficients, as far as the contact is frictionless, but does also affect the mode II and 

III when a friction coefficient 𝑓𝑐 is introduced, as described in Figure 11 for 𝛽 = 20° (note 

that the error is dependent on the crack angle and parallel crack is the worst situation). The 

contour integral tool is an efficient solution to extract 𝐾𝐼𝐼 and 𝐾𝐼𝐼𝐼 under a compressive field, 
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𝐾𝐼 is ignored and frictionless contact is preferred. Therefore, this method is used with 𝑓𝑐 of 0 

in more complex situations, where analytical equations cannot be easily found. 

5.2 Penny-shaped Crack Subjected to an Initial Residual Stress Field 

In this part, the python script is developed and used to model a penny-shaped crack subjected 

to residual stresses without any global applied stresses. A crack size of 𝑎 = 0.2 𝑚𝑚 is used, 

the contact is frictionless and several crack angles are examined. The model set-up is shown 

in Figure 12. The stress field aims to represent a typical residual stress state for a given depth 

of the induction hardened raceway. Therefore, the initial stress tensor of the whole block 

containing the crack is: 

𝑇 = (
𝜎𝑋𝑋 0 0

0 0 0
0 0 𝜎𝑍𝑍

)  At the subsurface, 𝜎𝑋𝑋 = 𝜎𝑌𝑌 are negative (i.e. compressive) stresses. 

The stress values taken for the following simulations correspond to the residual stresses 

within an induction hardened raceway at a 0.6 𝑚𝑚 depth (𝜎𝑋𝑋 = 𝜎𝑌𝑌 = −800 MPa). The 

residual stress profile used is given in Figure 8. This study considers a crack at the subsurface, 

hence the initial horizontal stresses are in the negative (i.e. compressive) zone. For higher 

depths, the stresses switch from negative to positive and finally reach zero at depths far from 

the surface. This model requires special boundary conditions to retain the predefined field 

stress within the block. 

 

The FEA results for 𝐾𝐼𝐼  and 𝐾𝐼𝐼𝐼  in the presence of residual stresses, without any global 

applied stresses, are plotted in Figure 13 and Figure 14, respectively. As seen in Figure 13, 

symmetric trends with respect to the horizontal axis are observed between positive and 

negative 𝛽 angles when mode II SIF results are plotted against the crack tip angle. Moreover, 

it can be seen in this figure that mode II SIF peak values, which occur at  𝜃 = 180° for 

negative 𝛽 angles and 𝜃 = 0° for positive 𝛽 angles, increase by increasing the 𝛽 angle. It can 

be seen in Figure 14 that for negative 𝛽 angles, mode III SIF values are entirely negative for 

crack tip angles between 0° ≤ 𝜃 ≤ 180°, with the maximum value at 𝜃 = 90°. These trends 

are mirrored when positive 𝛽 angles were applied in simulations. Also seen in this figure is 

that the peak magnitude of mode III SIF values increase by increase the 𝛽 angle. 

 

It can be seen that the behaviour of the curves in Figure 13 and Figure 14 (crack under 

residual stresses without any global applied stresses) is mirrored in Figure 9 and Figure 10 

(crack under uniaxial vertical compression) considering the same 𝛽  angle sign. Under 

horizontal compressive residual stresses, vertical tensile stresses are generated at the crack 

faces, which is the opposite of the studied compressive vertical stresses situation. The 

accuracy of the value cannot be discussed since no analytical solution for such a case is 

available. Based on the preliminary analytical comparisons made in the uniaxial compressive 

case, the results are expected to be accurate for these frictionless simulations. 

5.3 Numerical Evaluation of SIFs for a Penny-Shaped Crack under Rolling 

Contact Fatigue Loading Condition in the Presence of Residual Stresses 

A rolling contact fatigue loading analysis involving a crack in the raceway in the presence of 

residual stresses is performed using the developed Python script. A crack size 𝑎 = 0.2 𝑚𝑚 

and depth 𝑑 = 0.6 𝑚𝑚 (depth of the maximum von Mises stress, see Figure 5) are used, the 

contact is frictionless in between the crack faces, the Hertz contact pressure 𝑃ℎ of 1600 𝑀𝑃𝑎 

is applied on the raceway and several crack angles are examined. This part specially focuses 
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on three crack tip angles: 𝜃 = 0° for the leading tip, 𝜃 = 180° for the trailing tip and 𝜃 = 90° 

where 𝐾𝐼𝐼𝐼  is maximum. These points are the local minimums or maximums for the SIF 

curves and the main parameters are summarised in Figure 15. 

The FEA results obtained from simulations in the absence and presence of residual stresses 

are presented in Figure 16 and Figure 17, respectively, for the case of 𝛽 = 20°. These two 

graphs confirm that residual stresses act as a mean parameter in such a way that they change 

the value of the stress intensity factors 𝐾, but not the range ∆𝐾 = 𝐾𝑚𝑎𝑥 − 𝐾𝑚𝑖𝑛 . For the 

crack angle 𝛽 = 20°, a shift of ±150 𝑀𝑃𝑎. √𝑚𝑚 along the vertical axis is observed between 

the curve considering residual stresses, and the situation without residual stresses. However, 

this shift do not change both the shape of the curve and the calculation of the SIF range ∆𝐾. 

In order to investigate the influence of residual stresses on SIF, the difference between the 

SIF range in the presence (i.e. ∆𝐾𝑤𝑖𝑡ℎ 𝑅𝑆) and absence (∆𝐾𝑛𝑜 𝑅𝑆) of residual stresses divided 

by the SIF range in the absence of residual stresses are calculated for three different angles 

𝛽 = 0°, 20° and 45°, and the results are shown in Figure 18. As seen in this figure, for both 

mode II and III, the stress intensity factor range is insensitive to the residual stresses, as 

expected, though the maximum and minimum SIF values are influenced by introducing 

residual stresses in the model. This figure shows that with a gap lower than 1% for the 

fracture mode II and lower than 3% for the mode III, the simulations confirm that no changes 

are expected considering the whole rolling contact fatigue cycle in the presence of horizontal 

compressive residual stresses. However, more research needs to be conducted in future work 

to investigate how tensile and compressive residual stress profiles affect the rolling contact 

fatigue crack growth behaviour by changing the mean stress and load ratio. Moreover, the re-

distribution of residual stresses and their subsequent impact on RCF needs to be investigated 

in future work. 

5.4 Crack orientation parameter study 

Some researchers have found out that the influence of the crack orientation might be hard to 

model in RCF problems and they developed complex procedures to mesh and compute the 

fracture mechanics parameters. The study in [10] provides detailed information on how to 

build such a model, however the required mesh uses tetrahedral elements, and is not 

compatible with the computations of the built-in ‘contour integral’ ABAQUS tool. The use of 

the sub-model in the present study made possible to mesh with hexahedral elements instead 

and use the ABAQUS computations without any complex post-processing of the finite 

element results. In Figure 19, the stress intensity factor range ∆𝐾 = 𝐾𝑚𝑎𝑥 − 𝐾𝑚𝑖𝑛  at the 

trailing tip has been studied for six different angles in the range of 𝛽 = 0° to 𝛽 = 90°. These 

results are obtained in the absence of residual stress since the computed stress intensity factor 

range is expected to remain unchanged in the presence and absence of residual stresses as 

shown in previous section.  

 

The results in Figure 19 show that no significant gaps are observed between the different   𝛽 

angles. Unfortunately, the developed tool is restrained to the study of short cracks (𝑎 =
0.2 𝑚𝑚 ℎ𝑒𝑟𝑒), due to the use of sub-model and geometric limitations especially for tilted 

cracks. This might explain why results are similar regardless of the crack angle, and 

conclusion can be different when long cracks are simulated in the raceway. Therefore, long 

cracks must be studied in the future work and the influence of 𝛽  angle needs to be 

investigated and compared to the short cracks. 
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6 CONCLUSION 
The effectiveness of the built-in ‘contour integral’ tool in ABAQUS has been assessed 

considering a penny-shaped crack. For mixed mode fracture mechanics involving a contact in 

between the crack faces, accurate stress intensity factors can be extracted from the software 

for mode II and III. Key steps of the method used have been detailed, and the crack model 

was coded in a python script for ABAQUS CAE. Sub-models are used to introduce cracks in 

the large diameter bearing and the residual stress state resulting from induction hardening 

process is added to the mechanical rolling contact stress field. Results were generated for 

mode II and III fracture mechanics, for several crack orientations and for the whole range of 

crack tip angles. The following conclusions have been made from this study: 

 The contour integral is an efficient tool to provide accurate solutions of 𝐾𝐼𝐼 and 𝐾𝐼𝐼𝐼 

under a compressive stress field with frictionless contact. 

 The use of crack sub-models is recommended, and makes easier the meshing 

procedure with the hexahedral elements required by the ABAQUS software. 

 The residual stress field is enabled through the specification of internal stress tensors, 

and can be easily added to the mechanical rolling contact load. This configuration 

allows a safe computation of the fracture mechanics parameters. 

 The residual stresses act as a mean parameter in such a way that they change the value 

of the stress intensity factors 𝐾, but not the range ∆𝐾 = 𝐾𝑚𝑎𝑥 − 𝐾𝑚𝑖𝑛  in a rolling 

contact analysis. 

 The study of the crack orientation parameter shows that no significant gaps are 

observed between the different angles, in the case of short cracks. 

Further research needs to be conducted in future work to investigate the residual stress effects 

on mean stresses and subsequently rolling contact fatigue behaviour of the material using 

appropriate tools (such as weight functions) and also prediction the stress intensity factors for 

longer cracks.  
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7 Figures 

 

Figure 1: Slewing bearings for wind turbines 

 

 

 

 

 

 

Figure 2: Manufacturing process of large diameter raceways 
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Figure 3: Geometry of the penny-shaped crack under uniaxial compression 

 

 

 

Figure 4: ABAQUS rolling contact model (full geometry) 
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Figure 5: FEA validation with elastic half space theory 

 𝑃ℎ = 1600 𝑀𝑃𝑎, without residual stresses and frictionless rolling contact 

 

 

 

 

 

 

Figure 6: Studied component and created partitions for crack analysis 
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Figure 7: q-vectors set up 

 

 

 

 

 

 

Figure 8: Residual stress profile in a large diameter and induction hardened raceways  
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Figure 9: SIF mode II results: comparison between FEA and analytical solutions 

𝑎 = 1 𝑚𝑚, 𝜎 = 100 𝑀𝑃𝑎, frictionless crack face contact 

 

 

 

Figure 10: SIF mode III results: comparison between FEA and analytical solutions 

𝑎 = 1 𝑚𝑚, 𝜎 = 100 𝑀𝑃𝑎, frictionless crack face contact 
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Figure 11: Mode II and III error analysis when the friction coefficient is increased 

𝑎 = 1 𝑚𝑚, 𝜎 = 100 𝑀𝑃𝑎, 𝛽 = −20°  

 

 

 

 

Figure 12: FEA parameters, penny-shaped crack purely under residual stresses without any 

global stress 
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Figure 13: SIF mode II considering residual stresses only 

𝑎 = 0.2 𝑚𝑚, 𝜎𝑋𝑋 = 𝜎𝑌𝑌 = −800 𝑀𝑃𝑎, frictionless crack face contact 

 

 

 

 

 

Figure 14: SIF mode III considering residual stresses only 

𝑎 = 0.2 𝑚𝑚, 𝜎𝑋𝑋 = 𝜎𝑌𝑌 = −800 𝑀𝑃𝑎, frictionless crack face contact 
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Figure 15: Parameters for rolling contact analysis 

 

 

 

 

Figure 16: SIF solutions without residual stress, 𝛽 = −20°, 𝑑 = 0.6 𝑚𝑚, 𝑎 = 0.2 𝑚𝑚,
𝑃ℎ = 1600 𝑀𝑃𝑎 
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Figure 17: SIF solutions with residual stress 𝜎𝑋𝑋 = 𝜎𝑌𝑌 = −800 𝑀𝑃𝑎, 𝛽 = −20°, 𝑑 =
0.6 𝑚𝑚, 𝑎 = 0.2 𝑚𝑚, 𝑃ℎ = 1600 𝑀𝑃𝑎  

 

 

 

 

Figure 18: Influence of residual stress on the rolling fatigue SIF 
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Figure 19: Trailing tip SIF range comparison between several crack orientations 

𝑎 = 0.2 𝑚𝑚, 𝑃ℎ = 1600 𝑀𝑃𝑎 
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