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Trajectory Optimisation for Target Localisation with
Bearing-Only Measurement

Shaoming He, Hyo-Sang Shin*, Antonios Tsourdos

Abstract—This paper considers the problem of two-
dimensional (2D) constrained trajectory optimisation of a point-
mass aerial robot for constant-manoeuvring target localisation
using bearing-only measurement. A performance metric that
can be utilised in trajectory optimisation to maximise target
observability is proposed first based on geometric conditions.
One-step optimal manoeuvre that maximises the observability
criterion is then derived analytically for moving targets. The
heading angle constraint is also incorporated in the proposed
optimal manoeuvre derivation to support practical application.
Numerical simulations with some comparisons are presented to
validate the analytical findings.

Index Terms—Target localisation, Bearing-only measurement,
Trajectory optimisation, Physical constraint

I. INTRODUCTION

Small-scale robots, especially in aerial robotics, have been
widely used and show great potentials in both civilian and
military applications. The issue is that the operations of these
small-scale aerial robots are constrained by limited payload,
power and endurance. This has led to proliferation of numer-
ous lightweight, low-cost and energy efficient onboard sensors.
A particularly interesting mission for small robots is to localise
and track targets of interest [1]–[6]. However, since most low-
cost and lightweight sensors are passive sensors, e.g., optical
or infrared camera, the utilisation of these sensors in target
localisation usually suffers from the observability problem.
Therefore, system observability becomes a fundamental re-
quirement for bearing-only target localisation [7].

When employing passive sensors for target localisation, only
the bearing or line-of-sight (LOS) angle can be measured. It is
well known that the bearing angle measurement cannot provide
relative range information without any relative manoeuvre, that
is, the relative states between the observer and the target are
unobservable under certain conditions. Fundamentally, only
when the target is observable, the observer can localise or
track the target. To this end, observability conditions for
bearing-only target localisation are widely studied over past
years. In [7], [8], the authors derived closed-form observability
criteria for 2D constant moving target localisation. The results
revealed that the observer acceleration should satisfy a certain
condition to guarantee a certain degree of observability, which
seem to be the pioneer works in this domain. As an extension
of [7], the authors in [9] derived the observability condition
for constant accelerating target localisation. The work in [10]
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further generalised the condition to N th order target dynamics
and further revealed that the observability condition derived
in [7] is only necessary but not sufficient. In [11], [12], the
authors proposed a general observability condition for angle-
only navigation to determine the relative orbital motion and
provided the conditions where the unobservable manoeuvres
occur. By using a pseudo-linear structure of the pseudo-
measurements, necessary and sufficient conditions, that can
be applied to general target motions, for observability analysis
were proposed in [13]. With a few assumptions, a closed-form
metric that could be utilised to quantify system observability
for manoeuvring target was derived in [14]. This analytical cri-
terion essentially coincides with previously suggested metric
given in [15] for constant moving targets.

Since system observability depends on the relative geometry
[16]–[19], the trajectory of the observer poses a direct impact
on the achievable estimation performance [20]–[23]. For this
reason, it is known that trajectory optimisation, maximising
system observability, can yield significant benefits for target
tracking with bearing-only measurement to improve the quality
of perceptual results [24]. Optimal observer trajectory that
maximises system observability is generated in [3], [21], [25]–
[27] by maximising the determinant of Fisher information
matrix (FIM) over a finite time horizon. The rationale of using
FIM for a cost function, also known as objective function,
lies in that the inverse of FIM prescribes a lower bound of
the estimation error covariance of an unbiased filter [28]. To
minimise the sensing time and ensure bounded estimation
uncertainty, an approximate algorithm to plan the bearing data
gathering path was proposed in [29], where the determinant
of FIM was utilised to quantify the estimation performance.
Different from [25], [26], the determinant of error covariance
matrix was employed as the cost function in [30], [31] for
trajectotry optimisation. Using the same objective function,
exhaustive search was utilised in [32] to find optimal sensor
heading commands with motion constraints. On the basis of
the nonlinear observability analysis tool, i.e., Observability
Gramian (OG) [33], the authors in [34], [35] provided online
gradient descent path planning strategies to actively maximise
the smallest eigenvalue of the OG. A cautious greedy active
sensing strategy was proposed in [36], [37] for localising
a stationary target with bearing-only measurement in min-
imum time. Incorporating communication range and no-fly
zone constraints into account, a numerical trajectory planning
for target localisation with bearing-only measurement using
multiple robots was proposed in [38]. An algorithm for co-
operative active localisation of stationary targets using mobile
bearing sensors was suggested in [39] by leveraging the largest
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eigenvalue of FIM as the cost function. To improve bearing-
only observability while simultaneously consider other mission
objectives, multi-objective trajectory optimisation problem was
formulated and solved in [21], [40], [41]. Unfortunately, this
particular problem formulated is not amendable to simple
analytical solution. Hence, these approaches use numerical
methods to find optimal solutions and consequently require
high onboard computational power. As the onboard compu-
tational power is limited in low-cost and lightweight robots,
those approaches are not suitable for such robots. Moreover,
optimisation over a finite time horizon requires accurate target
dynamics, which becomes prohibitive in practice, especially
for hostile targets. These issues can be alleviated by applying
one-step analytical optimisation as in [42]: optimal trajectory
was obtained for ground robots by minimising the trace of
the estimation error covariance matrix in one step in the
work. However, since physical constraints of the robot are
not rigorously considered, the solution derived in [42] might
become infeasible for the robot.

This paper aims to develop an analytically optimal trajectory
optimisation algorithm in consideration of physical constraints
for constant-manoeuvring target localisation with bearing-only
measurement. The contributions of this paper are twofold:

(1) Unlike previous approaches using FIM or error co-
variance matrix, this paper finds a performance measure of
observability based on geometric conditions and utilises it
as a pertinent cost function. While it is known that the
relative geometry conditions determine the observability, there
has been no attempt to obtain a geometry-based estimation
performance measure for bearing-only-based target localisa-
tion available in the literature. Determining the performance
measure, we provide a geometric interpretation on how the
relative geometry influences the system observability. Such
interpretation enables more intuitive and perhaps better in-
sights to the relationship between the geometric condition and
observability.

(2) This paper derives a closed-form solution that max-
imises the geometric observability measure formulated and
meets physical constraints such as minimum turning rate.
The resultant analytical solution, given as heading angle input
command, is simple to be implemented in practice. Up to the
best of our knowledge, no closed-form solution with a physical
constraint is available in existing literature.

Realistic scenarios are simulated to illustrate and evaluate
the performance of the proposed algorithm, and the results
are compared with those of the existing analytical approach
proposed in [42] and the approach in [14]. The simulation
results reveal that the proposed algorithm meets the considered
physical constraint unlike the approach from [42]. They also
show that optimising the proposed geometric performance
metric generates higher system observability than optimising
the analytical measure derived in [14], thus leading to im-
proved estimation performance.

The rest of the paper is organised as follows. Section
II presents some preliminaries and backgrounds. Section III
derives a geometric metric for observability analysis, followed
by the optimal manoeuvre derivation shown in Sec. IV. Then,
some simulations and conclusions are offered.
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Fig. 1. Geometric relationship between the observer and the target at time
step k in an inertial coordinate. The observer is represented by a magenta
pentagram and the red circle denotes the target. The red vector stands for the
observer heading direction at previous time step. The maximum permissible
move region of the observer at current time instant is given by the blue sector
with radius Vo,maxTs and angle 2γmax.

II. BACKGROUNDS AND PRELIMINARIES

This section provides some necessary preliminaries of ve-
hicle kinematics model and bearing-only measurement model
to facilitate the analysis in the following sections.

A. Vehicle Kinematics

This work assumes that the observer is equipped with a
high-performance low-level flight control system that provides
velocity tracking, heading and altitude hold functions. This
study aims to design guidance input to this low-level controller
for target localisation and only concerns the 2D motions.
The rationale of leveraging simple 2D engagement is that
typical aerial robots provide roll stabilisation and therefore
the 3D guidance problem can be decoupled into horizontal
and vertical channels using the well-known separation concept.
The vehicle’s kinematics in a 2D environment is given by

ẋo = Vo cos γo
ẏo = Vo sin γo

(1)

where (xo, yo) stands for the observer’s position in an inertial
coordinate. γo is the observer’s heading angle and Vo ∈
(0, Vo,max] denotes the observer’s velocity with Vo,max being
the maximum permissible velocity. Note that the observer’s
velocity Vo is assumed to be larger than the target’s velocity
in this paper.

In practice, the observer heading change between two
consecutive time steps is constrained due to physical turning
rate limitation as

|γo,k − γo,k−1| ≤ γmax
∆
= ωmaxTs (2)

where γo,k represents the heading angle at time step k, ωmax

the maximum permissible turning rate of the observer, and Ts
the sampling time.

B. Measurement Model

Figure 1 shows the geometric relationship between the
observer and the target at time step k. X − O − Y stands
for the inertial coordinate. The notations ro,k = [xo,k, yo,k]

T

and rt,k = [xt,k, yt,k]
T represent the position vectors of

the observer and the target at time step k, respectively.
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rk = ro,k − rt,k denotes the relative position vector between
the observer and the target. With heading constraint (2), the
maximum region the observer can travel at current time step
is described by a sector, as shown in Fig. 1. At time step k,
the observer only has access to its bearing angle measurement
ηk toward the target. Therefore, the sensor measurement zk is
given by

zk = ηk + ε (3)

where ε denotes the sensor measurement noise.
Let rk = [xk, yk]

T , then, the sensor measurement zk can
also be formulated as

zk = arctan

(
yk
xk

)
+ ε (4)

From Eq. (4), it is clear that the relative distance is not
directly measurable by bearing angle ηk, that is, (xk, yk) and
(µxk, µyk) with µ ∈ R+ provide the same bearing angle ηk.
Therefore, certain manoeuvres have to be performed to make
the range observable in a certain degree.

Remark 1. Note that the bearing angle in Eq. (4) is the direc-
tion of rk with respect to a world/inertial frame. In practice,
however, observers with onboard sensors, i.e., cameras, can
only provide the direction of rk with respect to the body frame.
Therefore, additional observer attitude information from IMU
is required to obtain ηk. For simplicity, we assume that
the IMU provides accurate attitude information by a well-
tuned filter and therefore only sensor noise is considered in
measurement model (4). Note that this assumption has been
widely used in active target localisation with bearing-only
measurement [14], [39], [42], [43]. Although the IMU output
has inevitable noise, it can be accumulated in ε and therefore
the algorithm developed is still valid.

III. GEOMETRIC ANALYSIS AND PROBLEM FORMULATION

This section first derives a geometric metric that can be
utilised in trajectory optimisation to maximise system observ-
ability. Then, the problem formulation of the paper is stated.

A. Geometric Metric for Observability Maximisation

Change in the vehicle’s velocity and its direction over a
short interval, like over Ts, is usually negligible. Hence, for
simplicity, it is assumed that both the observer and the target
are piece-wise non-manoeuvring, i.e., moving with constant
speed and constant direction between two consecutive time
instants. Figure 2 shows the geometric relationship between
the observer and the target in two consecutive time instants,
where Fig. 2 (a) shows the geometric relationship in an inertial
frame and Fig. 2 (b) provides the geometric relationship in a
relative frame. Notice that the relative frame can accommodate
moving target since the relative position vector rk directly
contains the information on target movement. In Fig. 2, δrk
represents the relative manoeuvre at time step k. σ is the
separation angle between two consecutive relative position
vectors.

Between two consecutive time instants, it is clear from
Fig. 2 that the relative position vector rk+1 at next time step

can be uniquely determined by triangulation if σ 6= 0 and
rk is available to the observer. Based on this observation,
we assume that the relative position vector rk is known for
finding the optimal observer manoeuvre vector at time instant
k in one-step trajectory optimisation. The validity of this
assumption will be proved through a detailed observability
analysis shown in Sec. IV E. Note that, if σ = 0, rk+1 = k1rk,
k1 ∈ R+. Then, it is impossible to distinguish the next
step relative position vector from the current step relative
position vector regardless of the angle measurement. Hence,
the relative manoeuvre should satisfy the condition σ 6= 0,
which coincides with the necessary observability condition that
the LOS rate η̇ = σ/Ts cannot be zero, derived in [9] for a
non-manoeuvring target. Therefore, under the assumption that
rk is available, the robot can localise the target only when the
robot-target relative geometry satisfies the condition σ 6= 0.

Let δρ ∆
= CE be the relative position estimation error at

time step k + 1 caused by the sensor bearing measurement
error ε. Based on the law of sines, we have

4OCE:
δρ

sin ε
=

OE

sin [π − (σ + ε/2)]
=

OE

sin (σ + ε/2)
(5)

4ODE:
‖δrk‖

sin (σ − ε/2)
=

OE

sinα
(6)

4OAB:
‖rk+1‖
sinα

=
‖δrk‖
sinσ

(7)

Combining Eqs. (5) and (6), one can imply that

δρ = ‖δrk‖
(

sinα sin ε

sin2σ − sin2 (ε/2)

)
(8)

where the fact that sin (a+ b) sin (a− b) = sin2 a− sin2 b is
utilised in the derivation.

Assume that the sensor bearing measurement error ε is
small, Eq. (8) can be reduced to

δρ = ε ‖δrk‖
(

sinα

sin2σ

)
(9)

Substituting Eq. (7) into Eq. (9) yields the error square as

δρ2 = ε2

(
‖rk+1‖
sinσ

)2

(10)

The preceding equation reveals that the relative position es-
timation (or target localisation) error at next time step is char-
acterised by the sensor measurement error ε, the separation
angle σ and the relative range ‖rk+1‖. This provides us better
insights to the influence of relative geometric configuration on
system observability.

Remark 2. Notice that Eq. (10) closely resembles the ex-
pression of geometric dilution of precision (GDOP), which is
commonly leveraged in satellite navigation and geomatics en-
gineering: the term (‖rk+1‖/sinσ)

2 determines the sensitivity
of estimation performance to bearing measurement errors.
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Fig. 2. Geometric relationship between the observer and the target in two consecutive time instants. (a) Geometric relationship in an inertial frame. The black
line represents the target movement trajectory and the blue line stands for the observer movement trajectory at current time instant. The orange line refers to
the relative movement trajectory. (b) Geometric relationship in a relative frame. The relative frame in (b) is defined by using the relative motion kinematics,
e.g., relative range rk , and attaching the origin at the target position at time instant k. In (b), line CE is parallel to line FD. Both lines DE and FC are
parallel to line AB in (b).

B. Problem Formulation

The aim of the trajectory optimisation is to determine
optimal manoeuvres that minimise target localisation error
and also respect the physical constraints given in (2). To
accomplish the aim, this paper formulates a discrete-time
trajectory optimisation problem which is denoted as CTO1.
CTO1: find the observer manoeuvre at time step k, vo,k, which
maximises the following objective function J

J =

(
sinσ

‖rk+1‖

)2

(11)

subject to

|γo,k − γo,k−1| ≤ ωmaxTs

0 < Vo,k ≤ Vo,max

(12)

Note that the observer manoeuvre at time step k is given as

vo,k = [Vo,kTs cos γo,k, Vo,kTs sin γo,k]
T (13)

The cost function J is determined in consideration of δρ2

obtained in (10): since ε is determined by the sensing device,
a practical way to reduce the estimation error is to find an
optimal one-step observer manoeuvre that maximises the cost
function J given by (11).

Remark 3. Geometrically, the minimisation of ‖rk+1‖ and the
maximisation of |sinσ| are two conflict objectives. Therefore,
the information maximising manoeuvre obtained from max J
will provide a proper balance between forcing σ to approach
±π/2 and reducing the relative range. This means that the
resulting optimal solution satisfies −π/2 < σ < π/2.

Remark 4. Note that, since Eq. (11) is provided in a closed
form, it permits simple weighed inclusion inside a global tra-
jectory optimisation problem as an auxiliary objective, allow-
ing for an optimal solver to find manoeuvres that are beneficial

in terms of observability enhancement while considering other
objectives.

Remark 5. Assume that the range variation between two
successive instants is negligible, i.e., ‖rk‖ ≈ ‖rk+1‖ and the
separation angle is small, i.e., sin (σ) ≈ σ, the authors in [14]
revealed that the determinant of the incremental of FIM at
time step k is lower bounded by

|∆Fk| = |Fk+1 − Fk| ≥ c
(

σ

‖rk‖

)2

(14)

where c is a constant depending on the measurement noise
statistics and the time step. The notation Fk denotes the FIM
at time instant k. It follows from Eq. (14) that maximising
(σ/‖rk‖)2 can increase the lower bound of |∆Fk|, leading
to the increase of observability between two consecutive
time steps. Therefore, Ĵ = (σ/‖rk‖)2 was utilised as the
cost function in [14] to find optimal observer trajectory for
information maximisation.

One can note that both J and Ĵ share a similar characteristic
that target observability can be enhanced by increasing the
absolute value of the separation angle σ. Apart from this
similar property, the difference between cost functions J and
Ĵ is clear: Ĵ ignores the variation of ‖rk‖ while the proposed
geometric measure relaxed this assumption. Conceptually, one
can geometrically conclude from Fig. 2 (b) that smaller ‖rk‖
provides lower estimation error with same bearing noise ε.
With this in mind, it is expected that maximising J can
generate improved estimation performance, compared to max-
imising Ĵ . It is worthy to point out that the proposed cost
function J gradually converges to Ĵ when Ts → 0.

Remark 6. Different from [14], the authors in [42] provided
a solution of trajectory optimisation by exploiting the trace
of error covariance as a cost function, which directly charac-
terises the average estimation variance. However, the turning
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rate limit constraint was not considered in the optimisation,
which means that the solution obtained in [42] might become
infeasible in practice.

Remark 7. It should be pointed out that both [14] and
[42] formulated their cost functions directly from classical
estimation theory. However, the proposed cost function J is
derived using simple geometric condition with clear physical
meanings. This obviously reveals that how the observer-target
relative geometry influences the estimation accuracy.

IV. DERIVATION OF OPTIMAL MANOEUVRE FOR TARGET
LOCALISATION

This section will propose an analytical optimal manoeuvre
that maximises the cost function J for target localisation with
bearing-only measurement. We first derive the optimal solution
without heading constraint and then extend to the case that
the robot has limited turning rate to change its heading angle.
Finally, target observability under the proposed approach will
be analysed.

A. Optimal Manoeuvre without Heading Constraints

Excluding the heading constraint, CTO1 reduces to CTO2.
CTO2: find the observer manoeuvre at time step k, vo,k, which
maximises the following objective function J

J =

(
sinσ

‖rk+1‖

)2

(15)

subject to

0 < Vo,k ≤ Vo,max (16)

Let vt,k = [vtx,k, vty,k]
T ∆

=

[Vt,kTs cos γt,k, Vt,kTs sin γt,k]
T be the target manoeuvre

vector at time step k. Since the target velocity vector at
current time step can be obtained from Kalman filter, vt,k
is known in trajectory optimisation. Figure 3 (a) shows the
geometric relationship between the observer and the target
within two consecutive time steps. Since vt,k is fixed, r̄k is
known in trajectory optimisation. The analytical solution of
CTO2 can be obtained using Lemmas 1 through 3.

Lemma 1. Given the observer velocity Vo,k, the candidate
optimal heading angle at time step k without any constraint
is given by

γ∗,1o,k = arcsin

(
−2Vo,kTsr

T
k · r̄k√

a2 + b2

)
− ϑ (17)

γ∗,2o,k = π − arcsin

(
−2Vo,kTsr

T
k · r̄k√

a2 + b2

)
− ϑ (18)

with sinϑ = b/
√
a2 + b2 and cosϑ = a/

√
a2 + b2, where

a = ‖rk‖2 (yk − 2vty,k) + 2xkvtx,kvty,k

+ yk

[
v2
ty,k − v2

tx,k + (Vo,kTs)
2
] (19)

b = ‖rk‖2 (xk − 2vtx,k) + 2ykvtx,kvty,k

+ xk

[
v2
tx,k − v2

ty,k + (Vo,kTs)
2
] (20)

Proof. For moving target, the relative manoeuvre vector at
time step k can be obtained as

δrk = vo,k − vt,k

= [Vo,kTs cos γo,k − vtx,k, Vo,kTs sin γo,k − vty,k]
T (21)

Then, the relative position vector at time step k + 1 is given
by

rk+1 = rk + δrk

= [xk + Vo,kTs cos γo,k − vtx,k, yk + Vo,kTs sin γo,k − vty,k]
T

(22)

As depicted in Fig. 2 (b), the separation angle σ between two
consecutive relative position vectors is determined by

σ = arccos

(
rTk · rk+1

‖rk‖ ‖rk+1‖

)
(23)

Substituting Eq. (23) into Eq. (11) gives

J =
1− cos2 σ

x2
k+1 + y2

k+1

=
(xkyk+1 − xk+1yk)

2

(x2
k + y2

k)
(
x2
k+1 + y2

k+1

)2 (24)

The partial derivative of J with respect to γo,k provides a
constraint for identifying the optimal heading as

∂J

∂γo,k
= 0 (25)

Substituting (22) into (24) and after some tedious but simple
algebraic manipulations, (25) reduces to

∂J

∂γo,k
=2Vo,kTs

[
(xk − vtx,k + Vo,kTs cos γo,k)

2
+ (yk − vty,k + Vo,kTs sin γo,k)

2
]

× xk (yk − vty,k + Vo,kTs sin γo,k)− yk (xk − vtx,k + Vo,kTs cos γo,k)[
(xk − vtx,k + Vo,kTs cos γo,k)

2
+ (yk − vty,k + Vo,kTs sin γo,k)

2
]4

×
{

(xk cos γo,k + yk sin γo,k)
[
(xk − vtx,k + Vo,kTs cos γo,k)

2
+ (yk − vty,k + Vo,kTs sin γo,k)

2
]

+ 2 [xk (yk − vty,k + Vo,kTs sin γo,k)− yk (xk − vtx,k + Vo,kTs cos γo,k)]

× [sin γo,k (xk − vtx,k)− cos γo,k (yk − vty,k)]}

(26)

From (26), the solution of ∂J/∂γo,k = 0 can be determined from

xk (yk − vty,k + Vo,kTs sin γo,k)− yk (xk − vtx,k + Vo,kTs cos γo,k) = 0 (27)
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Fig. 3. (a) Geometric illustration for moving target localisation without turning rate limit in the relative frame. The blue circle determines the maximum
permissible region that the observer can travel at current time step. r̄k = rk − vt,k is an auxiliary vector utilised in the analysis. (b) Geometric illustration
of candidate optimal heading solutions for moving target localisation in the relative frame.

(xk cos γo,k + yk sin γo,k)
[
(xk − vtx,k + Vo,kTs cos γo,k)

2
+ (yk − vty,k + Vo,kTs sin γo,k)

2
]

+ 2 [xk (yk − vty,k + Vo,kTs sin γo,k)− yk (xk − vtx,k + Vo,kTs cos γo,k)]

× [sin γo,k (xk − vtx,k)− cos γo,k (yk − vty,k)] = 0

(28)

Note that, if xk (yk − vty,k + Vo,kTs sin γo,k) −
yk (xk − vtx,k + Vo,kTs cos γo,k) = 0, we have rk+1 = k2rk,
k2 ∈ R. This provides zero observability of the target by
the angle measurement, which minimises the cost function
J . Therefore, this should be excluded from the solution
candidates. Together with the fact that the cost function J is
continuous, the candidate optimal heading solutions can be
obtained from condition (28). Further simplifying (28) yields

a sin γo,k + b cos γo,k = −2Vo,kTsr
T
k · r̄k (29)

Note that

a sin γo,k + b cos γo,k =
√
a2 + b2 sin (γo,k + ϑ) (30)

Since both a and b are known, the candidate optimal observer
heading angle γ∗o,k can be directly obtained from (29) and (30)
as

γ∗,1o,k = arcsin

(
−2Vo,kTsr

T
k · r̄k√

a2 + b2

)
− ϑ (31)

γ∗,2o,k = π − arcsin

(
−2Vo,kTsr

T
k · r̄k√

a2 + b2

)
− ϑ (32)

Remark 8. It follows from Eqs. (31)-(32) that the candidate
optimal heading solution with a specific observer velocity Vo,k
depends on current relative position as well as target’s velocity
magnitude and its corresponding direction. The geometric
illustration of optimal observer manoeuvres for moving target

is shown in Fig. 3 (b), where −vt,k is assumed to be located
on the right hand side of rk. Similar geometry can also be
obtained if −vt,k is located on the left hand side of rk. From
Fig. 3 (b), we can note that both γ∗,1o,k and γ∗,2o,k try to reduce
the relative range between the observer and the target. In the
meantime, these two solutions try to increase the absolute
value of the separation angle σ to improve target observability.

Given the robot velocity Vo,k, Lemma 1 indicates that
there exist two candidate heading angle solutions that locally
maximise the cost function J , i.e., these two solutions are
local maxima. The following lemma analyses the location of
these two solutions. Without loss of generality, we assume
that −vt,k is located on the right hand side of rk, as shown
in Fig. 4, in the following analysis. Similar results can also be
obtained when −vt,k is located on the left hand side of rk.

Lemma 2. Let Ω1 be ADE that excludes line AD and
Ω2 be ABC that excludes lines AB, AC (refer to Fig. 4
(a)). Then, the heading solution given by Lemma 1 satisfies
v∗,1o,k ∈ Ω1 and v∗,2o,k ∈ Ω2.

Proof. The proof of Lemma 2 is given in two steps. The
first step proves that the observer manoeuvre vector solutions,
given by Lemma 1, are located inside ABD. The second
step shows that v∗,1o,k ∈ Ω1 and v∗,2o,k ∈ Ω2.

Step 1: As discussed before, the maximisation of J
provides a balance between the minimisation of ‖rk+1‖ and
the maximisation of |sinσ|. If the observer manoeuvre vector
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Fig. 4. Geometric illustration of optimal manoeuvre location in the relative frame. (a) one candidate heading solution v∗,1
o,k locates inside sector ADE

excluding line AD (Ω1 in the figure) and another candidate heading solution v∗,2
o,k locates inside sector ABC excluding lines AB, AC (Ω2 in the figure).

(b) Proof of the fact that that v∗,1
o,k /∈ sector ACE.

vo,k coincides with
−→
AC, one can imply that rk+1 = λrk with

λ ∈ R+. This means that both r2
k+1 and sin2 σ achieve their

minimum values. Therefore, the proof of step 1 is equivalent
to the proof of the fact that the optimal observer manoeuvre

vector that maximises sin2 σ is perpendicular to next step
relative position vector rk+1.

Consider the cost function J̄ = sin2 σ. Evaluating the partial
derivative of J̄ with respect to γo,k gives

∂J̄

∂γo,k
=

2Vo,kTs [xk (yk − vty,k + Vo,kTs sin γo,k)− yk (xk − vtx,k + Vo,kTs cos γo,k)][
(xk − vtx,k + Vo,kTs cos γo,k)

2
+ (yk − vty,k + Vo,kTs sin γo,k)

2
]2

×
{

(xk cos γo,k + yk sin γo,k)
[
(xk − vtx,k + Vo,kTs cos γo,k)

2
+ (yk − vty,k + Vo,kTs sin γo,k)

2
]

+ [xk (yk − vty,k + Vo,kTs sin γo,k)− yk (xk − vtx,k + Vo,kTs cos γo,k)]

× [sin γo,k (xk − vtx,k)− cos γo,k (yk − vty,k)]}

(33)

Solving ∂J̄/∂γo,k = 0 gives

xk (yk − vty,k + Vo,kTs sin γo,k)− yk (xk − vtx,k + Vo,kTs cos γo,k) = 0 (34)

(xk cos γo,k + yk sin γo,k)
[
(xk − vtx,k + Vo,kTs cos γo,k)

2
+ (yk − vty,k + Vo,kTs sin γo,k)

2
]

+ [xk (yk − vty,k + Vo,kTs sin γo,k)− yk (xk − vtx,k + Vo,kTs cos γo,k)]

× [sin γo,k (xk − vtx,k)− cos γo,k (yk − vty,k)] = 0

(35)

Note that, if xk (yk − vty,k + Vo,kTs sin γo,k) −
yk (xk − vtx,k + Vo,kTs cos γo,k) = 0, we have rk+1 = k2rk,
k2 ∈ R. This will minimise the cost function J̄ since σ = 0.
Therefore, the candidate optimal heading satisfies condition
(35). Simplifying Eq. (35) yields

[(xk − vtx,k) cos γo,k + (yk − vty,k) sin γo,k + Vo,kTs]

×
(
x2
k + y2

k − xkvtx,k − ykvty,k + xkVo,kTs cos γo,k

+ykVo,kTs sin γo,k) = 0
(36)

which is equivalent to(
rTk+1 · vo,k

) (
rTk · rk+1

)
= 0 (37)

Since the optimal manoeuvre satisfies the condition that rTk ·
rk+1 6= 0, the final solution that maximises J̄ is given by
rTk+1·vo,k = 0 . This clearly indicates that the optimal observer
manoeuvre vector that maximises sin2 σ is perpendicular to
next step relative position vector rk+1.

Step 2: Note that if vo,k =
−→
AC, the cost function J
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achieves the minimum value as J
(−→
AC
)

= 0. Therefore, the
cost function J monotonically increases when the observer
manoeuvre vector vo,k rotates from

−→
AC to v∗,1o,k or to v∗,2o,k

since there is no solution ∂J/∂γo,k = 0 that is located between
v∗,1o,k and

−→
AC or between v∗,2o,k and

−→
AC. This implies that

v∗,2o,k ∈ Ω2 and v∗,1o,k locates in ACD that excludes lines
AC, AD. Now, assume that v∗,1o,k locates inside ACE. Then,
according to symmetric property, there always exists a vector
v′∗,1o,k such that

∥∥r′1k+1

∥∥ =
∥∥r1
k+1

∥∥, as shown in Fig. 4 (b).
This means that

J
(
v′∗,1o,k

)
=

(
sinσ′1∥∥r′1k+1

∥∥
)2

=

(
sinσ′1∥∥r1
k+1

∥∥
)2

>

(
sinσ1∥∥r1
k+1

∥∥
)2

= J
(
v∗,1o,k

) (38)

which reveals that v∗,1o,k /∈ ACE. Therefore, v∗,1o,k ∈ Ω1.

From Lemma 1, it is clear that the candidate optimal
heading command solutions depend on observer’s velocity.
Now, let us analyse the effect of observer’s velocity Vo,k on
cost function J .

Lemma 3. The cost function J monotonically increases with
respect to the observer’s velocity Vo,k when vo,k ∈ Ω1 ∪ Ω2.

Proof. Evaluate the partial derivative of J with respect to Vo,k
gives

∂J

∂Vo,k
=− 2Ts

xk (yk − vty,k + Vo,kTs sin γo,k)− yk (xk − vtx,k + Vo,kTs cos γo,k)[
(xk − vtx,k + Vo,kTs cos γo,k)

2
+ (yk − vty,k + Vo,kTs sin γo,k)

2
]3

×
{[

(xk − vtx,k + Vo,kTs cos γo,k)
2

+ (yk − vty,k + Vo,kTs sin γo,k)
2
]

(yk cos γo,k − xk sin γo,k)

+ 2 [xk (yk − vty,k + Vo,kTs sin γo,k)− yk (xk − vtx,k + Vo,kTs cos γo,k)]

× [cos γo,k (xk − vtx,k + Vo,kTs cos γo,k) + sin γo,k (yk − vty,k + Vo,kTs sin γo,k)]}

(39)

Let Ω1 = Ω3∪Ω4, where Ω3 be ADF that excludes line
AD and Ω4 be AEF that excludes line AF (shown in Fig.
5 (a), where line AF is parallel to rk). The following three
different conditions are considered.

Condition 1: when vo,k ∈ Ω2, which means that vo,k is
located on the left hand side of rk, we have

yk cos γo,k − xk sin γo,k < 0 (40)

and rk+1 is located on the left hand side of rk, e.g.,

xk (yk − vty,k + Vo,kTs sin γo,k)

− yk (xk − vtx,k + Vo,kTs cos γo,k) > 0
(41)

Inside ABC that excludes lines AB, AC, it is clear that

vTo,k · rk+1 < 0 (42)

Note that
vTo,k · rk+1/ (Vo,kTs) = cos γo,k (xk − vtx,k + Vo,kTs cos γo,k)

+ sin γo,k (yk − vty,k + Vo,kTs sin γo,k)
(43)

Substituting Eqs. (40)-(43) into Eq. (39) yields ∂J/∂Vo,k >
0. This implies that when vo,k ∈ Ω2, the cost function
J monotonically increases with the increase of observer’s
velocity Vo,k.

Condition 2: When vo,k ∈ Ω3, one can imply that

yk cos γo,k − xk sin γo,k ≥ 0 (44)

where the equality holds when vo,k =
−→
AF , and rk+1 is located

on the right hand side of rk, e.g.,

xk (yk − vty,k + Vo,kTs sin γo,k)

− yk (xk − vtx,k + Vo,kTs cos γo,k) < 0
(45)

Inside ADE that excludes line AD, it is clear that

vTo,k · rk+1 < 0 (46)

Substituting Eqs. (43)-(46) into Eq. (39) yields ∂J/∂Vo,k > 0.
This implies that when vo,k ∈ Ω3, the cost function J mono-
tonically increases with the increase of observer’s velocity
Vo,k.

Condition 3: When vo,k ∈ Ω4, the geometric illustration is
presented in Fig. 5 (b), where line GH is parallel to rk. In
this condition, it is clear that vo,k is located on the left hand
side of rk and rk+1 is located on the right hand side of rk.
Therefore, we have

−‖rk‖ ‖vo,k‖ sinϕ = Vo,kTs (yk cos γo,k − xk sin γo,k)
(47)

− ‖rk‖ ‖rk+1‖ sinσ = xk (yk − vty,k + Vo,kTs sin γo,k)

− yk (xk − vtx,k + Vo,kTs cos γo,k)
(48)

Substituting Eqs. (47) and (48) into Eq. (39) and after some
algebraic manipulations results in

∂J

∂Vo,k
= −2

‖rk‖2 ‖vo,k‖ sinσ

Vo,k‖rk+1‖3
(sinϕ+ 2 sinσ cos θ) (49)

From Fig. 5 (b), one can easily verify that

2 sinσ cos θ = − sin (2σ − ϕ)− sinϕ (50)

Therefore, we have

sinϕ+ 2 sinσ cos θ = − sin (2σ − ϕ) (51)

From Fig. 5 (b), one can note that ϕ monotonically increases
and σ monotonically decreases when vo,k rotates from

−→
AF to
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Fig. 5. Geometric illustration for the proof of Lemma 3 in the relative frame. (a) Three cases are considered to prove J is a monotonically increasing function
with respect to Vo,k when vo,k ∈ Ω2,Ω3,Ω4 with Ω3 being sector ADF that excludes line AD and Ω4 being sector AEF that excludes line AF . In
this figure, line AF is parallel to rk . (b) Proof of the geometric relationship shown in Eq. (50) when vo,k ∈ Ω4. In this figure, both lines AF and GH are
parallel to rk .

−→
AE. Define σ̄ = σ

(−→
AF
)

and σ̂ = σ
(−→
AE
)

. Then, we have
σ̂ ≤ 2σ − ϕ ≤ 2σ̄. Note that 0 < σ < π/2, as discussed
before, one can imply that 0 < 2σ − ϕ < π, which means
sin (2σ − ϕ) > 0. With this in mind and substituting Eq. (51)
into Eq. (49) gives ∂J/∂Vo,k > 0. This implies that when
vo,k ∈ Ω4, the cost function J monotonically increases with
the increase of observer’s velocity Vo,k. Finally, combining
Conditions 1-3 leads to the proof of Lemma 3.

By using the results of Lemmas 1-3, the solution of CTO2

is obtained in Theorem 1.

Theorem 1. The optimal observer manoeuvre, without any
heading constraints, that maximises cost function J is given by

vo,k =
[
Vo,maxTs cos γ∗o,k, Vo,maxTs sin γ∗o,k

]T
where γ∗o,k =

max
γo,k∈{γ∗,1

o,k,γ
∗,2
o,k}

J (γo,k) with

γ∗,1o,k = arcsin

(
−2Vo,maxTsr

T
k · r̄k√

a2 + b2

)
− ϑ (52)

γ∗,2o,k = π − arcsin

(
−2Vo,maxTsr

T
k · r̄k√

a2 + b2

)
− ϑ (53)

Here, sinϑ = b/
√
a2 + b2 and cosϑ = a/

√
a2 + b2, where

a = ‖rk‖2 (yk − 2vty,k) + 2xkvtx,kvty,k

+ yk

[
v2
ty,k − v2

tx,k + (Vo,maxTs)
2
] (54)

b = ‖rk‖2 (xk − 2vtx,k) + 2ykvtx,kvty,k

+ xk

[
v2
tx,k − v2

ty,k + (Vo,maxTs)
2
] (55)

Proof. From Lemmas 1-3, the proof of Theorem 1 is straight-
forward.

Remark 9. Theorem 1 shows that cost function J is maximised
when the robot moves with its maximum velocity Vo,max.
However, it is often not desirable to set the robot velocity as its
maximum permissible value due to physical and operational
reasons such as endurance consideration. In practice, the
robot velocity is usually predefined in consideration of those
constraints and mission objectives. Therefore, we limit the
following analysis to the case where the robot velocity is
constant as Vo,k = Vo.

B. A Special Case: Stationary Target Localisation

For stationary target, we have rk = r̄k and

a =
[
‖rk‖2 + (VoTs)

2
]
yk (56)

b =
[
‖rk‖2 + (VoTs)

2
]
xk (57)

Then, condition given in (29) becomes

sin (γo,k + β) = − 2VoTs ‖rk‖
‖rk‖2 + (VoTs)

2 (58)

where sinβ = xk/ ‖rk‖, cosβ = yk/ ‖rk‖. Therefore, the
optimal heading angle at time step k for stationary target
localisation is given by

γ∗,1o,k = arcsin

(
− 2VoTs ‖rk‖
‖rk‖2 + (VoTs)

2

)
− β (59)

γ∗,2o,k = π − arcsin

(
− 2VoTs ‖rk‖
‖rk‖2 + (VoTs)

2

)
− β (60)

The geometric interpretation of optimal manoeuvres is
shown in Fig. 6. Unlike the moving target case, the two
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Fig. 6. Geometric interpretation of optimal manoeuvres for stationary target
in the relative frame with σ1 = σ2 and

∥∥∥r1k+1

∥∥∥ =
∥∥∥r2k+1

∥∥∥.

candidate solutions γ∗,1o,k and γ∗,2o,k are symmetric with respect
to rk.

For moving target, it is clear from Fig. 3 (b) that the change
of the relative distance depends on target movement. However,
when localising a stationary target, the relative distance is
monotonically decreasing as time goes. Also, the rate of the
relative range change is proportional to the square of the
observer velocity V 2

o and the sampling time Ts, but inversely
proportional to the current relative range ‖rk‖. This result is
given by the following proposition.

Proposition 1. For stationary target localisation, the rate
of the relative range between the observer and the target
generated by the obtained optimal manoeuvre is given by

d ‖rk‖
dt

= −3V 2
o Ts

2 ‖rk‖
(61)

Proof. By definition, the rate of the relative range is deter-
mined by

d‖rk‖
dt = ‖rk+1‖−‖rk‖

Ts

=

√
‖rk‖2+(VoTs)2+2VoTs(xk cos γ∗

o,k+yk sin γ∗
o,k)−‖rk‖

Ts

(62)

Substituting Eq. (58) into Eq.(62) yields

d ‖rk‖
dt

=

√
‖rk‖2 + (VoTs)

2 − 4(VoTs)2‖rk‖2
‖rk‖2+(VoTs)2

− ‖rk‖
Ts

=

√
‖rk‖2 +

(VoTs)2[(VoTs)2−3‖rk‖2]
‖rk‖2+(VoTs)2

− ‖rk‖

Ts

(63)

Since Ts is small, we have

d ‖rk‖
dt

≈

√
‖rk‖2 − 3(VoTs)

2 − ‖rk‖
Ts

=
‖rk‖

√
1− 3(VoTs)2

‖rk‖2
− ‖rk‖

Ts

≈
‖rk‖

(
1− 3

2
(VoTs)2

‖rk‖2

)
− ‖rk‖

Ts

= −3V 2
o Ts

2 ‖rk‖

(64)

which clearly indicates the that relative distance is monotoni-
cally decreasing as time goes.

C. Optimal Manoeuvre with Heading Constraint

Theorem 1 reveals that, given the observer velocity, there
might exist two optimal heading angles, γ∗,1o,k and γ∗,2o,k , which
generate the same value of cost function for the observer
to minimise target localisation error. From the standpoint
of real application, it is desirable to avoid zigzag heading
angle change to maintain the physical constraints. Therefore,
it is necessary to consider physical constraints and select one
manoeuvre vector respecting those constraints, when imple-
menting Theorem 1 in practice. This subsection will show
how the heading angle constraint (2) can be embedded into
the proposed optimal solution.

Let γ∗o,k−1 be the optimal heading angle at the previous time
step. Without loss of generality, assume that γ∗,1o,k is closer to

γ∗o,k−1 than γ∗,2o,k , as shown in Fig. 7, e.g.,
∣∣∣γ∗,1o,k − γ∗o,k−1

∣∣∣ ≤∣∣∣γ∗,2o,k − γ∗o,k−1

∣∣∣. Then, the solution of CTO1 is given by the
following theorem.

Theorem 2. Let Ξ be ADE (shown in Fig. 7). Then, we
have the following results:

(1) if γ∗,1o,k ∈ Ξ and γ∗,2o,k ∈ Ξ (refer to Fig. 7 (a)), then, the
optimal observer heading angle γ∗o,k considering turning rate
constraint is determined as

γ∗o,k =

 γ∗,1o,k , if J
(
γ∗,1o,k

)
= J

(
γ∗,2o,k

)
max

γo,k∈{γ∗,1
o,k,γ

∗,2
o,k}

J (γo,k) , otherwise (65)

(2) if only γ∗,1o,k ∈ Ξ (refer to Fig. 7 (b)), then, the
optimal observer heading angle γ∗o,k considering turning rate
constraint is determined as

γ∗o,k = max
γo,k∈{γ∗,1

o,k,γ̄
∗,1
o,k,γ̄

∗,2
o,k}

J (γo,k) (66)

where γ̄∗,1o,k = γ∗o,k−1 − γmax and γ̄∗,2o,k = γ∗o,k−1 + γmax.
(3) if γ∗,1o,k /∈ Ξ (refer to Fig. 7 (c)), then, the optimal ob-

server heading angle γ∗o,k considering turning rate constraint
is determined as

γ∗o,k = max
γo,k∈{γ̄∗,1

o,k,γ̄
∗,2
o,k}

J (γo,k) (67)

Proof. When γ∗,1o,k ∈ Ξ and γ∗,2o,k ∈ Ξ, the optimal heading
angle that maximises cost function J is obviously given by
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(a) (b) (c)
Fig. 7. Geometric illustration for moving target localisation with turning rate limit in the relative frame. The magenta sector ADE, denoted as Ξ, quantifies
the maximum permissible movement region of the robot at current time instant. (a) Case 1: both γ∗,1o,k and γ∗,2o,k are located inside sector ADE. (b) Case 2:
only γ∗,1o,k is located inside sector ADE. (c) Case 3: γ∗,1o,k is located outside sector ADE.

γ∗o,k = max
γo,k∈{γ∗,1

o,k,γ
∗,2
o,k}

J (γo,k). If these two candidate heading

solutions provide the same level of optimality, we then choose
the solution which is closer to the previous heading angle to
avoid large heading change, as shown in Eq. (65).

Lemma 1 indicates that if vo,k =
−−→
AB or vo,k =

−→
AC, the

cost function J achieves the minimum value as J
(−−→
AB
)

= 0

and J
(−→
AC
)

= 0. Also, when vo,k = v∗,1o,k or vo,k = v∗,2o,k,
the cost function J is locally maximised. Therefore, the
cost function J monotonically decreases when the observer
manoeuvre vector vo,k rotates from v∗,1o,k (or v∗,2o,k) to

−−→
AB or

to
−→
AC since there is no solution ∂J/∂γo,k = 0 that is located

between v∗,1o,k (or v∗,2o,k) and
−−→
AB or v∗,1o,k (or v∗,2o,k) and

−→
AC. This

leads to the proof of results (2) and (3) in Theorem 2.

Remark 10. Note that when γ∗,2o,k is closer to γ∗o,k−1 than

γ∗,1o,k , i.e.,
∣∣∣γ∗,1o,k − γ∗o,k−1

∣∣∣ > ∣∣∣γ∗,2o,k − γ∗o,k−1

∣∣∣, similar results
as shown in Theorem 2 can also be obtained.

D. Algorithm Summary

By summarising the results presented in Sec. IV A and Sec.
IV C, the proposed optimal trajectory optimisation algorithm
for target localisation with bearing-only measurement is sum-
marised in Algorithm 1.

E. Observability Analysis Under the Proposed Algorithm

In the development of the proposed algorithm, the assump-
tion that rk is available is utilised in trajectory optimisation.
However, the information on rk is extracted from Kalman
filter in practice. This means that only when the system is
observable, rk is available to the observer. For this reason,
this subsection will analyse the system observability under

Algorithm 1 Optimal Trajectory Optimisation for Target Lo-
calisation with Bearing-Only Measurement
Input: Estimated target position vector rt,k, estimated target
manoeuvre vector vt,k, previous observer manoeuvre vector
vo,k−1, maximum allowable heading angle change γmax

Output: Optimal observer heading angle γ∗o,k
1: Calculate the candidate optimal heading angles γ∗,1o,k and
γ∗,2o,k using Eqs. (17) and (18)

2: if
∣∣∣γ∗,1o,k − γ∗o,k−1

∣∣∣ ≤ ∣∣∣γ∗,2o,k − γ∗o,k−1

∣∣∣ then
3: γ̄∗o,k = γ∗,1o,k
4: else
5: γ̄∗o,k = γ∗,2o,k
6: end if
7: if

∣∣∣γ∗,1o,k − γ∗o,k−1

∣∣∣ ≤ γmax and
∣∣∣γ∗,2o,k − γ∗o,k−1

∣∣∣ ≤ γmax

then
8: γ∗o,k is given by Eq. (65)

9: else if
∣∣∣γ̄∗o,k − γ∗o,k−1

∣∣∣ ≤ γmax then
10: γ∗o,k is given by Eq. (66)
11: else
12: γ∗o,k is given by Eq. (67)
13: end if

the proposed approach using geometric concepts. The primary
objective of observability analysis is to find out whether or not
rk can be uniquely determined within a finite time period from
time instant k onward. The results are given in the following
proposition.

Proposition 2. For constant-manoeuvring target, the target
observability is ensured under the proposed algorithm.

Proof. In [13], the authors revealed that the necessary and
sufficient condition to guarantee system observability for
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Fig. 8. (a) Geometric interpretation of the necessary and sufficient observability condition for three consecutive time steps for constant-manoeuvring target
with bearing-only measurement. (b) Geometric interpretation utilised in the proof of Proposition 2. In (b), line AD is the tangential line of quadratic curve
AC at point A.

constant-manoeuvring target with bearing-only measurement
is given by

r (t) 6= λ (t)

[
a11 + a12∆t+ a13

∆t2

2

a21 + a22∆t+ a23
∆t2

2

]
(68)

for some t ∈ (t0, tf ] with t0 being the initial time, where
∆t = t − t0 and λ (t) is an arbitrary scalar function. The
coefficients aij in Eq. (68) are arbitrary constants but not all
zero.

According to condition (68), if the system is unobservable,
there exists a quadratic curve such that the relative position
vector has a linear relationship with the quadratic curve. A
geometric illustration of condition (68) for three consecutive
time steps is presented in Fig. 8. If the system is unobservable,
there exist an arbitrary scalar function λ (t) and a quadratic
curve AC such that rk = λ (tk)

−→
OA, rk+1 = λ (tk+1)

−−→
OB

and rk+2 = λ (tk+2)
−−→
OC locates on the quadratic curve AC.

It is clear that σ = 0 is a special case that violates condition
(68).

Define rx (t) = a11 + a12∆t+ a13
∆t2

2 and ry (t) = a21 +

a22∆t+a23
∆t2

2 . Due to the property of quadratic polynomials,
there exists a certain time instant t∗ > t0 such that both rx (t)
and ry (t) are monotonic functions when t > t∗. Without
loss of generality, we assume that tk > t∗. From previous
analysis, we know that the proposed algorithm generates a
unique solution that forces the relative position vector rotate
clockwise or anti-clockwise around the target. Without loss of
generality, the clockwise rotation direction (as shown in Fig.
8 (a)) is utilised in the following analysis. With this in mind,
one can imply that there exists a certain time instant (assuming
this occurs at time step k + 3 for simplicity) such that rk+3

is located on the right hand of
−−→
AD, as shown in Fig. 8 (b),

where line OD is the tangential line of quadratic curve AC
at point A. Since quadratic curves are convex, it is easy to
verify that the only intersection point between quadratic curve
AC and rk+3 is E. This apparently violates the condition
that rx (t) and ry (t) are monotonic when t > t∗. Therefore,
∀tk, there exists some t ∈ (tk, tf ] such that condition (68)
is satisfied. This means that target is observable under the
proposed approach.

V. SIMULATION STUDIES

In this section, estimator-in-the-loop simulations are per-
formed to validate the proposed optimal trajectory optimisation
algorithm. To illustrate and evaluate performance characteris-
tics, the proposed algorithm was tested and compared with
the algorithms proposed in [14] and [42], via extensive sim-
ulations. This section presents representative results for three
typical tracking scenarios.

A. Simulation Setup

In the given scenarios, an aerial robot tracks a ground
target using bearing-only measurement. The robot is assumed
to be flying with a constant velocity Vo = 20m/s. The
initial position of the robot is (20m, 50m) and the target
initially locates at (0m, 0m). The turning rate of the robot is
constrained by ωmax = 1.5rad/s and the sampling time is set
as Ts = 0.1s. The angle measurement noise ε is assumed to
be zero-mean white Gaussian as N

(
ε; 0, σ2

ε

)
with σε = 0.5◦.

In the simulation scenarios, three different types of targets are
considered: (1) Case 1: target is stationary; (2) Case 2: target
moves in a straight line with constant velocity Vt = 5.83m/s
and constant heading γt = 0.54rad; and (3) Case 3: target
moves with constant velocity Vt = 10m/s, constant turning
rate γ̇t = π/24rad/s and initial heading γt,1 = 0◦.

To implement the proposed trajectory optimisation algo-
rithm, the required information on target position and velocity
are estimated using the well-known extended Kalman filter
(EKF). In EKF design, as we utilise the piece-wise non-
manoeuvring assumption in algorithm development, the stan-
dard constant velocity (CV) model is utilised as the target
dynamics for prediction. Let xk = [xt,k, ẋt,k, yt,k, ẏt,k]

T , the
state transition of CV model is determined by

xk = FCV xk−1 +GCV wk−1 (69)

with

FCV
∆
= I2×2 ⊗

[
1 Ts
0 1

]
, GCV

∆
=


T 2
s /2
Ts
T 2
s /2
Ts

 (70)

where I2×2 denotes the 2 × 2 identity matrix, and wk ∼
N
(
·; 0, σ2

v

)
the Gaussian process noise with σv = 0.5m/s2.
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Since the estimation error covariance matrix is positive
definite, its quadratic form constitutes a hyper uncertainty
ellipsoid that determines the error distribution and the axes
of ellipsoids are defined by the eigenvalues of the error
covariance matrix. Therefore, the volume of the uncertainty
ellipsoid can be used as a meaningful performance metric
to quantify the estimation accuracy. Let P denote the target
position error covariance, the one sigma area of the uncertainty
ellipsoid is determined as

A1σ = π
√
|P | (71)

Note that the FIM is inversely related with the error
covariance matrix. Thus, the minimisation of the volume of
the uncertainty ellipsoid can be achieved by maximising the
determinant of FIM. This means that the robot trajectory that
generates higher observability of the target has higher value of
|F |. Therefore, we utilise the determinant of FIM as a metric
to check the performance in simulations. Note that the FIM
can be calculated in a recursive way as described in [44].

B. Comparison with [14]

By utilising a lower bound of the determinant of the
incremental of FIM as a cost function, the authors in [14]
suggested a solution to minimise estimation error for bearing-
only measurement navigation. This subsection compares the
proposed approach with [42] to demonstrate the advantages
of the proposed geometric measure. The one-step optimal
observer manoeuvre that maximises Ĵ is obtained through
the Genetic Algorithm (GA) solver from Matlab Optimization
Toolbox since it is difficult to find analytical solutions that
maximise Ĵ . For fair comparison, the robot heading constraint
is also embedded into the GA solver. It should be pointed
out [14] never considered the physical constraints in the
implementation. Note that for one-step trajectory optimisation,
maximising (σ/‖rk‖)2 is equivalent to maximise the absolute
value of the separation angle between two consecutive time
steps since ‖rk‖ is known.

The comparison results obtained by these two different
algorithms for all three cases are shown in Fig. 9. The
first row in Fig. 9 provides the robot and target trajectories
for these three cases. From these three figures, it can be
noted that the robot trajectories generated by the proposed
algorithm always locate inside the robot trajectories obtained
by maximising Ĵ . This reveals that the proposed algorithm
provides a proper balance between maximising the absolute
value of the separation angle and the minimisation of the
relative range, whereas maximising Ĵ only maximises the
absolute value of the separation angle. The corresponding
determinant of FIM obtained from two different algorithms
are depicted in the second row of Fig. 9. It is clear that
the proposed algorithm generates higher value of |Fk| as
time goes, demonstrating that optimisation of the proposed
geometric metric (11) generates higher system observability
than that of maximising Ĵ . Since the one sigma volume of
the uncertainty ellipsoid A1σ is inversely proportional to |F |,
the proposed trajectory optimisation algorithm is expected to
generate smaller error ellipsoid.

TABLE I
RMSE COMPARISONS OVER1000 MONTE-CARLO RUNS.

Metric Case 1 Case 2 Case 3

Optimising Ĵ [14]
Mean 1.6259m 1.8264m 2.5933m
Std 0.4171m 0.5852m 0.6319m

Optimising J (11) Mean 1.5027m 1.5408m 2.0562m
Std 0.4059m 0.5466m 0.6412m

For better illustration, Monte-Carlo simulations are carried
out to validate the proposed approach. In each Monte-Carlo
run, the robot’s initial position (xo,1, yo,1) is randomly sam-
pled from uniform distributions as xo,1 ∼ U (−40m, 40m) and
yo,1 ∼ U (−40m, 40m). The standard deviation of the mea-
surement noise σε at each Monte-Carlo run is also randomly
sampled from uniform distribution as σε ∼ U (0.5◦, 2◦). The
time averaged and standard deviation (Std) of root-mean-
square errors (RMSEs) over 1000 Monte-Carlo runs obtained
from different algorithms for the aforementioned three cases
are summarised in Table I. From this table, it is clear the
proposed analytical algorithm that maximising J yields im-
proved localisation performance than numerically maximising
Ĵ , especially when target is moving. This coincides with the
results shown in the second row of Fig. 9. The Monte-Carlo
simulation results also reveal that minimising the relative range
between the robot and the target provides the possibility to
reduce the estimation uncertainty, which complies with the
geometric concept discussed before. To further demonstrate
that maximising Ĵ is indeed different from J , t-test between
these two approaches is performed with 5% significance level
and the result is h = 1 for all three cases. This reveals that op-
timising these two different performance metrics is statistically
different. Also note from Table I that both algorithms generate
comparable level of standard deviation over large number of
Monte-Carlo simulations. This can be attributed to the fact
we consider the physical turning rate limit in implementing
both algorithms, which means the generated optimal heading
command is unique and consistent.

C. Comparison with [42]

By minimising the trace of the error covariance at next
time step, an analytical optimal trajectory optimisation algo-
rithm for target localisation with bearing-only measurement is
proposed in [42], where the control input is robot’s position.
However, since physical constraints of the robot are not
rigorously considered in this work, the solution might become
infeasible. This subsection compares the proposed approach
with [42] to demonstrate the importance of considering turning
rate constraint.

The simulation results obtained by these two different algo-
rithms for two sample runs of case 3 are depicted in Fig. 10, in
which each row corresponds to one sample run. It is clear from
the first column of Fig. 10 that analytical solution proposed
in [42] finds multiple candidate optimal robot trajectories.
Numerically picking one of them inevitably generates zigzag
form motion trajectory, thus resulting in large heading angle
change. This can be noted from the blue peaks of robot turning
rate in the third column of Fig. 10. As a comparison, by
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(e) Determinant of FIM of case 2
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(f) Determinant of FIM of case 3
Fig. 9. Simulation results obtained from the proposed algorithm and [14] for three different target motions. The first column corresponds to stationary target;
the second column refers to non-manoeuvring target; and the third column is for constant-manoeuvring target.
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Fig. 10. Simulation results obtained from the proposed algorithm and [42] for constant-manoeuvring target with each row corresponding to one sample run.
The difference between these two rows is resulted from the multiple solution problem of [42].
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TABLE II
RMSE COMPARISONS OVER1000 MONTE-CARLO RUNS.

Metric Case 1 Case 2 Case 3

Compared approach [42] Mean 1.5031m 1.5472m 2.1336m
Std 0.7319m 0.8011m 1.0338m

Proposed approach Mean 1.5027m 1.5408m 2.0562m
Std 0.4059m 0.5466m 0.6412m

considering the physical turning rate constraint, the proposed
algorithm only generates one unique feasible optimal solution.
When the candidate optimal heading angles generated by
Theorem 1 locate outside the maximum permissible movement
region, the final optimal solution is obtained by using the
maximum turning rate, as shown in Theorem 2. This fact can
be clearly observed from the zoomed-in figure in the third
column of Fig. 10. Also, it follows from the second column
of Fig. 10 that the determinant of FIM depends on robot’s
trajectory and one-step minimisation of the trace of the error
covariance does not always ensure higher value of |F | than
maximising the proposed geometric cost function J .

To further evaluate the performance of these two different
algorithms under various conditions, Monte-Carlo simulations
with same random initialisations, shown in previous subsec-
tion, are conducted. The time average and standard deviation
(Std) of RMSE for cases 1-3 over 1000 Monte-Carlo runs are
summarised in Table II. Similar to previous subsection, t-test
is performed with 5% significance level to check the statistical
difference and the result is h = 0 for all three cases. It was
shown in [1] that the trace of error covariance matrix or the
inverse of FIM, known as A-optimality criterion, captures the
geometric system dependencies. Therefore, it is expected that
maximising the proposed cost function or minimising the trace
of error covariance will generate comparable performance
under same conditions. This can be clearly observed from
Table II and confirmed by the t-test results. However, it is clear
from Table II that the standard deviation of RMSE generated
by algorithm [42] is larger than the proposed algorithm. The
reason is that algorithm [42] might provide multiple solutions
and will numerically pick up one solution from the solution
set, which means that algorithm [42] might generate totally
different trajectories with the same initial conditions, as we
can note from the first column of Fig. 10. As a comparison, the
proposed algorithm generates a unique and consistent solution
with the consideration of physical constraints. Therefore, the
advantage of the proposed approach, compared to [42] is clear:
the algorithm developed considers the turning rate limit in
trajectory optimisation. Therefore, the proposed algorithm is
more practical and promising for real applications.

VI. CONCLUSIONS

The problem of analytical trajectory optimisation for tar-
get localisation with bearing-only measurement is studied in
this paper. System observability is analysed in the relative
domain by using geometric conditions. This provides better
understanding of how observability influences the estima-
tion performance. By leveraging the geometric performance

measure derived as the cost function, the optimal observer
heading command is derived analytically and the maximum
permissible turning rate is also considered in the proposed
approach. Extensive numerical simulations with comparisons
are performed to validate the analytical finds.
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