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ABSTRACT: Here, we report a facile and easily scalable
hydrothermal synthetic strategy to synthesize Ni−V layered
double hydroxide (NiV LDH) nanosheets toward high-energy
and high-power-density supercapacitor applications. NiV LDH
nanosheets with varying Ni-to-V ratios were prepared. Three-
dimensional curved nanosheets of Ni0.80V0.20 LDH showed
better electrochemical performance compared to other
synthesized NiV LDHs. The electrode coated with
Ni0.80V0.20 LDH nanosheets in a three-electrode cell configuration showed excellent pseudocapacitive behavior, having a
high specific capacity of 711 C g−1 (1581 F g−1) at a current density of 1 A g−1 in 2 M KOH. The material showed an excellent
rate capability and retained the high specific capacity of 549 C g−1 (1220 F g−1) at a current density of 10 A g−1 and low internal
resistances. Owing to its superior performance, Ni0.80V0.20 LDH nanosheets were used as positive electrode and commercial
activated carbon was used as negative electrode for constructing a hybrid supercapacitor (HSC) device, having a working
voltage of 1.5 V. The HSC device exhibited a high specific capacitance of 98 F g−1 at a current density of 1 A g−1. The HSC
device showed a higher energy density of 30.6 Wh kg−1 at a power density of 0.78 kW kg−1 and maintained a high value of 24
Wh kg−1 when the power density was increased to 11.1 kW kg−1. The performance of NiV LDHs nanosheets indicates their
great potential as low-cost electrode material for future energy-storage devices.

1. INTRODUCTION

Due to global economy development, the continuous upsurge
in demand of energy gives rise to the excessive consumption of
fossil fuels, which eventually has resulted in lessening of fossil
fuels, environmental pollution, and global warming.1,2 To
safeguard the environment from adverse impacts and meet the
future energy demand, electricity generated through clean
route has gained increased attention, which is one of the major
thrust areas in renewable energy.3,4 Supercapacitors, also
known as ultracapacitors, are one of the safe and attractive
energy-storage devices over batteries and conventional
capacitors due to their higher power density than batteries
and higher energy density compared to conventional dielectric
capacitors.5 On the basis of charge-storage mechanisms,
supercapacitors are classified as electric double-layer capacitors
(EDLCs) and pseudocapacitors.6 In EDLCs, charge is stored
due to electrostatic attraction between electrolyte ions at the
electrode−electrolyte interface; however, charge-storage mech-
anism follows a Faradic reaction, i.e., charge storage takes place
at the surface of active electrode material in pseudocapacitors.7

Pseudocapacitors, due to their higher energy density and
specific capacitance compared to EDLCs, are more attractive

candidates for future energy-storage devices.8 Transition-metal
oxides like Co3O4,

9 MnO2,
10 RuO2,

11 TiO2,
12 NiO,13 Fe2O3,

14

and Nb2O5;
15 conducting polymers,16,17 for example, polyani-

line, polypyrrole, and polythiophene; and Ni(OH)2 nano-
particles18,19 have been used in pseudocapacitors because of
their superior energy density, fast redox behavior, high specific
capacitance, and environment-friendly nature. Ternary metal
oxides having formula AXB3−XO4, where A and B are transition
metals with spinel structures, like NiCo2O4,

20,21 CoFe2O4,
22

NiMn2O4,
23 MnCo2O4,

24 CuCo2O4,
25 etc., have shown

outstanding supercapacitive performance and excellent stability
during cycling compared to their respective metal oxides
mainly due to their superior electronic conductivity.26

Recently, layered double hydroxide (LDHs) materials have
gained popularity as favorable electrode materials for super-
capacitors owing to their high capacitance, distinctive
structural properties having high surface area, fast redox
reaction during charging and discharging, flexible ion

Received: December 24, 2018
Accepted: February 4, 2019
Published: February 14, 2019

Article

http://pubs.acs.org/journal/acsodfCite This: ACS Omega 2019, 4, 3257−3267

© 2019 American Chemical Society 3257 DOI: 10.1021/acsomega.8b03618
ACS Omega 2019, 4, 3257−3267

This is an open access article published under an ACS AuthorChoice License, which permits
copying and redistribution of the article or any adaptations for non-commercial purposes.

http://pubs.acs.org/journal/acsodf
http://pubs.acs.org/action/showCitFormats?doi=10.1021/acsomega.8b03618
http://dx.doi.org/10.1021/acsomega.8b03618
http://pubs.acs.org/page/policy/authorchoice/index.html
http://pubs.acs.org/page/policy/authorchoice_termsofuse.html


exchangeability, environment-friendly nature, and cost-effective
scalability.27 LDHs are originally inorganic claylike materials
having two-dimensional morphology with highly tunable
hydrotalcite-like layered structure.28 LDHs contain positively
charged metal hydroxide layers and weakly bonded charge-
balancing anions and intercalating water molecules.29 These
a r e r e p r e s e n t e d b y t h e g e n e r a l f o r m u l a
[M(1−X)

2+M(X)
3+(OH)2]

X+[An−]X/n·mH2O, where M2+ and
M3+ are the divalent (i.e., Mg2+, Ni2+, Co2+, Zn2+) and trivalent
(i.e., Fe3+, Al3+, Mn3+) metal cations and An− are the anions,
i.e., OH−, SO4

2−, CO3
2−, NO3

−, Cl−, or F−. In LDHs, water
molecules are hosted in between the cationic layers as neutral
molecule and hydrogen-bonded with cationic layers.30,31 The
value of X in LDHs crystal structure generally varies from 0.25
to 0.33, providing the composition tunability of LDHs.32

It is worth noting from the literature that LDH materials
have been considered as supercapacitive materials due to their
resemblance of charge-storing mechanism and high power
density. Brousse and co-workers showed that their charge−
discharge and cyclic voltammetry (CV) profiles are different
from those of pure pseudocapacitive materials, i.e., MnO2,
RuO2.

33−35 Thus, LDH materials should be considered as
battery-like materials. NiCo LDHs have attracted significant
attention because of good performance as an electrode material
(790 C g−1 at 2 A g−1).36 Chen and co-authors reported a
specific capacitance of 2498 F g−1 at 1 A g−1 current density for
nitrogen-doped mesoporous carbon/NiCo LDHs composite.37

Wang et al. achieved a specific capacitance of 2762 F g−1 (1243
C g−1) at a current density of 1 A g−1.38 CoAl LDH/graphene
composites have achieved a specific capacitance of 479 F g−1 at
a current density of 1 A g−1.39 Bai et al. reported carbon
nanotube/NiAl LDH composites and showed a specific
capacitance of 694 F g−1 at a current density of 1 A g−1.40

Atomically thin NiFe LDH three-dimensional (3D) micro-
spheres showed a specific capacitance of 1061 F g−1 at a
current density of 1 A g−1.41 Lv et al. reported glucose-
interclated NiMn LDH materials and showed a specific
capacitance of 1464 F g−1 at a current density of 0.5 A g−1,
whereas pristine NiMn LDH showed only 852 F g−1.42 MgAl
LDH/reduced graphene oxide nanocomposite showed a
specific capacitance of 1334 F g−1 at a current density of 1 A
g−1.43 To the best of our knowledge, there is no study available
over hydrothermally tailored nickel−vanadium layered double
hydroxide (NiV LDHs) materials for supercapcitor application.
Herein, we report the syntheis of NiV LDH nanosheets

having various compositions based on the amount of Ni and V
(Ni0.67V0.33 LDH, Ni0.75V0.25 LDH, and Ni0.80V0.20 LDH) using
a simple, low-cost, and potentially scalable hydrothermal
technique. The as-prepared NiV LDH nanosheets were coated
on Ni foam and used as supercapacitor electrode. Scanning
electron microscopy (SEM), transmission electron microscopy
(TEM), X-ray diffraction (XRD), Brunauer−Emmett−Teller
(BET), and X-ray photoelectron spectroscopy (XPS) techni-
ques were used for their morphological, structural, and physical
characterizations, while electrochemical characterization tech-
niques such as CV, galvanostatic charge−discharge (GCD),
and electrochemical impedance spectroscopy (EIS) were used
to study the electrochemical properties of NiV LDH
nanosheets. Electrochemical characterizations of NiV LDH
nanosheets display outstanding pseudocapacitance perform-
ance for Ni0.80V0.20 LDH. A high specific capacity of 711 C g−1

(1581 F g−1) was achieved at a current density of 1 A g−1,
which remained 549 C g−1 (1220 F g−1) at a higher current

density of 10 A g−1. Moreover, a hybrid supercapacitor (HSC)
device with a working potential of 1.5 V was fabricated using
Ni0.80V0.20 LDH as positive electrode and commercial activated
carbon as negative electrode. The HSC device exhibited a
higher energy density of 30.6 Wh kg−1 at a power density of
0.78 kW kg−1, which remained at 24 Wh kg−1 at a high power
density of 11.1 kW kg−1. This work suggests that the Ni0.80V0.20
LDH material can be an excellent candidate for improving the
energy density of the HSC device.

2. RESULTS AND DISCUSSION
2.1. Structural and Morphological Characterization.

Figure 1 shows typical XRD patterns of Ni0.67V0.33 LDH,

Ni0.75V0.25 LDH, and Ni0.80V0.20 LDH. The XRD spectra of
Ni0.67V0.33 LDH, Ni0.75V0.25 LDH, and Ni0.80V0.20 LDH
matched well with the standard nickel−vanadium carbonate
hydroxide hydrate (JCPDS 052-1627). The characteristic
peaks of the as-synthesized NiV LDHs at 11.25, 22.78,
33.54, 34.47, 38.78, 45.55, 46.79, 60.03, and 61.34° with
respect to their corresponding (hkl) planes of (003), (006),
(101), (012), (015), (018), (0012), (110), and (113) indicate
the LDH formation during the hydrothermal synthesis
(Scheme 1). It can be noted that there was no peak
appearance for impurities found in the recorded spectra.
Crystallinity of Ni0.80V0.20 LDH was higher compared to
Ni0.67V0.33 LDH and Ni0.75V0.25 LDH (Table S1).44 In addition,
the interlayer distances for the d003 plane calculated form
Bragg’s formula were found to be approximately 0.77, 0.78, and
0.79 nm in Ni0.67V0.33 LDH, Ni0.75V0.25 LDH, and Ni0.80V0.20
LDH, respectively.45 Literature studies suggest that α phase of
LDHs have larger interlayer spacing than β phase of LDHs
(0.46 nm), which was used to store more neutral water
molecules and carbonate anions at the interlayers.46 Thus,
theoretically, α phase LDHs can be more electrochemically
active than β phase LDHs.47,48 The XRD spectra for pure Ni
hydroxide and V-based hydroxide are given in Figure S1, which
shows that the XRD spectra of the former matched nicely with
pure hexagonal α-Ni(OH)2 (JCPDS file 38-0715). However,
different characteristics are observed for the latter due to its
low crystallinity. Surface morphologies of Ni0.67V0.33 LDH,
Ni0.75V0.25 LDH, and Ni0.80V0.20 LDH were investigated by field
emission SEM (FESEM) images. Figure 2a−f shows three-
dimensional morphology composed of curved nanosheets for
all NiV LDHs.41 The morphologies of Ni hydroxide and V-
based hydroxides are shown in Figure S2. To understand the

Figure 1. XRD patterns of Ni0.67V0.33 LDH, Ni0.75V0.25 LDH, and
Ni0.80V0.20 LDH.
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Scheme 1. Synthesis of NiV LDH and Fabrication of HSC

Figure 2. ((a, d), (b, e), and (c, f)) Low- and high-magnification FESEM images of Ni0.67V0.33 LDH, Ni0.75V0.25 LDH, and Ni0.80V0.20 LDH,
respectively.

Figure 3. (a−c) TEM images of Ni0.67V0.33 LDH, Ni0.75V0.25 LDH, and Ni0.80V0.20 LDH, respectively, and the insets show their corresponding
SAED patterns, as well as the HRTEM image of Ni0.80V0.20 LDH. (d) TEM image of Ni0.80V0.20 LDH. (e−g) Elemental mapping for Ni, V, and O
corresponding to the area selected in (d).
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layer stacking and its respective morphology of the as-
synthesized NiV LDHs, TEM studies were carried out. Figure
3a−c shows the TEM images of Ni0.67V0.33 LDH, Ni0.75V0.25
LDH, and Ni0.80V0.20 LDH, respectively. The TEM images
confirm that the nanosheets’ thickness decreases as the amount
of Ni content is increased in the NiV LDHs, and it is observed
that 1−2 nm thick nanosheets were formed for Ni0.80V0.20
LDH. Selected area electron diffraction (SAED) patterns
(inset of Figure 3a−c) confirm the polycrystalline behavior of
all NiV LDH materials. Figures 3d−g and S3 confirm the
uniform distribution of Ni, V, and O in the nanosheets of
Ni0.80V0.20 LDH. The inset of Figure 3c shows the high-
resolution TEM (HRTEM) image of Ni0.80V0.20 LDH, having
the d-spacing of crystal lattice fringes to be 0.23 nm, which is
assigned to the (015) plane of NiV LDH. This was consistent
with the XRD result.49 Figure 4a shows the nitrogen
adsorption−desorption isotherm for Ni0.80V0.20 LDH. Nitrogen
adsorption−desorption isotherms for Ni0.67V0.33 LDH and
Ni0.75V0.25 LDH are presented in Figure S4. The shape of the
nitrogen adsorption−desorption curve was found to be type III
isotherm with H1 hysteresis loop for all NiV LDH materials,
confirming their mesoporous nature. The BET surface areas
was found to be 111, 144, and 266 m2 g−1 for Ni0.67V0.33 LDH,
Ni0.75V0.25 LDH, and Ni0.80V0.20 LDH materials, respectively.
The Barrett−Joyner−Halenda (BJH) pore size distribution
curve in the inset of Figure 4a shows that pores are in the size
range of 1−10 nm for all LDH materials, along with pore
volumes of 0.140, 0.155, and 0.336 cm3 g−1 for Ni0.67V0.33
LDH, Ni0.75V0.25 LDH, and Ni0.80V0.20 LDH, respectively. Most
of the pores lie in the mesoporous range of 2−50 nm, thereby
enhancing the electrochemical performance of the NiV
LDHs.50 The BET surface area is higher for Ni0.80V0.20 LDH
due to its more exfoliated morphology compared to Ni0.67V0.33
LDH and Ni0.75V0.25 LDH, as supported by FESEM studies.
Fourier transform infrared (FTIR) analysis was carried out to

know the bonding between the interlayers of LDHs. The FTIR
spectra of Ni0.67V0.33 LDH, Ni0.75V0.25 LDH, and Ni0.80V0.20
LDH are shown in Figure 4b. The broad and strong absorption
bands in Figure 4b at 3434 and 1629 cm−1 indicate the
presence of stretching and bending modes of hydroxyl groups,
arising from interlayer water molecules and metal-hydroxyl
groups.51 Interlayer anion CO3

2− was confirmed through the
presence of a vibration band at ∼1373 cm−1. The band at 2924
cm−1 was assigned to the CO3

2−−H2O stretching vibration,
confirming the presence of hydrogen-bonded water molecules
with carbonate anions in the interlayers of NiV LDHs.52 A
shoulder band at ∼1028 cm−1 confirms the vibration band of
hydroxyl groups, which are mainly corresponding to metal
cations (Ni2+ and V3+). Bands at lower wavenumbers (less than
800 cm−1) were noted due to the stretching vibrations of
metal−oxygen bonds present in NiV LDHs.53,54 Figure 4c−f
shows the XPS survey scan and the corresponding core-level
spectra of Ni0.80V0.20 LDH. In this figure, two peaks at ∼855.6
and ∼873.3 eV correspond to Ni 2p3/2 and Ni 2p1/2,
respectively, and are found along with two satellite peaks at
∼861.6 and ∼879.5 eV, indicating the native characteristic of
Ni2+ spectra.55,56 The difference between the binding energies
of the Ni 2p3/2 and Ni 2p1/2 peaks was found to be ∼17.7
eV.57,58 Figure 4e shows the O 1s and V 2p spectra, which
confirm the O 1s core-level peak at ∼530.9 eV. The V 2p
spectrum also confirms the presence of V 2p1/2 and V 2p3/2
peaks due to the spinning p orbital splitting. The difference
between the binding energies of V 2p1/2 and V 2p3/2 is found
to be ∼7.5 eV.59 V 2p3/2 spectrum in Figure 4f can be
deconvoluted into three peaks, corresponding to V (III)
(∼515.7 eV), V (IV) (∼516.5 eV), and V (V) (∼517.2 eV).
This confirms that V is partially oxidized to +4 and +5
oxidation states during hydrothermal treatment.60,61 A similar
behavior was evidenced from the XPS images of Ni0.67V0.33
LDH and Ni0.75V0.25 LDH (Figures S5 and S6).

Figure 4. (a) Nitrogen adsorption−desorption isotherm of Ni0.80V0.20 LDH; the inset of (a) shows the BJH pore size distribution of Ni0.80V0.20
LDH. (b) FTIR curves for Ni0.67V0.33 LDH, Ni0.75V0.25 LDH, and Ni0.80V0.20 LDH;. (c) XPS survey scan for various elements for Ni0.80V0.20 LDH.
(d) Ni 2p core-level spectra for Ni0.80V0.20 LDH. (e) O 1s and V 2p core-level spectra for Ni0.80V0.20 LDH. (f) Zoom on V 2p core-level spectra for
Ni0.80V0.20 LDH.
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3. ELECTROCHEMICAL CHARACTERIZATION

3.1. Three-Electrode Testing. A three-electrode set up
was used to investigate the electrochemical performance of as-
synthesized Ni0.67V0.33 LDH, Ni0.75V0.25 LDH, and Ni0.80V0.20
LDH. CV studies were carried out for the potential window of
0−0.5 V in the presence of 2 M KOH aqueous electrolyte.
Figure 5a shows the comparison of CV curves at 5 mV s−1 scan
rate for Ni0.67V0.33 LDH, Ni0.75V0.25 LDH, and Ni0.80V0.20 LDH,
respectively. From the CV curves in Figure 5a, it can be
inferred that composition of NiV LDHs influences redox peak
position as the peak shifts toward positive voltage while varying
the compositions of Ni and V from 2:1 to 4:1. In addition, CV
curves show a couple of distinct redox peaks for all NiV LDHs.
At the same time, it was proved from galvanostatic discharge
curves in Figure 5b that appearance of nonlinear shape for all
of the NiV LDHs exemplifies the quasi-reversible electron
transfer between electrode material and electrolyte ions, which
further confirms that the measured specific capacitances arise
through redox mechanism.37,62 Evidently, the integral area

under the CV curve of Ni0.80V0.20 LDH was comparatively
larger than that for Ni0.67V0.33 LDH and Ni0.75V0.25 LDH,
revealing its better supercapacitive performance. Supporting
the previous claim, the longer discharge time for Ni0.80V0.20
LDH compared to Ni0.67V0.33 LDH and Ni0.75V0.25 LDH also
infers its better supercapacitive performance. In addition, the
characteristics of the CV curve for Ni0.80V0.20 LDH did not
change much even after the scan rate was increased from 2 to
100 mV s−1 (Figure 6a). The CV curve suggests that redox
current increases as the scan rate increases. Also, as the scan
rate is increased, the anodic and cathodic peaks of LDH shift
further toward positive and negative sides, respectively,
indicating the reversible Faradic process. The redox peaks in
the CV curves were due to the surface redox reaction of Ni2+

and NiOOH, present in NiV LDH.63,64

+ ↔ + +− −Ni(OH) OH NiOOH H O e2 2

GCD curves for Ni0.80V0.20 LDH show that the shape of the
charge−discharge curve was retained as the current density was

Figure 5. (a) Comparison of CV curves at 5 mV s−1 scan rate for Ni0.67V0.33 LDH, Ni0.75V0.25 LDH, and Ni0.80V0.20 LDH. (b) Comparison of GCD
curves at 1 A g−1 current density for Ni0.67V0.33 LDH, Ni0.75V0.25 LDH, and Ni0.80V0.20 LDH.

Figure 6. (a) CV curves for Ni0.80V0.20 LDH at various scan rates. (b) GCD curves for Ni0.80V0.20 LDH at various current densities. (c) EIS curve
for Ni0.80V0.20 LDH. (d) Peak current verses scan rate for Ni0.80V0.20 LDH. (e) Specific capacity retention and Coulombic efficiency with number of
cycles for Ni0.80V0.20 LDH. (f) Specific capacity variation with current density for Ni0.67V0.33 LDH, Ni0.75V0.25 LDH, and Ni0.80V0.20 LDH.
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changed from 1 to 10 A g−1, confirming the high rate capability
of NiV LDH material. The shape of the GCD curves also
confirms the battery-like behavior of NiV LDH material.65 The
maximum specific capacities of Ni0.80V0.20 LDH were found to
be 711 C g−1 (1581 F g−1), 622 C g−1 (1382 F g−1), 580 C g−1

(1289 F g−1), 559 C g−1 (1242 F g−1), and 549 C g−1 (1220 F
g−1) at current densities of 1, 2, 4, 8, and 10 A g−1, respectively.
Figure 6f shows the comparison of specific capacity retention
and current density for Ni0.67V0.33 LDH, Ni0.75V0.25 LDH, and
Ni0.80V0.20 LDH using specific capacitance data for three
different electrodes for each NiV LDH material. The rate
capability of Ni0.80V0.20 LDH (∼77%), as calculated from the
GCD curves, was higher compared to Ni0.67V0.33 LDH (∼58%)
and Ni0.75V0.25 LDH (∼35.5%) as the current density was
increased from 1 to 10 A g−1. The CV and GCD curves for
Ni0.67V0.33 LDH and Ni0.75V0.25 LDH are shown in Figure S7.
Figures S8 and S9 show the electrochemical characterization
for pure Ni hydroxide and V hydroxides, respectively,
suggesting that Ni hydroxide has better redox behavior than
V-based hydroxides. Figure S10 presents the comparison of CV
curves for Ni foam, V-based hydroxide, Ni hydroxide, and
Ni0.80V0.20 LDH at a scan rate of 5 mV s−1. The CV curves
show that contribution of Ni foam is negligible and area under
the curve is maximum for Ni0.80V0.20 LDH. Table S3 exhibits
comparative specific capacitances for the electrodes with active
materials of pure Ni hydroxide, V hydroxide, Ni0.67V0.33 LDH,
Ni0.75V0.25 LDH, and Ni0.80V0.20 LDH at different current
densities, showing that Ni0.80V0.20 LDHs have higher specific
capacitance. The average specific capacities (average of three
electrodes) of pure Ni hydroxide, V hydroxide, Ni0.67V0.33
LDH, Ni0.75V0.25 LDH, and Ni0.80V0.20 LDH were found to
be 197 C g−1 (467 F g−1), 60 C g−1 (144 F g−1), 377 C g−1

(839 F g−1), 473 C g−1 (1104 F g−1), and 603 C g−1 (1366 F
g−1), respectively, at a current density of 1 A g−1. The EIS
images of Ni0.67V0.33 LDH, Ni0.75V0.25 LDH, and Ni0.80V0.20
LDH shown in Figure S11 reveal the higher specific
capacitance for Ni0.80V0.20 LDH compared to Ni0.67V0.33 LDH

and Ni0.75V0.25 LDH. It further infers that experimental data
points well corroborated with the fitted data points (Figure
6c). The overall resistance, i.e., combining electrolyte (Rs) and
contact resistances, and resistance due to electroactive
material, was found to be 4.54 kΩ for Ni0.80V0.20 LDH. In
addition, the charge-transfer resistance (Rct) for Ni0.80V0.20
LDH was found to be 883 mΩ (Table S2). Hence, it can be
inferred that the better supercapacitive performance of
Ni0.80V0.20 LDH was due to its more exfoliated morphology
across the layers, which helps in channelizing more electrolyte
ions interaction with the electrode active surface and thus
results in more redox reaction.66 The linear relationship
between the peak current for anodic and cathodic peaks vs
square root of scan rate, as shown in Figure 6d, confirms bulk
intercalation of electrolyte ions into the surface of Ni0.80V0.20
LDH, which facilitates bulk redox reaction.26 Figure 6e
presents the specific capacitance retention of Ni0.80V0.20 LDH
with the number of cycles at a current density of 1 A g−1. It is
noted from the cycling curves that the specific capacitance
decreased up to 40% during the first 1000 cycles and then
remained stable up to the next 10 000 cycles. So, the initial
capacitance decay is attributed to structure collapse, phase
transformation, and reduction in active surface area.67

Columbic efficiency was found to be 100% up to 10 000 cycles.
3.2. Hybrid Supercapacitor Testing. To further assess

the electrochemical performance of NiV LDH material, an
HSC device was fabricated using Ni0.80V0.20 LDH as positive
electrode and commercial activated carbon as negative
electrode. Ni0.80V0.20 LDH was chosen due to its better
supercapacitive performance in a three-electrode cell test,
compared to other counterparts. Scheme 1 shows the
fabrication of HSC device. Electrochemical results for
commercial activated carbon are shown in Figure S12. Based
on the GCD curves of activated carbon (Figure S12b) and
Ni0.80V0.20 LDH (Figure 6b) at a current density of 1 A g−1, the
values of average specific capacitance were found to be 205 F
g−1 (C−) and 1366 F g−1 (C+). The potential windows ΔV+

Figure 7. (a) CV curves for HSC at various scan rates. (b) GCD curves for HSC at various current densities. (c) EIS curve for HSC. (d) Specific
capacitance variation with current density for HSC. (e) Ragone plot for HSC. (f) Retention of specific capacitance with number of cycles at current
density of 1 A g−1 for HSC.
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and ΔV− are 0.45 and −1 V, respectively. According to eq 1,
the optimum ratio of m− and m+ was found to be 2.78. The CV
curves of Ni0.80V0.20 LDH and commercial activated carbon
were measured using a three-electrode system at a scan rate of
50 mV s−1 in 2 M KOH electrolyte and are plotted in Figure
S13, which suggests the optimized operating potential window
for HSC to be 1.5 V. Figure 7a presents the CV curves of
Ni0.80V0.20 LDH/activated carbon HSC at different scan rates
from 5 to 100 mV s−1. The shape of the CV curves is almost
rectangular with small redox peaks present in the anodic and
cathodic parts of the curves, suggesting the pseudocapacitive
behavior of HSC. There was no obvious distortion in the shape
of CV curve even at different scan rates from 5 to 100 mV s−1,
thus confirming the higher rate capability and fast charge−
discharge properties of HSC.50 The GCD curves for Ni0.80V0.20
LDH/activated carbon HSC are shown in Figure 7b. The
shape of the GCD curves is triangular with small deviation in
linear shape, confirming the pseudocapacitive charge storage of
Ni0.80V0.20 LDH/activated carbon HSC. The shape of the GCD
curves remained same even at higher current densities of 1−10
A g−1, suggesting the higher degree of electrochemical
reversibility of redox process and good Columbic effi-
ciency.37,51 The maximum specific capacitance values for the
constructed HSC device were found to be 98, 83, 82, 79, and
77 F g−1 at current densities of 1, 2, 4, 8, and 10 A g−1,
respectively. The variation of average specific capacitance of six
such devices with current densities is shown in Figure 7d,
confirming ∼79% retention in average specific capacitance at a
higher current density of 10 A g−1. Ni0.80V0.20 LDH/activated
carbon HSC device in Figure 7b shows a potential drop of 12
mV at 1 A g−1 current density, which was increased to 440 mV
at 10 A g−1 current density. The EIS curve of Ni0.80V0.20 LDH/
activated carbon HSC device in Figure 7c shows a similar
shape to NiV LDH. The Ragone plot for Ni0.80V0.20 LDH/
activated carbon HSC device is shown in Figure 7e. The device
showed an excellent energy density of 30.6 Wh kg−1 at a power
density of 0.78 kW kg−1, which remained at 24 Wh kg−1 at a
higher power density of 11.1 kW kg−1. A comparison of energy
density and power density with other reported materials is
reported in Table 1. The cycling stability of Ni0.80V0.20 LDH/
activated carbon HSC device is shown in Figure 7f.51,68−71 The
cycling study shows a rapid decrease in the specific capacitance
for the first few ten cycles and then remained constant almost

up to 2000 cycles. The specific capacitance was found to be
∼42% of the initial value after 2000 cycles. Moreover,
Ni0.80V0.20 LDH/activated carbon HSC solid-state device
with LiCl/poly(vinyl alcohol) gel electrolyte was successfully
used to power a red light-emitting diode of 1.8 V for almost 2
min after charging with 8 mA.

4. CONCLUSIONS
In summary, we have successfully demonstrated a facile and
cost-effective hydrothermal method for the synthesis of NiV
LDH having controlled composition. Electrochemical studies
showed that Ni0.80V0.20 LDH shows better supercapacitive
behavior than Ni0.67V0.33 LDH and Ni0.75V0.25 LDH due to its
3D exfoliated morphology. Ni0.80V0.20 LDH showed a
maximum specific capacity of 711 C g−1 (1581 F g−1) at a
current density of 1 A g−1, which remained at 549 C g−1 (1220
F g−1) at a higher current density of 10 A g−1. The HSC device
based on Ni0.80V0.20 LDH/activated carbon showed a
maximum specific capacitance of 98 F g−1 at a current density
of 1 A g−1 with retention of ∼79% (77 F g−1) at a current
density of 10 A g−1. The energy density was found to be 30.6
Wh kg−1 at a power density of 0.78 kW kg−1, which remained
at 24 Wh kg−1 at a high power density of 11.1 kW kg−1. These
results suggest that NiV LDH nanostructures have significant
potential as low-cost electrode material for the energy-storage
devices.

5. EXPERIMENTAL SECTION
5.1. Materials. Nickel chloride (NiCl2) (98%), vanadium

chloride (VCl3) (97%), potassium hydroxide (KOH), and
poly(vinylidene fluoride) (PVDF, average MW = 534 000)
were purchased from Sigma-Aldrich, India. Urea (99%),
ethanol, N-methyl-2-pyrrolidone (NMP), and potassium
hydroxide pellets were purchased from Merck, India.
Conducting carbon black (Super P), activated carbon, and
Ni foam were supplied from MTI Corporation.

5.2. Synthesis of NiV LDH Nanosheets. NiV LDH
nanosheets were prepared through a one-step hydrothermal
method. In a typical synthesis, various mole ratios of Ni/V
(2:1, 3:1, and 4:1 for the synthesis of Ni0.67V0.33 LDH,
Ni0.75V0.25 LDH, and Ni0.80V0.20 LDH, respectively) were taken
in such a way that the amount of total ion concentration (Ni2+

and V3+) remains 3.2 mmol. In brief, different ratios of NiCl2

Table 1. Comparison of Energy Density and Power Density with Other Materials

material electrolyte energy density (Wh kg−1) power density (W kg−1) ref

Ni(OH)2/graphene 6 M KOH 36.7 ∼100 74
∼10.0 7980

carbon/CoO nanoparticles 2 M KOH 25.0 350 75
17.4 7000

NiCo2S4/bio-carbon 2 M KOH 27.7 ∼264 76
16.1 5000

NiCo2O4@NiCo2S4/Ni foam 3 M KOH 35.6 1500 77
14.4 7500

NiO−CuO mesoporous nanowires 3 M KOH 33.8 400 78
18.4 8000

Co3O4/N-doped carbon hollow spheres 2 M KOH 34.5 753 79
29.0 3807

CoS hollow structures 2 M KOH 39.9 756 80
∼20.0 10 000

Ni0.80V0.20 LDH 2 M KOH 30.6 780 this work
24.6 11 100
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and VCl3 and 0.3 g of urea were mixed in 40 mL of deionized
(DI) water and stirred for 30 min to obtain a homogeneous
solution. Then, the solution mixture was transferred to a
Teflon-lined stainless steel autoclave and the reaction was
performed at 120 °C for 12 h. After cooling down the
autoclave to room temperature, the obtained powder was
washed with DI water and ethanol. NiV LDH nanosheets were
collected after drying the resultant powder at 60 °C in a
vacuum oven overnight.72 For comparison, pure Ni and V
hydroxides were also prepared following the similar procedure.
5.3. Material Characterization. The surface morpholo-

gies of the as-synthesized LDHs were observed by field
emission scanning electron microscopy (FESEM, Quanta 200,
Zeiss, Germany). Transmission electron microscopy (FEI
Titan G2 60-300 TEM (HRTEM)) was further used to
observe the morphology, size, and composition of the as-
synthesized LDHs. The crystal structures of various LDH
materials were analyzed through X-ray diffraction (XRD)
patterns obtained from an X-ray diffractometer (X’Pert Pro,
PANanalytical, the Netherlands). Cu Kα (λ = 1.5406 Å) was
used to obtain the XRD patterns. Fourier transform infrared
(FTIR, PerkinElmer) spectroscopy using KBr pellet method
was used to study the presence of functional groups in NiV
LDHs. X-ray photoelectron spectroscopy (XPS) measurements
were carried out using a PHI 5000 Versa Probe II, FEI Inc.
spectrometer. XPS binding energy values for all of the samples
were referenced to C 1s hydrocarbon peak at 284.6 eV. The
Brunauer−Emmett−Teller (BET) surface area and Barrett−
Joyner−Halenda (BJH) pore size distribution of the as-
synthesized LDHs were measured through the N2 adsorption−
desorption method (Quantachrome Instruments).
5.4. Electrochemical Characterization. NiV LDH,

PVDF, and super P were mixed in a weight ratio of 75:15:10
in NMP solvent to make a homogeneous slurry. Ni foam (1 cm
× 3 cm) pieces were coated on a 1 cm × 1 cm area using this
slurry and dried at 80 °C for 12 h to make the working
electrodes. Pure Ni and pure V hydroxide electrodes were also
prepared following the similar procedure. The material loading
was kept in the range of 2−3 mg for all electrodes. A three-
electrode electrochemical set up was used to study the
supercapacitive performance of NiV LDH material. The
three-electrode assembly consists of NiV LDH-coated Ni
foam as the working electrode, Ag/AgCl/KCl, Pt rod as the
reference electrode and counter electrode, and 2 M KOH as
the electrolyte, respectively.
HSC devices were fabricated using NiV LDH materials and

activated carbon as positive and negative electrodes,
respectively. To maintain the charge on positive (q+) and
negative (q−) electrodes, i.e., q+ ≈ q−, the ratio of positive (m+)
to negative (m−) electrodes was maintained according to the
following equation

=
× Δ
× Δ

−

+

+ +

− −

m
m

C V
C V (1)

where C+ and C− are the specific capacitances of positive and
negative electrodes, respectively, and ΔV+ and ΔV− are the
potential windows for the GCD process of positive and
negative electrodes, respectively.26 The optimum ratio was
found to be 2.78 based on the specific capacitance values for
positive and negative electrodes at 1 A g−1. The electro-
chemical performance of NiV LDH and HSC was studied
using potentiostat/galvanostat (Autolab 302N, Metrohm, the

Netherlands). Galvanostatic charge−discharge (GCD), cyclic
voltammetry (CV), and electrochemical impedance spectros-
copy (EIS) studies were conducted at the open-circuit voltage
over a frequency range of 0.01 Hz−100 kHz. The specific
capacitance (Cs) of active material was calculated through
GCD curves using the following equations73
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where I is the current (A), m is the mass of active material (g)
in the three-electrode system, M is the total mass of active
materials at positive and negative electrodes in HSC, Δt is the
discharging time (s), and ΔV is the applied potential window
(V). The energy density (E, Wh kg−1) and power density (P,
W kg−1) of HSC were calculated using the following equations
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