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Resilient Remediation: Addressing Extreme Weather and Climate Change, Creating

Community Value

ABSTRACT

Recent devastating hurricanes and wildfires demonstrated that extreme weather and climate

change can jeopardize contaminated land remediation and harm public health and the environment.

Since early 2016, the Sustainable Remediation Forum (SURF) has led research and organized

knowledge exchanges to examine (1) the impacts of climate change and extreme weather events

on hazardous waste sites, and (2) how we can mitigate these impacts and create value for

communities.

The SURF team found that climate change and extreme weather events can undermine the

effectiveness of the approved site remediation, and can also affect contaminant toxicity, exposure,

organism sensitivity, fate and transport, long-term operations, management, and stewardship of

remediation sites. Further, failure to consider social vulnerability to climate change could

compromise remediation and adaptation strategies.

SURF’s recommendations for resilient remediation build on resources and drivers from state,

national, and international sources, and marry the practices of sustainable remediation and climate

change adaptation. They outline both general principles and site-specific protocols and provide

global examples of mitigation and adaptation strategies. Opportunities for synergy

include vulnerability assessments that benefit and build on established hazardous waste

management law, policy, and practices. SURF’s recommendations can guide owners and project

managers in developing a site resiliency strategy. Resilient remediation can also help expedite

cleanup and redevelopment, decrease public health risks, and create jobs, parks, wetlands, and

resilient energy sources. Resilient remediation and redevelopment can also help achieve

international goals for sustainable land management, climate action, clean energy and sustainable

cities.
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Introduction

After Hurricane Harvey made landfall in 2017, 13 Superfund sites in Houston, Texas were flooded.

At one site, the EPA measured dioxin at levels over 2,300 times the level requiring cleanup actions.

Five weeks after Hurricane Maria hit in 2017, one in four Puerto Ricans lacked access to clean

water. During Hurricane Florence, EPA and scientists from industry, universities, and civil

organizations warned of the potential release of toxic chemicals from North Carolina and South

Carolina Superfund sites. Post landfall, Florence led to extensive flooding that “…swept away part

of a retaining wall holding back a pond of coal ash – which contains mercury, arsenic and other

toxic substances – and have also overrun several lagoons of pig waste in North Carolina.” (Pierre-

Louis et al., 2018 p1).

In the U.S., nearly two million people—the majority in low income communities—live within one

mile of one of 327 Superfund sites in areas prone to flooding or vulnerable to sea-level rise caused

by climate change (Dearen et al., 2017). These 327 sites are part of a much larger universe of

U.S. sites that need to be assessed. There are more than 650,000 contaminated commercial and

industrial sites and more than 81,000 acres of brownfields at 21,000 sites in 232 cities across the

U.S. (Targ, 2017).

Globally, the number of contaminated sites is overwhelming and growing as a result of increasing

urbanization especially in emerging economies. Estimates for Europe alone (excluding many

diffuse land contamination problems) range from 2.5 to 4.5 million sites. In China, about 20

percent of farmland is contaminated by trace metals, pesticides, and hydrocarbons such as

petrochemicals (Bardos et al., 2011). Over one million contaminated sites may require cleanup
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(Hou and Li, 2017), and nearly 60% of groundwater is not safe for drinking (Hou et al., 2018).

And public health threats can exist even on contaminated land which has been remediated.

Research Findings

Decades of research, including the recent 2017 U.S. Climate Science Special Report, (Wuebbles

et al., 2017) document the global reality of more powerful and frequent storms, heavy rainfall,

heat waves, wildfires, and more frequent and longer droughts. Rising sea levels, declining

snowpack, long-term stress on water availability, dynamic groundwater levels, acidification, and

rising temperatures represent further threats to ecosystems and communities.

At hazardous sites, climate change and extreme weather events can undermine the effectiveness

of the original site remediation design and can also impact contaminant toxicity, exposure,

organism sensitivity, fate and transport, and long-term operations, management, and stewardship

of remediation sites.

Higher temperature and lower pH, can increase the availability of contaminants in the

environment. For example, the speciation and availability of metals changes with environmental

pH (Millero et al., 2009), and the fate and transport of persistent organic pollutants changes with

temperature and precipitation (Nadal et al., 2015).

Increasing temperatures can also change the water cycle influencing the local water budget.

Warmer temperatures can result in altered precipitation, increased evaporation rates of surface

water, increased rates of water uptake by vegetation, and reduced rates of water recharge to soils

and groundwater reservoirs. (Famiglietti et al., 2014).

Increased temperatures and changes to the water cycle may also result in more frequent and severe

weather events, such as the occurrence of he 100-year storm event, as well as, contribute to more
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frequent nuisance flooding due to the prevalence of supersaturated soils. Both events are

exacerbated by sea level rise resulting in shoreline encroachment and increased nuisance flooding

during high tide.

Additional vulnerabilities of water resources include, but are not limited to, changes to water supplies,

subsidence, increased amounts of water pollution, erosion, and related risks to water and wastewater

infrastructure and operations, degradation of watersheds, and alteration of aquatic ecosystems and loss of

habitat, creating multiple impacts in coastal areas (LARWQCB, 2015). These hydrological changes are

happening at the same time as groundwater extraction is increasing as heat also increases demand

for various water needs, including drinking, irrigation, and industrial uses (Famiglietti et al., 2014).

A recent study showed a potential impact of such climatic shifts on residual contaminants in soil

and groundwater (Libera et al., 2018). The study found that the hydrological shifts influence

contaminant concentrations in a complex manner, since increased infiltration, for example, could

cause conflicting effects of both diluting and mobilizing contaminants. The study showed that, in

general, higher-infiltration events could mobilize vadose-zone residual contaminants, raising

contaminant concentrations in groundwater for a prolonged period.

Similarly, the sensitivity of organisms and ecosystems can be affected by environmental change.

Higher temperatures increase the metabolic rate of ectotherms (organisms which derive their heat

and, therefore, maintain their metabolic activity from the environment around them), which can

increase the rate at which they absorb or process contaminants (Noyes et al., 2009). Behavioral

changes in response to environmental change may also alter exposure and sensitivity as organisms

react to new stresses in ways that ameliorate or exacerbate other stresses.

The use of the chemicals that become environmental contaminants is also likely to change. For

example, warming temperatures leads to expansion of agricultural pests, resulting in increased use
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of pesticides. Furthermore, more rain may require repeated application of pesticides and

fertilizers. Both scenarios can result in agricultural land contaminated by intense application of

chemicals as well as contributions to polluted runoff that impact nearby and downgradient

waterbodies.

Climate change also poses challenges for selecting remediation techniques, including the

feasibility of passive remediation technologies (O'Connell and Hou, 2015). Passive remediation

carries an increased burden of proof, since contaminants stay longer in the subsurface — compared

to conventional soil removal options — while degradation/treatment processes occur. Thus, the

efficacy of remediation efforts may be undermined if attention is not paid to climate change

impacts throughout the remediation process. This can be thought of from two different

perspectives: 1) how climatic change will affect remediation, and 2) how remediation techniques

will be affected by climate change. Examples of each are presented in Exhibits 1 and 2.
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Exhibit 1 Implications of climate change for remediation

Climate Impact Secondary Effect Relevant Remediation Effect

Altered Precipitation
Pattern

Wetter: Flooding,
storms, more run-off

Mobilization of contaminants (e.g., from
vadose zone to groundwater) higher
contaminant concentration/export,
overpowering significant degradation rate in
groundwater zone could remove natural
protective barriers or cause infill subsidence in
low-lying areas

Dilution lower contaminant
concentration/export
Damage to capping systems

Drier: Drought Oxidation of soils
Increased volatility
Less dilution higher contaminant
concentration/export
Reduced mobilization higher contaminant
persistence (higher contaminant
concentration/export)
Insufficient water for remediation;
Overuse of groundwater

Possible enhanced natural attenuation,
expedited contaminant removal

Altered Salinity Altered degradation rates (physical, microbial)

Sea Level Rise Erosion Damage to site integrity
Site Inundation Increased mobilization of contaminants,

possible dilution, or compromised site with
mixing or loss of contaminated materials,
increased bioavailability of contaminants

Mobilization of
contaminants

Clean sediments transported on top of
contaminated sediments

Elevations increase Changing footprint of flood plains, river
boundaries, and coastal shoreline
encroachment impact on regulations (e.g.,
dredging, cleanup levels, negotiation of water
levels, monitoring)

Extreme Weather Scour (wind/wave
action; surface water
flow velocity)

Damage to site integrity, capping systems
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Flooding Possible dilution (lower contaminant
concentration/export), or compromised site
with mixing or loss of contaminated materials,
damage to capping systems

Extreme Heat Increased volatilityMobilization of
contaminants from site through soil and air
Changes in use of site by wildlife
Melting permafrostMobilization of
contaminants from site through water, soil and
air

Freezing conditions Damage to capping systems and in situ
stabilization systems

Extreme Weather: Fire Increased use of fire
retardants

Spread of contaminants

Damage to site
infrastructure

Loss of function of remediation systems

Decreasing pH Increased availability, mobilization, toxicity
Increased sensitivity of species due to pH
stress
Altered transformation rates

Increasing Temperature Altered
transformation or
degradation

Increased or decreased toxicity

Decreased dissolved
oxygen/anoxic
conditions

Altered transformation, decreased species
resilience

Increased species
heat stress and
associated
conditions

Increased sensitivity to contaminants

Human Impact &
responses

Vulnerable
communities
commonly
comprised of low
socio-economic and
minority populations

Cardio-pulmonary illness
Food, water and vector borne diseases
Loss of homes, drinking water and livelihoods
mental health consequences and stress

Increased use of
some chemicals
Conflicting
solutions, changing
land use demands,
shifting populations

Additional toxicity, additional remediation
sites.
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Exhibit 2 Impact of climate change on remediation techniques*
Remediation
Approach

Technique Climate Change Impact

Soil Treatment Bioremediation Degradation activity may change,
unexpected intermediaries

Landfarming/landspreading Inundation of site by sea level rise or
flooding

Groundwater
Treatment

Pump and treat Altered rate of recharge and extraction

Removal of
Contaminated
Materials

Extreme weather, flooding, or sea level rise
will complicate containment
Groundwater level decline may support
expedited removal

Engineered In
Situ Solutions

Soil washing Insufficient water would limit feasibility

Soil extraction Warmer temperatures may help
Natural attenuation Models do not include climate change which

may alter resident time of contaminants in
soil attenuation rates may vary

Incineration Emissions allowances may change due to
temperature or greenhouse gases

Capping systems Climate change may degrade the cap (e.g.,
because of extreme precipitation events)
much higher contaminant
concentration/export and increased
mobilization of contaminants in vadose zone

*See also US EPA fact sheets developed for Contaminated Sediments, Groundwater
Remediation Systems and Landfills and other Containment remediation

Societal Impacts, Legal Implications

The National Climate Assessment (NCA) provides an in-depth assessment of climate change

impacts on the lives of Americans; the Fourth NCA noted: that “extreme weather events have cost

the United States $1.1 trillion since 1980.” (Hibbard et al 2017). And The U.S. Government

Accounting office warned that climate change “could increase flooding costs in coastal

communities by $23 billion per year by midcentury” (Plumer, 2017).
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Communities adjacent to contaminated sites are often comprised of socio-economically depressed

and environmental justice (sensitive) populations that usually have little influence over the

decision-making process, even when they are most impacted. North Carolina residents evacuated

during Hurricane Florence shared the fate of New Orleans residents post Katrina … “the poor are

always vulnerable- to the perceived values of their residences in good times and the ravages of

Mother Nature when disaster hits.” (Fausset, 2018 p1).

Parties liable under the U.S. Comprehensive Environmental Response, Compensation and

Liability Act (CERCLA) can face additional liability if global warming-related weather events

exacerbate problems on contaminated properties. There is no minimum quantity of a hazardous

substance needed to establish liability, and a generator or transporter is liable whether or not the

hazardous substances they generated or transported are the primary contaminants of concern at the

site. All of the parties (current and past owners and operators, generators, and transporters) are

also liable if contaminants migrate from the original disposal area.

CERCLA contains an “Act of God” defense, defining an “Act of God” as “an unanticipated

grave natural disaster or other natural phenomena of an exceptional, inevitable, and irresistible

character, the effects of which could not have been prevented or avoided by the exercise of due

care or foresight” (42 USC § 9601(1) (1980)).

CERCLA also specified three steps necessary to succeed with the Act of God defense. First, the

defendant will have to prove that the Act of God was the “sole cause” of the hazardous substances

release (42 U.S.C. § 9607(b) (1) (1980)). Second, the defendant will have to prove the event was

“unanticipated” (42 U.S.C. § 9601(1) (1980)). Third, the defendant will have to prove that the

effects of the event “could not have been prevented or avoided by the exercise of due care or

foresight” Id. The failure to date of the Act of God defense is illustrated by the results in the cases
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in which it has been unsuccessfully attempted (see, e.g., U.S. v. Stringfellow, 661 F.Supp. 1053

(C.D. CA 1987); U.S. v. W.R. Grace & Co.-Conn., 280 F.Supp.2d 1135 (D. MT 2002); U.S. v.

Alcan Aluminum Corp., 892 F. Supp. 648 (M.D. Pa. 1995), aff'd, 96 F.3d 1434 (3d Cir. 1996); U.S.

v. Barrier Industries, Inc., 991 F. Supp. 678 (S.D. N.Y. 1998); U.S. v. M/V Santa Clara I, 887 F.

Supp. 825, 843 (D.S.C. 1995)).

As part of a U.S. government-wide effort, the U.S. Environmental Protection Agency (EPA) began

analyzing how climate change could impact the nation’s most hazardous sites and developing best

practices for the most vulnerable remediation techniques

(https://www.epa.gov/superfund/superfund-climate-change-adaptation). EPA also reported on

additional community benefits of climate change adaptation at “Brownfields” and recommended

land use, zoning, and building code changes and/or development incentives that could increase

resiliency (https://www.epa.gov/brownfields/climate-adaptation-and-brownfields).

Overarching Resilient Remediation Principles

SURF recommendations to advance climate change resilience within contaminated lands

rehabilitation build on these EPA initiatives, along with well-established climate change

adaptation tenets, marrying them with sustainable remediation principles and practices. SURF’s

Sustainable Remediation Framework calls for “a systematic, process-based, iterative, holistic

approach beginning with the site end use in mind (Holland et al 2011). This holistic approach can

incorporate planning for uncertainty, reducing the rate and extent of local, regional, and global

climate change impacts, and address social impacts, equity concerns, and opportunities. Setting

criteria and indicators for measuring progress provide for more transparency and can gain

stakeholder support.
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While the toxicological literature includes a fair amount of understanding regarding how the

parameters related to climate change (temperature, pH, salinity, dilution) affect contaminants,

there is little application of these parameters in combination (as will often be the case with climate

change). As a result, it will be necessary to develop approaches to remediation that can be adapted

as new information is gathered in the treatment process.

To be most effective, adaptation should be an iterative and flexible process that involves

periodically re-evaluating the remediation system’s vulnerability, monitoring the measures already

taken, and incorporating newly identified options or information into the adaptation strategy. This

involves consideration of short- and long-term availability of resources, such as energy and clean

water, and ecosystem services as well as land uses of site or the surrounding area that may be

critical aspects of the remediation system (EPA, 2015). As part of this iterative and flexible process

site managers can use scenario planning that details future potential conditions in a manner that

supports decision-making under conditions of uncertainty but does not predict future change that

has an associated likelihood of occurrence (Glick, et al., 2014).

Considering the role of remediation in greenhouse gases (GHGs) emissions is important. Energy-

intensive remedies are often a significant source of GHGs. “At one remediation project in New

Jersey, it was estimated that the difference between two proposed remedies could be as high as 2

percent of the annual greenhouse gas emissions for the entire state (Ellisat al 2009. Further, a

meta-analysis indicated that the cleanup of 1 kg of contaminants in groundwater may result in up

to 130 tonnes of CO2 emissions, with a geometric mean of 1.3 tonnes of CO2 emissions (Hou and

Al-Tabbaa, 2014). As part of the sustainable remediation assessment, these GHGs determinations
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can support decisions that reduce the manifestations of climate change on the site. Best

management practices can be found in the ASTM Greener Cleanups and Consideration

Sustainability in Remediation Projects Guidance.

Social vulnerability is an ability to cope with and adapt to any external stress placed on livelihoods

and well-being (Adger et al., 1999). Adaptation strategies need to identify stakeholder concerns

and address risk perception barriers. These strategies can include localized investigation to find

answers to the questions about whom and what are vulnerable, to what are they vulnerable, how

vulnerable are they, what the causes of their vulnerability are, and what responses can lessen their

vulnerability (NOAA Community Social Vulnerability Indicators (CSVIs) (Coburn et al., 1994).

For example, the local community, municipal planners, and office of emergency management

(OEM) representatives can inform site mangers on areas in and within the vicinity of the site that

experience frequent nuisance flooding and are vulnerable to severe weather events.

Strategies for resilient rehabilitation of contaminated sites should:

 Involve the community throughout the cleanup and redevelopment process

 Build partnerships by collaborating with community advocacy groups, academia, and/or

professional organizations for outreach activities,

 Employ transdisciplinary processes that can help various stakeholders with different

objectives and risk perceptions to reach consensus

 Consider innovative measures such as social contracts that can link climate change and

equity targets and measure progress in meeting community needs
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 Maximize opportunities to increase the well-being of vulnerable populations and creating

value (direct and indirect) including public health benefits and jobs (part of the cleanup,

long-term monitoring program, or through reuse of sites as parks or renewable energy

deployment

 Coordinate policies across sectors of transport, land use, health, and energy

Site Specific Protocols

Aligned with these overarching principles are recommended site-specific protocols that begin with

the EPA and ASTM guidance and recent Washington State guidance, Adaptation Strategies for

Resilient Remedies (Washington State Department of Ecology [DOE], 2017). The WA DOE

guidance is intended to: 1) help understand site-specific vulnerabilities of cleanup sites to climate

change impacts, and 2) provide recommendations to increase resilience of remedies at each phase

of cleanup. The guidance focuses on four climate change impacts: sea-level rise, flooding,

landslides, and wildfires. The WA DOE guidance also includes examples of vulnerability analyses,

a list of references, and links to different technologies, adaptation plans, decision tools, case

studies, and sustainable remediation resources.

Exhibit 3 depicts EPA’s climate vulnerability and adaptation model which evaluates the

sensitivity, exposure, and adaptive capacity of the site, contaminant, or remediation technique to

climate change.
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Exhibit 3 EPA climate vulnerability and adaptation model (EPA, 2013).

An evaluation of a system’s vulnerability to climate change involves identifying climate change

hazards of concern (such as treatment or containment systems) in light of potential climate/weather

and considering factors that may exacerbate the system’s exposure and sensitivity, such as a long

operating period.

For riverine and coastal sites, a vulnerability assessment may also encompass hydraulic and

hydrological (H&H modeling) or hydrodynamic modeling, respectively, to evaluate the role of

precipitation projections, storm surge, surface water flow velocity, sea level rise, wave action,

and/or wind action under existing and future storm events (e.g., 100-year storm event). The results

of the modeling aid in remedial design, such as armor stone specifications for cap enhancement,

and periodic climate change vulnerability monitoring, such as continuous monitoring of water

levels, wave action, and flow velocity.

To support these vulnerability assessments, practitioners should use best available guidance (for

an example see Exhibit 4 ASTM International Guidance for Climate Resiliency) and confer

with local/regional experts and affected communities. Dynamic geospatial data are available

from several sources, including federal, state, regional, or local sources such as watershed and

forestry management authorities, non-profit groups, and academia
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Exhibit 4 ASTM International Guidance for Climate Resiliency

The site vulnerability assessment process should involve local government and residents:

Stakeholder engagement strategies can include focus group interviews, local workshops, and/or or

public comment periods. This process can also increase local understanding of the risk of climate

change and provide new perspectives on remediation options (Harclerode et al., 2015).

The vulnerability assessment should identify the need for adaptation strategies and long-term

vulnerability monitoring protocols as part of operation and maintenance (O&M).

Adaptation strategies can also leverage existing regulatory tools such as the NCP long-term

effectiveness and permanence (40 CFR 300.430(e)(9)(iii)(C)) and the Superfund Five-Year

Reviews (Thun, 2017).

ASTM International Guidance
Climate Resiliency Planning and Strategy (E3032-15e1)

Climate Resiliency in Water Resources (ASTM WK55606)

• addresses extreme weather,

• reflects general risks for certain regions of the country with
its matrix approach

• Discusses impacts to ecosystems, global repercussions and
vulnerable communities.

• Looks at effective scale of adaptation (site, town, and
watershed) and recommends setting priorities – e.g.,
drought and heat events, extreme runoff and flooding,
storm damage to infrastructure, sea level rise.

• Offers a schematic flow chart with feedback loop for
Selection, Monitoring, Measurement and Review of
Resiliency Projects

• Generates reports describing the costs and benefits of risk
reduction strategies for decision-makers and stakeholders
(ASTM International, Inc., 2015)
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Five-Year Reviews should include the following elements (Thun, 2017):

– Evaluate remedy implementation/performance to determine protectiveness.

– Determine if the remedy functioning as intended. QUESTION C: Has any other

information come to light that could call into questioned the protectiveness of the remedy?

– Address site changes or vulnerabilities that may be related to climate change impacts not

apparent during remedy selection, remedy implementation or O&M (e.g., sea level rise,

changes in precipitation, increasing risk of floods, changes in temperature, increasing

intensity of hurricanes and increasing wildfires, melting permafrost in northern regions,

etc.).

– Determine if the assumptions, data, and cleanup levels still valid and, if there are issues,

update O&M or remedy decision.

Adaptation Strategies Case Studies

Adaptation strategies can be categorized as resistance, resilience, and response. Resistance

strategies maintain current conditions. They can include physical security, such as hardening

covers, caps, and barriers to prevent flooding or erosion. Resistance strategies eventually will

succumb to change or need to be increased at continuing cost.

Resilience strategies allow sites to experience the change but still manage contaminant mitigation

successfully. For example, to improve protectiveness and long-term effectiveness against more

frequent severe storms, damaged portions of an intertidal cap at the Port Gamble Bay and Mill Site

in Kitsap County, Washington were repaired and replaced with armor of rocks and other natural

materials almost twice the original size. Washington DOE 2017 p 129)
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Resilience strategies also include back-up power and remote and communication including

automated data acquisition. An example developed by the Lawrence Berkeley Laboratory for the

Department of Energy capitalizes on 21st century technology through a new streamlined real-time

data processing and analysis and early warning system for the Savannah River Superfund Site F-

Area with a 50 percent cost saving (Exhibit 5, Wainwright, 2016).

Exhibit 5 Water quality monitoring Savannah River Site F-Area: In situ sensors, wireless

network, cloud computing

Resilience strategies can also include the use of recycled water, including treated groundwater, to

respond to drought conditions or salt water intrusion. Another example of resilience comes from

Huangshi in south central China, where intensive mining and smelting have caused significant air

and water pollution and the contamination of nearby agricultural lands. Strip mining resulted in

over 100 man-made bluffs, which are susceptible to landslides. One of the Rockefeller Foundation

100 resilient cities, Huangshi helped stabilize the land at these abandoned sites to prevent flooding
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and protect resources and human health. These efforts included controlling water pollution

through sewage collection, water treatment, and increasing vegetation with ecological restoration

projects.

Response strategies range from pre- and post-site inspection to removal of some or all of the

contamination. For example, the New Jersey State Department of Environmental Protection

developed response strategy guidance targeted to site owners and persons responsible for

conducting and overseeing cleanup (i.e., “Licensed Site Remediation Professionals”). After

storms, all sites should be re-evaluated to determine if any immediate environmental concerns

needing action arose and whether site conditions changed requiring reassessment (New Jersey

Department of Environmental Protection, 2016).

Responsible parties and regulators employed another effective response strategy at the Purity Oil

Sales Superfund Site in Fresno, California. Over a period of 5 years, drought and agricultural

pumping caused the groundwater table to drop more than 16 feet. The parties agreed to remove

contamination from the newly-exposed vadose zone through soil vapor extraction (SVE). SVE

expedited the cleanup and prevented further migration of contaminants to groundwater, removing

contamination orders of magnitude greater than more traditional pump-and-treat systems (EPA,

2016).

Another example of the impact of extreme weather and heavy precipitation, and the vital

importance of adequate response strategies comes from Japan. Radionuclides from the Tokyo

Electric Power Company Fukushima Daiichi nuclear power plant accident were released into the

atmosphere and then deposited on land and sea surfaces. The government-commissioned

decontamination work at the plant from 2011 to 2017, which generated approximately 20 million

cubic meters of removed contaminated soil. Most of the soil was stored in approximately 1,000
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temporary storage facilities. Transportation of the soil to interim storage facilities started in 2015,

and about 80 percent of the contaminated soil is still in the temporary storage sites.

Heavy rainfall in September in 2015 caused torrential rains and flooding in the Kanto and Tohoku

region in Japan, and the outflow of 448 of these temporary containers on agricultural land along

two rivers. Emergency responders collected almost all the containers (five were left in the places

inaccessible to the public and repaired). As follow-up, the Japan Ministry of the Environment

developed guidelines, “Implementation of Appropriate Initial Response” for dealing with

challenges associated with the storage of contaminated soil. For example, when disasters are

predicted, storage areas need to be checked in advance, and parties need to implement an

emergency response plan to minimize the damage of contaminant releases.

Post Florence, “In collaboration with state partners and once conditions allow” the EPA committed

to deploy Superfund Reconnaissance Teams to conduct visual inspections of affected site,

document site conditions, potential migration of contaminants, and restoration of utilities (if

applicable), and complete the field survey check-list and photographs (EPA, 2018, P. 1[XX]).

In addition to the Washington and New Jersey initiatives highlighted above, Massachusetts and

California have also established noteworthy programs as described below. Massachusetts enacted

legislation (Green Communities Act and Global Warming Solutions Act) that provides rigorous

clean energy goals designed to grow its clean energy economy, increase its energy independence,

and reduce the pollution that contributes to climate change. The Massachusetts governor also

issued an executive order establishing an Integrated Climate Change Strategy. The Massachusetts

Department of Environmental Protection (MassDEP) promotes the use of “greener cleanup”

principles and practices for the assessment and remediation of oil and hazardous material disposal

sites through regulation and guidance, and is evaluating regulated sites and their vulnerability to
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climate change impacts through a statewide Geographic Information System (Potter, 2017).

California’s Climate Adaptation Strategy can be leveraged to address climate resilience of

contaminated lands, such as: 1) de-carbonized (40 percent GHG reduction from 1990 levels by

2030), decentralized energy (50 percent Renewables Portfolio Standard by 2030), and 2)

protection of the most vulnerable communities through the Sustainable Communities and Climate

Protection Act linking greenhouse gas reduction efforts to transportation and land planning

requirements. California Climate Adaptation Strategy. Retrieved from

http://climatechange.ca.gov/.

The State Water Resources Control Board Resolution #2017-0012: Comprehensive Response to

Climate Change provides support for drinking water systems and disadvantaged communities, and

improve ecosystem resilience in response to the effects of climate change (California State Water

Resources Control Board, 2017). Further, the Los Angeles Regional Water Quality Control Board

Framework for Climate Change Adaptation and Mitigation (2015) looks at the impact of effects

of climate change on contaminated sites and underground storage takes and how these effects can

be taken into account in the Regional Water Board’s actions.

Finally, the California Department of Toxic Substances Control is developing climate change

guidance specific to hazardous waste treatment, storage and disposal facilities, and the cleanup

of contaminated sites.

Climate Resilient Redevelopment: Drivers and Case Studies

Over the last decade U.S. and European Union (EU) initiatives have sought to advance remediation

by assessing the benefits of rehabilitated land in strengthening community, economic, and

ecosystem resilience.
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An EPA 5-year study of Brownfields found that residential property values increased from 5.1–

12.8 percent after a nearby Brownfield was assessed or cleaned up (EPA SURF 2015). The study

also determined that Brownfields cleanup can increase overall property values within a one-mile

radius by $0.5 to $1.5 million. In 2016, EPA also published guidance regarding Brownfield

Revitalization in Climate-Vulnerable Areas including ordinance regulation and development

incentives (EPA 2016).

Working for the City of San Francisco, (Hou et al. (2018) developed a method based on life cycle

assessment of GHG emissions to compare Brownfields to Greenfield land development. The team

examined three categories: 1) primary impact (associated with physical state of brownfield sites

and greenfield sites), 2) secondary impact (associated with remediation activities at brownfield

sites), and 3) tertiary impact (associated with post-remediation usage of the brownfield sites and

avoided usage of greenfield land). Overall, the results show that the City’s Brownfield land

redevelopment could lead to a net GHG reduction of 51.9 million metric tons (Mt) CO2 eq. over a

70-year period, or 0.74 Mt CO2 yr−1, the equivalent of 14% of San Francisco's GHG emissions in

2010.

The RE-Powering America’s Land Initiative, where EPA supports renewable energy development

on potentially contaminated land, landfills, and mine sites, tracks the economic and environmental

benefits associated with completed sites. Common benefits reported from developers/public

agencies include revenues from land leases and taxes, electricity cost savings, job creation, and

reduced greenhouse gas emissions.

A recently completed renewable energy project in the San Francisco Bay Area, the Marin Clean

Energy (MCE) Solar One partnership, exemplifies the RE-Power America benefits.
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MCE Solar One repurposed 60 acres of a remediated Brownfields site leased by Chevron to MCE

Solar One for $1 per year. At 10.5 megawatts, MCE Solar One will eliminate 3,234 metric tons

of carbon dioxide in one year, equivalent to taking more than 680 cars off of the road annually.

MCE Solar One provided community benefit by partnering with RichmondBUILD, a public-

private partnership that focuses on training for skilled construction, hazardous waste removal, and

renewable energy jobs. All RichmondBUILD participants come from low-income households. In

addition, almost $2 million dollars was spent on project materials purchased or rented locally. The

project also includes an innovative procurement approach called “community choice energy,” in

which a public agency offers citizens and businesses an alternative to the utility for purchasing

their electricity. As a result of the MCE Solar One project, homes and businesses now benefit

from a more renewable electricity option that costs two to five percent less than the traditional Bay

Area utility rates. https://www.mcecleanenergy.org/news/press-releases/mce-solar-one-thinking-

globally-building-locally/

EU and UK Drivers and Case Studies

There is presently a trend across Europe for densification as a planning approach for sustainable

development to foster efficient use of resources, efficient transport systems, and a vibrant urban

life (e.g., Haaland & van den Bosch, 2015). Development often takes place on areas that are often

viewed as underutilized land (such as green space, marginal land) or through redevelopment on

previous industrial estates (derelict, brownfield sites). However, this approach has also been

challenged for its threat to urban green spaces (Haaland and van den Bosch, 2015) since together

with urban brownfields they potentially have an important role for offering climate change

adaptation solutions.
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This is strongly related to a much wider European debate about “Nature Based Solutions” (NBS),

their importance in urban areas and how they might be managed and, if necessary, regenerated.

The concept of NBS was introduced towards the end of the 2000s by the World Bank (MacKinnon

et al., 2008) and International Union for Conservation of Nature (IUCN, 2009) to highlight the

importance of biodiversity conservation for climate change mitigation and adaptation. NBS were

proposed by IUCN for inclusion in the climate change negotiations in Paris “as a way to mitigate

and adapt to climate change, secure water, food and energy supplies, reduce poverty and drive

economic growth.” (IUCN, 2014). The ICUN proposed principles for NBS included cost

efficiency, harnessing both public and private funding, ease of communication, and replicability

of solutions (van Ham, 2014). Thus, NBS puts an explicit emphasis on linking biodiversity

conservation with goals for sustainable and climate resilient development (Eggermont et al. 2015),

and represent innovative, implementable ‘solutions’.

The Holistic Management of Brownfield Regeneration (HOMBRE) was a major EU project

completed in 2014 (www.zerobrownfields.eu), examining the enhanced transition of brownfields

through to becoming once more a functional part of the land cycle. One of its areas of interest was

in “soft,” i.e., non-built reuse of brownfields, the services this might provide, and how those might

be appreciated and valued. One of the outputs of this work is a simple Excel design aid to help

developers and others involved in Brownfields map the range of opportunities, the resulting value,

and the initial default design considerations by identifying specific opportunities for synergies

between different “services” such as risk management, water improvement, and renewable energy.
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Case Study: Brownfields Redevelopment as Wetlands Park and Community Management

Port Sunlight Riverside Park. Port Sunlight River Park (PSRP) is a 28-hectare park near

Birkenhead in Wirral, Merseyside, U.K., which opened in 2014. It is located on a former landfill

capped and covered by the waste management company (Biffa Waste Management) and leachate

and gas management systems were put in place. The site was passed over to the Land Trust on a

99 year lease and, after planning and design, was created as a riverside park in 2013. The waste

management company remains responsible for ongoing management and monitoring of the

capping, landfill gas, and leachate treatment.

The Land Trust secured a £3.4 million investment for a transformation project encompassing park

creation, site of special protection and ongoing management, and established a partnership with

the charity, Autism Together, which manages the park.

A retrospective qualitative sustainability assessment was performed by the University of Brighton

in 2016. The aim of the sustainability assessment was to understand the economic, environmental,

and social benefits/disbenefits of transforming the former landfill into a public open space,

managed long term. (Li et al., 2017), using SURF-UK qualitative sustainability assessment

guidance (www.claire.co.uk/surfuk) enhanced with the HOMBRE idea of conceptual site models

of sustainability (Bardos et al., 2016). Climate change-related considerations were a significant

part of the sustainability assessment, including emissions of carbon to atmosphere versus

sequestration; and economic factors such as the project’s future resilience. Unsurprisingly, the re-

use of the capped landfill as a public park showed substantive sustainability improvement.

Anticipate Adsorb Reshape (“A2R”), a United Nations Climate Resilience Initiative to support

sustainable, resilient cleanup and reuse of hazardous sites. A2R focuses on the capacity to reshape
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development pathways by: 1) transforming economies to reduce risks and root causes of

vulnerabilities, and 2) supporting the sound management of physical infrastructure and ecosystems

to foster climate resilience. Complementing A2R is the World Bank vision of contaminated sites

as “engines for economic development, sources of sustainable energy, food security &

efficiency—all while assuring public health and environmental protection” (World Bank, 2009 p1

).

Conclusions

SURF’s recommendations can guide owners and project managers in developing a site resiliency

strategy. By following a systematic, holistic approach with the site end use in mind, and by

meeting priority social and economic needs, climate-resilient sustainable remediation and

redevelopment can reduce public health risks and create long-term value for communities.

SURF plans to partner with the private and public sector to support pilot studies and conduct

national and international capacity-building.
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