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Abstract

This thesis considers the neural network learning control of a variable-geometry
automotive active suspension system which combines most of the benefits of active
suspension systems with low energy consumption.

Firstly, neural networks are applied to the control of various simplified automotive
-active suspensions, in order to understand how a neural network controller can be
integrated with a physical dynamic system model. In each case considered, the
controlled system has a defined objective and the minimisation of a cost function. The
neural network is set up in a learning structure, such that it systematically improves the
system performance via repeated trials and modifications of parameters. The learning
efficiency is demonstrated by the given system performance in agreement with prior
results for both linear and non-linear systems.  The above simulation results are
generated by MATLAB and the Neural Network Toolbox.

Secondly, a half-car model, having one axle and an actuator on each side, is developed
via the computer language, AUTOSIM.  Each actuator varies the ratio of the
spring/damper unit length change to wheel displacement in order to control each wheel
rate. The neural network controller is joined with the half-car model and learns to
reduce the defined cost function containing a weighted sum of the squares of the body
height change, body roll and actuator displacements. The performances of the neuro-
controlled system are compared with those of passive and proportional-plus-
differential controlled systems under various conditions. These involve various levels
of lateral force inputs and vehicle body ;Jveight changes.

Finally, energy éonsumption of the variable-geometry system, with either the neuro-
control or proportional-plus-differential control, is analysed using an actuator model
via the computer simulation package, SIMULINK. The simulation results are
compared with those of other actively-controlled suspension systems taken from the
literature. :



1

Acknowledgements

I would like to express my sincere gratitude to my supervisor, Professor Robin S.
Sharp, for his invaluable guidance during the course of my research and to my parents
for their help and encouragement.

I am also pleased to acknowledge the Committee of Vice-Chancellors and Principais
for their generous support through an Overseas Research Student award.

I am indebted to the following for their valuable comments and technical guidance: Mr.
A. John Robertson, Dr. Bill J. Batty, Professor Ichiro Kageyama, Mr. Duncan Allison
and Mr. Panos Kyratsis.

My warmest thanks are due to my English teacher, Mr. Rodney Eyre, for reading the |
draft of each chapter and making a number of helpful suggestions.



List of Contents
List of Figures ....cccceeeees cerersasnsessesessstetsantasessssssasensaransssenas ceveneeeee VII
List of Tables ......cccecueeneee .. XIII
Notation .....eeeeeeccceneecccnnes cesssesssesnscssnteessessasssasnscassassansscsssansassassase N V.
1 Introduction ............... cesssssttnntsascssnsesnane cesssesssressereesessassassesssennse 1
2 Automotive Active Suspension Systems - a Review .....cccceeeeee 4
2.1  Passive and ACLIVE SYSLEIMS c...eevueiemiererierinierreeereeenrecnsrersneeesseesossessaseens 4
2.1.1 Passive SUSPENSIONS ...coerrerirrerirrerirretrrerteeesieeeaeeseeneenteseneesaees 4
2.1.2  Active SUSPENSIONS ..ccceiiiiiiieiiiiiiiriiiienieeeetrecirieaedeeire s sesseneas 5
2.1.3  Semi-Active SUSPENSIONS.......c.coueereeuenrererriercreeveneeneereeseeseessenaens 7
2.1.4  Slow-Active SUSPENSIONS......cccuiiriiriierierenreiiiecireeiieeesneeecveeennne 7
2.1.5 Active Roll-Control SYSIEMS ......ccceveeviesreresrerreeeresresseesessessensens 8
2.2~ Potential Benefits and Problems ........c.cccooieiiiiiiininiiiincniineece e 8
2.3  Low Energy Active Suspension SYStEIMS .......ccccevveermrenuersncensreoneneseneees 9
2.4 CONCIUSIONS ..oouviieiiiiiiieeteeeeecttee ettt eeteeserteeeeres e srreeeeaeeeeeennees 10
3 Learning Method .......ccccueeevunicisneesssnaccssannne ceesssstecsssannssaananas 21
3.1 Background ...t s 21
3.2  Learning AIZOrithms .....ccccooceeiiiriiiiiiiiiiienieeceec et e e ee e e 22
3.2.1 Learning AUtOMAala .....cooeuereeiueierueieiteriireeenneeeeieneeeeesnnneeeseannns 22
3.2.2 SOFLIC (Self-Organising Fuzzy Logic Intelligent Control) ........ 23
3.2.3 Neural NetWorks .....ccoocceiviieiiiiieeeiiiiiiciiiirceieeccesceeeeeeeeenes 24
3.2.4 NUTO-FUZZY w.eoromimiiniiiiii s 26
3.2.5 Genetic Algorithms .......cccccceeiiiiiiviinniiinniiiiiiniereeccceeeeee 26
3.3 Neural Networks for Control ...........cccocevvvuene... ettt enas 27
3.4

CONCIUSIONS eeeveeeeeieeeiieeeeeeteneeeeseenseesemsnseseessnassesnsasssnssrsessnssennseseennnes 28



4 Learning Control of Quarter-Car Suspension System .......... 40
4.1 Quarter-Car Model with Sinusoidal Road INput ceeeeecceceee, 40
4.2  Learning Process with Quadratic Cost Function .........ccccceceeivvecccncennen. 42
4.3 Simulation RESUILS ....cocceiiriiiiiiiiiiieicintiiectentcciccte et 44
4.4 CONCIUSIONS ..eeeeriiiiiritiieeeeieiieetecrtteeeere e seeesareesaaessseee s e raneeseenseesansens 45
5 Neural Network Control of Quarter-Car Suspension

System .......ceeee. cesseressnsanasees cessresssnstsessannenes cesrtessssnsnissseenaessssnes 52
5.1 Quarter-Car Model with Random Noise Input ........cccoeueeciiiiiiiinninnene. 52
5.2  Learning Process with Non-Quadratic Cost Function .......ccccccceccruveneeee 54
5.3 Simulation Results ......ccccciiiiiiiniiiiiiniiicciinniininnneeee e 55
54 CONCIUSIONS .eiieiviiiiiiiitieierctterreteeteeeetesteeseeesntesteeseeesseesessessesaeesseesnsns 57
6 Neural Network Control of Non-Linear System ......cc.cceeeeee. 63
6.1 Non-Linear Single-Mass Vibration SyStem ........ccccceceerceeneennereeennenn. 63
6.2  Learning Process with Non—Linéar SYSIEM cereiiiiiiritcctecccenreeee 66
6.3 Simulation Results ....ccccuiiiiiiiiiiiiiiiiiierccetrceree et 68
6.4 CONCIUSIONS ..vveeiiiiiieieiaeittieneeeieeeeeeeeeeeseesesstee e eesssaesessseseesnnnesesseras 68
7 Modelling and Control of Variable Geometry Active

7.1
1.2
1.3
7.4
1.5

8.1
8.2
8.3

SuspenSion System 0000000000000000000000000000000000000000000000008000000000000000000 74

Quarter-Car Model ........oiiiiiiieie ettt 74
Development of Half-Car Model ...........cccoviiiiniinniiiiiiiice, 76
CONLLOL SCREIME ..o seseeeseeeesessseassssssesenssemsees 78
Simulation ReSUItS ......ccccovvviviiiiiiiiiiiiniiiiiiiiiienecr e 80
CONCIUSIONS ..ttiiiiiiiiiiiiiiiiieie ettt et s e s snae e e senaee 80
Neuro-Control of Variable Geometry Active Suspension
SYSEM ceceenrnneereecssrneressssnioesssssanssssessaccsesaens F T —— 92
The System and Learning Process ..........ccccvviiiiiiiiiniiccniienrniecneennane 92
Simulation Programime ..........ccceeeiiiiiiiiiinieciiiecin et a e 96

Simulation Results



VI

8.4 CONCIUSIONS etteititeieteteeeieeeuieertneeettatesetueeseanasseassesssarassnsssensssnnssennnsnnns 98

9 Energy Consumption of Variable Geometry Active

1R 09 115 10 1IN 4] 1) 1 O 108
9.1 SIMULINK ..oottiiiiittteeereeneeteee ettt ee s eeateesecsnetaeeesssssnssssasaaaneseassas 108
9.2  Actuator Modelb ................................................................................... 109
9.3 Simulation Results .......cccceiiiiiiiiiiiiiiiiienniitincietteccreere e 113
9.4 CONCIUSIONS ..eeueiiiiiiiiiiiieteciniiiiii it cerreeesessar e e sr e ereeteseeesasaessnsneeen 115
10 CONCIUSIONS .ccovvuneicsscnnrescsssseccsssssssenssessssssssssosssssssssssosses . 123
REFERENCES ...cccoovieinicrnicscnnicsnnessssessssssssssossessessossessssssssassossss 125
APPENDICES
A Back-Propagation for the Multi-Layer Neural Networks

in Chapter 5 and 6 ............... vessseanecees ceseeessssstenessssssssnnsanes 130
B The Error due to the Mistake of the Parameter Setting ...... 132
C Model Building of Variable Geometry Active Suspension

System using AUTOSIM cessteesssnnrneesosesstesessssssessesnsnsasnas 134
D Back-Propagation for the Multi-Layer Neural Networks

110! T2 017 o U 148

E Neural Network Off-Line Training to Mimic the Relevant
Input-Output Relationships of the P + D Controllers .......... 149



v

List of Figures

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

2.10
3.1

Three basic ride models used to study vibrations in automotive

suspensions:

(a) Seven-degree-of-freedom ride model,

(b) half-car, bounce and pitch, ride model and

(c) quarter-car MOAE] ......ccccouiiiiriciiiiriieereeicie et eesee e snrreeese e e e eenar e araeeees 13

Frequency response function gains of

(a) body displacement,

(b) suspension deflection and

(c) tyre deformation for a road displacement input,

with three different spring stiffness (presented by Wong, 1993 ) 14

-------------------

Frequency response function gains of

(a) body displacement,

(b) suspension deflection and

(c) tyre deformation for a road displacement input,
with three different damping factors (presented by Wong, 1993 ) ................ 15

Frequency response function gains of

(a) body displacement, 4

(b) suspension deflection and

(c) tyre deformation for a road displacement input,

with three different un-sprung masses (presented by Wong, 1993) 16

...............

Fully-active suspension system

(presented by Sharp and Crolla, 1987) .......ccvveueueveereeeeeiseeeeeeeeeeeeeeeeeeeeens 17
Slow-active suspension system

(presented by Sharp and Hassan, 1987) ........ccevueuieeeereeeeeeiereeeeeieeeeenans 18
Diagrammatic active roll-control system

with interconnected actuators (presented by Sharp and Pan, 1993) ............... 19
Variable compensating force with elastic property by means of

an adjustable transmission mechanism

(presented by Venhovens, Knaap and Pacejka, 1992) ......ccccccvevviicniiininnnnnnn. 19
Cone mechanism built into a left front suspension

(presented by Venhovens, Knaap and Pacejka, 1992) .....cccccovvvvinvvenecrnnnnnn.. 20
Variable geometry wishbone linkage (presented by Leighton, 1995 ) ............ 20
Flow diagram of a common 1€arning ProCess ............cowveveereeveeeesserseeseererenne 33



32
33
34

3.5
3.6

3.7
3.8
3.9

3.10

3.11

4.1
4.2
4.3

44
45

4.6
4.7
4.8

5.1
5.2

Vit

The model reference self-tuning fuzzy logic controller
(Lin €2 Al., 1993) coneeeeieeeecieeieeeteste et stee e e e e st aestaessaeser e e e saasesnesnnneeens

Basic neural network processing element involving a linear combiner
and an output transfer funCtion ..o

Four basic output transfer functions of neural network
processing elements (Demuth and Beale, 1994) ........ coccoecveeivcinscnivenennnnen.

Basic multi-layer neural NEtWOIK .........cccccvvvivmiiiniiviiiinniininneecicecieseneenaeans

Architecture of the fuzzy neural force controller
(Kiguchi and Fukuda, 1996) ......cccceioieiiiiniiiiiniiniennteneeeenetsaeesenesennneens

Control structure for the self-learning controller
(Nguyen and Widrow, 1991) ..cc.cociriininiiiiiiniertreeesreeeesseeesasnaesseens

Training with back-propagation. C - controller, E - plant emulator
(Nguyen and Widrow, 1991) ..ottt naae e

The training process for cost function minimisation
(Moran and Nagai, 1992) ....ccccocviiiiiiiniiiiiiicitiecienteecrtesreeee st asesreaaasees

(a) Structure of the controller;
(b) The gradient generation circuit
(Narendra and Parthasarathy, 1991) ....cccocveieiiiiiiiiiiiircreeeecceeeereeeeeeeee e

Recurrent structure for controller training involving
the derivative computations (Feldkamp ez al., 1992) ........c.cocoviviiiniannene.

Quarter-car active SuSpension MOAE] ........cccoevevererevererereererereeeeeseneseeseeneseanas
Linear processing €lement .........cccccocuieiiiiiiiinniiiiiiiiciecccinecee e

Diagrammatic representations of
(a) system structure and
(D) OptimMIiSAtiON PIOCESS ..ccveeemreerrieeireeieeeersneteeteeresreeaeaeansaeeeseeaansnnenessaeens

Sequential representation of on-line learning system in discrete-time ............

The descending cost function, as learning proceeds; 8 Hz input
FTEQUEIICY eviieeeeiieiiee ettt ettt et e e s st e e e e mmeaee e e e esaan

Vehicle responses for 0.5 Hz road Input .........cccoiiiiiiciiiniinnniiiiniiieecnnns
Vehicle responses for 8 Hz road input .........oeeiivuiiiiiininiiiniiiniiiiiiiecns

Overall comparison of LQG; Nelder-Mead and neuro-controller

TESUIES 1ottt
Contribution of tyre deformation to non-quadratic COSt ..........cecvcervrvueerennns

Multi-layer neural network with single output .........c.. coocovciiiericiieiiiieeennee.



53
54
55
5.6

5.7

5.8

6.1

6.2

6.3
6.4
6.5

6.6

7.1

7.2
7.3
74

Sequential representation of batch learning system in discrete-time

One batch of the road velocity input used for training

..................................

The descending non-quadratic cost function

................................................

R.m.s. values of tyre deformation as functions of r.m.s. values of
random road velocity input:
Comparison between LQG, MP and neuro-controllers

...............................

Peak values of tyre deformation as functions of r.m.s. values of
random road velocity input:
Comparison between LQG, MP and neuro-controllers

...............................

Autospectra of body accelerations under a random road input
(velocity r.m.s. 0.1 m/s) for LQG and neuro-controllers

...............................

Non-linear single-mass vibration system

.......................................................

Diagrammatic representations of
(a) system structure and
(b) optimisation process, involving non-linear systems

.................................

................

Sequential representation of the learning process in discrete-time

The descending cost function, as learning proceeds with ‘controller 1'

.........

Road input and control force response with each controller for
each of three cost functions:

Controller 1 gives a compromise; controller 2 prioritises body control;
controller 3 conserves working space

Suspension deflection and body displacement responses with

each controller for each of three cost functions:

Controller 1 gives a compromise; controller 2 prioritises body control ;
controller 3 conserves working space

...........................................................

Alternative designs of variable geometry suspension systems:

(a) Variable geometry design with a sliding spring/damper unit end
on a lower arm;

(b) Variable geometry design with a sliding spring/damper unit end
on a circular track '

Quarter-car variable geometry suspension model

.........................................

Actuator movement on the inclined track

Relationship between the spring/damper unit length and
actuator movement without wheel displacement

...............



7.5

7.6

7.7

7.8

7.9
7.10
7.11

7.12
7.13

7.14

7.15

8.1

8.2

8.3
8.4
8.5
8.6

Relationships between the wheel forces and spring forces for the
various positions of one end of the spring/damper unit via actuation ............ 86

Half-car variable geometry active suspension model
(Vehicle front end viewed from 1€ar) .....ccccceeceerreernciennennessceeereeeeeeeeaeeene e 87

Actuator movements on the inclined tracks on the starboard and

POTE SIARS vttt ettt et a e st s s rastaessessera e s esseaneaeeaseeas 87
Free vertical vehicle body motions with three body weight conditions:

light (500 kg), normal (590 kg) and heavy (665 K& )....ccevvvevermreereineeeeennnnns 88
Acting forces during cornering (Vehicle front end viewed from rear) ........... 88
Vehicle body, which moves in Z direction and rotates in roll ........................ 89
Detailed feedback control scheme of variable geometry active

SUSPENSION SYSLEIM ..cuvviiiuiiiiieeiitrciiiii ittt sttt eenteeae e sanesenssseneeesaseesone 89
Lateral acceleration corresponding to the ramp force input ..........ccceeunnnns 90
Actuator movements on the starboard and port sides from

the equilibrium positions (vehicle body mass : 665 kg ) .cccvvevvvvrcvicnecnrecnnen. 90
Comparison between vehicle body height change responses of

the P + D controlled and passive systems during 0.8 G cornering

(vehicle body mass : 665 KE ) wevevueiiiiiiiiiiiiiiiieciiiicececereee e 91
Comparison between vehicle body roll responses of the

P + D controlled and passive systems during 0.8 G cornering

(vehicle body mass : 665 Kg) ................ et teete et e e e teeaaaeataeaneeaane e et eeaaaaa 91
Diagrammatic representations of

(a) full system and

(D) OPLIMISAtION PIOCESS ...uverervrerrererereserersrererersesssesseesesessssaesesesssesesesesesens 101
Neuro-controller involving two networks for body height control and

TOIL CONEIOL ..ttt sttt st e e s sba e e 102
Sequential representation of batch learning system in discrete-time ............ 103
Flowchart of the simulation programme ...........cccoeecevevnecivneeereneennnnn. 104-105
Lateral acceleration corresponding to the force input .......cccccceeveiiveeennnnnen. 106

Comparisons between actuator responses with neuro-control and

P + D control on the starboard and port sides during 0.8 G cornering

(vehicle body mass: 665 kg):

(a) Starboard actuator movement and;

(b) Port actuator MOVEMENT .....ccouuviiiiiiiiiiireeeeiiiniiiiecteeereeeereeeeeese e nees 106



8.7

9.1

9.2

9.3

94
9.5

9.6

9.7

B.1

B.2

E.1
E.2

Comparisons between the neuro-control and P + D control in

vehicle body responses:

(a) height change and

(b) body roll;

during 0.8 G cornering (vehicle body mass : 665 Kg) .....cceevevveerierevenennee. 107

Feedback control scheme of variable geometry active suspension
half-car model on SIMULINK's block diagram window 118

..............................

Actuator model, for a single wheel station, on SIMULINK's
block diagram window 119

...............................................................................

Diagrammatic representation of mechanical arrangement of
an actuator for a single wheel station ..........ccccceeeeiiiniiricciieeeeece e, 120

Friction function

Comparison between the demand velocity and actual velocity response
of the starboard actuator with the neuro-control system under ramp
lateral force inputs, which involve maximum lateral acceleration of
7.848 m/s” (0.8 G); the half-car is loaded with the vehicle body mass

Comparison between the motor current demand and current feedback

signals of the starboard actuator with the neuro-control system under

ramp lateral force inputs, which involve maximum lateral acceleration

of 7.848 m/s” (0.8 G); the half-car is loaded with the vehicle body

mMass Of 665 Kg cvovvvveveiieieriieeeeene, ettt ettt et et ereerene e eaens 121

Power and energy consumption of the starboard actuator with the
neuro-control system under ramp lateral force inputs, which involve

maximum lateral acceleration of 7.848 m/s® (0.8 G); the half-car is

loaded with the vehicle body mass Of 665 Kg ......c.ccovriviniiinnninnnininiins 122

Comparison between the vehicle body height responses of passive
half-car models with the wheel camber inertia of 40 kg m® and of
1 kg m* under ramp lateral force inputs, which involve maximum
lateral acceleration of 0.8 G

Comparison between the vehicle body roll responses of passive half-

car models with the wheel camber inertia of 40 kg m’ and of 1 kg m>

under ramp lateral force inputs, which involve maximum lateral

acceleration Of 0.8 G ...c.oovviueiiiieiiceceeie ettt ettt 133

The input-output look-up data table ........cccocviiiiriniiiiiiiiiiiiirieeeeee, 150

The off-line training structure using the look-up data table



E3

E.4

XII

The descending error function, as leaning proceeds for the data of the
height controller (Training information: learning algorithm is back-
propagation, 2422 weight update, learning rate is 0.39957 and final

EITOT IS 1.00 X 10™) 1ottt seeeeeeeee e e e e e e e e e eseaseseseees

Comparison between the P + D control and neural-control (off-line
mimic) in vehicle body responses:

(a) height change and (b) body roll; during 0.8 G cornering

(vehicle body mass : 665 KZ) ...ceeeiiiiieiiieiiererrierescnreeeeececrinrree e s cnaeeeean



X1

List of Tables

2.1 (a) Comparison between passive, fully-active and semi-active
suspension systems in the various features: performance and
advantages, drawbacks, energy consumption and control problems

(b) Comparison between slow-active suspension and active
roll-control systems in the various features: performance and
advantages, drawbacks, energy consumption and control problems

3.1 Processes of learning algorithms: automata; SOFLIC;
and neural networks

.........................................................................

3.2 Processes of learning algorithms:genetic algorithms and neuro-fuzzy

3.3 Specifications of case-studies

...........................................................

4.1 Overall comparison of LQG, Nelder-Mead and neuro-controller
results

..............................................................................................

6.1 Cost function weighting constants for the three controllers

7.1 The nominal ground coordinates of the points in the
quarter-car variable geometry suspension model

7.2 Values of the leverage ratio for the various actuator movements

7.3  The nominal ground coordinates of the points in the half-car variable
geometry active suspension model;
(S) and (P) denote the starboard and port sides, respectively

7.4  Vehicle body weight conditions

7.5  Vehicle body height change without actuations for the
three body weight conditions

76  Starboard actuator movements for the three body
weight conditions; maintaining the nominal body height
(The port actuator works symmetrically)

..........................................

7.7  Natural frequencies of vehicle bodies for the three body
weight conditions
(Both starboard and port actuators are fixed at the equilibrium
positions, which maintain the nominal body height, for each body
weight condition )

8.1 Overall comparison between neuro-control, P + D control and
passive systems in vehicle responses: vehicle body height change,
body roll and actuator movements; and cost function

...............

...............................

............

.........................................................

............................................................

............................................................................

...........

...........

...........

...........



9.1

9.2

9.3

9.4

Power and energy consumption of the starboard and port actuators

of the variable-geometry active suspension half-car model with each

of the P + D control and neuro-control systems. Each system

responds to 0.8 G cornering; the half-car is loaded with the vehicle

body mass of 665 Kg......c.eecereeereunnens ettt et rs et eteeaerserea et etenena 116

Comparison between the r.m.s. value of the power with each of three

hydraulic active suspension systems, involving direct actuations

between bodies and wheels, and that of the variable geometry active
suspension with either the P + D control or neuro-control system.

Each system relates to a full-car, having four wheel stations with

four actuators; under 0.8 G cornering. Data of the hydraulic active

suspension systems are taken from the literature (Williams and

MILIET, 1904ttt ee s e eee e e e e e e e e e s sesesesesaaas 116

Comparison between the energy consumption of a hydraulic active

roll control system, which involves rotary actuators in the anti-roll

bars at front and rear, and that of the variable geometry active

suspension with either P + D control or neuro-control system.

Each system relates to a full-car, having four wheel stations;

under 0.8 G cornering. Data of the active roll control system is

taken from the literature (Sharp and Pan, 1993).......cccccccviiiinnnnninnnn.. e 117

Power and energy consumption of the neuro-controlled variable-

geometry suspension systems, involving each of three different

friction levels between the sliders and the tracks. Each system

relates to a full-car, having four wheel stations with four actuators;

UNAET 0.8 G COTMETING. . e cvveeereteanereeeaieieeieeeeeseresseseraereseaesesensnsraseeeessnns



Notation
A Ay

C, Cy

C.\" Ct

H R
D h,D r

R
e

| ds |,] a5 |

F NN
F\‘t rut

System-matrices for continuous and discrete-time systems, respectively
Output vectors of neural network and lood-up data, respectively

Outputs of /4 th element at the hidden layer and r th element at the
output layer of neural network, respectively

Net inputs of & th element at the hidden layer and r th element at the
output layer of neural network, respectively

Distribution vectors for control inputs in continuous and discrete-
time systems, respectively

Bias of a neural network element in Chapter 3

Bias vector for hidden layer of neural network

Bias for output layer of neural network

Bias vector for output layer of neural network

Output matrices for continuous and discrete-time systems, respectively
Damping rate (N/(m/s)) '

Suspension and tyre damping rates, respectively (N/(m/s))

Distance between the body centre and each side end (m) in Chapter 7
Learning signal of & th element at the hidden layer and r th element at
the output layer of neural network, respectively

(i) Motor back-e.m.f. (V) in Chapter 9

(i1) Stochastic operator in Chapter 3, see equation (3.3)

Output error function in Chapter 3

Magnitudes of starboard and port potentiometers, respectively in
Chapter 7

Output function of a neural network element in Chapter 3

Force on the lower wishbone (see Fig. 2.8 in Chapter 2)

Friction force (N) in Chapter 9

Function of linear processing element

Function of multi-layer neural network

Suspension force (N) in Chapter 9



Fy,
Fysw
Fyew
Fzs
Fzp
Jra
Jres
Jys
fre

G, Gy

XVI.

Lateral force through the vehicle body mass centre (N)

Lateral force through the starboard wheel mass centre (N)

Lateral force through the port wheel mass centre (N)

Vertical force through the starboard wheel/ground contact point (N)
Vertical force through the port wheel/ground cbntact point (N)
Frequency of sinusoidal road velocity input (Hz)

Frequency resolution (Hz)

Side force of the starboard wheel (N)

Side force of the port wheel (N)

Distribution vectors for the disturbance inputs in continuous and

discrete-time systems, respectively

G,, G,, Gs, G4 Control gains in Chapter 7

I

kC(N!

Mbs MW

Motor current (A) in Chapter 9

Count number

Non-quadratic function

Quadratic function

Cost function

Motor inertia (kgm®) in Chapter 9

Weight as function of count number in cost function in Chapter 5
D.C. current feedback transformer (V/A)

Motor back-e.m.f. constant (Vsec/rad)

Power amplifier gain (V/V)

Speed control gain (V/V)

Electromagnetic torque constant (Nm/A)

D.C. tachogenerator (D.C. motor speed transformer) (Vsec/rad)
Non-linear spring coefficient (N/m")

Tyre stiffness (N/m)

Linear output function of neural network element

Vector of linear output functions of neural network elements

Discrete frequency step number

Body and wheel masses, respectively (kg)



r

q5n 42, 43 44
S

S

Sp; Sh) Sl’

T,
Tu

Xvll

Discrete time sfep number

Sample size of cost function

Neural network function and two non-linear functions of plant,
respectively (see Fig. 3.10 in chapter 3).

Sample size of random noise road input

Coordinate points in the models in Chapter 7

Coordinate points of the vehicle body port and starboard ends,
respectively, in Chapter 7 ’

Total batches of training in Figures 5.3, 6.3 and 8.3

Total discrete-time steps of training in Figures 4.4, 5.3, 6.3, 8.3 and 8.4
Motor resistance (£2) in-Chapter 9

Mean radius of leadscrew (m) in Chapter 9

Weighting constants in cost function

Tangent-sigmoid transfer function of neural network element

Vector of tangent-sigmoid transfer functions of neural nétwork
elements

The number of processing elements in each of input, hidden and output
layers, respectively

Continuous time in seconds

Sampling time (second)

Load torque (Nm) in Chapter 9

Motor electromagnetic torque (Nm) in Chapter 9

(i) Actuator force (N) in Chapters 4, 5 and 6

(i1) Output of a neural network element in Chapter 3
Net input of a neural network element in Chapter 3
Vector of actuator displacements from equilibrium (m) in Chapter 8
Motor driving voltage (V) in Chapter 9

External disturbance, road input vertical velocity (m/s) in Chaptérs 4,5

and 6

External disturbance vector, lateral forces through the body and two

wheels (N) in Chapter 8



Vs, Vp

Yact
Zbs Zry Tw

Zy, Zs, Zp

-

o
B
Aw
AP
)
¢
Y
¢

XVIII

Actuator velocity commands on the starboard and port sides,
respectively, (m/s) in Chapter 7

Amplitude of each frequency component in random noise (m) in

- Chapter 5

Amplitude function of count number in random noise in Chapter 5
Energy consumption (J) in Chapter 9

Weighting parameters in neural network controller (vector form)
Weighting parameters for hidden layer of network (matrix form)
Weighting parameters for output layer of network (vector form)
Weighting parameters for output layer of network (matrix form)

h th weighting parameter in a neural network element

Weighting parameter between p th element at the input layer and 4 th
element at the hidden layer |

Weighting parameter between 4 th element at the hidden layer and r th
element at the output layer

State vector of system

Output vector of system

Actuator displacement from equilibrium (m) in Chapter 9
Displacements of body, road and wheel, respectively (m)
Displacements of the body centre, body starboard end and body port
end, respectively (m) in Chapter 7

Leadscrew helix angle (rad) in ChaptesF9

Leadscrew friction angle (rad) in Chapter 9

Weighting parameter update of neural network

Loa‘;.i transfer (see Fig. 2.8 in Chapter 2)

Learning rate

Vehicle bddy roll angle from equilibrium (rad)

Shaping parameter in the friction function (9.8)

The angle (rad) between the direction of the strut force and the line,

‘whichisata right angle to the track in Chapter 9



18 Friction coefficient between the slider and track in Chapter 9

Load transfer ratio

Motor armature displacement from equilibrium (rad) in Chapter 9

0j Weighting parameters of neural network (see Fig. 3.10 in Chapter 3)
0. Phase lag of each frequency component of random noise in Chapter 5
o, ¥ Vector functions in difference equations
D.C. Direct Current
"E.m.f. Electro-motive force
G Gravity
LQG Linear Quadratic Gaussian
- MP pontryagin Maximum Principle
Neuro Neural network(s)
P+D Proportional-plus-Differential
R.m.s. Root-mean-square

SOFLIC Self-Organising Fuzzy Logic Intelligent Control



Chapter 1

Introduction

In recent years, many improvements have been made in the automotive field by the use of
mechatronics and advanced control. In the context of vehicle stability, handling and ride
comfort, for example, active suspension systems, i.e. those which use controlled
actuators and energy supplies, can provide performance which is markedly superior to
that possible with conventional passive suspensions involving springs and dampers.
Although various types of actively-controlled suspension systems have been studied and
developed in both academic research and industrial fields, their commercial impact has
been very small due to a major problem - that of energy consumption (Hillebrecht ez al,
1992).

The great interest in low-energy design of active suspension systems has led to a re-
emergence of an old principle - i.e. variable geometry affecting the ratio of the
spring/damper unit length change to wheel displacement - used with manual adjustment
on a Velocette Thruxton Motorcycle in 1965 (Hicks, 1992). A type of variable
geometry mechanism, contai;ling pre-loaded springs with adjustable cranks, has been
made the basis of a computer-controlled suspension system on a passenger car in Delft
University of Technology (Venhovens, Knaap and Pacejka, 1992; Knaap, Venhovens and
Pacejka, 1994). Another variable geometry mechanism was achieved by moving one
end of a buckling spring element with an electro-mechanical actuator (Leighton, 1995).
These types of suspension system, without actuation, are essentially passive suspensions
and achieve levelling and body-attitude-control with relatively small actuators and low
energy consumption, but an increase in mechanical complexity ensues.  Although the
present thesis proposes a much simpler variable geometry mechanism which involves
sliding one end of a spring/damper unit on a mechanical track, the control system design
problems are novel due to non-linearity and mechanical limitations. |

One way of tacklifig the control problems is to employ learning techniques, which
include automata (Gordon, Marsh and Wu, 1993; Hchll, Frost and Gordon, 1996),
self-organising fuzzy logic intelligent control and neural networks (Harris, Moore and
Brown, 1992), neuro-fuzzy (Kiguchi and Fukuda, 1996) and genetic algorithms (Yeh, Lu



and Chen, 1994). Vehicle system applications of neural networks and fuzzy logic have
been reviewed very recently by Zadeh, Fahim and El-Gindy (1997).

The Aim of the Thesis

The aim of the present thesis is the establishment of the controller design for a variable

geometry active suspension system using a learning method - namely, a neural network
approach.

Chapter 2 discusses the general characteristics, potential benefits and problems of
conventional passive suspensions and the active suspension domain. The discussion will
lead us further into a consideration of low energy active suspension systems.

Chapter 3 deals firstly with a broad review of learning algorithms, and then it focuses
attention on neural network learning control techniques.

The issue to be considered is how a neural network controller can be integrated with a
physical model of a non-linear dynamic system. It is divided into three sub-problems
which are dealt with in the following three chapters, respectively. In chapter 4, a very
simple linear system is set up for the purpose of establishing a structure in which
effective on-line learning can take place. In chapter 5, a standard restriction of linear
optimal control theory, namely the quadratic cost function form, is removed. The
learning technique is applied to the control of a non-linear dynamic system in chapter 6.
All simulation results presented in these three chapters are generated by MATLAB and
the Neural Network Toolbox (Demuth and Beale, 1994). .

Chapter 7 describes the design and model development of the variable geometry active
suspension system. A feedback control scheme which involves sensors and
proportional-plus-differential control gains is set up. Levelling function, body-roll and
jacking (bounce) responses, under vehicle body weight changes and lateral force inputs,
are simulated via FORTRAN and the computer language, AUTOSIM.

In chapter 8, the neural network controller is integrated with the variable geometry
active suspension system developed in chapter 7. The controller learns to reduce the
defined cost function to its minimum value. The system performances are compared
with those of the passive and proportional-plus-differential controlled systems.

“Chapter 9 analyses energy consumption of the variable geometry active suspensioh
system using an actuator model developed via the computer simulation package,
SIMULINK.  The actuator model involves four parts: motor speed control, motor



current control, electric motor circuit and mechanical system. Each part is detailed using
corresponding mathematical equations.  The simulations provide power and energy
consumption of the variable geometry system with either neural network control or
proportional-plus-differential control. These results are compared with those of other
actively-controlled suspension systems taken from the literature.

The thesis is concluded in chapter 10, which includes a consideration of what further
work is necessary to gain a complete understanding of the system.



Chapter 2

Automotive Active Suspension Systems - a Review

To enable people to drive cars for hours without becoming tired, to prevent goods being
damaged in transit and to ensure mechanical components remain in good condition, they
must be isolated from rqad disturbance. Passive suspensions, which involve springs and
dampers, can be reasonable vibration isolators. Suspensions need to be compliant for
the isolation but they need to be st1ff for body-attitude-control. ~ Therefore, passive
suspensions must involve compromise between vibration isolation and body-attitude-

control.

On the other hand, springs and dampers can be replaced by actuator assemblies with
feedback control loops. - According to Segel (1993), such systems date back to a
mechanical-hydraulic active ride-improvement system developed by Hanna and Osbon at
the Westinghouse Research Laboratory in 1961. Since then, various types of actively-
controlled suspension systems have been proposed and developed in both academic and
commercial fields. Especially, commercial interest was stimulated by the application of
active devices to race cars (Wright and Williams, 1984 and 1989). These have been
reviewed and classified by Sharp and Crolla (1987); Wallentowitz and Konik (1991); and
Elbeheiry et al. (1995).

The first section of this chapter is devoted to describing the general characteristics of
conventional passive suspensions and to active, semi-active, slow-active suspensions and
active roll-control systems, which involve actively-controlled anti-roll bars. The second
section details potential benefits and problems of both passive and active systems. The
third section concentrates on low energy system types, which may have considerable
potential for solving one of the main problems of active systems - that of power
consumption.

2.1 Passive and Active Systems

2.1.1 Passive Suspensions

To study vibrations in automotive suspension systems, various vehicle models have been
developed. For a passenger car, a seven-degree-of-freedom representation (bounce,



pitch and roll of the body and hop for each wheel) may be used as shown in Fig. 2.1 (a).
On the other hand, a half-car model, as shown in Fig. 2.1 (b), may be used to investigate
either the pitch and bounce motions or the roll and bounce motions of the vehicle body.

Nevertheless, the essence of the ride problem can be captured by a quarter-car model,
which includes an un-sprung mass representing the wheel and associated components
and a sprung mass representing the vehicle body, as shown in Fig. 2.1 (c). Frequency
response function gains of body displacement, suspension deflection and tyre
deformation for a road displacement input can be derived from the quarter-car model.
These functions with different values of spring stiffness, damping and un-sprung mass are
shown in Fig. 2.2 to Fig. 2.4 (Wong, 1993). From these figures, conventional passive
suspensions have two principal modes with natural frequencies, from 0.5 Hz to 2 Hz and
from 10 Hz to 12 Hz. The former mode involves the natural frequenby primarily of the
sprung mass and the latter involves mainly the natural frequency of the un-sprung mass.
Both modes are excited by road disturbance. Especially, the former involves body
motion during cornering, accelerating and braking. When the frequency of the road
disturbance coincides with one of the natural frequencies, a resonance results. The

resonances of the sprung and un-sprung masses are referred to as 'body resonance' and
‘wheel-hop resonance’, respectively.

As shown in Fig. 2.2, a soft suspension spring provides relatively good vibration
isolation. However, the road-holding tends to be better with a stiff suspension spring.
It can be seen that there are invariant points in these functions.

Fig. 2.3 shows that light damping provides good vibration isolation and road-holding in
the mid-frequency range, good protection of the body and mechanical components from
high frequency excitation but poor performances at each resonant condition.

The un-sprung mass is hardly influential near the body resonance, A light un-sprung
mass is advantageous close to the wheel-hop resonance but it is disadvantageous at
higher frequency range in terms of vibration isolation of the body as shown in Fig. 2.4.

Consequently, conventional passive suspensions with fixed characteristics of springs and
dampers compromise over driving conditions.

2.1.2 Active Suspensions
In order to provide the cars with improved vibration isolation, road-holding, body-
attitude-control and so on under various driving conditions, the concept of an adaptation



of vehicle parameters, involving the spring stiffness and damper rate, emérged. The
most effective way to achieve the concept is to replace the spring and damper with an
actuator assembly with a feedback control loop.  Hardware requirements of such
systems are hydraulic pumps, cylinder/piston units, servo-valves, accumulators, filters,
pipe-work, oil reservoirs, coolers and so on - there are drawbacks with them: reliability
and maintainability, excessive weight, production cost, running cost, packaging and

noise.

A fully-active suspension system presented by Sharp and Crolla (1987) is depicted in Fig.
2.5. The driving conditions are continuously monitored by sensors, i.e. the
accelerometer mounted on the vehicle body and potentiometer measuring the suspension
travel. The signals from the sensors are fed back through the signal conditioning and its
output determines an actuator force demand signal. = The actuator servo-valve is
controlled in order to minimise the error between the demand signal and actuator force
measured via the force transducer. The actuator control bandwidth extends to beyond
the wheel-hop frequency. .

Active suspensions are supervised by micro-computers with the prescribed control
strategies.  The control strategy employing linear optimal control theory has been
studied by Wilson, Sharp and Hassan (1986). The optimal controller was designed to
minimise the cost function, which involves the weighted sum of the squares of the vehicle
body vertical acceleration, suspension travel and tyre dynamic deformation. The optimal
control theory must involve full-states to be fed back to the controller. Therefore, un-
measurable states (i.e. tyre deformation and vehicle body height) need to be obtained by
some form of estimator such as a Kalman filter. Furthermore, the employment of such
linear control theory is somewhat restrictive in connection with a problem containing
~ essential non-linear features, i.e. a finite working space and non-linear characteristics of
the tyres. These non-linearities were integrated into the controller design by Gordon,
Marsh and Milsted (1990 and 1991).

Preview control, which involves the measurement of the road profile ahead of the front
wheels, has been studied by Sharp (1995).  Sharp mentioned that a fully-active
suspension system with preview control can provide better performance but consumes
higher energy than a non-preview active system. A slow-active system (this will be
described in sub-section 2.1.4) with the preview control needs longer preview time,
which is almost impractical for a contemporary car.



2.1.3 Semi-Active Suspensions

Semi-active suspensions commonly use springs to support the vehicle body in parallel
with continuously variable dampers. The springs have fixed characteristics while the
dampers are adjusted via electro-rheological fluids, solenoid valves or motors.

The system structure can be expressed as in Fig. 2.5 with the addition of a spring and the
actuator replaced by a damper. The feedback control loop can be inherited from the
fully-active system. The damper force signal is required to track a demand signal
coming from the state measurements and signal conditioning. However, the damper
force produced is limited since power can only be dissipated. Therefore, the
performance may involve compromise between fully-active and passive systems.

Another type of semi-active suspension system, which involves a variable spring
mechanism using interconnected gas/oil spheres, has been developed and fitted to the
Citroen XM. The gas/oil spheres (acting as spring/damper units) on each side of one
axle are interconnected by opening a firmness regulator valve with an additional gas/oil
sphere (central sphere), when the vehicle is in the 'soft' mode. In the 'firm' mode, the
firmness regulator valve is in the closed position and each wheel sphere is then
independent, while the central sphere is inactive. A control computer collects
suspension and vehicle state values and controls the opening and closing of the valves. |

2.1.4 Slow-Active Suspensions

Slow-active suspensions are active suspensions with the actuator control bandwidth
embracing the body resonant frequencies but not extending to the wheel-hop resonant
frequencies.

A type of slow-active system has been presented by Sharp and Hassan (1987) as shown
in Fig. 2.6. The system has a limited bandwidth actuator in series with a spring and has
a damper in parallel with the two. The actuator becomes rigid beyond its control
bandwidth and the system then works as an ordinary passive suspension. Another type
of slow-active system has an actuator in series with a spring/damper unit, which is better
than the type shown in Fig. 2.6 in energy consumption (Williams and Miller, 1994).

The system can include a D.C. motor with an irreversible leadscrew in series with an air-
spring unit (Sharp, and Hassan, 1988). An alternative is a hydro-pneumatic suspension .-
type, which involves gas-filled springs in a hydraulic actuator assembly (Williams, Best
and Crawford, 1993).



2.1.5 Active Roll-Control Systems

Active roll-control systems involve rotary actuators mounted in conventional anti-roll
bars, and a number of simulation studies of them have been reported (Lang and Walz,
1991; Sharp and Pan, 1993; and Darling and Ross-Martin, 1997).

A full-car model with actively-controlled anti-roll bars is depicted in Fig. 2.7 (presented
by Sharp and Pan, 1993). The actuator in each of the front and rear axles twists through
the appropriate angle in order to reduce or eliminate vehicle-body-roll during cornering.
The control unit receives information from a lateral accelerometer and actuator rotation
sensors, processes those signals and commands actuator rotor positions.

Since these systems retain springs and dampers, they work as conventional passive
suspensions on a straight road which may be advantageous from an energy point of view.
Furthermore, such anti-roll bars can be switched off via by-pass valves round the
actuators - this function may provide a superior performance to that of conventional
anti-roll bars, especially, on a severe cross-level road. However, the systems cannot
influence body-pitch and bounce motions.

2.2 Potential Benefits and Problems

In this section, the various types of suspension- described in the last section are
summarised in the following features: performance, drawbacks, energy consumption and
control problem. ‘

Passive suspensions can be reasonable vibration isolators with soft springs but the spring
stiffness must be high enough to control the body-attitude. Light damping provides
good performance in the mid-frequency and high-frequency ranges (between body and
wheel-hop resonant frequencies and above wheel-hop resonance) but not around
resonant frequencies.  Therefore, some compromise between vibration isolation and
body-attitude-control must be involved.

On the other hand, fully-active suspensions can provide good vibration isolation, road-
holding, body-attitude-control and levelling. = Semi-active suspensions are able to
achieve similar performance with controlled-dampers. In practice, however, both fully- -
active and semi-active suspensions provide poor performance in the high-frequency
range (beyond wheel-hop resonant frequency) due to time-delay, friction and noise.
The problem can be solved by employing slow-active suspensions, which isolate the
bodies from road disturbance passively and control body-attitude actively within the



actuator bandwidth of 3 - 5 Hz. However, they cannot achieve as good body-control as
fully-active suspensions. Active roll-control systems can eliminate body-roll but body-
pitch and bounce motion remain.

Fully-active, slow-active and active roil-control systems include drawbacks: complex
arrangement, reliability and maintainability, expensive production costs, excessive weight
and noise. Although semi-active suspensions require reduced hardware arrangement,
the noise problem still remains.

Williams and Miller (1994) reported that a fully-active suspension consumes higher
energy than a slow-active suspension on a straight road but lower energy during
comering. The fully-active suspension consumes 30 % more energy than the slow-
active suspension under test conditions which involve driving on a straight road at 20 m/s
and a 0.35 g cornering every 10 seconds. Hillebrecht et al. (1992) indicated that a slow-
active suspension consumes 15 % more fuel than conventional passive suspension.
These higher potential running costs have been a major contributing factor to the lack of
commercial interest for active suspension systems.

Control problems include non-linearities (i.e. tyre characteristics), limited state feedback,
selection of sensors, mechanical limitations (i.e. suspension working space) and specific
external disturbance (i.e. road profiles or lateral force due to wind). Gordon, Marsh and
Wu (1993) and Howell, Frost and Gordon (1996) have used learning techniques to cope
with these problems.

The above features are summarised in Table 2.1 (a) for passive, fully-active and semi-
active systems and (b) for slow-active and active roll-control systems. Consequently,
some types of active suspension systems, which are economical in energy terms, are of
great interest.

2.3 Low energy active suspension systems

A type of low energy active suspension system has been developed and tested in Delft
University of Technology (Venhovens, Knaap and Pacejka, 1992; Knaap, Venhovens and
Pacejka, 1994). This low energy concept involves a pre-loaded spring attached to an
adjustable lever as shown in Fig. 2.8. The force, Fp, on the lower wishbone can be

varied by adjusting the length of the lever in order to compensate the load transfer, AP,
caused by body-pitch and body-roll. This concept was practically integrated into a cone
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mechanism (see Fig. 2.9), in which the adjustable crank varies the influence of the pre-
loaded spring on the lower wishbone without changing the pre-load.

This system works passively for vibration isolation and actively for body-control with the
actuator bandwidth of 5 Hz. The system consumed an average power of 770 W in a
double lane change test with a maximum lateral acceleration of 7.5 m/s’. This value
seems to be very economical in comparison with the power consumption of 3300 W in a
transient handling test (whose maximum lateral acceleration was 6.9 m/s®) with a slow-
active suspension system (Williams and Miller, 1994).

Another development of a low energy active suspension system, which involves a
buckling spring element and an actively-controlled leverage ratio at each wheel, has been
reported by Leighton and Pullen (1994) and Leighton (1995). The mechanical
arrangement for a single wheel station is depicted in Fig. 2.10. The wheel force is
generated by a spring element, which has a very low effective rate when the spring
displacement exceeds the buckling point. ~The vehicle body was isolated from road
disturbance passively and its attitude was controlled by moving one end of each spring
element using D.C. motor/ballscrew units with the bandwidth of 4 Hz. The system
requires power levels of 100 W per wheel as described by Leighton.

2.4 Conclusions

Low energy active suspension system types seem to provide a significant contribution to
the reduction of running costs.

On the other hand, new mechanical design problems are posed by the system principle,
which involves: variable geometry, mechanical components, materials, change of
leverage ratio, position and direction of actuation, power requirement and bandwidth
considerations.

Furthermore, the control system design problems are novel, since variable geometry
implies non-linearity and mechanical limitations. In order to deal with non-linear control
system design, learning control is a valid approach and this is surveyed in the next

chapter.
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Table 2.1 (a) Comparison between passive, fully-active and semi-active
suspension systems in the various features: performance and advantages,
drawbacks, energy consumption and control problems

e Economical; * Good vibratio

* Good vibration

e Reasonable isolation and road- isolation and road-
vibration isolation; holding in theory holding in theory
¢ High reliability. but not in practice but not in practice

(especially in the (especially in the
high-frequency high-frequency
range) due to time- range) due to time-
delay, friction and delay, friction and
noise; noise;
*Good body-attitude- | e Economical
control; hardware
elevelling function. arrangement.
| ®Vibration isolation | eComplex *Noise
and body-attitude- arrangement;
control must be eExcessive weight;
traded-off. eExpensive

production cost;
eExpensive running
cost;
o Low reliability and
maintainability.

e Economical e Very high for ¢ Economical
vibration isolation
on a rough road;

e Relatively low for
body-attitude-

 Energy

control.
¢ Since, the e Non-linearities; ¢ Non-linearities;
5 characteristics are ¢ Limited state- e Limited state-
. CO Iltl’Ol i ﬁx.ed, _it does not feedback; feedback;
: Rl oy , suit wide range of e selection of sensors; | eselection of sensors;
e problems | driving conditions; | emechanical e mechanical
PR © | eThe characteristics limitations. limitations.

can be adaptive via
switches.
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Table 2.1 (b) Comparison between slow-active suspension and active roll-control
systems in the various features: performance and advantages, drawbacks, energy
consumption and control problems

o Vibration isolation
with a passive

e Vibration isolation
with a passive

manner; manner;
i e Body-attitude- ¢ Body-roll reduction
control but not as or elimination.
| good as a fully-
active system;
elevelling function.
¢ Complex e Complex
arrangement; arrangement;
e Excessive weight; e Excessive weight;
eExpensive ¢ Expensive
production cost; production cost;
| eExpensive running | eRelatively low

| cost; running cost;
-] eLow reliability and | eLow reliability and
maintainability. | maintainability.

nergy
consumption

e Economical for
vibration isolation
on a rough road;

{ ® Very high for body-

attitude-control.

e Economical for
vibration isolation
on a rough road;

‘e Relatively low for

body-attitude-
control.

1 e Non-linearities;

o imited state-
feedback;
eselection of sensors;

-1 emechanical

limitations.

¢ Non-linearities;

e selection of sensors;

emechanical
limitations.
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Fig. 2.1 Three basic ride models used to study vibrations in automotive

suspensions: (a) Seven-degree-of-freedom ride model, (b) half-car, bounce and

pitch, ride model and (c) quarter-car model.
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21

Chapter 3
Learning Method

This chapter deals with a survey of learning methods primarily from the point of view of
non-linear optimal control of automotive active suspension. In the first section, a
common learning process is described using a flow diagram. The second section
presents five learning algorithms, automata, SOFLIC (Self-Organising Fuzzy Logic
Intelligent Control), neural networks, neuro-fuzzy and genetic algorithms. The third
section concentrates on several well-established neural network learning control

techniques.

3.1 Background

Many control engineers have to deal with system complexities and non-linearities.
Classical methods, such as linear control theory, have to compromise on highly idealised
situations: the plants, which have to be controlled, and the controllers are linear without
limitations; external disturbance inputs are expressed in the form of random white noise;
and quadratic forms of cost function are used for performance criteria. Considerable
study has been carried out into non-linear optimal control over the past thirty years based
on non-linear plants, specified disturbance inputs, non-quadratic forms of cost function
and non-linear input/output relationships of controllers via polynomial operators.

On the other hand, modern techniques in intelligent frameworks (automata, fuzzy logic,
artificial neural networks and genetic algorithms) have been used extensively for control
engineering. The control, which is so-called intelligent control, was introduced by
Harris, Moore and Brown (1992), and several examples of intelligent control have been
edited by Harris (1994). A review paper of neural network applications in the
automotive field has been published by El-Gindy and Palkovics (1993), and a more
recent review involving fuzzy logic applications was authored by Zadeh, Fahim and El-

Gindy (1997).
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Learning is one of the main properties of intelligent control and it enables an intelligent
system to be optimised via iterative trials. If the plant is non-linear, learning may be one
of the valid approaches to obtain an optimal controller.

There are many different algorithms within the learning method. Most algorithms have a
common learning process, which involves the following stages:

(i) initialisation: setting up a framework (e.g. defining a network structure) with initial
learning states (e.g. an initial set of weighting parameters);

(i) trial: running with a set of training data;

(iii) evaluation: evaluation via a performance criterion (e.g. cost function);

(iv) modification: update of the learning states and convergence to a minimum error or
cost;

(v) testing: running with sets of test data which are different from the set of training
data;

(vi) refinement: the framework is refined (e.g. by changing of network structure).

The above process starts with 'initialisation'. Three stages, 'trial', 'evaluation' and
'modification’, iterate with the training data until the system satisfies the given
performance criteria. The system is then tested with the test data and evaluated. If the
system satisfies the performance criteria, the process will finish; otherwise, the
framework is refined and the process restarts with ‘initialisation’. This process is
illustrated in the flow diagram shown in Fig. 3.1.

3.2 Learning Algorithms

There are three basic learning algorithms, learning automata, SOFLIC (Self-Organising
Fuzzy Logic Intelligent Control) and neural networks. Complex algorithms such as
'neuro-fuzzy' and other algorithms such as 'genetic algorithms' have also been studied
over a wide area.

3.2.1 Learning Automata

Learning automata can be used to design an optimal controller without any explicit
system model.  The role of the automaton is to select one controller in a set of
controllers having different control parameter values.  The system runs with each
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controller under a given training environment and its performance is evaluated by a cost
function. After each run, the probability factor of a particular controller being chosen is
updated via a penalty-reward scheme, so that the best performing controller will be
chosen in the end. Learning proceeds in stages, such that a set of different controllers is
investigated at each stage and the set is then refined for the next learning stage until the
cost function is converged to its minimum value.

Learning automata have been used for an optimal controller design of an automotive
active suspension system by Gordon, Marsh and Wu (1993). More recently, the learning
efficiency of the algorithm has been developed by Howell, Frost and Gordon (1996).
For example, when a feedback controller has m parameters and each parameter has r
possible discrete values, there are r™ different controllers. Therefore, if r and m are
large, the learning time will be long. In order to cope with this problem, Howell et al.
demonstrated interconnected automata, which involved more than one automaton

assigned to the controller parameters.

3.2.2 SOFLIC (Self-Organising Fuzzy Logic Intelligent Control)

Fuzzy logic is a method for mimicking the human reasoning process. A fuzzy logic
interface uses a small number of rules (based on a priori knowledge) and provides a
smooth output via a process of interpolation using a set of membership functions.
SOFLIC includes such a reasoning process and a learning process, which involves a
defined performance index to evaluate the system output and to modify the rules and the
membership functions. The algorithm was introduced in the literature mentioned above
(Harris, Moore and Brown, 1992; Harris ed., 1994).

Lin, Lu and Padovan (1993) have attempted to use a similar algorithm, which involves
the modification of an output scaling factor, for an automotive active suspension
controller. The controller, which is called a self-tuning fuzzy logic controller, consists of
primary and secondary fuzzy interfaces as shown in Fig. 3.2. The former interface
performs a basic control function to provide ride comfort by minimising the error
between the body vertical acceleration and its reference signal, while the latter interface
is used to tune the former. An absolute maximum error and its change within the
observation time are fed through the secondary interface, whose output determines the
modification of the scaling factor of the output membership function in the primary

interface.
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3.2.3 Neural Networks

Neural networks simply approximate to a human's information processing structure but
actually the biological structure has not been clarified. Today, neurocomputing is
incorporated in the computer package, MATLAB (Demuth and Beale, 1994) and the
corresponding literature has been published (Moscinski and Ogonowski, 1995; Hagan,
Demuth and Beale, 1996).

A neural network is a parallel-distributed information processing structure involving a
number of processing elements. A processing element, having multiple-input and single
output is illustrated in Fig. 3.3. The output of the element is given by

S
u*:zwh a, +b, (3.1)
h=1

w= Fu*), (3-2)

where «, is & th input, wy is i th weighting parameter of the element, b is the threshold,

and F(u*) is the output function. There are four basic output transfer functions: linear,
threshold, sigmoid and radial basis, as shown in Fig. 3.4 (Demuth and Beale, 1994).

A basic multi-layer neural network is depicted in Fig. 3.5. The network involves input,
hidden and output layers, having S,, Si, and S, processing elements, respectively. Each
element is connected to the other elements in the next layer through the weighting
parameters. A weighting parameter between p th element at the input layer and 4 th
element at the hidden layer is denoted by wH,,,,,; similarly, w",, denotes a weighting
parameter between £ th element at the hidden layer and r th element at the output layer.

. A N .
When a set of training data {x(n),aR(n)}n=l is given, the network is assessed by a cost

function of the form:

J=E("(n)= %ZeR(n), (3.3)

o (3.4)
" (m) =D (@ () ~af ().

where E denotes the time averaging within the training data. The weighting parameters
are updated via a gradient descent method to reduce the cost, J. The weight update is
expressed by
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w(new) = w(old) + Aw, (3.5)
‘ dJ
Aw = —65;", (3.6)

where § is the learning rate to convergence of learning.

The weighting parameter update, Aw, involves the update between the hidden and output
layers

Awr,y = —SE( de” da *R'] 3.7

8 a *Rr a WRr,h

! = "'SE(DRr aHh ),
where the learning signal of the output layer, D%,, is given by

D = de®  de* da%, (3.8)

aa*Rr - aaRr aa*Rr

=—@" (m)-a® W)F'(a*",),
where F’(a*)denotes the derivative of F(a*)with respect to a *.

In a similar manner, the weighting parameter update, Aw, involves the update between
the input and hidden layers

AP, :—SE( GLA a*”h) (3.9)

d a*Hh d WRh,p

=—8E(D") x,),

where the learning signal of the hidden layer, D, is given by

def -zi de® da*f, 9a”s " (3.10)

- . ?
8a*”h ,=18a*Rr aa”;. aa*Hh

S R R ’ ' 3.11)
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The learning signal at the hidden layer involves the signal from the output layer as
described in equation (3.11). This expresses that the learning signal is processed from
the end of the network backwards to the beginning. This is called back-propagation
learning algorithm. In general, neural networks have fixed network structures and
input/output relationships are created by learning.

3.2.4 Neuro-Fuzzy

As mentioned in the above two subsections, the main advantage of using fuzzy logic is
that an a priori knowledge can be incorporated into the system but learning is difficult.
On the other hand, neural networks are capable of learning, but representing knowledge
and extracting knowledge from networks are difficult.

Neuro-fuzzy combines learning functions of neural networks and fuzzy knowledge
representation.  Kiguchi and Fukuda (1996) have used a fuzzy-neural force controller
for a planar robot manipulator (see Fig. 3.6).  The controller involves a fuzzy
environment evaluator and a network controller. The network's architecture is based on
a fuzzy interface, which includes fuzzifier, rule and defuzzifier layers. The number of
elements at the rule layer is the same as the number of fuzzy rules.

3.2.5 Genetic Algorithms

Genetic algorithms are based on natural genetics, involving randomised information
exchanges among survivors. In every generation, a new set of artificial creatures
(strings) is created using bits and pieces of the survivors of the old (crossover); an
occasional new part is tried for good measure (mutation). Yeh, Lu and Chen (1994)
have utilised a genetic algorithm to optimise a fuzzy logic controller for a semi-active
suspension system. In their work, each string is decoded into fuzzy membership
functions and the corresponding rule table entries and the system performance is
evaluated by a cost function. The better performing strings are more likely to survive for
the next generation. Crossover and mutation among the survivors create a new
population. The generations proceed until converged.

Overall, the above three basic learning algorithms, automata, SOFLIC and neural
networks are specified through the learning process as shown in Table 3.1. The neuro-
fuzzy and genetic algorithms are specified in a similar manner as shown in Table 3.2.
From these tables, automata and genetic algorithms have a similar feature, that several
candidates are compared, one or more than one good performing candidates are selected
and the population is refined for the next trial. The other algorithms involve non-linear
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input/output functions. Neural networks adjust the functions via the gradient descent
method, while SOFLIC and neuro-fuzzy are based on a priori knowledge.

Neural networks have non-linearities and learning capability. When we have a newly
developed non-linear plant (i.e. variable geometry active suspension system), a neural
network may be a good approach to controller design.  The next section takes up
several well-established neuro-control techniques, which relate to automotive active

suspensions.

3.3 Neural Networks for Control

When a dynamic plant, which can be non-linear and/or unknown, lies between a neuro-
controller and the plant output, the problem is how the learning signal is sent from the
plant output to the controller. Nguyen and Widrow (1991) suggested the following
technique, which might be one of the solutions to the problem. The control structure is
illustrated in Fig. 3.7. Firstly, a neural network mimics the dynamic plant as a neuro-
emulator. Secondly, the neuro-controller (it has not been trained) runs the neuro-
emulator from an initial state to the desired state in the representative time steps.
Thirdly, the learning signal, which involves the error between the output from the
emulator and desired output, is back propagated from the end of the run to the beginning
through time (see Fig. 3.8). The weighting parameters are updated for each run.

Moran and Nagai (1992) have utilised a similar technique for an optimal preview control
of vehicle rear suspension. The training process is depicted in Fig. 3.9. When the neuro-
controller is trained, the neuro-vehicle (it has already been trained to mimic the vehicle
model) is used to back propagate the learning signal from the vehicle output to the
neuro-controller in order to calculate the derivatives of the cost function with respect to

the neuro-controller's weighting parameters.

In contrast to the above techniques, an alternative has been studied by Narendra and
Parthasarathy (1991) to cope with the similar problem that a dynamic plant lies between
a neuro-controller and the plant output. The system structure is illustrated in Fig. 3.10
(a). The plant is described by a difference equation of the form: y,(k+1) =
N(y,(k))+N,(y,(k)), where N; and N, can be either non-linear functions (for known plant)
or neural network functions (for unknown plant). A multi-layer neural network, N, is
used as a feedback controller and its weighting parameters, 0;, are updated in order to
minimise the error between the plant output and the output from the reference model.
The derivatives of the plant output with respect to the weighting parameters are
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calculated via the gradient generating circuits and general back-propagation as shown in
Fig. 3.10 (b).

Feldkamp et al. (1992) have utilised such gradient computations to train a neuro-
controller for an automotive active suspension system. The full system is depicted in Fig.
3.11. A road disturbance input 1s applied to the plant and its states are fed back through
the neuro-controller. The output from the controller determines the actuator force,
which is applied to both the plant and an identification network. The system
performance is evaluated by a cost function, which involves the vehicle states. The
neuro-controller learns to reduce the cost function using the derivatives of the states with
respect to the weighting parameters. The derivatives are obtained by a process of
gradient calculation.

Overall, it is reasonable to assume that neural networks with gradient computations have
the following possibilities:

(a) the plants can be non-linear; and if the plants are known, the neuro-emulators are
not required;

(b) general back-propagation is used when the controllers have multi-layered structures;

(¢c) cost functions, which have either quadratic or non-quadratic forms, must be used for
training;

(d) specified external disturbance inputs are applied to the systems.

However, a negative point is that the number of the gradient generating circuits is the
same as the number of weighting parameters. Therefore, we have to compromise
between the number of parameters and the calculation time.

3.4 Conclusions

Neural network learning controllers are often developed using neural network emulators
of the corresponding plants, in order to allow back-propagation of errors through the
plants to the controllers, as basis of the learning process. Replacement by a neural
network of a plant already known by its fundamental describing equations is considered
disadvantageous, since the network is bound not to mimic the plant precisely over its full
range of operating conditions. This will be avoided in the present work.
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On the other hand, a neural network controller with gradient computations may be
capable of learning to control a non-linear system, without employing a neural network
emulator. However, this technique is essentially novel as an application to variable-
geometry active suspension control.

Nevertheless, before turning to the subject, the problem can be separated into three case-
studies in order to establish an understanding of how neural network controllers can be
applied to optimise the performance of vehicle suspensions (either linear or non-linear
suspensions), reducing general forms of cost functions to minimum values, under
specified external disturbance inputs (e.g. road conditions, either sinusoidal or random;
or lateral forces during cornering). The three case-studies are specified in Table 3.3.
These case-studies are taken up in chapter 4, chapter 5 and chapter 6, respectively.
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Table 3.1 Processes of learning algorithms: automata; SOFLIC;
and neural networks

Algorlthm : Neural
Process Automata SOFLIC ‘Networks
e Setting up a o Setting up a e Setting up a set of
training training training data.
environment. environment. e Making a network
Initialisation e Setting up a set of e Setting up an initial structure.
controllers having fuzzy rules and e Setting up an initial
different control membership set of weighting
parameter values. functions defined by | parameters.
a priori knowledge.
e Running the system | ¢Running under the *Running with the
. with each controller training set of training data
Trial under the training environment over a | overa
environment over a representative time. representative time,
representative time.
sEvaluation for each | eEvaluation using a e Evaluation using a
controller using a performance index cost function.
cost function. defined by a priori
Evaluation o Selecting the most knowledge.
probable controller
using a penalty-
reward scheme.
e Refinement of the e Modification of the | eChange of the
set according to the rules and shapes of weighting
Modification best performing the membership parameters via
controller. functions. back-propagation
algorithm.
¢ The best controller eRunning under a eRunning with a set
. is tested under a testing of testing data.
TeStlng testing environment.
environment.
o The size of set and ¢ The number of rules | e The network
the length of and the number of structure is
Refinement representative time membership changed.
of Framework are changed. functions are ¢ The number of
changed. processing elements

in the network is
changed.
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Table 3.2 Processes of learning algorithms:
genetic algorithms and neuro-fuzzy

| ®Setting up a training

Initialisation -

environment.
¢ Setting up an initial
population of strings.

o Setting up a set of
training data.

e Setting up initial fuzzy
rules and membership
functions defined by a
priori knowledge.

e Making a network
structure based upon
the rules and
membership functions
defined.

¢ Decode each string into
the system.

¢ Running with the set of
training data over a

of Framework

string are changed.

Trial *Running the system representative time.
under the training
environment over a
" representative time.
e Evaluation using a cost | Evaluation using a cost
: function. function.
~Evaluation * Selecting good
o performing strings
according to the cost.
¢ Crossover and ¢ Change of the
. mutation among the weighting parameters
‘ . . survived strings, via back-propagation
: VModlficatmn creating new algorithm.
' population for the next
trial.
: ¢ The converged eRunning with a set of
i . population is tested testing data.
- Testing under a testing
environment.
o The number of strings | ¢ The number of rules
" Refi t in a population and the | and the number of
elinemen number of pieces ina’ membership functions
are changed.
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Table 3.3 Specifications of case-studies

| Linear 1/4 car
‘| suspension model

Linear 1/4 car

suspension model

Non-linear mass-
spring-damper

system (including
non-linear spring

velocity, cosine wave
single frequency

rate)
1 A Linear processing | Three layer Neural Three layer Neural
element Network Network
Road vertical Road vertical Road vertical

velocity, random
white noise

velocity, cosine wave
single frequency

Cost function

Quadratic form

Non-quadratic form

Non-quadratic form

Optimisétion
‘process.

Gradient computation

Gradient computation
and
back -propagation

Gradient computation
and
back -propagation
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Fig. 3.1 Flow diagram of a common learning process
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Fig. 3.4 Four basic output transfer functions of neural network
processing elements (Demuth and Beale, 1994)
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Chapter 4

Learning Control of Quarter-Car Suspension System

This chapter considers the application of a learning method to the control of a linear
quarter-car suspension system. The controller consists of a linear processing element
described in subsection 3.2.3 in the previous chapter. System outputs are fed back
through the elements which learn, on-line, to reduce a conventional quadratic cost
function to its minimum value, for a number of specified road disturbance input
functions. The first section of the chapter gives the model description including system
equations described in discrete-time, the cost function and the road disturbance function
as a single frequency cosine wave. In the second section, the learning process is
described. In the third section, the learning process is tracked and the results of the
learning are compared with those coming from a more conventional off-line optimisation.
The accuracy of the training 1s demonstrated by comparison of results with those from a
standard optimisation procedure, the Linear Quadratic Gaussian (LQG) optimisation,
involving a white noise disturbance input and full state feedback.

4.1 Quarter-Car Model with Sinusoidal Road Input |

A standard two-degree of freedom quarter-car model is shown in Fig. 4.1. The model
consists of body and wheel masses, a force generator, a tyre spring and a tyre damper.
Suspension force is applied between the body and wheel masses and the force, u, is
controlled by a feedback controller. Road input is applied at a single tyre contact point
by a vertical velocity, v. The following representative model parameters have been used:

body mass : M, = 250 kg;
wheel mass : M, = 30kg;
tyre stiffness : k,= 200,000 N/m;

tyre damping rate : ¢, = 100 N/(m/s).

The basic mechanical equations are:
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Mw Zw = kt (Zr _Zw)+cf (Z, _ZW)_u’

4.1
M/) Zb =u, ( )

where z,, 7, and z, are displacements of the wheel, body and road, respectively, measured
from static equilibrium. The active suspension model can be converted to standard state-
space form (Newland, 1989), given by:

x()=Ax(t)+Bu(t)+Gv (1),

y(1) = Cx(1), (42)

where the four states, x, the two outputs, y, and the road disturbance input, v, are:

state vector, x =[x, x, x, x,]': x;: tyre deformation (z, — z,, );
x,: suspension deflection (z, — z, );
x3: wheel vertical velocity (z,,);
xs: body vertical velocity (2, );
output vector, y = [y, y,1": yi: suspension deflection ( z,, — z, );

y2: suspension velocity (z,, — 2, );

force input: u: actuator force between the body and
wheel (u);

road disturbance input: v:  vertical velocity at the tyre contact point
(2,)-

Matrix A is the system-matrix, vector B is the distribution vector for the actuator force,
u, vector G is the input distribution vector and matrix C is the output matrix. They are
given by:
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In the next section of the chapter, the learning process will involve discrete-time
operation. Then, the differential and output equations, (4.2), can be represented by the
following standard discrete-time state-space form: ’

*((n+DT)= A, x(nT) + B, u(nT)+G, v(nT),

y(nT)=C, x(nT), 4.3)

where n and T denote discrete step number and discrete sampling time, respectively.
The discrete state matrices and vectors, Ay, By, Cy4 and G, are obtained from the
continuous state matrices and vectors, A, B, C and G as described by Franklin and
Powell (1980).

The road velocity input, v, is considered as a single frequency cosine wave:

13

v(nT) = cos 2nfynT . (4.4)
where f41s the frequency of the road velocity input.

The suspension force, u, is generated by the limited state feedback controller described-
by: '

u(nT)=Fpe (y(nT),w(nT)), 4.5)

where w denotes a vector of weighting parameters of the controller and Fype(y,w) is the
function of a linear processing element which will be optimised by a learning method as
described in the next section of the chapter. The system performance is assessed by a
conventional quadratic cost function of the form:

1 & )
I=23 (0 52D+ g, (D) + £ @D)), 4.6)

n=l

where g; = 116000 and g, = 1190, as used previously by Gordon et al. (1994).

4.2 Learning Process with Quadratic Cost Function

A linear processing element is applied to the control of the quarter-car suspension
system. The element has two weighting parameters and a linear combiner. There are



43

two inputs and one output from the element as shown in Fig. 4.2. The element output
can be described by:

u(nT) = Fpp (y(nT),w(nT))
=w,(nT)y,(nT) +w,(nT) y,(nT). “4.7)

The vehicle performance is assessed, on-line, by the quadratic cost as equation (4.6).
The cost is specified by the form:

JaT) = 3L GT),uGT)), 4.8)

i=n—N+1

where I, is a quadratic function, in which the final term of (4.6) can be expressed as
u(nT)/M,. The weighting parameters, w, are updated, on-line, by the gradient method in
order to reduce the cost. The gradient method for a dynamic system involving neural
networks is described by Narendra and Parthasarathy (1991). A block diagram, showing
the system structure, is shown in Fig. 4.3 (a). The update rule is:

w((n+DT)=wnT)+AwnT), (4.9)
where
_ < 9J(T)
Aw(nT) = 5_——9 oD
8 $ 9 L (e(T),uliT)) 9x(T) , 91,(x(T)ulT)) 9 u(iT)
T N & 9 x(iT) Ow(iT) d u(iT) owiT) |

O is the learning rate and Aw is the weighting vector update. The gradient,
daJ(nT)/ow(nT), is evaluated over the interval, [n - N + 1, n]: Then the weighting
parameters are updated at the step, n + 1. The sequence of the weighting vector update
in discrete-time is shown in Fig. 4.4. Strictly speaking, w is no longer a constant vector
element because the cost function calculation is not re-executed in the on-line learning

process. The learning rate can be chosen to give a suitable compromise between speed
of learning and stability or it can be adaptive.

The generation of the sensitivity matrices and vectors is shown in Fig. 4.3 (b). The
Jacobians, d I(nT)/d x(nT) and 0 I,(nT)/0 u(nT) are partial derivatives of the cost with
respect to the state vector elements and control force at step, n, respectively. These are
obtained by simple differentiation. The Jacobians, dx(nT)/Ow(nT) and Ju(nT)/dw(nT)
are partial derivatives of the state vector elements and control force with respect to the
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weighting parameters, respectively. These are obtained by partial differentiation of
equations (4.3) and (4.7) with respect to w as:

0 0 d . 0
—%((n+1)T):Adﬁ(nT}+Bd—a——Z(nT), smcea—:):O, (4.10)
d 0
a—i’;(nT) -C, —a—;z(nT),
du 0 F,,.(y(nT),w(nT)) 9y 0 F,,..(y(nT),w(nT))
— —(nT) = LPE . T LPE
ow (n1) 0 y(nT) ow (L)% o w(nT) ’

where OFpe(y,w)/0 y and OFpe(y,w)/0 w are row vectors, [w; wy] and [y; yal,

respectively.

4.3 Simulation Results

Two outputs from the model, suspension deflection and suspension velocity, are fed back
through the linear processing element and its output determines the actuator force. Road
velocity inputs (cosine waves, 0.5, 1, 2, 4, 8, 12 and 16 Hz, amplitude, 1 m/s) were
applied to the tyre contact point and the linear processing elements were optimised with
each road velocity in order to reduce the cost function, (4.6). The update rule of the
weighting parameters is given by (4.9), where the sampling time, 7, is 0.005 second and
the sampling size of the cost, N, is 50. The reduction of the cost during training is shown
in Fig. 4.5, demonstrating how the performance of the suspension was improved by

training for the 8 Hz road input.

Each training involved an adaptive learning rate (Demuth and Beale, 1994), in order to
improve efficiency. The adaptive learning rate increases the learning rate, 9, if the cost
ratio (present cost/previous cost) is less than 1 and decreases it if the cost ratio is more
than 1.005. The adaptation parameters are selected by the analyst according to the case.
In the training for the 8 Hz road input, the learning rate is increased by multiplying by
1.01 and decreased by multiplying by 0.7.

The system performances of the learning-controlled systems for road disturbance inputs,
0.5 Hz and 8 Hz, are compared with the Linear Quadratic Gaussian (LQG) controlled
system (Gordon et al, 1994) in Fig. 4.6 and Fig. 4.7, respectively. In Fig. 4.6, although
there are no differences between the learning and LQG controlled systems in amplitudes
of body vertical acceleration and tyre deformation, the learning controlled system
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dramatically reduces suspension deflection for the 0.5 Hz road input. On the other
hand, in Fig. 4.7, the learning-controlled system is advantageous in reducing body
vertical acceleration and tyre deformation for the 8 Hz road input.

Fig. 4.8 shows an overall comparison between the learning control, the LQG and
conventional off-line optimisation via the Nelder-Mead Simplex method (Nelder and
Mead, 1964) for the road velocity inputs, 0.5, 1, 2, 4, 8, 12 and 16 Hz. (Detailed data of
the results are shown in Table 4.1.) Fig. 4.8 shows that the learning control can
improve on the LQG control for each road input. Of course, the LQG control involves
compromise over the frequency components in the excitation, while the learning and
simplex controllers deal specifically with one frequency at a time. Furthermore, the on-
line learning control achieves as small a cost as the conventional off-line optimisation
method.

4.4 Conclusions

It was shown how a single neural network element can be trained on-line to optimise the
performance of a quarter-car suspension system. The learning technique arrived at the
same results as the off-line optimisation device, the Nelder-Mead Simplex controller, for
each specified road disturbance input function.

It was shown that even if a controller has a linear processing element, it can improve
upon an LQG controller for a linear system if the disturbance input has only a known
single frequency.  This has potential application to an adaptive controller, which
responds by adaptation to particularly strong frequency components in the road
disturbance input to the vehicle.

The results obtained suggest that good performance will be obtainable from a variable-
geometry active-suspension system when the road disturbance is sinusoidal.
Continuation of the work in this direction requires consideration of cost functions of
general form, randomly-profiled road disturbance inputs and a non-linear system.
Probably a more elaborate neural network will be required. These are considered in
chapter 5 and chapter 6.
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Table 4.1 Overall comparison of LQG, Nelder-Mead and neuro-controller results

Road input Gain [N/(m/s)] | Phase lag[rad] |
frequency o , i | cost
(force/input) | (force/input) |
: LQG 803 -1.02 23
0.5Hz Nelder 793 -1.48 6.5
neuro 806 -1.56 6.4
LQG 1223 - 0.38 29
1Hz Nelder 591 - 1.51 10
neuro 589 -1.48 10
LQG 1079 0.06 16
2Hz Nelder 22 0.06 4.2
neuro 49 0.06 4.2
LQG 1000 0.25 11
4 Hz Nelder 9.0 0.13 2.1
neuro 62 0.13 2.1
LQG 1263 0.50 21
8 Hz Nelder 536 1.63 6.3
neuro 583 1.76 6.3
LQG 1999 1.13 77
12 Hz Nelder 2009 1.51 36
neuro 2005 1.51 36
LQG 1376 2.26 48
16 Hz Nelder 1884 1.58 36
neuro 1890 1.58 36

1]

|
|
|
|
|
777
Cost funct:)n (scaled)

LQG D >
Netder \ V& )\ L B\

neuro 12 16
0.5 1
Road input frequency (Hz)

Fig. 4.8 Overall comparison of LQG, Nelder-Mead and neuro-controller results
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Chapter 5

Neural Network Control of Quarter-Car Suspension System

In chapter 4, a single neural network element was applied to the control of the quarter-
car suspension system. The element was optimised with a road disturbance input, which
was specified as a single frequency cosine wave, in order to reduce a conventional

quadratic cost function.

This chapter deals with a more realistic situation involving a randomly profiled road
disturbance input and a non-quadratic cost function. A multi-layer neural network is
applied to the control of the quarter-car suspension system. System states are fed back
through the neural network which learns to reduce the non-quadratic cost function to its
minimum value. The first section of the chapter gives the non-quadratic cost function
and road disturbance function as a random noise. The second section describes the
multi-layer neural network and its learning process. In the third section, the learning
process is tracked. The performance of the neural network controller is compared with
that of the non-linear optimal controller which is designed via the Pontryagin Maximum
Principle (MP). Both the neuro and MP controllers are optimised using the same cost
function and are tested for various levels of randomly profiled roads.

5.1 Quarter-Car Model with Random Noise Input

The quarter-car model, described in section 4.1 in the previous chapter, was represented
by the discrete-time state-space form:

x(n+DT)=A, x(nT)+ B, u(nT)+ G, v(nT), (5.1)

where the four states of x, control input, u, and road disturbance input, v, were
described in the previous chapter.

In this chapter, the road disturbance input is considered as a random noise given by:
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N ;
v(iT) = £, z A COS(ZTE % +8,, J (5.2)

m=1 rd

(i=1--N,)

where m denotes the discrete frequency step number, f,, denotes the frequency
resolution and 6,, denotes the phase lag. The discrete Fourier spectrum, V,,, depends on
the level of roughness of the random road represented.  One batch of the random noise
input has N,, discrete data points.

The actuator force, u, is generated by a full-state feedback controller as follows:

u(n)=Fww(x(nT)wnT)), (5.3)

where w denotes a vector of weighting parameters and Fym(x,w) is the function of a
multi-layer neural network. The weighting vector, w, will be optimised in order to
reduce the non-quadratic cost function given by:

N
J = _1_2((11 xl:(nT) t4q, xlé(nT)+Q3 xzz(nT)""h leo(nT)+x42(nT)),
n=1
(5.4)
where q= 1600; q:=2x10" : q3=500; qs=5x10"" as used previously by Gordon et al.

(1994).

The contribution to the cost, (5.4), from the tyre deformation steeply increases when the
tyre deformation exceeds the absolute value, 0.005 m, as shown in Fig. 5.1. The
optimal controller design techniques, which employed the non-quadratic cost functions,
were previously studied by Gordon, Marsh and Milsted (1990 and 1991) and Gordon et
al. (1994). The following sections in this chapter will describe how the neural network
learns to minimise the non-quadratic cost function and how the neural network performs.

5.2 Learning Process with Non-Quadratic Cost Function

Multi-layer neural network

The architecture of the multi-layer neural network involves three layers, input, hidden
and output, and each layer includes a number of elements as shown in Fig. 5.2. Each
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output of an element is connected to the elements in the next layer through the weighting
parameters. The input-output relationship is:

u=Lw S(wWw'L(x)+b")+b"), (5.5)

where w" and b” are the weight matrix and bias vector for the hidden layer, respectively,
and w* and b" are the weight vector and bias for the output layer, respectively. L
denotes the linear output function of an element and S denotes the tangent-sigmoid
transfer function of an element. In this case, there are 4 inputs, 6 hidden elements and 1
output. The network is included in the Neural Network Toolbox for MATLAB and
more detailed equations are given in the users' guide (Demuth and Beale, 1994).

Learning process

The neural network controller output is described by the standard discrete-time form:
u(n)=Fxn(x(nT),w(nT)) , (5.6)

where the weighting vector, w, involves all components of weight and bias in the
network. During trials, vehicle performance is assessed by the non-quadratic cost, (5.4),
which is given by the form:

ng
i=n—N+]

J(nT)=71[~ 21 (x(iT),u(iT)), (5.7)

where 7, is a non-quadratic function, in which the final term of (5.4) can be expressed as
u(nT)/M,. The weighting vector, w, is updated by:

w((n+1D)T) =w((n— N +1)T) +Aw(nT), (5.8)
where
AwnT)=-06 d J(nT)
o w(nT)
_ 3 2 0 I, (x(iT),u(iT)) 9 x(T) , d 1, (x(T),uGT)) 9 u(iT)
T N/ 5. 9 x(iT) QW) 0 u(iT) o w(iT) |

The gradient, d J(nT) /0 w(nT), is evaluated over the interval, [n - N + 1, n], for one
batch of the random noise road input. The weighting vector is updated at the step, n +
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1. The batch is repeated until the cost is minimised. The sequence of the learning
process is shown in Fig. 5.3.

In (5.8), the Jacobians, 9 I,,(nT)/d x(nT) and 0 I1,,(nT)/d u(nT) are obtained by simple
differentiation. The Jacobians, d x(nT) /0 w(nT) and 9 u(nT) /0 w(nT), are obtamed by
partial differentiation of equations (5.1) and (5.6) with respect to w as:

§‘J‘c‘(( +DD)=A, 8 = ("T) + B, a—(nT) since 9v_ 0, (5.9)
ow ow

Q_u_ d Foy (x(nT),w(nT)) . Jdx dF, w &@T),w(nT))

3w )= 3 x(nT) 3w DT 3 w(nT) ’

where dFwn(x(nT),w(nT))/0x(nT) and JFym(x(nT),w(nT))/0 w(nT) are specified in
Appendix A and are calculated by the standard back-propagation algorithm taken from
the literature (Hagan, Demuth and Beale, 1996).

5.3 Simulation Results

Firstly, a random noise velocity input, (5.2), was repeatedly applied to the tyre contact
point until the neural network controller minimised the non-quadratic cost, (5.4).
Secondly, the neuro controller was tested for various levels of random noise velocity
inputs with r.m.s. values: 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.8 and 1 m/s. In the test, the neuro
controller gave a good performance reducing the tyre deformation for the road velocity
input with r.m.s. value, 1.0 m/s. However, it gave poor ride comfort through the range.
A possible reason was that the high-amplitude motion dominated the cost function, which
had contributed to updating the weighting parameters of the neuro controller. In order
to avoid the problem, the neural network controller was trained by the following effective
technique:

The amplitude, V.., in the road disturbance, (5.2), was replaced by V,(i) as:

Ny
V(iT) = £, DV, () cos[27‘c

m=]

mi
6, | 5.10

rd

(i=1---N,)
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where the amplitude varied in discrete-time. A batch of the road velocity input, created
by (5.10), is shown in Fig. 54. In the batch, the high and low amplitudes were
separated. The cost function, (5.7), was modified as:

J(nT)=—]15 S K() 1, (x(T)u(T)), 5.11)

i=n—N+1

where K(i) were selected to be bigger, the lower the road amplitude. The learning
technique presented here would give the neural network more opportunities to learn for
the low-amplitude motion. The batch of the road input, having 1600 data points in
discrete-time, was repeatedly applied to the system and the cost function (5.11) was
successfully reduced from the initial cost, 8.93 x 10%, to the final cost, 1.42. The
reduction of the cost during the training is shown in Fig. 5.5.

Finally, the neural network controller was tested for various levels of random noise
velocity inputs with r.m.s. values: 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.8 and 1 m/s. Each input
was independent of the others. The system performance was compared with that of the
LQG controller (Gordon et al., 1994) and the non-linear optimal controller designed by
the Pontryagin Maximum Principle (MP) (Gordon, Marsh and Milsted, 1990 and 1991;
Gordon et al., 1994). The MP controller was optimised using the non-quadratic cost
function, (5.4). The LQG involves the quadratic cost function, (4.6), which was given in
section 4.1 in the previous chapter.

Fig. 5.6 shows an overall comparison between the neuro, LQG and MP controllers in the
r.m.s. value of the tyre deformation through the range of road velocity input: 0.1-1.0
m/s. Fig. 5.7 shows an overall comparison between the neuro, LQG and MP controllers
in the peak value of the tyre deformation through the range of road velocity input: 0.1-
1.0 m/s. From each figure, in the LQG controlled system, both the r.m.s. and peak
values of the tyre deformation increase linearly with respect to the road velocity input.
On the other hand, the neuro and MP controllers have non-linear characteristics.

This example demonstrates that the non-linear control reduces the tyre deformation for
the road velocity input with r.m.s. value, 1.0 m/s, and this provides an obvious advantage
for improving ride comfort for the road velocity input with r.m.s. value, 0.1 m/s. Fig. 5.8
shows autospectra of body accelerations with the LQG and neuro controllers for the road ,
velocity input with r.m.s. value, 0.1 m/s. '.
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5.4 Conclusions

It was shown how the multi-layer neural network can be trained to optimise the

performance of the quarter-car suspension system. The neural network successfully
reduced a non-quadratic cost function under various levels of randomly profiled roads.

The results show that the learning neural network control produces the same performance
as the MP optimal system. The learning neural network system provides an alternative
and possibly simpler way of arriving at the optimal system. However, the selection of

training data, network architecture and so on are still of interest to improve learning
efficiency.
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Chapter 6

Neural Network Control of Non-Linear System

Chapter 4 and chapter 5 showed how neural networks (a single neural network element
and a multi-layer neural network, respectively) can be trained to optimise the
performance of a linear suspension system. Each previous chapter confirms that neural
networks can provide optimal control systems using cost functions of general form.
This chapter deals with the unsettled question of how a neural network can be applied to
the control of a non-linear system.

In the first section of the chapter, a non-linear single-mass vibration system is developed.
A non-quadratic cost function, which evaluates the system performance, is provided.
The second section describes the learning process regarding the control of the non-linear
system. In the third section, three neural network controllers are trained, but separately,
using three different cost functions according to each demand. The issue of how the
neural network learns to control the non-linear system correctly, according to the cost
function given, is confirmed by a comparison between the performances of these three
controllers.

6.1 Non-Linear Single-Mass Vibration System

A one-degree of freedom single-mass vibration system is designed as shown in Fig. 6.1.
The model consists of a body mass, a force generator, a non-linear spring and a damper.
The force of the non-linear spring is given by:

spring force = - k., (deflection)’, 6.1

where k.. is the spring coefficient in N/m’.

One end of the force generator, which is controlled by a feedback controller, is fixed at '
the sky and its vertical force, u, is applied to the body. An external disturbance input is
applied at the lower end of the spring-damper through a vertical velocity, v. The
following representative model parameters have been used:



64

body mass: - M, = 250 kg;
spring coefficient : k... = 2,450,000 N/m’;
damping rate : ¢ = 1500 N/(m/s).

The basic mechanical equation is:

M, i, =k, (z,~2,) —c(2 -2, )+u (6.2)

where the gravity force is ignored. z; and z, are displacements of the body and external
disturbance input, respectively, measured from static equilibrium. The vibration model
can be converted to the standard state-space form given by:

A‘fl(l‘) =X3(I),

. (6.3)
X:,_(T) =x3(t)—v(1‘),

%,(8) = —(k,,, | M,)x, () +(c!/ M) (~x,() +v(t)) +u(t) | M,,

¥, (?) =x,(1),

y’),(t) =x3(t)1

y3(t) =).,’3(t),

where the three states of x, the three outputs of y and the external disturbance input, v,
are:

:[Zb (z, —z,) Zb]T’

y=[n» y3]T =[(zs—2,) 3 fb]T,

In the next section of the chapter, the learning process will involve discrete-time
operation. Using the following transform equation:

x((n+1)T) = x(nT)
T

x(nT) = (6.4)

2

the differential and output equations, (6.3), can be represented by the following discrete-
time state-space form:
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x,((n+DT) = x,(nT) + T x, (nT), 6.5)
x,(n+1)T) = x,(nT) + T x,(nT) = T v(nT),
x((n+DT) = x,(nT) - T(k,,, | M,)x,’ (nT)
+T(c! M){=x;(nT) +v(nT) }+ T u(nT) | M,,
¥, (nT) = x,(nT), |
Y, (nT) = x,(nT),
y;(nT) = =(k,,, | M,)x,* (n=DT) +(c | My){~x;((n—DT) +v((n - DT)}
+u((n—=1)T) 1 M,,
where n and T denote discrete step number and discrete sampling time, respectively.

Strictly speaking in (6.5), it is considered that the output of body acceleration is delayed
one step in discrete-time as:

y;(nT) = x,((n—1DT). (6.6)
The equations, (6.5), can be written in the following standard difference equation form:

x((n+1)T)=® (x(nT),u(nT),v(nT)), (6D

y(T) =¥ (x(nT),x((n = DT), u((n—1T), v((n—1T)).
The external disturbance input, v, is considered as a single frequency cosine wave:
v(nT) = cos 2nf,ynT , (6.8)
where f,41s the frequency of the road velocity input.
The actuator force’, u, is generated by the output feedback controller described by:
u(nI)=Fyy (V(nT),W(nD),' (6.9)
where w denotes a vector of weighting parameters of the controller and Fuy (y,w) is the

function of a multi-layer neural network which will be optimised by the learning process

as described in the next section of the chapter.
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The system performance is assessed by a non-quadratic cost function of the form:

N

1
== 2@ W'D+ g, 3’ + gy 357 (1) + g, u* (D)),
n=l

(6.10)

where weighting constants g, g2, g3 and g, will be chosen according to the priorities of
the four factors: work space, body velocity, body acceleration and control force. These
are described in Section 6.3.

6.2 Learning Process with Non-Linear System

A multi-layer neural network is applied to the control of the non-linear single-mass
vibration system. The network has the same architecture as described in Section 5.2,
having 3, 4 and 1 elements in the input, hidden and output layers, respectively.

The system states, outputs and actuator force are given by the standard discrete-time
forms: ‘

x(n+1DT) =0 (x(nT),u(nT),v(nT)), (6.11)
ynT) =¥ (x(nT),x((n - DT),u((n—1DT),v(n-1DT)), .
u(nT) = F, (y(nT),w(nT)),

respectively.

The vehicle performance is assessed by the non-quadratic cost, (6.10), which is given by:

J(nT) =—1%,— N 1, (y(T),u(T)), (6.12)

i=n-N+1
where I,, is a non-quadratic function. The weighting vector, w, is updated by the

gradient method in order to reduce. the cost function. A block diagram, showing the
system structure, is shown in Fig. 6.2 (a). The update rule is:

w((n+DT)=w((n— N +DT)+Aw(nT), (6.13)
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where

d J(nT)
o w(nT)

__ % 2 d 1, (y(iT),u(iT)) 9 y(iT) .9 1, (y(T),u(iT)) 0 u(iT)
TN 3 y(T) 3 w(iT) 9 u(iT) o w(iT) |

i=n—-N+1

Aw(nT) =8

d is the learning rate and Aw is the weighting vector update. The gradient, 0 J(nT) /0
w(nT), is evaluated over the interval, [n- N+ 1, n]. The weighting vector is updated at
the step, n + 1. The sequence of the weighting vector updates in discrete-time is shown
in Fig. 6.3.

The Jacobians, 0 1,,(nT)/0 y(nT) and 9 L,(nT)/d w(nT) are the partial derivatives of the
cost function with respect to the output vector elements and control force at step, =,
respectively. These are obtained by simple differentiation. The Jacobians, d y(nT) /0
w(nT) and d u(nT) /0 w(nT), are the partial derivatives of the output vector elements and
control force with respect to the weighting parameters, respectively. These are obtained
by the partial differentiation of equations-(6.11) with respect tow as:

Jx dd Jdx 0® Ju ) Jdv

PR = —— —— — — T —

aw((n+1)T)‘ P aw(nT)+au aw(n ) since ~— 0, (6.14)
ay 0¥ ox ¥ ox o¥ oJu
YYo= o+ -+ 22 = )
aw(n ) Jdx aw(n )+8x aw((” ) )+8u aw((" b1
du 3 Fy (y(nT),w(nT)) 3y 3 F (y(nT),w(nT))
OU Ty = 2w . T NN
aw(" ) 0 y(nT) aw(" )+ ow(nT)

where d ®(nT) /0 x(nT) and d ®(nT) /0 u(nT) are the sensitivities of the functions, P,
~ with respect to the state vector elements and control force, respectively. d ¥ (nT) /0
x(nT) and 9 W(nT) /3 u(nT) are the sensitivities of the functions, ¥, with respect to the
state vector elements and control force, fespectively. Strictly speaking, both 0 ®(nT) /0
x(nT) and 0 ¥ (nT) /0 x(nT) involvc x;°. Therefore, they vary according to the value of
x>, while both @ ®(nT) /0 u(nT) and @ ¥(nT) /d u(nT) are constant. A block diagram,
showing the generation of the sensitivity matrices and vectors, is shown in Fig. 6.2 (b).
OFv(y(nT),w(n1))/dy(nT) and dFyy (y(nT),w(nT))/0 w(nT) are specified in Appendix A |
and are calculated by the standard back-propagation algorithm taken from the literature
(Hagan, Demuth and Beale, 1996).
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6.3 Simulation Results

Three outputs from the non-linear single-mass vibration system, deflection of the
suspension, body velocity and body acceleration, are fed back through the multi-layer
neural network and its output determines the actuator force.

Three neural network controllers were optimised using a non-quadratic cost function
(6.10), but separately, for three different characters. In particular, ‘controller 1'
compromises between the body motion and deflection of the suspension, 'controller 2'
minimises the body motion and 'controller 3' minimises the deflection of the suspension.
Each controller was developed using one of three sets of the weighting constants in the
cost function as described in Table 6.1.

The update rule of the weighting parameters of the neuro-controller is given by (6.13),
where the sampling time, 7, is 0.005 second and sampling size of the cost, N, is 100.
Each training successfully minimised the cost function under the external velocity input
as a single frequency cosine wave (frequency, 2 Hz, and amplitude, 2 m/s). Fig. 6.4
shows the reduction of the cost function during training of 'controller 1'.

The external input and control force response with each controller for each of three cost
functions is shown in Fig. 6.5. The suspension deflection and body displacement
responses with each controller for each of the three cost functions are shown in Fig. 6.6.
From these figures, 'controller 2' can be seen to dramatically reduce body vertical
displacement while ‘controller 3' reduces suspension deflection. This shows that the
three neural networks learned to control the non-linear vibration system correctly
according to each cost function.

6.4 Conclusions

It was shown how a multi-layer neural network can be trained to optimise the
performance of a non-linear system. The neural network can learn to control the non-
linear system correctly according to the given cost function.

Overall, a new path has opened to the final objective of the study, i.e. effective neuro-

control of a variable geometry active suspension system, the action of which is essentially
non-linear. ’
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Table 6.1 Cost function weighting constants for the three controllers

Weighting constants
controlle
Q <0 Q
controller 1 1x106 0 1x10'1 2.5x1 07
controller 2 0 1x102 0 0
controller 3 1x109 0 0 0
Force
generator
Force
Body
mass Body displacement
Suspension Non-linear
deflection spring Damper

External input

Fig. 6.1 Non-linear single-mass vibration system
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Neuro controller

Weight vector, w

Road input velocity, v

Sensitivity vector

Non-linear Output, y
Discrete system
Force, u
Cost function
Optimisation
' <
Process COSt, J

dJow

(a) System structure

Neuro controller

Weight vector, W

Non-linear
Discrete system

Outputs,
y

Cost function

Cost, J

States ,x w Functions,® and ¥

Differentiation Differentiation
\ 3 dJAy,
b 3JAu
oudw Discrete 9yRw
> sensitivity system
0d/ox
* dW¥Ax Sensitivity vector

dJiow

(b) Optimisation process

Fig. 6.2 Diagrammatic representations of (a) system structure and

(b) optimisation process, involving non-linear systems ¥
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Training time (Q steps) ; ~_
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'

Fig. 6.3 Sequential representation of the learning process in discrete-time

Cost
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Fig. 6.4 The descending cost function, as learning proceeds with 'controller 1'
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Road velocity input (m/s)

0.0 0.2 04 0.6 0.8 1.0
Time (second)

(a) Road velocity input

1.0E+04
8.0E+03
6.0E+03
4.0E+03
2.0E+03
0.0E+00
-2.0E+03
-4.0E+03 R
-6.0E+03
-8.0E+03
AOE408 b v v e

0.0 0.2 04 0.6 0.8 1.0

Time (second)

(b) Control force

Control force (N)

Controller1 - - - - - Controller 2 — - — Controller 3

Fig. 6.5 Road input and control force response with each controller for each of
three cost functions: Controller 1 gives a compromise; controller 2 prioritises body
control; controller 3 conserves working space.
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(a) Suspension deflection
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0.00
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-0.10

-0.156

020 L——u L
0.0 0.2 0.4 0.6 0.8 1.0

Time (second)

(b) Body displacement

Controller1 - - - - -~ Controller 2 — - — Controller 3

Fig. 6.6  Suspension deflection and body displacement responses with each
controller for each of three cost functions: Controller 1 gives a compromise;
controller 2 prioritises body control; controller 3 conserves working space.
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Chapter 7

Modelling and Control of Variable Geometry Active
Suspension System

This chapter considers the modelling and control of a variable geometry active
suspension system, whose mechanical design is expected to have considerable potential
for solving one of the main problems of automotive active suspensions, that of power
consumption. (The power consumption of the system will be described in chapter 9.)

The first section of the chapter deals with a quarter-car suspension model, which
involves variable leverage ratio; that of the spring/damper unit length change to the
wheel displacement. The leverage ratio may be varied by actuation, which is
substantially perpendicular to the suspension force. The developed quarter-car model is
made one side of a half-car model in the second section of the chapter. Levelling of the
vehicle body with symmetrical actuations on the starboard and port sides is introduced.
The third section describes a control scheme, which involves proportional plus
differential controls of body height and body roll. (I will use the term ‘P + D control’ to
refer to the proportional plus differential control.) These models and control schemes
are composed via the computer language, AUTOSIM, which automatically provides
computer simulation programmes. The performance of the P + D controlled half-car
system is demonstrated by a comparison with a passive system under ramp lateral force
inputs, which involve a maximum steering wheel input velocity of 270 degree/second.

7.1 Quarter-Car Model

The variable geometry active suspension system involves an actively controlled leverage
ratio for each wheel, that can be described by:

spring/ damper unit deflection

leverage ratio = (7.1)

wheel displacement
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Generally speaking, the higher the leverage ratio is - the stiffer the suspension. A
possible variable geometry suspensiondésign is shown in Fig. 7.1 (a). In this design, one
end of a preloaded spring/damper unit slides on the lower arm via an actuation, which is
perpendicular to the suspension unit line of action. However, the problem with this
design is that stiffening of suspension and loss of preload may work against each other -
generally, the loss of preload is more influential than the stiffening of the suspension. In
order to avoid this problem, this design can be improved as shown in Fig. 7.1 (b). The
improved design has a circular track for the slideway of a spring/damper unit. The
* design will not cause any loss of preload but it may be difficult to develop practically.

A quarter-car suspension model, which involves variable geometry without the above
problems, is shown in Fig. 7.2.  This model includes a lower arm, an upper arm, a hub -
carrier, a wheel, a spring/damper unit and an inclined track. The lower and upper arms
are connected to the ground (N) by pin joints at point 1 and point 2, respectively. The
hub carrier is connected to the lower arm by a pin joint at point 6, and to the upper arm
by a pin joint at point 5. The wheel moves together with the hub carrier and a vertical
force is applied to the wheel through point 7. The spring/damper unit acts between point
3 and point 4, where point 3 is connected to the ground while point 4 is movable on the
track. The nominal ground coordinates of the seven points are shown in Table 7.1.

An actuation works at point 4, horizontally, and it makes one end of the spring/damper
unit move along the track which, in turn, makes an angle of 15 degrees to the lower arm,
as shown in Fig. 7.3.

Simulations

Computer simulation programmes of the quarter-car suspension model were developed
via the computer language, AUTOSIM, and simple simulations have been done.

Firstly, point 7 was fixed at the nominal point and point 4 was moved along the track. A
kinematic relationship between the spring/damper unit length and actuator movement,
showing that an actuator movement in an outwards direction increases the preload of the
spring/damper unit until the movement of 0.116 m, is shown in Fig. 7.4.

Secondly, vertical forces were applied to the wheels through point 7 with various
positions of point 4. Relationships between the wheel forces and spring forces for the
various positions of point 4 are shown in Fig. 7.5. (The spring stiffness was 60000 N/m.)
The leverage ratios at the various positions of point 4 are shown in Table 7.2. An
actuator movement in an outwards direction makes the suspension stiffer (increasing the
leverage ratio).
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Overall, both preload and leverage ratio work together in the same direction of actuator
movement. The presented kinematic design will be used for development of a half-car
model, which will be described in the next section of this chapter.

7.2 Development of Half-Car Model

A half-car suspension model, which involves a variable leverage ratio for each wheel, is
shown in Fig. 7.6. The model includes a vehicle body and one wheel on each of the
starboard and port sides. Each side consists of a lower arm, an upper arm, a hub carrier,
a wheel, a spring/damper unit and an inclined track. The model is specified in the
nominal ground coordinates as shown in Table 7.3.

A computer simulation programme of the half-car model was developed via the
computer language, AUTOSIM, and the following representative model parameters have

been used:

Vehicle body mass : be specified later;
Vehicle body inertia : 100 kg m?;

_ Wheel mass : 25kg;
‘Wheel camber inertia : 40 kg m? *;

Suspension spring stiffness : 60000 N/m;
Suspension damping rate : 6000 N/(m/s);
Tyre stiffness : 2000000 N/m **;
Tyre damping rate : 50 N/(m/s);

Weights and levelling of vehicle bodies

Body weight conditions: normal, light and heavy, are specified in Table 7.4. When a
vehicle body mass is specified in the simulation programme, all positions of the
mechanical components converge to the equilibrium states.

Table 7.5 shows the vehicle body height change for each of the three body weight
conditions. (Both starboard and port actuators stay at their nominal positions on the
tracks.)

* ]t was too late to find the mistake of the parameter setting of the wheel camber inertia. The -
parameter should be 1 kg m’. However, the mistake does not affect seriously the following
simulation results, as described in Appendix B. ** The parameter was adopted in order to avoid

unnecessary body roll caused by tyre deformations.



77

The positive displacement of the vehicle body is downwards and negative is upwards.
As shown in Table 7.5, the vehicle body sags with the normal and heavy body weight
conditions and it jacks up with the light body weight condition.

Presumably, the body height is controlled by symmetrical actuations on the starboard and
port sides. The two actuations work at point 4 and point 12, horizontally, and each point

moves along the inclined tracks on the starboard and port sides, respectively, as shown in
Fig. 7.7.

Table 7.6 shows the starboard actuator movements for the three body weight conditions,
maintaining the nominal body height. It was shown that in order to maintain the nominal
body height, each actuator moves in an outwards direction for the normal and heavy

body weight conditions, while they move in an inwards direction for the light weight
condition.

Free vibrations

Free vertical vibrations of the vehicle bodies with the three body weight conditions were
investigated. Both starboard and port actuators were fixed at the equilibrium positions,
which maintaining the nominal body height, for each body weight condition (see Table
7.6). An external vertical force was applied to each body mass for 0.5 second and was
then released. Body height responses for the three body weight conditions are shown in
Fig. 7.8. Each natural frequency was calculated via a Fourier analysis and the range of
the natural frequencies obtained, 1.e. 0.82-0.90 Hz, might be of potential benefit for ride
comfort (see Table 7.7). The frequency pattern is the reverse of ordinary suspension
characteristics. There may be design possibilities of a constant natural frequency.

Lateral and side forces

Forces acting on the half-car model during cornering are shown in Fig. 7.9. Three lateral
forces act in the same direction through the body mass centre, starboard wheel mass
centre and port wheel mass centre, respectively, while two side forces act in the opposite
direction through the ground touching points of the starboard wheel and port wheel,
respectively. The lateral forces are given by:

F,=M,-L, (through the body mass centre), (7.2)
Fyow =M,y - L, (through the starboard wheel mass centre), (7.3)

Fpy =M, -L, (through the port wheel mass centre), (7.4)
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where L, is the lateral acceleration caused by cornering. The side forces of the starboard
and port wheels are given by:

Srs =€ (Fy + Fygy + Fpy ), (7.5)

frp =—(1=8) (Fy, + Fygy + Fypy), (7.6)
respectively. & is the load transfer ratio given by:

— FZS
F,,+F,"’

g (1.7

where Fzs and Fzp are the vertical forces through point 7 and point 15, respectively. The
division of the lateral forces between port and starboard sides would not, in practice, be
exactly proportional to the vehicle loads. This is a simplification, made for convenience.

7.3 Control Scheme

As described in the previous section of this chapter, body height can be controlled by
symmetrical actuations on the starboard and port sides. In a similar way, we can think
that body roll can be controlled by anti-symmetrical actuations. The feedback control
scheme here involves body roll and height controls, and we must be concerned with how
to measure the body height and body roll in a practical way.

Sensing system

Fig. 7.10 shows a vehicle body, which involves a movement in the Z direction and a
rotation in roll. The body movement and displacement of the body mass centre, Z;, are
identical but it can not be measured practically. (It can be measured via very expensive
equipment, e.g., optical height sensor.) However, supposing there are two measurable
displacements at points, Ps and Pp, which are located at a distance of dy from the mass
centre on the starboard and port sides respectively, we can measure both the body
movement and rotation as follows:

When the vehicle body moves and rotates, the displacements of Ps and Pp, will be:
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Zy=2Z,+dy 9, (7.8)
Z,=2,~d, ¢, (7.9)

respectively. Therefore, the displacement of the body mass centre, Z,, and the body
rotation, ¢, can be obtained by:

Z,=(Z;+2,)12, (7.10)
6=(Z;-2,)/24,. (7.11)

Zs and Zp can be measured by wheel/body displacement sensors on the starboard and
port sides. The starboard displacement sensor is located between P; and Ps. The port
displacement sensor is located between P;; and Pis. Zsand Zp are:

Zs =\dy|, - |ds); (7.12)

Z, =|ds|, ~|d,| (7.13)

respectively. ldglo is the magnitude of the nominal distance between P; and Ps, and
l dp l o is the magnitude of the nominal distance between P;; and Pig4.

P + D body height and roll controls

A detailed control scheme is shown in Fig. 7.11. Outputs of the wheel/body
displacement sensors on the starboard and port sides, Zs and Zp, are fed back through
both the height and roll controllers. The height change can be calculated by the sum of
the sensor outputs, while the roll can be calculated by the difference between them. Each
controller involves a proportional and a differential gain. The output from the height
controller determines symmetrical actuator velocities on the starboard and port sides,
while the output from the roll controller determines anti-symmetrical actuator velocities.
The actuator velocity commands on the starboard and port sides are:

Vs =G (Zs +Zp)+G2(Zs +ZP)+G3(ZS —Zp)+G4(Zs —Zp),
) ) . ) (7.14)
VP = _GI(ZS +ZP)_G2(ZS +ZP)+G3(ZS —ZP)+G4(ZS —ZP)a

respectively.

The details of computer programming in AUTOSIM corresponding to the above system
and the equations created are described in Appendix C.
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7.4 Simulation Results

Ramp lateral force inputs were applied to the half-car model through the body (loaded
with a body mass of 665 kg) and two wheels. The lateral accelerations corresponding to
the force inputs, the maximum value of which is 7.848 m/s® (0.8 G), is shown in Fig.
7.12. These inputs may provide a similar circumstance to a maximum steering wheel
input velocity of 270 degrees/second.

Sensor outputs were fed back through both height and roll controllers and each control
signal was sent to a distributor circuit, where the outputs determined actuator velocity
commands on the starboard and port sides. Control gains, which were chosen by trials,
are: G; = 0.22 (m/s)/m, G, = 0.02 (m/s)/(m/s), Gz = 2.89 (m/s)/m and G; = 0.78
(m/s)/(m/s).

Fig. 7.13 (a) and (b) show the starboard and port actuator movements of the P + D
controlled system from each equilibrium position, respectively. Fig. 7.14 shows a
comparison between body height responses of the P + D controlled and passive systems.
In the passive system, both starboard and port actuators were fixed at the equilibrium
positions. Fig. 7.15 shows a comparison between body roll'responses of the P + D
controlled and passive systems.

From the results obtained, the P + D controlled system removes steady state error of the
body height change and body roll during 0.8 G comering. In particular, the P + D
controlled system dramatically improved on the roll response when compared with the
passive system. However, it caused a severe overshoot of the body height change, which
should be reduced.

7.5 Conclusions

It was shown how the leverage ratio, i.e. that of the spring/damper unit length change to
the wheel displacement, can be varied by actuation which is substantially perpendicular
to the suspension force. The developed half-car model, which involves the variable .
geometry, demonstrated that the nominal vehicle body height was maintained by
symmetrical actuations on the starboard and port sides for the various vehicle weight
conditions.
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The P + D controlled system successfully removed steady state error of both the body
height change and body roll for ramp lateral force inputs, which involved maximum
lateral acceleration of 0.8 G. Although the P + D controller was one of the best
performing controllers in the author's trials, it caused a severe transient response of the

body height change. This weakness may be reduced by a learning control system, that
will be described in the next chapter.

Table 7.1 The nominal ground coordinates of the points in the
quarter-car variable geometry suspension model

Point | Yaxis (m) | Z axis (m) | Description

0] 0 0 Ground coordinate system origin

1 0.3 -0.15 Lower arm inner pivot

2 0.4 -0.35 Upper arm inner pivot

3 0.485 -0.55 Spring/damper unit top mounting point

4 0.485 -0.165 Spring/damper unit bottom mounting point
5 0.67 -0.5 Upper arm outer pivot

6 0.67 -0.18 Lower arm outer pivot

7 0.75 0 Tyre contact point

Table 7.2 Values of the leverage ratio for the various actuator movements

Actuator movement (m) Leverage ratio (—)

-0.06 0.31

-0.03 0.39

-0.015 0.43

0 0.47

0.015 0.51

0.03 0.55

0.06 0.63




Table 7.3 The nominal ground coordinates of the points in the half-car variable

geometry active suspension model; (S) and (P) denote the starboard and port

sides, respectively
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Point | Yaxis (m) | Zaxis(m) | Description

0] 0 0 Ground coordinate system origin

1 0.3 -0.15 Lower arm inner pivot (S)

2 0.4 -0.35 Upper arm inner pivot (S)

3 0.485 -0.55 Spring/damper unit top mounting point (S)

4 0.485 -0.165 Spring/damper unit bottom mounting point (S)
5 0.67 -0.5 Upper arm outer pivot (S)

6 0.67 -0.18 Lower arm outer pivot (S)

7 0.75 0 Tyre contact point (S)

8 0.75 -0.34 Wheel mass centre (S)

9 -0.3 -0.15 Lower arm inner pivot (P)

10 -0.4 -0.35 Upper arm inner pivot (P)

11 -0.485 -0.55 Spring/damper unit top mounting point (P)

12 -0.485 -0.165 Spring/damper unit bottom mounting point (P)
13 -0.67 -0.5 Upper arm outer pivot (P)

14 -0.67 -0.18 Lower arm outer pivot (P)

15 -0.75 0 Tyre contact point (P)

16 -0.75 -0.34 Wheel mass centre (P)

17 0 -0.5 Vehicle body mass centre

Table 7.4 Vehicle body weight conditions

Light (kg) Normal (kg) Heavy (kg)

Vehicle mass 1000 1000 1000
Petrol 0 60 60
Passengers 0f 60 *2 (people)] 60 * 4 (people)
Luggage 0 0 30
Total 1000 1180 1330

Half mass 500 590 665
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Table 7.5 Vehicle body height change without actuations

for the three body weight conditions

Body weight |Vehicle body mass Vehicle body height
condition kg) change (m)
Light 500 -0.013
Normal 590 0.033
Heavy 665 0.084

Table 7.6 Starboard actuator movements for the three body weight conditions;
maintaining the nominal body height (The port actuator works symmetrically)

Vehicle body mass

Body weight Starboard actuator movement
condition (kg) (m)
Light 500 -0.0058
Normal 590 0.0129
Heavy 665 0.0282

Table 7.7 Natural frequencies of vehicle bodies for the three body weight
conditions (Both starboard and port actuators are fixed at the equilibrium
positions, which maintain the nominal body height, for each body weight

condition)
Body weight | Vehicle body mass| Natural frequency of vertical
condition (kg) vehicle body motion (Hz)
Light 500 0.82
Normal 590 0.86
Heavy 665 0.9
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Chapter 8

Neuro-Control of Variable Geometry Active Suspension
System

In chapter 7, the variable geometry active suspension system was developed and
controlled by P + D body height and roll controllers. Control gains in each controller
were chosen by hand-trials. In this chapter, two neural networks are applied in a similar
manner, but they learn and optimise by themselves to reduce a quadratic cost function to
its minimum value. (I will use the term 'neuro-control' or 'neuro-controller' to refer to the
two neural networks for the body height and roll controls together.)

The first section of the chapter deals with the full system, which includes the vehicle
suspension model and neuro-controller, and the learning process involving a cost
function. The second section describes how a simulation programme can be provided
using the two computer packages, AUTOSIM and MATLAB/Neural Network Toolbox.
In the third section, the learning process is tracked. The performances of the neuro-
controlled system are compared with those of passive and P + D controlled systems
under various conditions, which involves various levels of lateral force inputs and vehicle
body weight changes.

8.1 The System and Learning Process

The full system is depicted diagrammatically in Fig. 8.1 (a). External inputs, i.e. lateral
forces, are applied to the vehicle system. Outputs from the vehicle system are fed back
through the neuro-controller and its outputs determine actuator velocities on the
starboard and port sides. Vehicle states and actuator velocities are used to form a cost
function, which is used, through the optimisation process, to update the weighting
parameters of the neuro-controller.

The vehicle system can be represented in the following standard difference equation
form:



93

x((n+1)T) = @ (x(nT),u(nT),v (nT)),

8.1)
y(nT) =¥ (x(nT)),

where n and T denote discrete step number and discrete sampling time, respectively. The
ten states of x, the four outputs of y, the control inputs, #, and the external disturbance

inputs, v, are:
state vector, Xx: x;: vehicle body height change;

xz:  vehicle body roll;

x3: lower arm (S) rotation relative to vehicle body;

x4: wheel (S) rotation relative to lower arm (S);

xs: lower arm (P) rotation relative to vehicle body;

xs: wheel (P) rotation relative to lower arm (P);

x7: vehicle body height speed;

xg: vehicle body roll rate;

x9: lower arm (S) rotation speed relative to vehicle
body;

x10: lower arm (P) rofation speed relative to vehicle
body;

where (S) and (P) denote the starboard and port sides, respectively.

output vector,y:  y;: sum of wheel/body displacements on the starboard
and port sides;
y2:  sum of wheel/body velocities on the starboard and
port sides;
y3: difference between wheel/body displacements on
the starboard and port sides;
ys: difference between wheel/body velocities on the

starboard and port sides;

control input, u: u,: starboard actuator displacement;

up: port actuator displacement;

disturbance inputs, v:  lateral forces applied to the body and wheels.
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The vehicle parameters were described in section 7.2 in chapter 7. Each lateral force
input, v; (j = 1,2,3), is considered as one batch of a ramp input having N data points in
discrete-time:

im0 <iT<0.5)
v;@T)=9 05 ° , ' (8.2)
v, (O5<iT<NT)

where v; rises linearly to the maximum value of v; . in 0.5 second and then is constant.

The controller involves two multi-layer neural networks for body height and body roll
control, respectively, as shown in Fig. 8.2. Each network includes; 2, 3 and 1 elements
in the input, hidden and output layers, respectively. Two outputs from the vehicle
system, y; and y,, are fed back through the network for the height control and its output
determines symmetrical actuator velocities on the starboard and port sides, while the
other two outputs, y; and ys, are fed back through the other network and its output
determines anti-symmetrical actuator velocities.

The actuator velocities on the starboard and port sides can be represented by:

u(nT) = F, (y(nT),w(nT)), (8.3)

where the weighting vector, w, involves all of the weighting parameters of the two neural
networks. '

Using the following transform equation:

() = DD D), (8:4)

the actuator displacements can be represented by:

u((n+DT)=unT)+T F,,(y(nT),w(nT)). (8.5)
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Cost function and learning process
The system performance is assessed by a quadratic cost function of the form:

N

1 . .
J =7v-2(q, x2(nT) + g, x,"(nT) + ¢, 1> (nT) +q, i, (nT)),  (8.6)

n=l

where g; = 26013, g, = 6096, g3 = 300 and g, = 300, as chosen by author's trials. The
cost function can be written:

J(nT)=% ilq(x(iT),u(iT)), 8.7)

i=n—-N+1

where I, is a quadratic function. The weighting vector, w, is updated by the gradient
method in order to reduce the cost function. The update rule is:

w((n+1T) =w((n— N +1)T) + Aw(nT), (8.8)
where
_ s 9J(@T)
Aw(nT)=-06 3 wiD)

8§ & (9 1,x(GT).u0T)) 9 x(T) 0 I, (x(T),uGT)) 9 a(iT)
—W,.E;H( 3 x(T)  owGT)  9a(T) o w(iT)}

3 is the learning rate and Aw is the weighting vector update. The gradient, 3 J(nT) /0
w(nT), is evaluated over the interval, [n - N + 1, =], i.e. one batch. The weighting
vector is updated at the step, n + 1. The sequence of the weighting vector updates in
discrete-time is shown in Fig. 8.3.

A block diagram, showing the generation of the gradient, d J(nT) /0 w(nT), is shown in
Fig. 8.1 (b). The Jacobians, d I,(nT)/d x(nT) and d I (nT)/d u(nT) are the partial
derivatives of the cost function with respect to the state vector elements and actuator
velocities at step, n, respectively. These are obtained by simple differentiation. The
Jacobians, 0 x(nT) /0 w(nT) and 9 u (nT) /0 w(nT), are the partial derivatives of the
state vector elements and actuator velocities with respect to the weighting parameters, .’
respectively. These are obtained by the partial differentiation of equations (8.1), (8.3)
and (8.5) with respect tow as:
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Jx 0P Jdx 0D Jdu . v _

a—w((n + 1)T) = a—x- a_w (l’lT) +3;5;(11T), since ﬁ = O, (89)
9y .y 9Y 9x 8.10
3w D=5, (8.10)

8.11)

ou 0F,,(y(nT),w(nT)) oy 0 F,, (y(nT),w(nT))
—(nT) = NN . T NN
aw D 3 y(T) ow YT e

9% (e DTy = 2% Ty + T- 22 (a1, (8.12)

ow aw aw

where 0 ®(nT) /0 x(nT) and @ ®(nT) /0 u(nT) are the sensitivities of the functions, @,
with respect to the state vector elements and actuator displacements, respectively. o
Y (nT) /0 x(nT) denotes the sensitivities of the functions, ¥, with respect to the state
vector elements. These three sensitivity matrices vary according to the values of x and u
(In the simulation programme, these three sensitivity matrices are updated every time
step, as described in the next section of this chapter). JdFyn(y(nT),w(nT))/dy(nT) and
OFny (y(nT),w(nT))/0 w(nT) are specified in Appendix D and are calculated in a similar
manner to that of the standard back-propagation algorithm taken from the literature
(Hagan, Demuth and Beale, 1996).

8.2 Simulation Programme

The half-car variable geometry active suspension model was developed via the computer
language, AUTOSIM, which automatically provides a computer simulation programme.
The provided simulation programme involved the vehicle equations (8.1) and it was
written in FORTRAN. On the other hand, the neuro-controller was provided via the
- computer package, MATLAB/Neural Network Toolbox.

Nevertheless, the vehicle equations written in FORTRAN can be converted to a
MATLARB function-file. (MATLAB function-files may be used in a similar manner to a
subroutine of a FORTRAN programme.) Therefore, it was decided that the full system
would be implemented via one simulation programme in MATLAB code.

A flowchart of the simulation programme of the full system is shown in Fig. 8.4. This
simulation programme involves the following MATLAB function-files:
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FCT.M
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This function-file contains the pre-computing of constants for the
vehicle equations.

This function-file computes the vehicle equations using the pre-

computed constants given by PCCOMP.M' and a numerical
integrator.

Each of 'PCCOMP.M' and 'FCT.M' was converted from the corresponding subroutine of
the FORTRAN programme, which was provided via AUTOSIM.

PCSENS.M

SENS.M

This function-file contains the pre-computing of constants for
vehicle sensitivity matrices.

This function-file computes the vehicle sensitivity matrices: 0 ® /0
x,d ® /d u and 0 ¥ /0 x, according to the operating states and
inputs, using the pre-computed constants given by 'PCSENS.M'.

AUTOSIM involves an option to automatically compute these sensitivity matrices, and
write the elements of the matrices into a file in the form of MATLAB. Each of
'PCSENS.M' and 'SENS.M' is a part of such a file.

JACOB.M

NECON.M

ERR.M

WUPDATE.M

LACC.M

This function-file computes equations (8.9) and (8.10).

This function-file contains both forward and back propagation of
the neuro-controller. The former provides u and # with equations
(8.4) and (8.5) respectively, while the latter provides 0 u /0 w and 0
u /0 w with equations (8.11) and (8.12) respectively. This
function-file involves M-files from MATLAB/Neural Network
Toolbox, e.g. TANSIG.M' (tangent sigmoid function).

This function-file calculates the cost function.

This function-file contains the update of the neuro-controller
weighting parameters.

This function-file generates the lateral force inputs given by
equation (8.2). '
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8.3 Simulation Results

Firstly, each of two neural networks learned to mimic the relevant input-output
relationship of each of the P + D height and roll controllers, which were described in
chapter 7. The neuro-controller successfully achieved to perform the P + D control
system as described in Appendix E. '

Secondly, the neuro-controller was installed into the system and learned to reduce the
cost function (8.6). The batch lateral force inputs, involving maximum lateral
acceleration of 7.848 m/s® (0.8 G) depicted in Fig. 8.5, were repeatedly applied every 4
seconds to the vehicle system loaded with a body mass of 665 kg. The cost function was
successfully reduced from the initial cost, 4.5, to the final cost, 1.8, in 4612 seconds
(1153 batches).

Fig. 8.6 (a) shows a comparison between starboard actuator responses with the neuro-
control and P + D control. Fig. 8.6 (b) shows a comparison between port actuator
responses in a similar manner.

Fig. 8.7 (a) shows a comparison between vehicle body height responses with the neuro-
control and P + D control. Fig. 8.7 (b) shows a comparfson between vehicle body roll-
responses in a similar manner.  From these figures, the neuro-control not only
dramatically reduced overshoot of the vehicle body height change, but also improved on
the body roll response.

The neuro-controller was tested for various conditions, which involve different levels of
ramp lateral force inputs and vehicle body weights.  Table 8.1 shows an overall
comparison between neuro, P + D, and passive systems in the vehicle responses: body
height change, body roll and actuator movements; and cost under the various conditions.

From the table, the neuro-control reduces the overshoots of body height change and
body roll, and achieves the minimum cost function in each condition.

8.4 Conclusions

It was shown how the neuro-controller is trained to optimise the performance of the
variable geometry active suspension system. The two computer packages, AUTOSIM
and MATLAB/Neural Network Toolbox, can be used together for the purpose. ( The
computer package, SIMULINK, may be an alternative. It will be described in chapter 9.)
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The neuro-controller successfully reduced the cost function and, particularly, it improved
the transient response of the body height change under all conditions tried, which involve
various levels of ramp lateral force inputs and vehicle body weight changes.

One final point which needs to be clarified is the power consumption. This will be taken
up in the next chapter.
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Table 8.1 Overall comparison between neuro-control, P + D control and passive
systems in vehicle responses: vehicle body height change, body roll and actuator

movements; and cost function

Condition Control Body height change (mm) Body roll (deg)
system Overshoot* | Steady state | Overshoot* | Steady state
Condition 1 | Neuro -10.
08G . . . .
665 kg No-control -4.0 -11.7 0.9 8.1
Condition2 | Neuro - | 21 .0
04G P+D
665 kg No-control
Condition 3 | Neuro
02G P+D
665 kg No-control
Condition 4 | Neuro -
08G P+D .
590 kg No-control -3.4 -9.5
Condition 5 | Neuro 2.1 -0.0
04G P+D -6.4 -0.4
590 kg No-control -0.7 -1.8
Condition 6 | Neuro -0.5 0.0
02G {P+D -1.5 -0.1
590 kg No-control -0.2 -0.4
Condition Control Starboard actuator (mm) Port actuator (mm) Cost
system Overshoot* | Steady state | Overshoot* | Steady state
Condition 1 | Neuro 1.8 4610 :
08G P+D 14.2 47.1
665 kg No-control
Condition 2 | Neuro 0.2 25.2
04G P+D 1.2 254
605 kg No-control
Condition 3 | Neuro 0.1 132 v ,
02G P+D No-over** 13.2 No-over**
665 kg No-control :
Condition 4 | Neuro 5.1 399 109
08G P+D 14.3 40.0 No-over**
590 kg No-control
Condition 5 | Neuro 0.7 22.0 1.6
04G P+D 1.8 22.2 No-over**
590 kg No-control
Condition 6 | Neuro 0.3. 11.6 L0085
02G P+D 0.2 11.6 No-over**
590 kg No-control

*Qvershoot : difference between transient response and steady state.

*#¥No-over : no-overshoot, where transient response is smaller than steady state.
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Chapter 9

Energy Consumption of Variable Geometry Active
Suspension System

This chapter considers the modelling and simulation of an actuator system, which is
expected to be installed at each wheel station of the variable geometry active suspension
system; using the computer simulation package, SIMULINK.

The first section of the chapter presents general information on the model building and
simulation via SIMULINK. In the second section, an actuator model is built in
SIMULINK's block diagram window, and it is described through the four parts: motor
“speed control, motor current control, electric motor circuit and mechanical system. The
third section provides simulation results showing power and energy consumption of the
variable geometry system, with either the P + D control or the neuro-control system.
These are compared with those of other actively-controlled suspension systems taken
from the literature, under similar circumstances, i.e. that involving 0.8 G cornering.

9.1 SIMULINK

SIMULINK is a computer package for simulating dynamic systems as an extension to
MATLAB. SIMULINK has two phases of use, model building and simulation.

SIMULINK facilitates the model building via block diagram windows, in which models
are created and edited principally by mouse driven commands. Building a system is
much like drawing a block diagram. Instead of drawing the individual blocks, they are
copied from either block libraries supplied with SIMULINK or block libraries which we
define ourselves.

The feedback control scheme of the variable geometry active suspension half-car model, .

which consisted of the P + D control system in chapter 7 or the neuro-control system in
chapter 8, can be converted to SIMULINK's block diagram window, as shown in Fig.
9.1. This model involves three MATLAB function-files called: 'CONTROLLER.M',
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'PCCOMP.M' and 'VEHICLE.M'. 'CONTROLLER.M' contains either the P + D
control, which was represented by equation (7.14), or the neuro-controller with optimal
weighting parameters, whose function form was represented by equation (8.3).
PCCOMP.M' was already described in section 8.2 in the previous chapter.
‘VEHICLE.M' involves differential equations of the suspension model. The differential
equations were converted to a MATLAB function-file from the corresponding

subroutine of the FORTRAN programme, which was automatically generated via
AUTOSIM.

In simulations, such differential equations are integrated; SIMULINK provides a number
of integration methods, e.g. Runge-Kutta third and fifth-order methods, Euler's method,
etc. In practice, a simulation result, provided via SIMULINK's variable geometry
suspension with a controller model using the Runge-Kutta third-order method, agrees
with that of the corresponding FORTRAN programme using the Runge-Kutta second-
order method. Therefore, it is not necessary to show these results in figures.

9.2 Actuator Model

SIMULINK's block diagram window showing the actuator model for a single wheel
station is shown in Fig. 9.2. (There will be four actuator models in order to represent a
full car system having four wheels.) The actuator model can be described through the
following four parts: motor speed control, motor current control, electric motor circuit
and mechanical system.

Motor speed control

An actuator velocity demand is used, through the inverted leadscrew gear ratio (this will
be described later on) and a D.C. speed transformer, to provide the motor speed demand
signal. The actual motor speed feedback signal is provided through a D.C.
tachogenerator, and the feedback signal is compared with the demand signal in the
speed-error amplifier. The resulting speed-error signal is amplified by the gain, K, and
the output determines the motor current demand signal.
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Hence, if the actual motor speed is less than the desired speed, the speed-error amplifier
will demand current in proportion to the speed error; the motor will therefore accelerate
in an attempt to minimise the speed error. As the motor speed comes up to the desired
speed, the speed error reduces; and the final speed is approached smoothly.

Motor current control

A current feedback signal is obtained via a D.C. current transformer, and it is compared
with the motor current demand signal in the current-error amplifier. The resulting
current-error signal is amplified by the gain, Kp, and the output determines the motor
driving voltage, V.

Electric motor circuit

The motor driving voltage, V, is combined with the motor back-e.m.f., E, which is
generated in proportion to the motor speed, 6, to oppose the driving voltage. The
back-e.m.f. is represented by:

E=KJ, ©.1)

where K, is the motor back-e.m.f. constant in Vsec/rad. The combined voltage governs
the motor current, I, through the motor resistance, R. The voltage equation is:

or V=E+IR. (9.2)

Multiplying equation (9.2) by the current gives the power equation as:

Electrical Input Power (VI) (9 3)
= Mechanical Output Power (EI) + Power Loss (I’R).

I will use the term 'power’ to refer to the electrical input power, VI; which is the sum of
the mechanical output power and the power loss as described in equation (9.3). The
energy consumption can be represented by the integration of the power:

W=JVI de. : 9.4)

The electromagnetic torque, Ty, is generated in proportion to the motor current, I:
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Tu=Krl, (9.5)

where K7 is the electromagnetic torque constant in Nm/A. The motor responds to the
electromagnetic torque and the load torque, which opposes the electromagnetic torque,
by accelerating the motor armature of inertia, j:

#=T,-1,. (9.6)
The load torque, T}, is related to the mechanical load as described below.

Mechanical system

The mechanical arrangement of an actuator for a single wheel station is shown
diagrammatically in Fig. 9.3. The actuator velocity, y,,, is related to the motor speed,

6 , through a leadscrew gear ratio:
5. =@ rtana, (9.7)

where r is the radius of the screw and « is the helix angle.

When the slider moves on the track, a friction force occurs to oppose the action. The
friction force is:

Fii. = WF,,, cos@ tanh(Y y,,), (9.8)

where | is the friction coefficient between the surfaces of the slider and the track; Fyy., is
the strut force; @ is the angle between the direction of the strut force and the line, which
is at a right angle to the track; and 7y is the shaping parameter. This friction function is
illustrated in Fig. 9.4, where L = 0.06, ¢ = 0 and 'y = 1000.

The mechanical load is represented by:
Load = F, , cos® tanh(y y,,)+F,,, sin@, 9.9)

where the first term on the right side of the equation always opposes the actuation. On
the other hand, the second term (which is a component of the strut force acting parallel -
to the track) opposes the actuation when the actuation is towards the wheel, but they
work together when the actuation is towards the vehicle body.
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Nevertheless, a simplification can be made by the neglect of the angle, ¢, for
convenience. Therefore, the simplified load is:

Load = p Fy,,, tanh(y y,,)- (9.10)

The equation (9.10) expresses that multiplying the friction function, ptanh(y y,,), by

the strut force gives the load, i.e. the friction force. The equation (9.10) is involved in
the SIMULINK model.

When the leadscrew is loaded, the work for one rotation of the load torque is:

2n T, = 2n rtano X Load+ 2r X Friction Torque . 9.11)

The friction torque is:

Friction Torque = r X Friction Coefficient of Leadscrew x Load (9.12)

= rtan X Load,
where B is the friction angle of the leadscrew. -

Substitution of (9.12) into the last term of (9.11) then yields:

2n 7, =2mn rtan o X Load+ 27 rtan B X Load (9.13)

=T, =rtan(ot + ) X Load.

Hence the load torque, 77}, is related to the mechanical load through the Torque/Load
ratio, r tan(o +f); strictly speaking, the leadscrew is irreversible, if the helix angle and
friction angle have the relationship, o < B.

In SIMULINK’s actuator model, the following representative model parameters have

been used:
D.C. current feedback transformer : K.r=02V/A;
D.C. tachogenerator (D.C. motor speed transformer) : K., = 0.05 Vs/rad ;
Speed control gain : Ks=20V/V;

Power amplifier gain: Kp =20 V/V;
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Motor back-e.m.f. constant : K.=0.09 Vsec/rad ;
Electromagnetic torque constant : Kr=0.09 Nm/A ;

Motor inertia : j=0.001 kgm®;

Motor resistance : R=1Q;

Mean radius of leadscrew : r=0.005m;

Leadscrew helix angle : o= 0.087266 rad (=5 deg) ;
Leadscrew friction angle : B =0.087266 rad (=5 deg) ;

Friction coefficient between the slider and the track : p = 0.06.

9.3 Simulation Results

Firstly, SIMULINK's half-car mode], involving the variable geometry active suspension
~ with control system, is simulated. (see Fig. 9.1) In this model, the actuator demand
velocities govern the actual actuator velocity responses, i.e. the actuators respond,
perfectly, to the demand. When the simulation is completed, the time histories of the
actuator demand velocities and suspension strut forces are stored in the output data

called 'data 1' and 'data 2', respectively. Each data consists of two column-vectors for
the starboard and port sides.

Secondly, SIMULINK's actuator model is used for each side actuators via data 1 and
data 2. (Here, one column-vector of each data is used.) The time-histories of the
actuator velocity, the motor current signal and its demand, the power and energy
consumption are stored as column-vectors for each simulation.

Fig. 9.5 shows the demand velocity and actual velocity response of the starboard
actuator with the neuro-control system under ramp lateral force inputs, which involve
maximum lateral acceleration of 7.848 m/s® (0.8 G); the half-car is loaded with the

vehicle body mass of 665 kg. As shown in this figure, the actuator velocity response
accords with the demand velocity.

Fig. 9.6 shows the motor current demand and the current feedback signals; Fig. 9.7 (a)
and (b) show the power and energy consumption, respectively, in the similar manner.

Table 9.1 shows the power and energy consumption of the starboard and port actuators
with each of the P + D control and neuro-control systems. Each system responds in a
similar manner. From this table, the neuro-controlled system consumes more energy
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than the P + D controlled system on each side of the vehicle. The possible reason is that
the neuro-controller seems to require faster actuator responses than the P + D controller,
see Fig. 8.6 in the previous chapter. Thus, we can compromise the performance and
energy consumption using the cost function (8.6), when we train the neuro-controller.

Table 9.2 shows a comparison between the r.m.s. value of the power with each of three
hydraulic active suspension systems, involving direct actuations between bodies and
wheels, and that of the variable geometry active suspension with either the P + D control
or the neuro-control system. Each system relates to a full-car, having four wheel stations
with four actuators; under a 0.8 G cornering. Data of the hydraulic active suspension
systems are taken from the literature (Williams and Miller, 1994). From this table, the
hydraulic high-bandwidth system requires the lowest power for comering. However, it
requires the highest power among the three hydraulic systems on a straight road as
described by Williams and Miller. On the other hand, if the variable-geometry systems
do not activate on a straight road, they are inherently passive suspensions. Overall, the
variable-geometry systems require low power as compared with the hydraulic systems.

Table 9.3 shows a comparison between the energy consumption of a hydraulic active roll
control system, which involves rotary actuators in the anti-roll bars at front and rear, and
that of the variable geometry active suspension with either P + D control or neuro-
control system. Each system relates to a full-car, having four wheel stations; under a 0.8
G cornering. Data of the active roll control system is taken from the literature (Sharp
and Pan, 1993). From this table, the variable-geometry suspension with the P + D
control system achieves lower energy consumption than the active roll control system,
while the neuro-controlled system consumes higher energy than it. Hence, we can
compromise the performance and energy consumption, as mentioned earlier.

Table 9.4 shows the power and energy consumption of the variable-geometry
suspensions with neuro-control, involving each of three different friction levels between
the sliders and the tracks. Each system relates to a full-car, having four wheel stations
with four actuators; under a 0.8 G cornering. From this table, the system, involving the
larger friction of the mechanical system, requires higher power and energy consumption.
Therefore, when we design the mechanical arrangement of the actuators, it is necessary
to consider the materials of the sliders and tracks.
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9.4 Conclusions

It was shown how the actuator model can be built via the computer simulation package,
SIMULINK.

It turned out that the neuro-control system, which demonstrated better performance than
the P + D control system in the previous chapter, required higher power and energy
consumption for a 0.8 G cornering. Therefore, the controller design may involve a
compromise between the performance and energy cost.

Nevertheless, from the simulation results presented, the variable geometry active
suspension systems require low power and energy consumption as compared with the
other actively controlled suspension systems taken from the literature.
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Table 9.1 Power and energy consumption of the starboard and port actuators of
the variable-geometry active suspension half-car model with each of the P + D
control and neuro-control systems. Each system responds to 0.8 G cornering; the

half-car is loaded with the vehicle body mass of 665 kg

Starboard actuator Port actuator
Control R.m.s. Peak power | Energy * R.m.s. Peak power | Energy *
system power (W) W) consum. (J) | power (W) W) consum. (J)
Neuro 293 1654 431 341 1796 473
P+D 191 1239 221 186 1210 182

* Energy consumption is calculated for 4 second.

Table 9.2 Comparison between the r.m.s. value of the power with each of three
hydraulic active suspension systems, involving direct actuations between bodies
and wheels, and that of the variable geometry active suspension with either the P
+ D control or neuro-control system. Each system relates to a full-car, having
four wheel stations with four actuators; under 0.8 G cornering. Data of the
hydraulic active suspension systems are taken from the literature (Williams and
Miller, 1994)

R.m.s. power (W)
Hydraulic high-bandwidth system 190
Hydraulic low-bandwidth system 1 3829
Hydraulic low-bandwidth system 2 3743
Variable geometry system (neuro) 1268
Variable geometry system (P + D) 754
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Table 9.3 Comparison between the energy consumption of a hydraulic active roll
control system, which involves rotary actuators in the anti-roll bars at front and
rear, and that of the variable geometry active suspension with either P + D control
or neuro-control system. Each system relates to a full-car, having four wheel
stations; under 0.8 G cornering. Data of the active roll control system is taken
from the literature (Sharp and Pan, 1993)

Energy consumption (J)
Active roll control system 1194
Variable geometry system (neuro) 1808
Variable geometry system (P + D) 806

Table 9.4 Power and energy consumption of the neuro-controlled variable-
geometry suspension systems, involving each of three different friction levels
between the sliders and the tracks. Each system relates to a full-car, having four
wheel stations with four actuators; under 0.8 G cornering

R.m.s. power Energy

W) consum. (J)
No-friction 1062 1368
Friction* : L = 0.06, friction angle** : 5° 1268 1808
Friction* : p=0.1, friction angle** ; 5° 1442 2274

* Friction between the sliders and the tracks,
** Friction angle of the leadscrews.
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Fig. 9.1 Feedback control scheme of variable geometry active suspension
half-car model on SIMULINK's block diagram window
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motor

Fig. 9.3 Diagrammatic representation of mechanical arrangement
of an actuator for a single wheel station
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Fig. 9.5 Comparison between the demand velocity and actual velocity response of
the starboard actuator with the neuro-control system under ramp lateral force
inputs, which involve maximum lateral acceleration of 7.848 m/s* (0.8 G); the half-
car is loaded with the vehicle body mass of 665 kg
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Fig. 9.6 Comparison between the motor current demand and current feedback
signals of the starboard actuator with the neuro-control system under ramp lateral
force inputs, which involve maximum lateral acceleration of 7.848 m/s* (0.8 G); the
half-car is loaded with the vehicle body mass of 665 kg
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Fig. 9.7 Power and energy consumption of the starboard actuator with the neuro-
control system under ramp lateral force inputs, which involve maximum lateral
acceleration of 7.848 m/s* (0.8 G); the half-car is loaded with the vehicle body mass
of 665 kg
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Chapter 10

Conclusions

Energy consumption problems in automotive active suspension systems have resulted in
a general lack of commercial enthusiasm for them. One way to tackle the high energy
consumption is to employ low energy system types, which involve variable geometry.
However, the control system design problems are novel, since variable geometry
implies non-linearity.

Multi-layer neural networks can learn to control non-linear systems to reduce cost
functions of general form under external inputs, e.g. road disturbance or lateral forces.
One contribution of this work is to demonstrate how a neural network can be integrated
with a dynamic system physical model to minimise a defined cost function relating to the
controlled system. '

The spring/damper unit length change to the wheel displacement ratio can be varied by
actuation, which is substantially perpendicular to the suspension force. In the variable
geometry design, one end of each spring/damper unit moves on an inclined track of each
lower swing arm of the suspension. The inclined track was designed to ensure that both
preload of the spring/damper unit and leverage ratio change work together in the same
direction resulting from actuator movement. The developed half-car model with the
variable geometry demonstrated that the nominal vehicle body height was maintained by
symmetrical actuation on the starboard and port sides for the various vehicle body
weight conditions. The neuro-controller successfully reduced the cost function
(consisting of the weighted sum of the squares of the body height change, body roll and
actuator velocities) and it improved the responses of the body height change and body
roll under all conditions tried. These involved various levels of ramp lateral force inputs
and vehicle body weight changes.

It turned out via the simulations using the developed actuator model that a variable
geometry active suspension system is economical in energy consumption as compared !
with other actively controlled suspension systems taken from the literature. Since the -
variable geometry system without actuation is a conventional passive suspension, there
appear to be possibilities to work as a passive vibration isolator on a straight road and to
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obtain the benefits of active suspensions - levelling function, body-attitude-control and
preview control for special occasions, i.e. bump and pot-hole. The neuro-controlled
system demonstrated better performance but consumed higher energy than the P + D
controlled system. Therefore, a practical controller design will need to involve

compromise between performance and energy cost. |

As a continuation of the work, the following activities are suggested:

a. A full-car model, having four-wheel stations with variable geometry, could be
developed in the computer;

b. The full-car model with a neuro-controller could be tested under various levels of
lateral force inputs for roll control performance or longitudinal force inputs for pitch
control performance;

c. The system could be tested as a vibration isolator with cylindrical or cross level road
disturbance input;

d. Preview techniques could be applied to rear suspension control using front suspension
sensors in order to improve on vibration isolation and to cope with bumps and pot-
holes;

e. To improve on learning efficiency, there remains a further investigation of the neural
network learning algorithm, involving the following factors: network structure, the
number of layers, the number of processing elements, transfer function and update
rule of weighting parameters;

f. Detailed design for particular applications from economical cars to special purpose
cars, e.g. military vehicles and off-road vehicles, could be considered. Designs could

be derived from full studies of mechatronic systems and learning control.
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Appendix A

Back-propagation for the Multi-Layer Neural Networks in Chapters 5
and 6 ‘

The architecture of the multi-layer neural network is shown in Fig. 5.2. There are S,
inputs, S, hidden elements and S, =1 output from the network. The input-output
relationship is:

u=Lw S(wlL(x)+b")+b%).

(A.1)
Output from each layer follows as:
Output layer: u=Lw*a” +b*)=w"a"” +b*, (A.2)
where w” is a 1S}, vector, a” is a S;x1 vector and b® has one element.
Hidden layer: a”=8@@a™), (A.3)
where a® =whx +b",

w' is a §)xS, matrix, x is a S,x1 vector and b is a Sx1 vector.

Solving d Fyn(x,w)/d w, partial derivatives of u with respect to the weight parameters
and biases are given for each layer as follows:

Output layer: Partial derivatives of u with respect to & th weighting parameter and bias
are:
du " ou

=da s
8 WRl,h ’ a le

=1, respectively . (A.4)

Hidden layer: Partial derivatives of u with respect to the weighting parameter (between
p th element at the input layer and % th element of the hidden layer) and h th bias can be:
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ou odu da’y 9a™,

awh, 09a's da™n dw" i,

(A.5)

=wfin S,(a*Hh) X,

du _du da’s da™
ath,p aa”;, aa*”h ath,p

=w”un S(a1) 1,

respectively. Solving d Fyn(x,w)/0 x, partial derivatives of u with respect to x are given

as:

du_2 u.BaH _aa*H
dx da” 9a Ox (A.6)

=w® §’(a™) wh,

where S’(a*") is a $;xS), diagonal matrix._
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Appendix B

The Error due to the Mistake of the Parameter Setting

In chapter 7, the value of the wheel camber inertia was set to 40 kg n’, incorrectly. The
parameter value should be 1 kg m’. However, the mistake was found too late to correct
it. Therefore, simulation results with the wheel camber inertia of 40 kg m® and 1 kg m?
are compared in this appendix to establish that the results are not critically affected.

Fig. B.1 shows a comparison between the vehicle body height responses of passive half-
car models with the wheel camber inertia of 40 kg m” and of 1 kg m® under ramp lateral
force inputs, which involve maximum lateral acceleration of 0.8 G. Fig. B.2 shows a
comparison between the vehicle body roll responses in a similar manner.

From these figures, it can be concluded that the mistake does not affect these calculation

results seriously.

0.000 r \

-0.005
3 -\ ,
= 0010 [ ==
2 : 7
o -0.015 R
Q -
s : |
o -0.020 f :
T - —wheel inertia: 40 kg-m2
N . ,
g -0.025 : — =wheel inertia: 1.0 kg-m2 |~
m . .

-0.030

-0.035 L -

0.0 1.0 2.0 3.0 4.0

Time (second)

Fig. B.1 Comparison between the vehicle body height responses of passive half-car
models with the wheel camber inertia of 40 kg m’ and of 1 kg m” under ramp

lateral force inputs, which involve maximum lateral acceleration of 0.8 G.
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2.0 / H ;
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Fig. B.2 Comparison between the vehicle body roll responses of passive half-car
models with the wheel camber inertia of 40 kg m* and of 1 kg m’ under ramp
lateral force inputs, which involve maximum lateral acceleration of 0.8 G.
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Appendix C

Model Building of Variable Geometry Active Suspension System using

AUTOSIM

Firstly, there is the AUTOSIM programme of the variable geometry active suspension
system described in Chapter 7. Secondly, there is the Rich Text Format file, written by
AUTOSIM. The file was read by MICROSOFT WORD and printed from it.

AUTOSIM programme for variable geometry active suspension system

(Programme name: Hal21r)

; AUTOSIM PROGRAM FOR VARIABLE LEVERAGE RATIO
;ACTIVE SUSPENSION SYSTEM ‘
;HALF CAR MODEL

; WRITTEN 24/9/97 BY YUKIO;

(reset)

(setsym *multibody-system-name* "HAL21r")
(s

(add-gravity :direction [nz])

(setsym *no-zees* t)

;ADD INITIAL POINTS ON BODY N

(add-point p! :name "starboard lower arm inner pivot" :body n
:coordinates (0 y1 z1))

(add-point p2 :name "starboard upper arm inner pivot" :body n
:coordinates (0 y2 z2)) |

(add-point p3 :name "starboard spring damper top mounting point"
:coordinates (0 y3 z3))

(add-point pS :name "starboard upper arm outer pivot" :body n
:coordinates (0 y5 z5))

(add-point p6 :name "starboard lower arm outer pivot” :body n
:coordinates (0 y6 z6))

(add-point p7 :name "starboard tyre contact point” :body n
:coordinates (0 y7 z7))

:body n

(add-point p8 :name “starboard hub carrier centre mass point" :body n
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:coordinates (0 y8 z8))

(add-point p9 :name "port lower arm inner pivot" :body n
:coordinates (0 y9 z9))

(add-point p10 :name "port upper arm inner pivot" :body n
:coordinates (0 y10 z10)) '

(add-point p11 :name "port spring damper top mounting point" :body n
:coordinates (0 y11 z11))

(add-point p13 :name "port upper arm outer pivot" :body n
:coordinates (0 y13 z13))

(add-point p14 :name "port lower arm outer pivot" :body n
:coordinates (0 y14 z14))

(add-point p15 :name "port tyre contact point" :body n
:coordinates (0 y15 z15))

(add-point p16 :name "port hub carrier centre mass point" :body n
:coordinates (0 y16 z16))

(add-point p17 :name "vehicle body centre mass point" :body n
:coordinates (0 y17 z17))

;VEHICLE MAIN BODY
(add-body vehicle :parentn
:name "vehicle body"
:mass Mbod
:inertia-matrix (ixx 0 0)
:cm-coordinates p17
:translate z
:body-rotation-axes x :small-angles t
:parent-rotation-axis x
:reference-axis y)

(add-point vehiclep3 :body vehicle :coordinates p3)
(add-point vehiclepll :body vehicle :coordinates p11)

;STARBOARD SIDE OF VEHICLE

(add-body s_la :parent vehicle :name “starboard lower arm" :mass 0
:inertia-matrix 0 :joint-coordinates pl :body-rotation-axes x
:small-angles t :parent-rotation-axis x :reference-axis y)

(add-body s_ua :parent vehicle :name "starboard upper arm" :mass 0
:inertia-matrix O :joint-coordinates p2 :body-rotation-axes x
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:small-angles t :parent-rotation-axis x :reference-axis y)
(add-point uap5 :body s_ua :coordinates p5)

(add-body s_hc :parent s_la :name "starboard hub carrier" :mass Mwhl
:inertia-matrix (ixxwhl 0 0) :joint-coordinates p6 :cm-coordinates p8
:body-rotation-axes x :small-angles t :parent-rotation-axis x :reference-axis y)

(add-point hep5  :body s_hc - :coordinates pS)
(add-point hep6  :body s_hc :coordinates p6)
(add-point hep7 :body s_hc :coordinates p7)

(add-speed-constraint "dot ((vel(uap5,hcp5)),[vehicley])" :u"ru(s-hc)")
(add-speed-constraint "dot ((vel(uap5,hcp5)),[vehiclez])" :u"ru(s_ua)")

;PORT SIDE OF VEHICLE

- (add-body p_la :parent vehicle :name "port lower arm" :mass O
:inertia-matrix O :joint-coordinates p9 :body-rotation-axes x
:small-angles t :parent-rotation-axis X :reference-axis y)

(add-body p_ua :parent vehicle :name "port upper arm" :mass O
:inertia-matrix O :joint-coordinates p10 :body-rotation-axes x
:small-angles t :parent-rotation-axis x :reference-axis y)

(add-point uapl3 :body p_ua :coordinates p13)

(add-body p_hc :parent p_la :name "port hub carrier" :mass Mwhl
:inertia-matrix (ixxwhl 0 0) :joint-coordinates p14 :cm-coordinates p16
:body-rotation-axes x :small-angles t :parent-rotation-axis x :reference-axis y)

(add-point hcpl3 :body p_hc :coordinates p13)
(add-point hcpl4 :body p_hc :coordinates p14)
(add-point hcpl5 :body p_hc :coordinates p15)

(add-speed-constraint "dot ((vel(uap13,hcp13)),[vehicley])" :u"ru(p_hc)")
(add-speed-constraint "dot ((vel(uap13,hcp13)),[vehiclez])" :u"ru(p_ua)")

;PD CONTROLLED ACTUATIONS AND MOVING POINTS
(setsym s_zdis "mag(pos(p3,p6))-mag(pos(vehiclep3,hcp6))™)
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(setsym p_zdis "mag(pos(p11,p14))-mag(pos(vehiclepl1,hcpl4))")
(setsym ds_zdis "dxdt(@s_zdis)")
(setsym dp_zdis "dxdt(@p_zdis)")

- (add-variables dyvars real smov dsmov)
(add-state-variable smov dsmov 1) &y .
(add-equation difeqn dsmov "G?f){’i(@s_zdis-@p_zdis)+Grc;L‘(@ds_zdis-@dp_zdis) +
[, Ghp*(@s_zdis+ @p_zdis)+Ghd*(@ds_zdis+@dp_zdis)"

:comment "PD controlled differential equations of actuator dynamics (starboard)")

; (add-variables dyvars real pmov dpmov)
(add-state-variable pmov dpmov 1)
(add-equation difeqn dpmov "Grp*(@s_zdis- @p_zdis)+Grd*(@ds_zdis-@dp_zdis)-
Ghp*(@s_zdis+@p_zdis)-Ghd*(@ds_zdis+@dp_zdis)"
:comment "PD controlled differential equations of actuator dynamics (port)")

(set-units bank "a")
(add-point lap4 :body s_la

:name "s. actuatio(npoint"
:coordinates (0 'W' "z4-smov*tan(bank)")
:moving t)

(add-point lap12 :body p_la
:name "p. actuation point"
:coordinates (0 "y12+pmov
:moving t)

" on

z12+pmov*tan(bank)")

;ADD LATERAL FORCE TO VEHICLE CENTRE MASS

(add-table LAcc "lateral acceleration to vehicle body (m/s/s) vs. time" :npts 30
:table-function tabf :yunits "I/t/t"
:values ((0 0) (0.5 7.848)))

(add-line-force centrF :name "lateral force to vehicle body"
:direction [ny] :magnitude "Mbod*LAcc(t)" :pointl vehiclecm)

(setsym Preload "(ini_Mbod*G/2)/ini_dldz)")
(setsym Tpreload "(Mbod/2+Mwhl)*G")
(set-units ini_Mbod "f*t**2/1")



;ADD VERTICAL FORCES

(add-strut s_spdp :name "starboard spring/damper force"
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(]\y)t ’\

:magnitude "-ks*(x-x0)-cs*vH@Preload"

:pointl vehiclep3 :point2 lap4)

(add-line-force s_verF :name "starboard tyre vertical force"
:direction [nz] :magnitude "-kt*(x-x0)-ct*v-@Tpreload"

:pointl hcp7)

(add-strut p_spdp :name "port spring/damper force"

:magnitude "-ks*(x-x0)-cs*v+@Preload"

:point1 vehiclepl1 :point2 lap12)

(add-line-force p_verF :name "port tyre vertical force"
:direction [nz] :magnitude "-kt*(x-x0)-ct*v-@Tpreload"

:pointl hcpl5)

(setsym load_trans "fm(s_verF)/(fm(s_verF)+fm(p_verF))")

;ADD LATERAL FORCES

i ™
F o 1] S
T AR .
n ;‘“"7'757\“ fi P i )
y Yiwoly 4 (I bedd 24"
j;” F _ }v(:g \) ‘,_,\7\ 5 3 ™~ £
L T S TRU TS

(add-line-force s_whlF :name "starboard tyre lateral external force"

:direction [ny] :magnitude "MwhI*LAcc(t)".

:pointl s_hccm)

(add-line-force s_sideF :name "starboard tyre side force"

:direction [ny] :magnitude "-1* @load_trans*(Mbod+MwhiI*2)*LAcc(t)"

:pointl hcp7)

(add-line-force p_whlF :name "port tyre lateral external force"
:direction [ny] :magnitude "MwhI*LAcc(t)"

:pointl p_hccm)

(add-line-force p_sideF :name "port tyre side force"

:direction [ny] :magnitude "-1*(1-@load_trans)*(Mbod+MwhI*2)*LAcc(t)"

:point] hepl5)

;OUTPUT
(add-standard-output)
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(add-out @s_zdis "s_zdis" :long-name "starboard potentiometer displacement"
:body s_hc :units I)

(add-out @p_zdis "p_zdis" :long-name "port potentiometer displacement"
:body p_hc :units 1) .

(add-out @ds_zdis "ds_zdis" :long-name "starboard potentiometer velocity"
:body s_hc :units 1/t) ,

(add-out @dp_zdis "dp_zdis" :long-name "port potentiometer velocity"
:body p_hc :units I/t)

;DIAGNOSTICS
(print-points) (print-coordinates) (print-bodies)

;;;This command is used for the FORTRAN simulation

;;::This command is used to create the RTF file
(dynamics :formalism numerical-lud)

;UNITS AND DEFAULT PARAMETER VALUES
(set-defaults
y10.32z1-0.15y2 0.4 22 -0.35 y3 0.485 z3 -0.55 y4 0.185 z4 -0.015
y50.67 25 -0.5 y6 0.67 z6 -0.18 y7 0.75 z7 0 y8 0.75 z8 -0.34
y9 -0.3 29 -0.15 y10-0.4 210 -0.35 y11 -0.485 z11 -0.55 y12 -0.185 z12 -0.015

y13-0.67 213 -0.5 y14 -0.67 214 -0.18 y15-0.75 2150 y16 -0.75 z16 -0.34
y1702z17 -0.5

ks 60000 cs 6000 kt 2000000 ct 50 _

Mbod 665 Mwhl 25 ixx 100 ixxwhl 40 ini_dldz 0.5 ini_Mbod 590

bank 0.349 Ghd 0.02 Ghp 0.22 Grd 0.7835 Grp 2.8866

iprint 50 step 0.001 stopt 10)

(set-defaults format ""TEXT")

(set-names .
ks "suspension spring stiffness"
cs "suspension damping coefficient"
kt “tyre spring stiffness"
ct "tyre damping coefficient"
Mbod "mass of vehicle body"
Mwhl "mass of wheel"
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. 1xx "inertia of vehicle body"

“ixxwhl "camber inertia of hub carrier”
ini_dldz "initial value of the leverage ratio"
ini_Mbod "mass of vehicle body (nominal condition)"
bank "angle of actuation on coordinate sys. of lower arm"
G_I;p “gain of roll controller regarding body roll" &,
Grd "gain of roll controller regarding roll rate" &,

- Ghp "gain of height controller regarding body height" &,
Ghd "gein of height controller regarding body height velocity" 6,
smov "starboard actuator displacement"
pmov "port actuator displacement")

(write-to-file write-eqs "half21R.rtfy) 7 90

The equations of motion of the system has been written by AUTOSIM in Rich Text
Format (RTF file). The RTF file created has been read into WORD and edited below
(except pre-computed constants): ’

skesfesieske st sk sfesfesiesiesie s sk sie s sfe s s s s s s siesie s s s e sie s s sl s sk sk s sk sk sl sk sk sk sk sk sk sk sk sl sk ke st sk s sk sk

Equations For The Hal21r

Dynamic simulation of hal21r. Version created by AUTOSIM 2.0h on September 24,
1997. Copyright (c) The Regents of The University of Michigan, 1989 - 1995. All
rights reserved. The hal21r is represented mathematically by 14 ordinary differential
equations that describe its kinematical and dynamical behavior. It is composed of 7
bodies, has 4 DOF, and includes 9 forces and 0 moments.

Bodies

" Vehicle body (VEHICLE); parent=N; trans coord = Q1; rot coord = Q)
Starboard lower arm (S_LA); parent=VEHICLE; rot coord = 03
Starboard hub carrier (S_HC); parent=S_LA; rot coord = Q4

Starboard upper arm (S_UA); parent=VEHICLE; rot coord = Q5

Port lower arm (P_LA); parent=VEHICLE; rot coord = Qg

Port hub carrier (P_HC); parent=P_LA; rot coord = Q7

Port upper arm (P_UA); parent=VEHICLE; rot coord = g

Multibody Coordinates
01 Abs. Z trans. of VEHICLEQ (m)
0> Abs. X rot. of VEHICLE (rad)
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03 X rot. of S_LA rel. to VEHICLE (rad)
O4 X rot. of S_HC rel. to S_LA (rad)

0Os X rot. of S_UA rel. to VEHICLE (rad)
Oe X rot. of P_LA rel. to VEHICLE (rad)
07 X rot. of P_HC rel. to P_LA (rad)

03 X rot. of P_UA rel. to VEHICLE (rad)
SMov starboard actuator displacement (m)
PMmov port actuator displacement (m)

Independent Speeds

Uq Abs. Z trans. speed of VEHICLEO (m/s)

Us Abs. X rot. speed of VEHICLE (rad/s)

Us X rot. speed of S_LA rel. to VEHICLE (rad/s)
Uy X rot. speed of P_LA rel. to VEHICLE (rad/s)

Forces

CENTRF Lateral force to vehicle body; Acts on the vehicle body from the inertial
reference through mass center of the vehicle body. Magnitude = Fpsq; Direction = ny.

S_SPDP Starboard spring/damper force; Acts on the vehicle body from the
starboard lower arm through VEHICLEP3 and s. actuation point. Magnitude = -Fjy2;

Direction = (1/(-p¢102 -Pc105 -(Pc100 -Pc103) Smov ~(Pc104 ~Pc106 + (Pc98 + Pc107) Smov)
q3 + (¥4 + Smov) (Pc99 + Smov -Pc98 43) + (24 -Pc97 Smov) (Pc101 -Pc97 Smov + Pcl00
43))0 pcioo vehicley + 1/(-pc102 -Pc105 “(Pc100 -Pel03) Smov -(Pc104 -Pc106 + (Pcog +
Pc107) Smov) g3 + (¥4 + Smov) (P99 + Smov P98 43) + (24 -Pc97 Smov) (Pc101 P97 Smov
+ pe100 g3))03 peog vehicle, -1/(-pc102 -Pc105 -(Pc100 -Pc103) Smov -(Pc104 -Pc106 +
(P98 + Pc107) Smov) g3 + (¥4 + Smov) (Pc99 + Smov -Pc98 43) + (24 P97 Smov) (Pcl01 -
Pc97 Smov + Pc100 43))0> (V4 + Smov) S_lay -1/(-pc102 -Pc105 -(Pc100 -Pc103) Smov -(Pe104
-pc106 + (Pc98 + Pc107) Smov) 93 + (¥4 + Smov) (Pc99 + Smov -Pc98 g3) + (24 -Pc97 Smov)
(Pc101 =Pc97 Smov + Pc100 93))0‘5 (24 -Pc97 Smov) S_laz).

S_VERF Starboard tyre vertical force; Acts on the starboard hub carrier from the
inertial reference through HCP7. Magnitude = -F3; Direction = n,.
P_SPDP Port spring/damper force; Acts on the vehicle body from the port lower

arm through VEHICLEPI11 and p. actuation point. Magnitude = -F4; Direction = -
(1/(c112 + Pc115 + (Pc110 + Pc113) Pmov + (Pc114 -Pcl16 + (Pc108 -Pc117) Pmov) 96 +
(12 + Pmov) (Pc109 + Pmov + Pc108 g6) + (212 + Pc97 Pmov) (P11l + Pc97 Pmov ~Pcl10
46))°%> pci10 vehicley + 1/(pc112 + pe115 + (Pe110 + Pel13) Pmov + (Pell4 -Pells +
(Pc108 -Pc117) Pmov) 96 + (V12 + Pmov) (Pc109 + Pmov + Pc108 96) + (212 + Pc97 Pmov)
(Pel11 + Pc97 Pmov ~Pel10 46))%2 peiog vehicle, + 1/(pei12 + pel1s + (Pe110 + Pel13)
Pmov + (Pc114 -Pc116 + (Pc108 -Pc117) Pmov) 96 + (V12 + Pmov) (Pc109 + Pmov + Pc108 96)
+ (212 + Pc97 Pmov) (Pel1l + P97 Pmov -Pc110 96))%° (V12 + Pmov) P_lay + 1(peii2 +
Pc115 + (Pc110 + Pcl13) Pmov + (Pel14 -Pel16 + (Pc108 -Pcl17) Pmov) 46 + (12 + Pmov)
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(Pc109 + Pmov + Pc108 g6) + (212 + Pc97 Pmov) (P11l + Pc97 Pmov Pel10 96))%5 (z12 +
Pc97 Pmov) P_laz). '

P_VERF Port tyre vertical force; Acts on the port hub carrier from the inertial
reference through HCP15. Magnitude = -F)ys; Direction = n,.

S_WHLF Starboard tyre lateral external force; Acts on the starboard hub carrier
from the inertial reference through mass center of the starboard hub carrier. Magnitude
= Fe; Direction = ny.

S_SIDEF Starboard tyre side force; Acts on the starboard hub carrier from the
inertial reference through HCP7. Magnitude = -F7; Direction = ny.

P_WHLF Port tyre lateral external force; Acts on the port hub carrier from the
inertial reference through mass center of the port hub carrier. Magnitude = Fs;
Direction = ny.

P_SIDEF Port tyre side force; Acts on the port hub carrier from the inertial
reference through HCP15. Magnitude = -F)9; Direction = ny.

Parameters

BANK angle of actuation on coordinate sys. of lower arm (0.349 -)

Cs suspension damping coefficient (6000 -)

Ct  tyre damping coefficient (50 -)

Gup gein of height controller regarding body height velocity (0.02 -)
Gygp gain of height controller regarding body height (0.22 -)

Grp gain of roll controller regarding body roll (2.8866 -)

INI_DLDZ initial value of the leverage ratio (0.5 -)

INI_MBOD mass of vehicle body (nominal condition) (590 -)
LoowaL camber inertia of hub carrier (40 -)

Ixx inertia of vehicle body (100 -)

Ks suspension spring stiffness (60000 -)

Kt  tyre spring stiffness (2000000 -)

Mpop mass of vehicle body (665 -)

Mwy1, mass of wheel (25 -)

Y10 Y coordinate of attachment point for the port upper arm (-0.4 -)
Y11 Y coordinate of VEHICLEPI11 (-0.485 -)

Y12  termin Y coordinate of p. actuation point (-0.185 -)

Y13 Y coordinate of port upper arm outer pivot (-0.67 -)

Y14 Y coordinate of port lower arm outer pivot (-0.67 -)

Y15 Y coordinate of port tyre contact point (-0.75 -)

Y16 Y coordinate of port hub carrier centre mass point (-0.75 -)

Y17 Y coordinate of mass center of composite body VEHICLE (0 -)
Yy Y coordinate of attachment point for the starboard lower arm (0.3 -)
Y Y coordinate of attachment point for the starboard upper arm (0.4 -)
Y3 Y coordinate of VEHICLEP3 (0.485 -)

Y4 term in Y coordinate of s. actuation point (0.185 -)

Ys Y coordinate of starboard upper arm outer pivot (0.67 -)
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Y coordinate of starboard lower arm outer pivot (0.67 -)

Y coordinate of starboard tyre contact point (0.75 -)

Y coordinate of starboard hub carrier centre mass point (0.75 -)

Y coordinate of attachment point for the port lower arm (-0.3 -)

Z coordinate of attachment point for the port upper arm (-0.35 -)
Z coordinate of VEHICLEP11 (-0.55 -)

term in Z coordinate of p. actuation point (-0.015 -)

Z coordinate of port upper arm outer pivot (-0.5 -)

Z coordinate of port lower arm outer pivot (-0.18 -)

Z coordinate of port tyre contact point (0 -)

Z coordinate of port hub carrier centre mass point (-0.34 -)

Z coordinate of mass center of composite body VEHICLE (-0.5 -)
Z coordinate of attachment point for the starboard lower arm (-0.15 -)
Z coordinate of attachment point for the starboard upper arm (-0.35 -)
Z coordinate of VEHICLEP3 (-0.55 -)

term in Z coordinate of s. actuation point (-0.015 -)

Z coordinate of starboard upper arm outer pivot (-0.5 -)

Z coordinate of starboard lower arm outer pivot (-0.18 -)

Z coordinate of starboard tyre contact point (O -)

Z coordinate of starboard hub carrier centre mass point (-0.34 -)
Z coordinate of attachment point for the port lower arm (-0.15 -)

Precomputed Constants

(There are 378 pre-computed constants: from P¢y to Pc378)

Equations Of Motion

Each derivative evaluation requires 456 multiply/divides, 567 add/subtracts, and 25

function/subroutine calls.

define extra variables

Smov =09
Pyvov = Q10

Kinematical equations

01
09
013
04
0's
Q'

=Uj
= U2

= Us |

=-((Pc23 + Pca7) U3 + Uz (Pcaa + Pcas -(Pcao + Pcas) (O3 + 04)))
=Pcap Uz + Uz (P37 -Pca3 (03 + Q4))

=Uy
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07 =-((Pc71+ Pcos) Us+ Uz (-Pcoz + Pcog + (Pces + Pcos) (Qe + 07)))
0's =-(Pcoo Us -Uz (Pcgs -Pco1 (Qs + 97)))

External subroutines and equations for forces and moments

define expression for lateral force to vehicle body
Fym1 = Mpop lace(T)
define expression for starboard spring/damper force

Fuyo =-(Pc1s6 + Pcisg + 1/(Pc16s5 + SMov (Y4 + Pcyg -Pci100 + Pc103 -Pcie61 -Pcie2
+ (1.0 + Pc163) SMov)%3 (Pc172 -Pc173 + (Pci70 + Pc171) SMov) Us -(Pcies +
Smov (Y4 + Pcog -Pcioo + Pcio3 -Pci61 -Pci62 + (1.0 + Pc163) SMov) -(2

Pc104 -2 Pc1o6 + (2 Pci107 + Pci64) Smov) 03)0 Ks)
define expression for starboard tyre vertical force

Fuz = Pci76 + Ct Ur + KT Q1 -Pc178 Q4 + (Pc184 + Pciss + Pcise + Pcig7) Ua +
(Pc187 -Pc18s + Pc189) U3 + (Pc177 -Pci178 + Pc179) Q2 -(Pc178 -Pc179) O3

define expression for port spring/damper force

Fumg = -(Pcis6 + Pci91 -1/(Pc197 + Pmov (Y12 + Pc1o9 + Pci1o + Pc113 + Pc194 +
Pci95 + (1.0 + Pci63) Pmov))03 (Pcaos -Pcaos -(Pc202 -Pc203) Pmov) Us -
(Pc197 + Pmov (Y12 + Pcio9 + Pc11o + Pc113 + Pc19a + Pc195 + (1.0 + Pci63)

Pmov) -(-2 Pci1a + 2 Pciie + (2 Pc117 -Pci9s) PmMov) Q6)0 Ks)
define expression for port tyre vertical force

Fys = Pc176 + Ct Uy + Kt Q1 + Pc2o7 Q7 + (Pc209 + Pc210 + Pe211 -Pc212) Uz -
(Pc212 -Pc213 + Pc214) Us + (Pc206 + Pc207 -Pc208) O2 + (Pc207 -Pc208) Q6

define expression for starboard tyre lateral external force
Fuye =MWHL lace(T)

define expression for starboard tyre side force

- Far =Pyt lace(T) Fys/(Fus + Fus)

define expression for port tyre lateral external force

Fpyg = Mwur lace(T)
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define expression for port tyre side force
Fpo = Pcaie lace(T) (1.0 -Fm3/(Fm3 + Fus))
terms for force array eq. 4

GFra1=-(-Pc312 + Fm3 + Fys + Q2 (U(-Pc264 -Pcae1 SMov -(Pc263 + Pcas2 SMov)
03 + (Y4 + Smov) (Pce9 + SMov -Pcog O3) + (Z4 -Pc97 Smov) (Pcio1 -Pco7
Smov + Pc1oo @3))°° (Zs -Pco7 Smov) @3 Fmz + 1/(Pcago + Pcas7 PMov +
(Pcas9 + Pcass Pmov) Os + (Y12 + Pmov) (Pc1o9 + PMmov + Pcios Q) + (Z12
+ Pco7 PMov) (Pcii1 + Pco7 Pmov -Pciio @) (Zi2 + Pco7 Pmov) Os
Fyma))

Gra2= Pc313 -Q2 (Pc314 + Y17 Fan) -Z17 (Fa + 1/(-Pc264 -Pc261 SMov -(Pc263 +
P62 SMov) 93 + (Y4 + SMov) (Pc99 + SMov -Pcog 93) + (Z4 -Pc97 SMOV)
(Pc1o1 -Pco7 SMov + Pcioo 93))%2 (Pc3os + SMov -(Z4 -Pco7 Smov) 03) Fu
+ /(P60 + Pc2as7 PMmov + (Pc2s9 + Pcasg Pmov) Os + (Y12 + Pmov) (Pc1o9
+ Pmov + Pc1os Q6) + (Z12 + Pco7 Pmov) (Pcii1 + Pco7 Pmov -Pci10 96))0
(Pc309 + Pmov -(Z12 + Pco7 Pmov) O6) Fma) -(Pcass -Pc3 Q4 -Pcog7 (03 +
04)) (Fme -Fm7 -Fpm3 (Q2 + O3 + 04)) + (Pc3o1 + Pcs1 97 -Pc3oo (Q6 + O7) (-
Fmg + Fm9 + Fys (Q2 + Q6 + 97) + Fua (1/(Pc333 + SMov (Pc3st + Pe3so
SMov) -(Pc3s3 + Pc3s2 SMov) @302 (Pc3ss -Pc33s Smov + (Pc3se + Y17
SMov) 03) + 1/(-Pc264 -Pc261 SMov -(Pc263 + Pc262 SMov) O3 + (Y4 + SMov)
(Pc99 + SMov -Pcog Q3) + (Z4 -Pco7 Smov) (Pcio1 -Pco7 SmMov + Pcioo
03))93 (-Pc357 + Pc3sa SMov -(Pc3se + Pc3ss SMov) 93 -(Y4 + Smov) (Pcae7
-Pc265 Q3) + (Z4 -Pco7 SMoV) (Pc265 + Pcae7 O3))) + Fpa (1/(Pc337 + Pmov
(Pc3s8 + Pc3so PMmov) + (Pciso + Pcaso Pmov) 96)0- (Pc3sg + Pcss Pmov +
(Pc339 + Y17 PMoV) Q6) + V(Pca60 + Pcas7 PMmov + (Pc2s9 + Pcass Pmov) Qs
+ (Y12 + PMmov) (Pcio9 + Pmov + Pciog Os) + (Z12 + Pco7 PMmov) (Pc111 +
P97 PMov -Pc110 96))% (-Pc3sa + Pczst PMov ~(Pc3ss + Pcis2 Pmov) Os +
(Y12 + Pmov) (Pca72 -Pc210 Q6) -(Z12 + Pco7 Pmov) (Pc270 + Pca72 Oe))) +
(Pc2sa + Pcags Q3 + Pc3ao Q) (G -Pce (Pc221 Uz + Uz (Pc222 + P17 (O3 +
OMN?) + (Pc297 + Pc29g Q6 + Pc3a1 Q7) (G + Pesa (Pca23 Us + Uz (Peaos -
Pc219 (6 + O7))?) -(Pcag3 + Pca Q4 + Pcaga (03 + Q) (Fy3 + (Q2 + Q3 +
04) (Fme -Fm7) -(Pc296 -Pcs2 Q7 + Pcags (Q6 + 07)) (Fms -(Q2 + Q6 + 07) (-
Fpg + Fp9)) ~(Pc28o -Pc290 93 -Pc342 O4) (G (Q2 + O3 + 04) -Pcs (Pc221 Us +
Uz (Pc222 + Pc217 (Q3 + Q)))?) -(Pc302 -Pc303 Q6 -Pc3as 07) (G (Q2 + O +
07) + Pcs3 (Pca23 Us + Uz (P24 -Pc219 (@6 + O1))2) -(Pc3as + P17 (O3 +
04)) (Fm3 (Pc215 -Pc216 (Q2 + O3 + Q1)) -Fm7 (Pca1e + Pcars (Q2 + O3 +
04))) + (Pc3as -Pc219 (Q6 + 07)) (Fms (Pc277 -Pc218 (Q2 + Q6 + 07)) -FMo
(Pc278 + Pc277 (Q2 + O6 + O7)))
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GFa3= -(1/(-Pc264 -Pc261 SMOV ~(Pc263 + Pc262 SMov) 03 + (Y4 + Smov) (Pcog +
SMov -Pc9g Q3) + (Z4 -Pco7-SMov) (Pc1o1 -Pcy7 SMov + Pcioo 93))9 (-
Pc263 -Pcas2 SMov + (Pc3is + Pcael SMov) O3) Fumz + Fys (P34 -Pcsas (Q2
+ 03 + 04)) -Fp7 (Pc3as + Pc3a7 (Q2 + O3 + 04)) + (Pc24s -Pc3 Q4) (Fue -Fumr
-Fp3 (Q2 + O3 + 04)) + (Pc246 + Pea O4) (Fp3 + (Q2 + O3 + 04) (Fupe -Fm7)) -
(Pc293 + Pcass Q4) (G -Pce (Pc221 Us + Uz (Pc222 + P17 (Q3 + Q4))?) +
(Pc292 -Pc291 O4) (G (Q2 + Q3 + 04) -Pcs (P21 Us + Uz (Pc222 + Pc217 (O3
+ 04)))?))

GFA4= U(Pc260 + Pcas7 PMov + (Pc2s9 + Pcass Pmov) Q6 + (Y12 + Pmov) (Pc109
+ PMov + Pcio8 Q6) + (Z12 + Pco7 PMov) (Pci11 + Pco7 PMov -Pciio Q6))0-5
(-Pc259 -Pc258 PMov + (Pc324 + Pcas7 Pmov) Q6) Fuma + Fys (Pc3a9 -Pcsag
(O2 + 06 + 07)) -Fpm9 (Pc348 + Pc3gg (Q2 + Q6 + O7)) -(Pc2as6 -Pcs1 O7) (-Fus
+ Fpo + Fyrs (Q2 + Qe + O7) + (Pcasa + Pes2 O7) (Fys -(Q2 + Q6 + 07) (-Fus
+ Fpm9)) -(Pc3o6 + Pc299 O7) (G + Pcsa (P23 Usg + Uz (P24 -Pc219 (Qg +
02 + (Pc305 -Pc3os 01) (G (Q2 + 06 + O7) + P53 (Pcaz Us + Uz (Pcana -

Pc219 (@6 + 071

terms for mass matrix, element 4, 4

M1 =Pcaie

M31 = Pc3e9 -Pc2so O2 + Pcags O3 + Pca9g U6 + P340 Q4 + Pc3a1 Q7 -Pcago (2 +
03+ 04) -Pc302 (@2 + 06 + O7)

M2 =M>

M3 = Pc37a + (Pcaga + Pcags O3 + Pc3ao Q) (Pc2g3 + Peg O4 + Pcago (03 + O4))
+ (Pc289 -Pc290 Q3 -Pc342 O4) (Pcags -Pc3 Q4 -Pcag7 (03 + 04)) + (P97 +
Pc298 Q6 + Pc3a1 O7) (Pca9e -Pes2 Q7 + Pc29s (Qs + 07)) + (Pc3o2 -Pc303 O6
-Pc343 O7) (Pc3o01 + Pest Q7 -Pc3oo (Q6 + 07)) + (Pc3a4 + P17 (O3 + O4))
(Pc365 + Pcag1 (O3 + 04)) ~(Pc3as5 -Pc219 (O + O7)) (-Pc367 + P9 (Qs +

7))
M3,1 = Pc293 + Pcage Q4 -Pc292 (2 + O3 + O4)
M3 =M31

M3 = Pc373 + Pc374 (O3 + Q4) + (P293 + Pcage Q4) (Pcas3 + Peoa Q4 + Pcoga (O3
+ Q1)) + (P292 -P291 O4) (Pc28s -Pc3 Q4 -Pcag7 (03 + 04))

My3 =M3) T :

M33 = Pc375 + (Pco46 + Pca Q4) (Pc293 + Pcage Q4) + (Pc4g -Pc3 Q4) (P92 -
Pc291 O4)

My,1 =-(Pc306 + Pc299 Q7 -Pc305 (Q2 + Q6 + 07))

Mi4 =My ' ‘ .

My = -(-Pc376 + Pc377 (Q6 + Q7) + (Pc306 + Pc299 Q7) (Pc296 -Pcs2 Q7 + Pc29s
(Q6 + O7) + (Pc305 -Pc3oa @7) (Pc3o1 + Pes1 Q7 -Pcsoo (Q6 + O7)))

M3 4 =My

M43 =0
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M34=0
My 4 = Pc3g + (Pcosa + Pes2 O7) (Pc3os + P29y O7) + (Pcase -Pes1 Q1) (Pc3os -
Pc3o4 O7)

Set derivatives of extra state variables

Q'9 =Dsmov
010 = Dpmov

sk sk sk sk sfe sk sk sk skoskostesk sk ok sk sk sk sk skoskoskosk sk sk stk sk sk stk skoskoskokosk sk skokokoskok skokokskokoskosk sk sk skosk sk etk skekeoksksk sk sk sk sk sk sk

Above equations and corresponding information between the lines of *****'s have been
written by AUTOSIM. The equations are in the form:

M,, flﬂ+Mm dZZ +M,, dZ3 +M1‘4d—gti =G

M,, -dd%me %+Ml3 d;J; +M,, dZ‘* =Gpyys

M3‘1%Z—l Mmddit2 ‘M3’3 dg: +M,, dZ‘ = Gpys»

M,, %+M4,2%+M4,3 d;]; +M,, dgt“ =G (C.1)

which involve non-linear components.
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Appendix D

Back-propagation for the Multi-Layer Neural Networks in Chapters 8

The architecture of the neuro-controller involving two multi-layer networks for body
height control and roll control is shown in Fig. 8.2. The actuator velocities on the
starboard and port sides are:

(D.1)

R1 R2
) T a’ +a
u =[ul uz] ={ b

—a® g’

where a® and a® are the outputs of the height control and roll control networks,
respectively (superscripts 1 and 2 denote the height control and roll control networks,
respectively). The input-output relationship of each network is the same as the one
which was described in Appendix A. Therefore, the partial derivative of each network
output with respect to a weighting parameter also follows the description in Appendix A.
For example, the partial derivatives of # with respect to & th weight at the output layer of
the height control network is:

Ju a™y
AW, |—a, |’ (D.2)
where a;,is the output of h th element at the hidden layer of the height control network.

Solving 0 Fyn(y,w)/d y, partial derivatives of & with respect to y are given as:

daf daf dar? da®?
9u_| 9y, 9y, 9y, 9y, (D.3)
ay _aaRl _aaRI aakz aaRz s

a}’l a)’2 a}’a aJ’4

where each element in the above matrix follows the description in Appendix A.
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Appendix E

Neural Network Off-Line Training to Mimic the Relevant Input-Output
Relationships of the P + D Controllers

This appendix describes how to mimic the relevant input-output relationships of the P +
D controllers using neural networks.

Firstly, the P + D controllers (i.e. the height and roll controllers in chapter 7) run in the
system (see Fig. 7.11) and an input-output relationship of each controller was sampled in
a look-up data table. The form of the look-up data table involving proportional and
differential inputs and a control output is illustrated in Fig. E.1.

Secondly, each of two neural networks was trained, off-line, to mimic each of the two
look-up data tables in a learning structure depicted in Fig. E.2. Each training proceeded
in order to minimise the error function, J,:

J, =%ie’e(n), (E.1)

n=l

E.2)
" (n) =é—<&"<zz)-aR(n))2, (

where a® and & are the outputs of network and look-up data table, respectively. The
reduction of the error function is shown in Fig. E.3, demonstrating how the neural
network mimics the data of the height controller.

Finally, the trained two neural networks were integrated with the variable geometry
suspension system and the system run under external lateral force inputs involving the
maximum lateral acceleration of 0.8 G. The vehicle responses of the neural-control are
compared with those of the P + D control system in Fig. E.4 showing how accurately the
neural networks mimic the system.
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Input-output look-up data table
(P + D height controller)
data No. inputs output
A
1 x1(1) x2(1) a(1)
A
2 x1(2) x2(2) a(2)
(] e o ]
[ ] e o ]
® e o [ ]
A
n x1(n) x2(n) a(n)
° e o )
L o o [ ]
A
N x1(N)x2(N) a(N)

Fig. E.1 The input-output look-up data table

Input-output look-up data table
(P + D height controller)
data No. mputs output AR
i outpu
input, x 1 1) x2() ) put,  a
2 x12) x2Q2) Q)
. e e .
] [ ] [ ] L ]
. e o *
n x1n) x2(n) :?(n)
[ ] [ ] [ L
L] L ] [ ] [ J
N XIN) x2N)  AN)
+
R
a
Neural Network
Error

function

Fig. E.2 The off-line training structure using the look-up data table
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Fig. E.3 The descending error function, as learning proceeds for the data of the
height controller (Training information: learning algorithm is back-propagation,
2422 weight update, learning rate is 0.39957 and final error is 1.00 x 10
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Fig. E4 Comparison between the P + D control and neural-control (off-line
mimic) in vehicle body responses: (a) height change and (b) body roll; during 0.8 G
cornering (vehicle body mass : 665 kg)



