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Abstract

This thesis considers the neural network learning control of a variable-geometry 
automotive active suspension system which combines most of the benefits of active 
suspension systems with low energy consumption.

Firstly, neural networks are applied to the control of various simplified automotive 
active suspensions, in order to understand how a neural network controller can be 
integrated with a physical dynamic system model. In each case considered, the 
controlled system has a defined objective and the minimisation of a cost function. The 
neural network is set up in a learning structure, such that it systematically improves the 
system performance via repeated trials and modifications of parameters. The learning 
efficiency is demonstrated by the given system performance in agreement with prior 
results for both linear and non-linear systems. The above simulation results are 
generated by MATLAB and the Neural Network Toolbox.

Secondly, a half-car model, having one axle and an actuator on each side, is developed 
via the computer language, AUTOSIM. Each actuator varies the ratio of the 
spring/damper unit length change to wheel displacement in order to control each wheel 
rate. The neural network controller is joined with the half-car model and learns to 
reduce the defined cost function containing a weighted sum of the squares of the body 
height change, body roll and actuator displacements. The performances of the neuro­
controlled system are compared with those of passive and proportional-plus- 
differential controlled systems under various conditions. These involve various levels 
of lateral force inputs and vehicle body weight changes.

Finally, energy consumption of the variable-geometry system, with either the neuro­
control or proportional-plus-differential control, is analysed using an actuator model 
via the computer simulation package, SIMULINK. The simulation results are 
compared with those of other actively-controlled suspension systems taken from the 
literature.
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Chapter 1
Introduction

In recent years, many improvements have been made in the automotive field by the use of 
mechatronics and advanced control. In the context of vehicle stability, handling and ride 
comfort, for example, active suspension systems, i.e. those which use controlled 
actuators and energy supplies, can provide performance which is markedly superior to 
that possible with conventional passive suspensions involving springs and dampers. 
Although various types of actively-controlled suspension systems have been studied and 
developed in both academic research and industrial fields, their commercial impact has 
been veiy small due to a major problem - that of energy consumption (Hillebrecht et al, 
1992).

The great interest in low-energy design of active suspension systems has led to a re- 
emergence of an old principle - i.e. variable geometry affecting the ratio of the 
spring/damper unit length change to wheel displacement - used with manual adjustment 
on a Velocette Thruxton Motorcycle in 1965 (Hicks, 1992). A type of variable 
geometry mechanism, containing pre-loaded springs with adjustable cranks, has been 
made the basis of a computer-controlled suspension system on a passenger car in Delft 
University of Technology (Venhovens, Knaap and Pacejka, 1992; Knaap, Venhovens and 
Pacejka, 1994). Another variable geometry mechanism was achieved by moving one 
end of a buckling spring element with an electro-mechanical actuator (Leighton, 1995). 
These types of suspension system, without actuation, are essentially passive suspensions 
and achieve levelling and body-attitude-control with relatively small actuators and low 
energy consumption, but an increase in mechanical complexity ensues. Although the 
present thesis proposes a much simpler variable geometry mechanism which involves 
sliding one end of a spring/damper unit on a mechanical track, the control system design 
problems are novel due to non-linearity and mechanical limitations.

One way of tackliHg the control problems i's to employ learning techniques, which 
include automata (Gordon, Marsh and Wu, 1993; Howell, Frost and Gordon, 1996), 
self-organising fuzzy logic intelligent control and neural networks (Harris, Moore and 
Brown, 1992), neuro-fuzzy (Kiguchi and Fukuda, 1996) and genetic algorithms (Yeh, Lu
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and Chen, 1994). Vehicle system applications of neural networks and fuzzy logic have 
been reviewed very recently by Zadeh, Fahim and El-Gindy (1997).

The Aim of the Thesis

The aim of the present thesis is the establishment of the controller design for a variable 
geometry active suspension system using a learning method - namely, a neural network 
approach.

Chapter 2 discusses the general characteristics, potential benefits and problems of 
conventional passive suspensions and the active suspension domain. The discussion will 
lead us further into a consideration of low energy active suspension systems.

Chapter 3 deals firstly with a broad review of learning algorithms, and then it focuses 
attention on neural network learning control techniques.

The issue to be considered is how a neural network controller can be integrated with a 
physical model of a non-linear dynamic system. It is divided into three sub-problems 
which are dealt with in the following three chapters, respectively. In chapter 4, a very 
simple linear system is set up for the purpose of establishing a structure in which 
effective on-line learning can take place. In chapter 5, a standard restriction of linear 
optimal control theory, namely the quadratic cost function form, is removed. The 
learning technique is applied to the control of a non-linear dynamic system in chapter 6. 
All simulation results presented in these three chapters are generated by MATLAB and 
the Neural Network Toolbox (Demuth and Beale, 1994). '

Chapter 7 describes the design and model development of the variable geometry active 
suspension system. A feedback control scheme which involves sensors and 
proportional-plus-differential control gains is set up. Levelling function, body-roll and 
jacking (bounce) responses, under vehicle body weight changes and lateral force inputs, 
are simulated via FORTRAN and the computer language, AUTOSIM.

In chapter 8, the neural network controller is integrated with the variable geometry 
active suspension system developed in chapter 7. The controller learns to reduce the 
defined cost function to its minimum value. The system performances are compared 
with those of the passive and proportional-plus-differential controlled systems.

Chapter 9 analyses energy consumption of the variable geometry active suspension 
system using an actuator model developed via the computer simulation package, 
SIMULINK. The actuator model involves four parts: motor speed control, motor



3

current control, electric motor circuit and mechanical system. Each part is detailed using 
corresponding mathematical equations. The simulations provide power and energy 
consumption of the variable geometry system with either neural network control or 
proportional-plus-differential control. These results are compared with those of other 
actively-controlled suspension systems taken from the literature.

The thesis is concluded in chapter 10, which includes a consideration of what further 
work is necessary to gain a complete understanding of the system.
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Chapter 2
Automotive Active Suspension Systems - a Review

To enable people to drive cars for hours without becoming tired, to prevent goods being 
damaged in transit and to ensure mechanical components remain in good condition, they 
must be isolated from road disturbance. Passive suspensions, which involve springs and 
dampers, can be reasonable vibration isolators. Suspensions need to be compliant for 
the isolation but they need to be stiff for body-attitude-control. Therefore, passive 
suspensions must involve compromise between vibration isolation and body-attitude- 
control.

On the other hand, springs and dampers can be replaced by actuator assemblies with 
feedback control loops. According to Segel (1993), such systems date back to a 
mechanical-hydraulic active ride-improvement system developed by Hanna and Osbon at 
the Westinghouse Research Laboratory in 1961. Since then, various types of actively- 
controlled suspension systems have been proposed and developed in both academic and 
commercial fields. Especially, commercial interest was stimulated by the application of 
active devices to race cars (Wright and Williams, 1984 and 1989). These have been 
reviewed and classified by Sharp and Crolla (1987); Wallentowitz and Konik (1991); and 
Elbeheiry etal. (1995).

The first section of this chapter is devoted to describing the general characteristics of 
conventional passive suspensions and to active, semi-active, slow-active suspensions and 
active roll-control systems, which involve actively-controlled anti-roll bars. The second 
section details potential benefits and problems of both passive and active systems. The 
third section concentrates on low energy system types, which may have considerable 
potential for solving one of the main problems of active systems - that of power 
consumption.

2.1 Passive and Active Systems

2.1.1 Passive Suspensions

To study vibrations in automotive suspension systems, various vehicle models have been 
developed. For a passenger car, a seven-degree-of-freedom representation (bounce,
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pitch and roll of the body and hop for each wheel) may be used as shown in Fig. 2.1 (a). 
On the other hand, a half-car model, as shown in Fig. 2.1 (b), may be used to investigate 
either the pitch and bounce motions or the roll and bounce motions of the vehicle body.

Nevertheless, the essence of the ride problem can be captured by a quarter-car model, 
which includes an un-sprung mass representing the wheel and associated components 
and a sprung mass representing the vehicle body, as shown in Fig. 2.1 (c). Frequency 
response function gains of body displacement, suspension deflection and tyre 
deformation for a road displacement input can be derived from the quarter-car model. 
These functions with different values of spring stiffness, damping and un-sprung mass are 
shown in Fig. 2.2 to Fig. 2.4 (Wong, 1993). From these figures, conventional passive 
suspensions have two principal modes with natural frequencies, from 0.5 Hz to 2 Hz and 
from 10 Hz to 12 Hz. The former mode involves the natural frequency primarily of the 
sprung mass and the latter involves mainly the natural frequency of the un-sprung mass. 
Both modes are excited by road disturbance. Especially, the former involves body 
motion during cornering, accelerating and braking. When the frequency of the road 
disturbance coincides with one of the natural frequencies, a resonance results. The 
resonances of the sprung and un-sprung masses are referred to as 'body resonance' and 
'wheel-hop resonance', respectively.

As shown in Fig. 2.2, a soft suspension spring provides relatively good vibration 
isolation. However, the road-holding tends to be better with a stiff suspension spring. 
It can be seen that there are invariant points in these functions.

Fig. 2.3 shows that light damping provides good vibration isolation and road-holding in 
the mid-frequency range, good protection of the body and mechanical components from 
high frequency excitation but poor performances at each resonant condition.

The un-sprung mass is hardly influential near the body resonance, A light un-sprung 
mass is advantageous close to the wheel-hop resonance but it is disadvantageous at 
higher frequency range in terms of vibration isolation of the body as shown in Fig. 2.4.

Consequently, conventional passive suspensions with fixed characteristics of springs and 
dampers compromise over driving conditions.

2.1.2 Active Suspensions
In order to provide the cars with improved vibration isolation, road-holding, body- 
attitude-control and so on under various driving conditions, the concept of an adaptation
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of vehicle parameters, involving the spring stiffness and damper rate, emerged. The 
most effective way to achieve the concept is to replace the spring and damper with an 
actuator assembly with a feedback control loop. Hardware requirements of such 
systems are hydraulic pumps, cylinder/piston units, servo-valves, accumulators, filters, 
pipe-work, oil reservoirs, coolers and so on - there are drawbacks with them: reliability 
and maintainability, excessive weight, production cost, running cost, packaging and 
noise.

A fully-active suspension system presented by Sharp and Crolla (1987) is depicted in Fig. 
2.5. The driving conditions are continuously monitored by sensors, i.e. the 
accelerometer mounted on the vehicle body and potentiometer measuring the suspension 
travel. The signals from the sensors are fed back through the signal conditioning and its 
output determines an actuator force demand signal. The actuator servo-valve is 
controlled in order to minimise the error between the demand signal and actuator force 
measured via the force transducer. The actuator control bandwidth extends to beyond 
the wheel-hop frequency.

Active suspensions are supervised by micro-computers with the prescribed control 
strategies. The control strategy employing linear optimal control theory has been 
studied by Wilson, Sharp and Hassan (1986). The optimal controller was designed to 
minimise the cost function, which involves the weighted sum of the squares of the vehicle 
body vertical acceleration, suspension travel and tyre dynamic deformation. The optimal 
control theory must involve full-states to be fed back to the controller. Therefore, un­
measurable states (i.e. tyre deformation and vehicle body height) need to be obtained by 
some form of estimator such as a Kalman filter. Furthermore, the employment of such 
linear control theory is somewhat restrictive in connection with a problem containing 
essential non-linear features, i.e. a finite working space and non-linear characteristics of 
the tyres. These non-linearities were integrated into the controller design by Gordon, 
Marsh and Milsted (1990 and 1991).

Preview control, which involves the measurement of the road profile ahead of the front 
wheels, has been studied by Sharp (1995). Sharp mentioned that a fully-active 
suspension system with preview control can provide better performance but consumes 
higher energy than a non-preview active system. A slow-active system (this will be 
described in sub-section 2.1.4) with the preview control needs longer preview time, 
which is almost impractical for a contemporary car.
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2.1.3 Semi-Active Suspensions

Semi-active suspensions commonly use springs to support the vehicle body in parallel 
with continuously variable dampers. The springs have fixed characteristics while the 
dampers are adjusted via electro-rheological fluids, solenoid valves or motors.

The system structure can be expressed as in Fig. 2.5 with the addition of a spring and the 
actuator replaced by a damper. The feedback control loop can be inherited from the 
fully-active system. The damper force signal is required to track a demand signal 
coming from the state measurements and signal conditioning. However, the damper 
force produced is limited since power can only be dissipated. Therefore, the 
performance may involve compromise between fully-active and passive systems.

Another type of semi-active suspension system, which involves a variable spring 
mechanism using interconnected gas/oil spheres, has been developed and fitted to the 
Citroen XM. The gas/oil spheres (acting as spring/damper units) on each side of one 
axle are interconnected by opening a firmness regulator valve with an additional gas/oil 
sphere (central sphere), when the vehicle is in the 'soft' mode. In the 'firm' mode, the 
firmness regulator valve is in the closed position and each wheel sphere is then 
independent, while the central sphere is inactive. A control computer collects 
suspension and vehicle state values and controls the opening and closing of the valves.

2.1.4 Slow-Active Suspensions

Slow-active suspensions are active suspensions with the actuator control bandwidth 
embracing the body resonant frequencies but not extending to the wheel-hop resonant 
frequencies.

A type of slow-active system has been presented by Sharp and Hassan (1987) as shown 
in Fig. 2.6. The system has a limited bandwidth actuator in series with a spring and has 
a damper in parallel with the two. The actuator becomes rigid beyond its control 
bandwidth and the system then works as an ordinary passive suspension. Another type 
of slow-active system has an actuator in series with a spring/damper unit, which is better 
than the type shown in Fig. 2.6 in energy consumption (Williams and Miller, 1994).

The system can include a D.C. motor with an irreversible leadscrew in series with an air- 
spring unit (Sharp, and Hassan, 1988). An alternative is a hydro-pneumatic suspension 
type, which involves gas-filled springs in a hydraulic actuator assembly (Williams, Best 
and Crawford, 1993).



8

2.1.5 Active Roll-Control Systems

Active roll-control systems involve rotary actuators mounted in conventional anti-roll 
bars, and a number of simulation studies of them have been reported (Lang and Walz, 
1991; Sharp and Pan, 1993; and Darling and Ross-Martin, 1997).

A full-car model with actively-controlled anti-roll bars is depicted in Fig. 2.7 (presented 
by Sharp and Pan, 1993). The actuator in each of the front and rear axles twists through 
the appropriate angle in order to reduce or eliminate vehicle-body-roll during cornering. 
The control unit receives information from a lateral accelerometer and actuator rotation 
sensors, processes those signals and commands actuator rotor positions.

Since these systems retain springs and dampers, they work as conventional passive 
suspensions on a straight road which may be advantageous from an energy point of view. 
Furthermore, such anti-roll bars can be switched off via by-pass valves round the 
actuators - this function may provide a superior performance to that of conventional 
anti-roll bars, especially, on a severe cross-level road. However, the systems cannot 
influence body-pitch and bounce motions.

2.2 Potential Benefits and Problems

In this section, the various types of suspension described in the last section are 
summarised in the following features: performance, drawbacks, energy consumption and 
control problem.

Passive suspensions can be reasonable vibration isolators with soft springs but the spring 
stiffness must be high enough to control the body-attitude. Light damping provides 
good performance in the mid-frequency and high-frequency ranges (between body and 
wheel-hop resonant frequencies and above wheel-hop resonance) but not around 
resonant frequencies. Therefore, some compromise between vibration isolation and 
body-attitude-control must be involved.

On the other hand, fully-active suspensions can provide good vibration isolation, road- 
holding, body-attitude-control and levelling. Semi-active suspensions are able to 
achieve similar performance with controlled-dampers. In practice, however, both fully- 
active and semi-active suspensions provide poor performance in the high-frequency 
range (beyond wheel-hop resonant frequency) due to time-delay, friction and noise. 
The problem can be solved by employing slow-active suspensions, which isolate the 
bodies from road disturbance passively and control body-attitude actively within the
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actuator bandwidth of 3 - 5 Hz. However, they cannot achieve as good body-control as 
fully-active suspensions. Active roll-control systems can eliminate body-roll but body- 
pitch and bounce motion remain.

Fully-active, slow-active and active roll-control systems include drawbacks: complex 
arrangement, reliability and maintainability, expensive production costs, excessive weight 
and noise. Although semi-active suspensions require reduced hardware arrangement, 
the noise problem still remains.

Williams and Miller (1994) reported that a fully-active suspension consumes higher 
energy than a slow-active suspension on a straight road but lower energy during 
cornering. The fully-active suspension consumes 30 % more energy than the slow- 
active suspension under test conditions which involve driving on a straight road at 20 m/s 
and a 0.35 g cornering every 10 seconds. Hillebrecht et al. (1992) indicated that a slow- 
active suspension consumes 15 % more fuel than conventional passive suspension. 
These higher potential running costs have been a major contributing factor to the lack of 
commercial interest for active suspension systems.

Control problems include non-linearities (i.e. tyre characteristics), limited state feedback, 
selection of sensors, mechanical limitations (i.e. suspension working space) and specific 
external disturbance (i.e. road profiles or lateral force due to wind). Gordon, Marsh and 
Wu (1993) and Howell, Frost and Gordon (1996) have used learning techniques to cope 
with these problems.

The above features are summarised in Table 2.1 (a) for passive, fully-active and semi­
active systems and (b) for slow-active and active roll-control systems. Consequently, 
some types of active suspension systems, which are economical in energy terms, are of 
great interest.

2.3 Low energy active suspension systems

A type of low energy active suspension system has been developed and tested in Delft 
University of Technology (Venhovens, Knaap and Pacejka, 1992; Knaap, Venhovens and 
Pacejka, 1994). This low energy concept involves a pre-loaded spring attached to an 
adjustable lever as shown in Fig. 2.8. The force, Fd, on the lower wishbone can be 
varied by adjusting the length of the lever in order to compensate the load transfer, AP, 
caused by body-pitch and body-roll. This concept was practically integrated into a cone
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mechanism (see Fig. 2.9), in which the adjustable crank varies the influence of the pre- 
loaded spring on the lower wishbone without changing the pre-load.

This system works passively for vibration isolation and actively for body-control with the 
actuator bandwidth of 5 Hz. The system consumed an average power of 770 W in a 
double lane change test with a maximum lateral acceleration of 7.5 m/s2. This value 
seems to be very economical in comparison with the power consumption of 3300 W  in a 
transient handling test (whose maximum lateral acceleration was 6.9 m/s2) with a slow- 
active suspension system (Williams and Miller, 1994).

Another development of a low energy active suspension system, which involves a 
buckling spring element and an actively-controlled leverage ratio at each wheel, has been 
reported by Leighton and Pullen (1994) and Leighton (1995). The mechanical 
arrangement for a single wheel station is depicted in Fig. 2.10. The wheel force is 
generated by a spring element, which has a very low effective rate when the spring 
displacement exceeds the buckling point. The vehicle body was isolated from road 
disturbance passively and its attitude was controlled by moving one end of each spring 
element using D.C. motor/ballscrew units with the bandwidth of 4 Hz. The system 
requires power levels of 100 W per wheel as described by Leighton.

2.4 Conclusions

Low energy active suspension system types seem to provide a significant contribution to 
the reduction of running costs.

On the other hand, new mechanical design problems are posed by the system principle, 
which involves: variable geometry, mechanical components, materials, change of 
leverage ratio, position and direction of actuation, power requirement and bandwidth 
considerations.

Furthermore, the control system design problems are novel, since variable geometry 
implies non-linearity and mechanical limitations. In order to deal with non-linear control 
system design, learning control is a valid approach and this is surveyed in the next 
chapter.
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Table 2.1 (a) Comparison between passive, fully-active and semi-active 
suspension systems in the various features: performance and advantages, 
drawbacks, energy consumption and control problems

Systems
Features Passive Fully-active Semi-active

Performance
and

advantages

• Economical;
• Reasonable 

vibration isolation;
• High reliability.

• Good vibration 
isolation and road- 
holding in theory 
but not in practice 
(especially in the 
high-frequency 
range) due to time- 
delay, friction and 
noise;

•  Good body-attitude- 
control;

• levelling function.

• Good vibration 
isolation and road- 
holding in theory 
but not in practice 
(especially in the 
high-frequency 
range) due to time- 
delay, friction and 
noise;

• Economical 
hardware 
arrangement.

Drawbacks

• V ibration isolation 
and body-attitude- 
control must be 
traded-off.

• Complex 
arrangement;

•Excessive weight;
• Expensive 

production cost;
• Expensive running 

cost;
•  Low reliability and 

maintainability.

• Noise

Energy
consumption

• Economical • Very high for 
vibration isolation 
on a rough road;

• Relatively low for 
body-attitude- 
control.

• Economical

Control
problems

• Since, the 
characteristics are 
fixed, it does not 
suit wide range of 
driving conditions;

• The characteristics 
can be adaptive via 
switches.

•  Non-linearities; 
•Limited state-

feedback;
• selection of sensors;
• mechanical 

limitations.

• Non-linearities; 
•Limited state-

feedback;
• selection of sensors;
• mechanical 

limitations.
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Table 2.1 (b) Comparison between slow-active suspension and active roll-control 
systems in the various features: performance and advantages, drawbacks, energy 
consumption and control problems

Systems
Features Slow-active Active

roll-control

Performance
and

advantages

• Vibration isolation 
with a passive 
manner;

• Body-attitude- 
control but not as 
good as a fully- 
active system;

• levelling function.

•  Vibration isolation 
with a passive 
manner;

• Body-roll reduction 
or elimination.

Drawbacks

• Complex 
arrangement;

•  Excessive weight;
•  Expensive 

production cost;
• Expensive running 

cost;
• Low reliability and 

maintainability.

•  Complex 
arrangement;

• Excessive weight;
•  Expensive 

production cost;
•  Relatively low  

running cost;
• Low reliability and 

maintainability.

Energy
consumption

• Economical for 
vibration isolation 
on a rough road;

• Very high for body- 
attitude-control.

•  Economical for 
vibration isolation 
on a rough road;

• Relatively low for 
body-attitude- 
control.

Control
problems

• Non-linearities;
• Limited state- 

feedback;
• selection of sensors;
• mechanical 

limitations.

• Non-linearities;
• selection of sensors;
• mechanical 

limitations.
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(a) Seven-degree-of-freedom ride model
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Fig. 2.1 Three basic ride models used to study vibrations in automotive 
suspensions: (a) Seven-degree-of-freedom ride model, (b) half-car, bounce and 
pitch, ride model and (c) quarter-car model.
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(a) Body displacement (b) Suspension deflection

nisi sprung mass 
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(c) Tyre deformation

Fig. 2.2 Frequency response function gains of (a) body displacement, (b)
suspension deflection and (c) tyre deformation for a road displacement input, with
three different spring stiffness (presented by Wong, 1993).
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Fig. 2.3 Frequency response function gains of (a) body displacement, (b)
suspension deflection and (c) tyre deformation for a road displacement input, with
three different damping factors (presented by Wong, 1993).
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Fig. 2.4 Frequency response function gains of (a) body displacement, (b)
suspension deflection and (c) tyre deformation for a road displacement input, with
three different un-sprung masses (presented by Wong, 1993).



17

accelerometer

body mass 
250 kg

signal
conditioning

supply microcomputer
superv isor

exhaust

actua to r  
e r ro r  ampli f ier 
fo rce  transducer 
po ten t iom ete r

wheel mass 
50 kg

120 kN/m

road input

Fig. 2.5 Fully-active suspension system (presented by Sharp and Crolla, 1987)
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Fig. 2.6 Slow-active suspension system (presented by Sharp and Hassan, 1987)
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Fig. 2.7 Diagrammatic active roll-control system with interconnected actuators 
(presented by Sharp and Pan, 1993)

Fig. 2.8 Variable compensating force with elastic property by means of an 
adjustable transmission mechanism (presented by Venhovens, K naap and Pacejka, 
1992)
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Fig. 2.9 Cone mechanism built into a left front suspension (presented by 
Venhovens, K naap and Pacejka, 1992)
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Fig. 2.10 Variable geometry wishbone linkage (presented by Leighton, 1995)
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Chapter 3 
Learning Method

This chapter deals with a survey of learning methods primarily from the point of view of 
non-linear optimal control of automotive active suspension. In the first section, a 
common learning process is described using a flow diagram. The second section 
presents five learning algorithms, automata, SOFLIC (Self-Organising Fuzzy Logic 
Intelligent Control), neural networks, neuro-fuzzy and genetic algorithms. The third 
section concentrates on several well-established neural network learning control 
techniques.

3.1 Background

Many control engineers have to deal with system complexities and non-linearities. 
Classical methods, such as linear control theory, have to compromise on highly idealised 
situations: the plants, which have to be controlled, and the controllers are linear without 
limitations; external disturbance inputs are expressed in the form of random white noise; 
and quadratic forms of cost function are used for performance criteria. Considerable 
study has been carried out into non-linear optimal control over the past thirty years based 
on non-linear plants, specified disturbance inputs, non-quadratic forms of cost function 
and non-linear input/output relationships of controllers via polynomial operators.

On the other hand, modem techniques in intelligent frameworks (automata, fuzzy logic, 
artificial neural networks and genetic algorithms) have been used extensively for control 
engineering. The control, which is so-called intelligent control, was introduced by 
Harris, Moore and Brown (1992), and several examples of intelligent control have been 
edited by Harris (1994). A review paper of neural network applications in the 
automotive field has been published by El-Gindy and Palkovics (1993), and a more 
recent review involving fuzzy logic applications was authored by Zadeh, Fahim and El- 
Gindy (1997).
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Learning is one of the main properties of intelligent control and it enables an intelligent 
system to be optimised via iterative trials. If the plant is non-linear, learning may be one 
of the valid approaches to obtain an optimal controller.

There are many different algorithms within the learning method. Most algorithms have a 
common learning process, which involves the following stages:

(i) initialisation: setting up a framework (e.g. defining a network structure) with initial 

learning states (e.g. an initial set of weighting parameters);

(ii) trial: running with a set of training data;

(iii) evaluation: evaluation via a performance criterion (e.g. cost function);

(iv) modification: update of the learning states and convergence to a minimum error or 

cost;

(v) testing: running with sets of test data which are different from the set of training

data;

(vi) refinement: the framework is refined (e.g. by changing of network structure).

The above process starts with ’initialisation'. Three stages, 'trial', 'evaluation' and 
'modification', iterate with the training data until the system satisfies the given 
performance criteria. The system is then tested with the test data and evaluated. If the 
system satisfies the performance criteria, the process will finish; otherwise, the 
framework is refined and the process restarts with 'initialisation'. This process is 
illustrated in the flow diagram shown in Fig. 3.1.

3.2 Learning Algorithms

There are three basic learning algorithms, learning automata, SOFLIC (Self-Organising 
Fuzzy Logic Intelligent Control) and neural networks. Complex algorithms such as 
'neuro-fuzzy' and other algorithms such as 'genetic algorithms' have also been studied 
over a wide area.

3.2.1 Learning Automata

Learning automata can be used to design an optimal controller without any explicit 
system model. The role of the automaton is to select one controller in a set of 
controllers having different control parameter values. The system runs with each
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controller under a given training environment and its performance is evaluated by a cost 
function. After each run, the probability factor of a particular controller being chosen is 
updated via a penalty-reward scheme, so that the best performing controller will be 
chosen in the end. Learning proceeds in stages, such that a set of different controllers is 
investigated at each stage and the set is then refined for the next learning stage until the 
cost function is converged to its minimum value.

Learning automata have been used for an optimal controller design of an automotive 
active suspension system by Gordon, Marsh and Wu (1993). More recently, the learning 
efficiency of the algorithm has been developed by Howell, Frost and Gordon (1996). 
For example, when a feedback controller has m parameters and each parameter has r 
possible discrete values, there are rm different controllers. Therefore, if r and m are 
large, the learning time will be long. In order to cope with this problem, Howell et al. 
demonstrated interconnected automata, which involved more than one automaton 
assigned to the controller parameters.

3.2.2 SOFLIC (Self-Organising Fuzzy Logic Intelligent Control)

Fuzzy logic is a method for mimicking the human reasoning process. A fuzzy logic 
interface uses a small number of rules (based on a priori knowledge) and provides a 
smooth output via a process of interpolation using a set of membership functions. 
SOFLIC includes such a reasoning process and a learning process, which involves a 
defined performance index to evaluate the system output and to modify the rules and the 
membership functions. The algorithm was introduced in the literature mentioned above 
(Harris, Moore and Brown, 1992; Harris ed., 1994).

Lin, Lu and Padovan (1993) have attempted to use a similar algorithm, which involves 
the modification of an output scaling factor, for an automotive active suspension 
controller. The controller, which is called a self-tuning fuzzy logic controller, consists of 
primary and secondary fuzzy interfaces as shown in Fig. 3.2. The former interface 
performs a basic control function to provide ride comfort by minimising the error 
between the body vertical acceleration and its reference signal, while the latter interface 
is used to tune the former. An absolute maximum error and its change within the 
observation time are fed through the secondary interface, whose output determines the 
modification of the scaling factor of the output membership function in the primary 
interface.
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3.2.3 Neural Networks

Neural networks simply approximate to a human's information processing structure but 
actually the biological structure has not been clarified. Today, neurocomputing is 
incorporated in the computer package, MATLAB (Demuth and Beale, 1994) and the 
corresponding literature has been published (Moscinski and Ogonowski, 1995; Hagan, 
Demuth and Beale, 1996).

A neural network is a parallel-distributed information processing structure involving a 
number of processing elements. A processing element, having multiple-input and single 
output is illustrated in Fig. 3.3. The output of the element is given by

where ah is h th input, wh is h th weighting parameter of the element, b is the threshold,

and F (m*) is the output function. There are four basic output transfer functions: linear, 
threshold, sigmoid and radial basis, as shown in Fig. 3.4 (Demuth and Beale, 1994).

A basic multi-layer neural network is depicted in Fig. 3.5. The network involves input, 
hidden and output layers, having Sp, Sh, and Sr processing elements, respectively. Each 
element is connected to the other elements in the next layer through the weighting 
parameters. A weighting parameter between p th element at the input layer and h th 
element at the hidden layer is denoted by wHh,p; similarly, wRr,h denotes a weighting 
parameter between h th element at the hidden layer and r th element at the output layer.

When a set of training data {jc(n), a *(/?)} is given, the network is assessed by a cost 

function of the form:

u* = Y Jwh a„ + b . (3.1)

u = F(u*), (3.2)

J = E{eR(n)) = ^ _ ie \ n \ (3.3)

(3.4)

r=  1

where E  denotes the time averaging within the training data. The weighting parameters 
are updated via a gradient descent method to reduce the cost, J. The weight update is
expressed by
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w(new) = w(old) + Aw, 

d JAw = - 8
3 w ’

(3.5)

(3.6)

where 8 is the learning rate to convergence of learning.

The weighting parameter update, Awf involves the update between the hidden and output 
layers

A w R r,h =  - S £
f  d e R d a * RA  

d a * Rr d w RrJ,

=  - 5 E ( D R r < A ) ,

where the learning signal of the output layer, DRr, is given by

(3.7)

d e R d e R 9 a R,
D \  =

d a * Rr d a Rr d a * Rr 

= - ( a R (n ) - a R (n))F '(a*R,),

(3.8)

where F'(a*) denotes the derivative of F(a*) with respect to a *.

In a similar manner, the weighting parameter update, Aw, involves the update between 
the input and hidden layers

A w hh,p —=  - 8E
9e* 9 a * V  

9 a * Hh 9 wRh,p j

xp),

where the learning signal of the hidden layer, DHh, is given by

o e o e o a* r o a i
9 a * Hh 9 a * R, d a Hh d a * Hh ’

: . D \  = £ 0 Sr w Rr.> F '(a * Hh).

(3-9)

(3.10)

(3.11)
r= l
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The learning signal at the hidden layer involves the signal from the output layer as 
described in equation (3.11). This expresses that the learning signal is processed from 
the end of the network backwards to the beginning. This is called back-propagation 
learning algorithm. In general, neural networks have fixed network structures and 
input/output relationships are created by learning.

3.2.4 Neuro-Fuzzy

As mentioned in the above two subsections, the main advantage of using fuzzy logic is 
that an a priori knowledge can be incorporated into the system but learning is difficult. 
On the other hand, neural networks are capable of learning, but representing knowledge 
and extracting knowledge from networks are difficult.

Neuro-fuzzy combines learning functions of neural networks and fuzzy knowledge 
representation. Kiguchi and Fukuda (1996) have used a fuzzy-neural force controller 
for a planar robot manipulator (see Fig. 3.6). The controller involves a fuzzy 
environment evaluator and a network controller. The network's architecture is based on 
a fuzzy interface, which includes fuzzifier, rule and defiizzifier layers. The number of 
elements at the rule layer is the same as the number of fuzzy rules.

3.2.5 Genetic Algorithms

Genetic algorithms are based on natural genetics, involving randomised information 
exchanges among survivors. In every generation, a new set of artificial creatures 
(strings) is created using bits and pieces of the survivors of the old (crossover); an 
occasional new part is tried for good measure (mutation). Yeh, Lu and Chen (1994) 
have utilised a genetic algorithm to optimise a fuzzy logic controller for a semi-active 
suspension system. In their work, each string is decoded into fuzzy membership 
functions and the corresponding rule table entries and the system performance is 
evaluated by a cost function. The better performing strings are more likely to survive for 
the next generation. Crossover and mutation among the survivors create a new 
population. The generations proceed until converged.

Overall, the above three basic learning algorithms, automata, SOFLIC and neural 
networks are specified through the learning process as shown in Table 3.1. The neuro- 
fuzzy and genetic algorithms are specified in a similar manner as shown in Table 3.2. 
From these tables, automata and genetic algorithms have a similar feature, that several 
candidates are compared, one or more than one good performing candidates are selected 
and the population is refined for the next trial. The other algorithms involve non-linear
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input/output functions. Neural networks adjust the functions via the gradient descent 
method, while SOFLIC and neuro-fuzzy are based on a priori knowledge.

Neural networks have non-linearities and learning capability. When we have a newly 
developed non-linear plant (i.e. variable geometry active suspension system), a neural 
network may be a good approach to controller design. The next section takes up 
several well-established neuro-control techniques, which relate to automotive active 
suspensions.

3.3 Neural Networks for Control

When a dynamic plant, which can be non-linear and/or unknown, lies between a neuro­
controller and the plant output, the problem is how the learning signal is sent from the 
plant output to the controller. Nguyen and Widrow (1991) suggested the following 
technique, which might be one of the solutions to the problem. The control structure is 
illustrated in Fig. 3.7. Firstly, a neural network mimics the dynamic plant as a neuro­
emulator. Secondly, the neuro-controller (it has not been trained) runs the neuro­
emulator from an initial state to the desired state in the representative time steps. 
Thirdly, the learning signal, which involves the error between the output from the 
emulator and desired output, is back propagated from the end of the run to the beginning 
through time (see Fig. 3.8). The weighting parameters are updated for each run.

Moran and Nagai (1992) have utilised a similar technique for an optimal preview control 
of vehicle rear suspension. The training process is depicted in Fig. 3.9. When the neuro­
controller is trained, the neuro-vehicle (it has already been trained to mimic the vehicle 
model) is used to back propagate the learning signal from the vehicle output to the 
neuro-controller in order to calculate the derivatives of the cost function with respect to 
the neuro-controller's weighting parameters.

In contrast to the above techniques, an alternative has been studied by Narendra and 
Parthasarathy (1991) to cope with the similar problem that a dynamic plant lies between 
a neuro-controller and the plant output. The system structure is illustrated in Fig. 3.10
(a). The plant is described by a difference equation of the form: yp(k+1) = 
Nfiypik^+Ngiypik)), where Nf and Ng can be either non-linear functions (for known plant) 
or neural network functions (for unknown plant). A multi-layer neural network, Nc, is 
used as a feedback controller and its weighting parameters, 0„ are updated in order to 
minimise the error between the plant output and the output from the reference model. 
The derivatives of the plant output with respect to the weighting parameters are
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calculated via the gradient generating circuits and general back-propagation as shown in 
Fig. 3.10(b).

Feldkamp et al. (1992) have utilised such gradient computations to train a neuro­
controller for an automotive active suspension system. The full system is depicted in Fig. 
3.11. A road disturbance input is applied to the plant and its states are fed back through 
the neuro-controller. The output from the controller determines the actuator force, 
which is applied to both the plant and an identification network. The system 
performance is evaluated by a cost function, which involves the vehicle states. The 
neuro-controller learns to reduce the cost function using the derivatives of the states with 
respect to the weighting parameters. The derivatives are obtained by a process of 
gradient calculation.

Overall, it is reasonable to assume that neural networks with gradient computations have 
the following possibilities:

(a) the plants can be non-linear; and if the plants are known, the neuro-emulators are 

not required;

(b) general back-propagation is used when the controllers have multi-layered structures;

(c) cost functions, which have either quadratic or non-quadratic forms, must be used for 

training;

(d) specified external disturbance inputs are applied to the systems.

However, a negative point is that the number of the gradient generating circuits is the 
same as the number of weighting parameters. Therefore, we have to compromise 
between the number of parameters and the calculation time.

3.4 Conclusions

Neural network learning controllers are often developed using neural network emulators 
of the corresponding plants, in order to allow back-propagation of errors through the 
plants to the controllers, as basis of the learning process. Replacement by a neural 
network of a plant already known by its fundamental describing equations is considered 
disadvantageous, since the network is bound not to mimic the plant precisely over its full 
range of operating conditions. This will be avoided in the present work.
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On the other hand, a neural network controller with gradient computations may be 
capable of learning to control a non-linear system, without employing a neural network 
emulator. However, this technique is essentially novel as an application to variable- 
geometry active suspension control.

Nevertheless, before turning to the subject, the problem can be separated into three case- 
studies in order to establish an understanding of how neural network controllers can be 
applied to optimise the performance of vehicle suspensions (either linear or non-linear 
suspensions), reducing general forms of cost functions to minimum values, under 
specified external disturbance inputs (e.g. road conditions, either sinusoidal or random; 
or lateral forces during cornering). The three case-studies are specified in Table 3.3. 
These case-studies are taken up in chapter 4, chapter 5 and chapter 6, respectively.
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Table 3.1 Processes of learning algorithms: automata; SOFLIC;
and neural networks

Algorithm
Process Automata SOFLIC

Neural
Networks

Initialisation

• Setting up a 
training 
environment.

• Setting up a set of 
controllers having 
different control 
parameter values.

• Setting up a 
training 
environment.

• Setting up an initial 
fuzzy rules and 
membership 
functions defined by 
a priori knowledge.

• Setting up a set of 
training data.

• Making a network 
structure.

• Setting up an initial 
set of weighting 
parameters.

Trial
• Running the system 

with each controller 
under the training 
environment over a 
representative time.

• Running under the 
training
environment over a 
representative time.

• Running with the 
set of training data 
over a
representative time.

Evaluation

• Evaluation for each 
controller using a 
cost function.

• Selecting the most 
probable controller 
using a penalty- 
reward scheme.

• Evaluation using a 
performance index 
defined by a priori 
knowledge.

• Evaluation using a 
cost function.

Modification

• Refinement of the 
set according to the 
best performing 
controller.

• Modification of the 
rules and shapes of 
the membership 
functions.

• Change of the 
weighting 
parameters via 
back-propagation 
algorithm.

Testing
• The best controller 

is tested under a 
testing 
environment.

• Running under a 
testing 
environment.

• Running with a set 
of testing data.

Refinement 
of Framework

• The size of set and 
the length of 
representative time 
are changed.

• The number of rules 
and the number of 
membership 
functions are 
changed.

• The network 
structure is 
changed.

• The number of 
processing elements 
in the network is 
changed.
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Table 3.2 Processes of learning algorithms: 
genetic algorithms and neuro-fuzzy

Algorithm
Process

Genetic
algorithms

Neuro-Fuzzy

Initialisation

• Setting up a training 
environment.

• Setting up an initial 
population of strings.

•  Setting up a set of 
training data.

• Setting up initial fuzzy 
rules and membership 
functions defined by a 
priori knowledge.

• Making a network 
structure based upon 
the rules and 
membership functions 
defined.

Trial

• Decode each string into 
the system.

• Running the system 
under the training 
environment over a 
representative time.

• Running with the set of 
training data over a 
representative time.

Evaluation

• Evaluation using a cost 
function.

• Selecting good 
performing strings 
according to the cost.

• Evaluation using a cost 
function.

Modification

• Crossover and 
mutation among the 
survived strings, 
creating new 
population for the next 
trial.

•  Change of the 
weighting parameters 
via back-propagation 
algorithm.

Testing
• The converged 

population is tested 
under a testing 
environment.

• Running with a set of 
testing data.

Refinement 
of Framework

•  The number of strings 
in a population and the 
number of pieces in a 
string are changed.

• The number of rules 
and the number of 
membership functions 
are changed.
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Table 3.3 Specifications of case-studies

simulation
r 4 ^  cases factors Case 1 Case 2 Case 3

Plant model
Linear 1/4 car 
suspension model

Linear 1/4 car 
suspension model

Non-linear mass- 
spring-damper 
system (including 
non-linear spring 
rate)

Controller
A Linear processing 
element

Three layer Neural 
Network

Three layer Neural 
Network

External
disturbance

Road vertical 
velocity, cosine wave 
single frequency

Road vertical 
velocity, random 
white noise

Road vertical 
velocity, cosine wave 
single frequency

Cost function
Quadratic form Non-quadratic form Non-quadratic form

Optimisation
process

Gradient computation Gradient computation 
and
back -propagation

Gradient computation 
and
back -propagation
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Training Data

Trial

Modification

Not
satisfied

Satisfied

TestingTest Data

Not
SatisfiedEvaluation

in Test Data

Satisfied

End

Evaluation
in Training Data

Refinement 
of Framework

Learning State

Initialisation

Framework

Fig. 3.1 Flow diagram of a common learning process
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Fig. 3.3 Basic neural network processing element involving a linear com biner
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Fig. 3.4 Four basic output transfer functions of neural netw ork 
processing elements (Demuth and Beale, 1994)
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(Nguyen and Widrow, 1991)
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(Nguyen and Widrow, 1991)
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Chapter 4
Learning Control of Quarter-Car Suspension System

This chapter considers the application of a learning method to the control of a linear 
quarter-car suspension system. The controller consists of a linear processing element 
described in subsection 3.2.3 in the previous chapter. System outputs are fed back 
through the elements which learn, on-line, to reduce a conventional quadratic cost 
function to its minimum value, for a number of specified road disturbance input 
functions. The first section of the chapter gives the model description including system 
equations described in discrete-time, the cost function and the road disturbance function 
as a single frequency cosine wave. In the second section, the learning process is 
described. In the third section, the learning process is tracked and the results of the 
learning are compared with those coming from a more conventional off-line optimisation. 
The accuracy of the training is demonstrated by comparison of results with those from a 
standard optimisation procedure, the Linear Quadratic Gaussian (LQG) optimisation, 
involving a white noise disturbance input and full state feedback.

4.1 Quarter-Car Model with Sinusoidal Road Input

A standard two-degree of freedom quarter-car model is shown in Fig. 4.1. The model 
consists of body and wheel masses, a force generator, a tyre spring and a tyre damper. 
Suspension force is applied between the body and wheel masses and the force, u, is 
controlled by a feedback controller. Road input is applied at a single tyre contact point 
by a vertical velocity, v. The following representative model parameters have been used:

body mass : Mb = 250 kg;
wheel mass : M w = 30 kg;
tyre stiffness : k, = 200,000 N/m;
tyre damping rate : c, = 100N/(m/s).

The basic mechanical equations are:
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M «- K  =  K  ( Zr -  Z ». )  +  C, ( K  -  Z»  )  -

Mb zh = u,
(4.1)

where z„„ Zb and z, are displacements of the wheel, body and road, respectively, measured 
from static equilibrium. The active suspension model can be converted to standard state- 
space form (Newland, 1989), given by:

x(t)  = A x(t) + B u(t) + G v  (t), 
y(t) = Cx(t) , (4.2)

where the four states, x,  the two outputs, y, and the road disturbance input, v, are:

state vector, x  = [x, x2 x 3 x 4]T : x\\ tyre deformation ( z r — zw );

x2: suspension deflection ( z w — zh)\ 

x3: wheel vertical velocity ( zw); 

x4: body vertical velocity ( zh)\ 

y \ : suspension deflection ( z w~ z h)\ 

y2: suspension velocity ( z w- z b)', 

u: actuator force between the body and

output vector, y  = [y, y 2 ]1

force input:

road disturbance input:

wheel (h);

v: vertical velocity at the tyre contact point

( t ) -

Matrix A is the system-matrix, vector B  is the distribution vector for the actuator force, 
u, vector G is the input distribution vector and matrix C is the output matrix. They are 
given by:

A =

" 0 "
“ 0 0 -1 0"

0
1

0 0 1 -1 -1 0
k

0
-c ,

0 , B =
M w

, G = c,I J
M w M w

w
1 K

0 0 0 0 0

C =
0 1 0  0 
0 0 1 - 1
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In the next section of the chapter, the learning process will involve discrete-time 
operation. Then, the differential and output equations, (4.2), can be represented by the 
following standard discrete-time state-space form:

x((n + \)T) = A d x(nT) + Bd u(nT) + Gd v(nT),

y(nT) = C<sx(nT),  (4 '3>

where n and T  denote discrete step number and discrete sampling time, respectively. 
The discrete state matrices and vectors, Ad, Bj, Cd and Gj, are obtained from the 
continuous state matrices and vectors, A, B , C and G as described by Franklin and 
Powell (1980).

The road velocity input, v, is considered as a single frequency cosine wave:

r

v{nT) = cos 2nfrdnT, (4-4)

where f r<i is the frequency of the road velocity input.

The suspension force, u, is generated by the limited state feedback controller described 
by:

u{nT)=Fu>E(y{nT),w(nT)), (4.5)

where w denotes a vector of weighting parameters of the controller and Fij>E(y,w) is the 
function of a linear processing element which will be optimised by a learning method as 
described in the next section of the chapter. The system performance is assessed by a 
conventional quadratic cost function of the form:

1 N
j  = —  X f e  *i2(nT) + q2 x 22(nT) + x 2(nT)),  (4.6)

A „=i

where q} = 116000 and #2 = 1190, as used previously by Gordon et al. (1994).

4.2 Learning Process with Quadratic Cost Function

A linear processing element is applied to the control of the quarter-car suspension 
system. The element has two weighting parameters and a linear combiner. There are
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two inputs and one output from the element as shown in Fig. 4.2. The element output 
can be described by:

The vehicle performance is assessed, on-line, by the quadratic cost as equation (4.6). 
The cost is specified by the form:

where Iq is a quadratic function, in which the final term of (4.6) can be expressed as 
u(nT)/Mh. The weighting parameters, w, are updated, on-line, by the gradient method in 
order to reduce the cost. The gradient method for a dynamic system involving neural 
networks is described by Narendra and Parthasarathy (1991). A block diagram, showing 
the system structure, is shown in Fig. 4.3 (a). The update rule is:

5 is the learning rate and Aw is the weighting vector update. The gradient, 
dJ(nT)/dw(nT), is evaluated over the interval, [n - N  + 1, n]: Then the weighting 
parameters are updated at the step, n + 1. The sequence of the weighting vector update 
in discrete-time is shown in Fig. 4.4. Strictly speaking, w is no longer a constant vector 
element because the cost function calculation is not re-executed in the on-line learning 
process. The learning rate can be chosen to give a suitable compromise between speed 
of learning and stability or it can be adaptive.

The generation of the sensitivity matrices and vectors is shown in Fig. 4.3 (b). The 
Jacobians, 3 Iq(nT)/d x(nT) and 3 Iq(nT)/d u(nT) are partial derivatives of the cost with 
respect to the state vector elements and control force at step, n , respectively. These are 
obtained by simple differentiation. The Jacobians, dx(nT)/dw(nT) and du(nT)/dw(nT) 
are partial derivatives of the state vector elements and control force with respect to the

u(nT) = FLPE{y{nT),w{nT))

= Wj (nT ) y, (nT ) + w2 (nT) y2 (nT ). (4.7)

n

(4.8)

w((n + 1)T) = w{nT) + A w(nT), (4.9)

where

A w{nT) = - 8s  d J{nT) 
d w(nT)

8 f  d Iq((x(iT),u(iT)) d x(iT)  ̂ d Iq((x(iT),u(iT)) d u( iT ) ' 
N  i J k \  dx(tT) d w(iT) + 9u(iT) ' dw(iT)  /
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weighting parameters, respectively. These are obtained by partial differentiation of 
equations (4.3) and (4.7) with respect to w as:

^ - ( ( n  + ])T) = A , ^ ( n T )  + B d p ^ ( n T ) ,  s i n c e ^  = 0, (4 10)
d w d w d w d w \ • j

^ L ( n T )  = C ^ ( n T ) ,  
d w d w

—  (nT) = d FLPEiy(nT)M n T ) )  ^dy_ + d F ^ j y j n T X w j n T ) )  
d w d y(nT) d w d w(nT)

where dFu>E(y ,w)/d y  and dFLPE(y,w)/d w are row vectors, [wi w2] and [yi y2], 
respectively.

4.3 Simulation Results

Two outputs from the model, suspension deflection and suspension velocity, are fed back 
through the linear processing element and its output determines the actuator force. Road 
velocity inputs (cosine waves, 0.5, 1, 2, 4, 8, 12 and 16 Hz, amplitude, 1 m/s) were 
applied to the tyre contact point and the linear processing elements were optimised with 
each road velocity in order to reduce the cost function, (4.6). The update rule of the 
weighting parameters is given by (4.9), where the sampling time, T, is 0.005 second and 
the sampling size of the cost, N, is 50. The reduction of the cost during training is shown 
in Fig. 4.5, demonstrating how the performance of the suspension was improved by 
training for the 8 Hz road input.

Each training involved an adaptive learning rate (Demuth and Beale, 1994), in order to 
improve efficiency. The adaptive learning rate increases the learning rate, 5, if the cost 
ratio (present cost/previous cost) is less than 1 and decreases it if the cost ratio is more 
than 1.005. The adaptation parameters are selected by the analyst according to the case. 
In the training for the 8 Hz road input, the learning rate is increased by multiplying by 
1.01 and decreased by multiplying by 0.7.

The system performances of the learning-controlled systems for road disturbance inputs,
0.5 Hz and 8 Hz, are compared with the Linear Quadratic Gaussian (LQG) controlled 
system (Gordon et al, 1994) in Fig. 4.6 and Fig. 4.7, respectively. In Fig. 4.6, although 
there are no differences between the learning and LQG controlled systems in amplitudes 
of body vertical acceleration and tyre deformation, the learning controlled system
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dramatically reduces suspension deflection for the 0.5 Hz road input. On the other 
hand, in Fig. 4.7, the learning-controlled system is advantageous in reducing body 
vertical acceleration and tyre deformation for the 8 Hz road input.

Fig. 4.8 shows an overall comparison between the learning control, the LQG and 
conventional off-line optimisation via the Nelder-Mead Simplex method (Nelder and 
Mead, 1964) for the road velocity inputs, 0.5, 1, 2, 4, 8, 12 and 16 Hz. (Detailed data of 
the results are shown in Table 4.1.) Fig. 4.8 shows that the learning control can 
improve on the LQG control for each road input. Of course, the LQG control involves 
compromise over the frequency components in the excitation, while the learning and 
simplex controllers deal specifically with one frequency at a time. Furthermore, the on­
line learning control achieves as small a cost as the conventional off-line optimisation 
method.

4.4 Conclusions

It was shown how a single neural network element can be trained on-line to optimise the 
performance of a quarter-car suspension system. The learning technique arrived at the 
same results as the off-line optimisation device, the Nelder-Mead Simplex controller, for 
each specified road disturbance input function.

It was shown that even if a controller has a linear processing element, it can improve 
upon an LQG controller for a linear system if the disturbance input has only a known 
single frequency. This has potential application to an adaptive controller, which 
responds by adaptation to particularly strong frequency components in the road 
disturbance input to the vehicle.

The results obtained suggest that good performance will be obtainable from a variable- 
geometry active-suspension system when the road disturbance is sinusoidal. 
Continuation of the work in this direction requires consideration of cost functions of 
general form, randomly-profiled road disturbance inputs and a non-linear system. 
Probably a more elaborate neural network will be required. These are considered in 
chapter 5 and chapter 6.
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Table 4.1 Overall comparison of LQG, Nelder-Mead and neuro-controller results

Road input 
frequency

Gain [N/(m/s)] 
(force/input)

Phase lag[rad] 
(force/input)

cost

0.5 Hz
LQG 803 -1.02 23

Nelder 793 -1.48 6.5
neuro 806 -1.56 6.4

1 Hz
LQG 1223 -0.38 29

Nelder 591 - 1.51 10
neuro 589 - 1.48 10

2 Hz
LQG 1079 0.06 16

Nelder 22 0.06 4.2
neuro 49 0.06 4.2

4 Hz
LQG 1000 0.25 11

Nelder 9.0 0.13 2.1
neuro 62 0.13 2.1

8 Hz
LQG 1263 0.50 21

Nelder 536 1.63 6.3
neuro 583 1.76 6.3

12 Hz
LQG 1999 1.13 77

Nelder 2009 1.51 36
neuro 2005 1.51 36

16 Hz
LQG 1376 2.26 48

Nelder 1884 1.58 36
neuro 1890 1.58 36

8 0

7 0

4 0

20

LQG \  
Nelder

neuro

0 .5

Road input frequency  (Hz)

Fig. 4.8 Overall comparison of LQG, Nelder-Mead and neuro-controller results
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Chapter 5
Neural Network Control of Quarter-Car Suspension System

In chapter 4, a single neural network element was applied to the control of the quarter- 
car suspension system. The element was optimised with a road disturbance input, which 
was specified as a single frequency cosine wave, in order to reduce a conventional 
quadratic cost function.

This chapter deals with a more realistic situation involving a randomly profiled road 
disturbance input and a non-quadratic cost function. A multi-layer neural network is 
applied to the control of the quarter-car suspension system. System states are fed back 
through the neural network which learns to reduce the non-quadratic cost function to its 
minimum value. The first section of the chapter gives the non-quadratic cost function 
and road disturbance function as a random noise. The second section describes the 
multi-layer neural network and its learning process. In the third section, the learning 
process is tracked. The performance of the neural network controller is compared with 
that of the non-linear optimal controller which is designed via the Pontryagin Maximum 
Principle (MP). Both the neuro and MP controllers are optimised using the same cost 
function and are tested for various levels of randomly profiled roads.

5.1 Quarter-Car Model with Random Noise Input

The quarter-car model, described in section 4.1 in the previous chapter, was represented 
by the discrete-time state-space form:

x((n + \)T) = A d x(nT) + Bd u(nT) + Gd v(nT),  (5.1)

where the four states of x, control input, u, and road disturbance input, v, were 
described in the previous chapter.

In this chapter, the road disturbance input is considered as a random noise given by:
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tn= 1 V rd J

(5.2)

(i = l - J V ri)

where m denotes the discrete frequency step number, f res denotes the frequency 
resolution and 0rtI denotes the phase lag. The discrete Fourier spectrum, Vm, depends on 
the level of roughness of the random road represented. One batch of the random noise 
input has Nrj  discrete data points.

The actuator force, u, is generated by a full-state feedback controller as follows:

where w denotes a vector of weighting parameters and FNN(x,w) is the function of a 
multi-layer neural network. The weighting vector, w, will be optimised in order to 
reduce the non-quadratic cost function given by:

where q t= 1600; q2= 2xl012 ; q3=500; q4= 5x l0u as used previously by Gordon et al.

The contribution to the cost, (5.4), from the tyre deformation steeply increases when the 
tyre deformation exceeds the absolute value, 0.005 m, as shown in Fig. 5.1. The 
optimal controller design techniques, which employed the non-quadratic cost functions, 
were previously studied by Gordon, Marsh and Milsted (1990 and 1991) and Gordon et 
al. (1994). The following sections in this chapter will describe how the neural network 
learns to minimise the non-quadratic cost function and how the neural network performs.

5.2 Learning Process with Non-Quadratic Cost Function

u(nT)=FNN(x(nT),w(nT)), (5.3)

J = —  Y, (qx x 2(nT) + q, x x6(nT) + q , x 11(nT) + q4 x , 10 (nT) + x42 (nT)) ,
N ' t ' r

(5.4)

( 1994 ).

M ulti-layer neural network

The architecture of the multi-layer neural network involves three layers, input, hidden 
and output, and each layer includes a number of elements as shown in Fig. 5.2. Each
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output of an element is connected to the elements in the next layer through the weighting 
parameters. The input-output relationship is:

u = L(w rS(w hL(x ) + b H) + b R), (5.5)

where wH and bH are the weight matrix and bias vector for the hidden layer, respectively, 
and wR and bR are the weight vector and bias for the output layer, respectively. L  
denotes the linear output function of an element and S denotes the tangent-sigmoid 
transfer function of an element. In this case, there are 4 inputs, 6 hidden elements and 1 
output. The network is included in the Neural Network Toolbox fo r  MATLAB and 
more detailed equations are given in the users' guide (Demuth and Beale, 1994).

Learning process

The neural network controller output is described by the standard discrete-time form:

u(nT)=FNN(x(nT),w(nT)) , (5.6)

where the weighting vector, w, involves all components of weight and bias in the 
network. During trials, vehicle performance is assessed by the non-quadratic cost, (5.4), 
which is given by the form:

y(n7’) = T7 (5 -? )
^  i= n —N + l

where Inq is a non-quadratic function, in which the final term of (5.4) can be expressed as 
u(nT)/Mb. The weighting vector, w, is updated by:

w((n+ l)T) = w ((n -  N +  \)T) + Aw(nT), (5.8)

where

Aw{ nT) = - 5
3 w(nT)

5 ^  (d  Inq(x(iT),u(iT)) d x(iT) d Inq(x(iT),u(iT)) d u(iT)
N  ^i= n -N + l 9 x(iT) 9 w(iT) 3 u(iT) d w(iT)

The gradient, 3 J(nT) /3 w(nT), is evaluated over the interval, [n - N  + 1, n], for one 
batch of the random noise road input. The weighting vector is updated at the step, n +
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1. The batch is repeated until the cost is minimised. The sequence of the learning 
process is shown in Fig. 5.3.

In (5.8), the Jacobians, 3 Incf(nT)/d x(nT) and 3 Inq(nT)/d u(nT) are obtained by simple 
differentiation. The Jacobians, 3 x(nT) /3 w(nT) and 3 u(nT) /3 w(nT), are obtained by 
partial differentiation of equations (5.1) and (5.6) with respect to iv as:

where dFNN(x(nT),w(nT))/dx(nT) and dFNN(x(nT),w(nT))/cl w(nT) are specified in 
Appendix A and are calculated by the standard back-propagation algorithm taken from 
the literature (Hagan, Demuth and Beale, 1996).

5.3 Simulation Results

Firstly, a random noise velocity input, (5.2), was repeatedly applied to the tyre contact 
point until the neural network controller minimised the non-quadratic cost, (5.4). 
Secondly, the neuro controller was tested for various levels of random noise velocity 
inputs with r.m.s. values: 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.8 and 1 m/s. In the test, the neuro 
controller gave a good performance reducing the tyre deformation for the road velocity 
input with r.m.s. value, 1.0 m/s. However, it gave poor ride comfort through the range. 
A possible reason was that the high-amplitude motion dominated the cost function, which 
had contributed to updating the weighting parameters of the neuro controller. In order 
to avoid the problem, the neural network controller was trained by the following effective 
technique:

The amplitude, Vm, in the road disturbance, (5.2), was replaced by Vm(i) as:

3 w 3 w 3 w  3 w
~ ~ ( ( n  + 1)T) = A d zr— {nT) + Bd zr—(nT), since = 0, (5.9)

3 w 3 x(nT) 3 w 3 w(nT)
3 u 3 FNN(x(nT),w(nT)) 3 *  3 FNN(x (n T \w (n T ))
- — (nT) = -------- ------------------- --— (nT) H -----------------

(5.10)
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where the amplitude varied in discrete-time. A batch of the road velocity input, created
by (5.10), is shown in Fig. 5.4. In the batch, the high and low amplitudes were 
separated. The cost function, (5.7), was modified as:

where K(i) were selected to be bigger, the lower the road amplitude. The learning 
technique presented here would give the neural network more opportunities to learn for 
the low-amplitude motion. The batch of the road input, having 1600 data points in 
discrete-time, was repeatedly applied to the system and the cost function (5.11) was 
successfully reduced from the initial cost, 8.93 x  1026, to the final cost, 1.42. The 
reduction of the cost during the training is shown in Fig. 5.5.

Finally, the neural network controller was tested for various levels of random noise 
velocity inputs with r.m.s. values: 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.8 and 1 m/s. Each input 
was independent of the others. The system performance was compared with that of the 
LQG controller (Gordon et a i ,  1994) and the non-linear optimal controller designed by 
the Pontryagin Maximum Principle (MP) (Gordon, Marsh and Milsted, 1990 and 1991; 
Gordon et al., 1994). The MP controller was optimised using the non-quadratic cost 
function, (5.4). The LQG involves the quadratic cost function, (4.6), which was given in 
section 4.1 in the previous chapter.

Fig. 5.6 shows an overall comparison between the neuro, LQG and MP controllers in the 
r.m.s. value of the tyre deformation through the range of road velocity input: 0.1-1.0 
m/s. Fig. 5.7 shows an overall comparison between the neuro, LQG and MP controllers 
in the peak value of the tyre deformation through the range of road velocity input: 0.1- 
1.0 m/s. From each figure, in the LQG controlled system, both the r.m.s. and peak 
values of the tyre deformation increase linearly with respect to the road velocity input. 
On the other hand, the neuro and MP controllers have non-linear characteristics.

This example demonstrates that the non-linear control reduces the tyre deformation for 
the road velocity input with r.m.s. value, 1.0 m/s, and this provides an obvious advantage 
for improving ride comfort for the road velocity input with r.m.s. value, 0.1 m/s. Fig. 5.8 
shows autospectra of body accelerations with the LQG and neuro controllers for the road 
velocity input with r.m.s. value, 0.1 m/s.

n

(5.11)
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5.4 Conclusions

It was shown how the multi-layer neural network can be trained to optimise the 
performance of the quarter-car suspension system. The neural network successfully 
reduced a non-quadratic cost function under various levels of randomly profiled roads.

The results show that the learning neural network control produces the same performance 
as the MP optimal system. The learning neural network system provides an alternative 
and possibly simpler way of arriving at the optimal system. However, the selection of 
training data, network architecture and so on are still of interest to improve learning 
efficiency.
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Chapter 6
Neural Network Control of Non-Linear System

Chapter 4 and chapter 5 showed how neural networks (a single neural network element 
and a multi-layer neural network, respectively) can be trained to optimise the 
performance of a linear suspension system. Each previous chapter confirms that neural 
networks can provide optimal control systems using cost functions of general form. 
This chapter deals with the unsettled question of how a neural network can be applied to 
the control of a non-linear system.

In the first section of the chapter, a non-linear single-mass vibration system is developed. 
A non-quadratic cost function, which evaluates the system performance, is provided. 
The second section describes the learning process regarding the control of the non-linear 
system. In the third section, three neural network controllers are trained, but separately, 
using three different cost functions according to each demand. The issue of how the 
neural network learns to control the non-linear system correctly, according to the cost 
function given, is confirmed by a comparison between the performances of these three 
controllers.

6.1 Non-Linear Single-Mass Vibration System

A one-degree of freedom single-mass vibration system is designed as shown in Fig. 6.1. 
The model consists of a body mass, a force generator, a non-linear spring and a damper. 
The force of the non-linear spring is given by:

spring force = - kcoe (deflection)3,
(6.1)

where kcoe is the spring coefficient in N/m .

One end of the force generator, which is controlled by a feedback controller, is fixed at 
the sky and its vertical force, u, is applied to the body. An external disturbance input is 
applied at the lower end of the spring-damper through a vertical velocity, v. The 
following representative model parameters have been used:
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body mass : Mh = 250 kg;
spring coefficient: kcae = 2,450,000 N/m3;
damping rate : c = 1500 N/(m/s).

The basic mechanical equation is:

Mb zb = - k CC€ (zb -  z , f  - c ( z b - z , ) + u .  (6.2)

where the gravity force is ignored. Zb and zr are displacements of the body and external 
disturbance input, respectively, measured from static equilibrium. The vibration model 
can be converted to the standard state-space form given by:

x l(t) = x 3(t),
(6.3)

x 2(t) = x 3( t ) -v ( t ) ,

* 3  ( 0  =  ~ ( K o e  1 M b ) * 2 3 ( 0  +  (C  /  M h ) ( ~ X 3 ( 0  +  V ( / ) )  +  U( t )  /  M h , 

y l(t) = x 2(t), 

y2(t) = x 3( t l  

y3( t ) = x 3( t \

where the three states of x,  the three outputs of y  and the external disturbance input, v, 
are:

X = [*1 * 2  *3 r  = (Zb - Z r) Zb f , 

j  = b i y% y3 f  = [(zb -  zr ) zb zb ]T,

V =  z . .

In the next section of the chapter, the learning process will involve discrete-time 
operation. Using the following transform equation:

x(„T) = X{{n + W} - x{nT\  (6.4)

the differential and output equations, (6.3), can be represented by the following discrete­
time state-space form:
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x 1((n + l)T) = x ^ n ^  + T x 3(nT), ^  ^

x 2 ((n + 1)7) = x 2 (nT) + T x 3 (nT) -  T  v(nT), 

x 3 ((n + l)T) =  x 3 (nT) -  T(kcoe / M b )x23 (nT)

+T(c / M h ){-jc3 (nT) + v(nT)}+ T u(nT) /  M b, 

y l(nT) = x 1(nT), 

y2 (nT) = x 3 (nT),

y 3 (nT) = - ( k coe /  M b )x23 ((/? -  l)T) + (c /  M b ){ -x 3 ((n - 1)7) + v((n - 1)7)} 

+ u ( ( n - \ ) T ) l  M b,

where n and 7  denote discrete step number and discrete sampling time, respectively. 
Strictly speaking in (6.5), it is considered that the output of body acceleration is delayed 
one step in discrete-time as:

y3(nT) = x3( ( n - l ) T ) .  (6.6)

The equations, (6.5), can be written in the following standard difference equation form: 

x((n +1)7) = <I> (x(nT), u(nT), v (nT)),
(6.7)

y(nT) = W (x(nT),x((n - 1)7), u((n - 1)7), v ((n - 1)7)).

The external disturbance input, v, is considered as a single frequency cosine wave:

v(nT) = cos 2nfrdn T , (6.8)

wherefrd is the frequency of the road velocity input.

The actuator force, u, is generated by the output feedback controller described by:

u(nT)=FNN(y(nT),w(nT)), (6.9)

where w denotes a vector of weighting parameters of the controller and FNN (y,w) is the 
function of a multi-layer neural network which will be optimised by the learning process 
as described in the next section of the chapter.



The system performance is assessed by a non-quadratic cost function of the form:

J  = —  X f e  y?(nT)+<h y22(nT) + <l3 y 2(nT) + qA u2(nT)),
A  n =1n = 1

(6.10)

where weighting constants q}, q2, q3 and q4 will be chosen according to the priorities of 
the four factors: work space, body velocity, body acceleration and control force. These 
are described in Section 6.3.

6.2 Learning Process with Non-Linear System

A multi-layer neural network is applied to the control of the non-linear single-mass 
vibration system. The network has the same architecture as described in Section 5.2, 
having 3 ,4  and 1 elements in the input, hidden and output layers, respectively.

The system states, outputs and actuator force are given by the standard discrete-time 
forms:

respectively.

The vehicle performance is assessed by the non-quadratic cost, (6.10), which is given by:

where Inq is a non-quadratic function. The weighting vector, w, is updated by the 
gradient method in order to reduce the cost function. A block diagram, showing the 
system structure, is shown in Fig. 6.2 (a). The update rule is:

x((n +1 )T) = 0  (x(nT), u(nT), v(nT)),

y{nT) = ¥  (x (nT),x((n -  l)T),u((n -  1)T), v((n -  1)T)), 

u{nT) = FNN{y(nT),w{nT)),

(6 .11)

(6 .12)

w((n + 1)T) = w((n -  N  + 1)T) + A w{nT), (6.13)
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where

Aw(nT) = - d

Inq(y(iT),u(iT)) 3 y(iT)  ̂ 3 Inq(y(iT),u(iT)) 3  u(iT)>
 ̂ a y (/r) a w (ir) a mod  a w o d >

8  is the learning rate and Aw is the weighting vector update. The gradient, a J(nT) /d 
w(nT), is evaluated over the interval, [n - N  + 1, ri\. The weighting vector is updated at 
the step, n + 1. The sequence of the weighting vector updates in discrete-time is shown 
in Fig. 6.3.

The Jacobians, a Inq{nT)fd y(nT) and d Inq(nT)/d u(nT) are the partial derivatives of the 
cost function with respect to the output vector elements and control force at step, n, 
respectively. These are obtained by simple differentiation. The Jacobians, 3 y(nT) A) 
w(nT) and 3 u(nT) /9 w(nT), are the partial derivatives of the output vector elements and 
control force with respect to the weighting parameters, respectively. These are obtained 
by the partial differentiation of equations (6 .1 1 ) with respect to w as:

where 3 O(nT) /9 x{nT) and 3 0 (n7) /Q u(nT) are the sensitivities of the functions, <D, 
with respect to the state vector elements and control force, respectively. 3 *F(nT) /d 
x(nT) and 3 x¥(nT) /3 uinT) are the sensitivities of the functions, *F, with respect to the 
state vector elements and control force, respectively. Strictly speaking, both 3 Q?(nT) /d 
x(nT) and 3 ¥ ( nT) /d x(nT) involve *22. Therefore, they vary according to the value of 
x22', while both 3 <&(nT) /9 u(nT) and 3 ^(nT)  /9 u(nT) are constant. A block diagram, 
showing the generation of the sensitivity matrices and vectors, is shown in Fig. 6.2 (b). 
dFNN(y(nT),w(nT))/dy(nT) and dFNN (y(nT),w(nT))/d w(nT) are specified in Appendix A 
and are calculated by the standard back-propagation algorithm taken from the literature 
(Hagan, Demuth and Beale, 1996).

(nT), since

3 w 3 y (n T ) 3 w 3 w(nT)
— (nT) = d FNN(y(n T ) M n T ) )  3 y  ' + 3 FNN(y(nT),w(nT))



68

6.3 Simulation Results

Three outputs from the non-linear single-mass vibration system, deflection of the 
suspension, body velocity and body acceleration, are fed back through the multi-layer 
neural network and its output determines the actuator force.

Three neural network controllers were optimised using a non-quadratic cost function
(6.10), but separately, for three different characters. In particular, 'controller 1' 
compromises between the body motion and deflection of the suspension, 'controller 2 ' 
minimises the body motion and 'controller 3' minimises the deflection of the suspension. 
Each controller was developed using one of three sets of the weighting constants in the 
cost function as described in Table 6.1.

The update rule of the weighting parameters of the neuro-controller is given by (6.13), 
where the sampling time, T, is 0.005 second and sampling size of the cost, N, is 100. 
Each training successfully minimised the cost function under the external velocity input 
as a single frequency cosine wave (frequency, 2 Hz, and amplitude, 2 m/s). Fig. 6.4 
shows the reduction of the cost function during training of 'controller 1 '.

The external input and control force response with each controller for each of three cost 
functions is shown in Fig. 6.5. The suspension deflection and body displacement 
responses with each controller for each of the three cost functions are shown in Fig. 6 .6 . 
From these figures, 'controller 2' can be seen to dramatically reduce body vertical 
displacement while 'controller 3' reduces suspension deflection. This shows that the 
three neural networks learned to control the non-linear vibration system correctly 
according to each cost function.

6.4 Conclusions

It was shown how a multi-layer neural network can be trained to optimise the 
performance of a non-linear system. The neural network can learn to control the non­
linear system correctly according to the given cost function.

Overall, a new path has opened to the final objective of the study, i.e. effective neuro­
control of a variable geometry active suspension system, the action of which is essentially 
non-linear.
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Table 6.1 Cost function weighting constants for the three controllers

controlle
Weighting constants

Qi <1? Q4
controller 1 lxlO6 0 l x lO '1 2.5x1 O'7

controller 2 0 lx lO2 0 0

controller 3 lxlO9 0 0 0

Force
generator

Force

Body
mass Body displacement

Suspension
deflection

Non-linear
spring Damper

External input

Fig. 6.1 Non-linear single-mass vibration system
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Road input velocity, v

Output, y

Force, u

Cost function

Sensitivity vector
d J /dw

Cost, 7

Neuro controller 

Weight vector, w
Non-linear 

Discrete system

Optimisation

Process

(a) System structure

Neuro controller 

Weight vector, w

Force, u

d uJ9 w

Non-linear 

Discrete system

Outputs,

y

K
States ,x  ^  Functions, 4> and

Cost function

Cost, J

Differentiation

I
Differentiation

Discrete dy /d  w

sensitivity system

3 <I>/9 x  

d*¥ /dx
\

d J/By,  

3 7/9 u

Sensitivity vector

d J /dw

(b) Optimisation process

Fig. 6.2 Diagrammatic representations of (a) system structure and
(b) optimisation process, involving non-linear systems 'F
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input Road disturbance

(q-lj)N2N
•  ••  •

Discrete-time step

Cost (2N)Cost (N) Cost (qN)Cost calculations •  •

W eights up-date •  •

Training time (Q steps)

Fig. 6.3 Sequential representation of the learning process in discrete-time

1000

100

tooo

400 60 80 100 120 14020

Time (Second)

Fig. 6.4 The descending cost function, as learning proceeds with 'controller 1'
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   Controller 1 --------  Controller 2  Controller 3

Fig. 6.5 Road input and control force response with each controller for each of 
three cost functions: Controller 1 gives a compromise; controller 2 prioritises body 
control; controller 3 conserves working space.
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  Controller X ............  Controller 2 -------- .Controller 3

Fig. 6.6 Suspension deflection and body displacement responses with each 
controller for each of three cost functions: Controller 1 gives a compromise;
controller 2 prioritises body control; controller 3 conserves working space.
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Chapter 7
Modelling and Control of Variable Geometry Active 
Suspension System

This chapter considers the modelling and control of a variable geometry active 
suspension system, whose mechanical design is expected to have considerable potential 
for solving one of the main problems of automotive active suspensions, that of power 
consumption. (The power consumption of the system will be described in chapter 9.)

The first section of the chapter deals with a quarter-car suspension model, which 
involves variable leverage ratio; that of the spring/damper unit length change to the 
wheel displacement. The leverage ratio may be varied by actuation, which is 
substantially perpendicular to the suspension force. The developed quarter-car model is 
made one side of a half-car model in the second section of the chapter. Levelling of the 
vehicle body with symmetrical actuations on the starboard and port sides is introduced. 
The third section describes a control scheme, which involves proportional plus 
differential controls of body height and body roll. (I will use the term ‘P + D control’ to 
refer to the proportional plus differential control.) These models and control schemes 
are composed via the computer language, AUTOSIM, which automatically provides 
computer simulation programmes. The performance of the P + D controlled half-car 
system is demonstrated by a comparison with a passive system under ramp lateral force 
inputs, which involve a maximum steering wheel input velocity of 270 degree/second.

7.1 Quarter-Car Model

The variable geometry active suspension system involves an actively controlled leverage 
ratio for each wheel, that can be described by:

spring/ damper unit deflection
leverage ratio = —-------------£----------------------- . n  n

wheel displacement v ' '
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Generally speaking, the higher the leverage ratio is - the stiffer the suspension. A 
possible variable geometry suspension design is shown in Fig. 7.1 (a). In this design, one 
end of a preloaded spring/damper unit slides on the lower arm via an actuation, which is 
perpendicular to the suspension unit line of action. However, the problem with this 
design is that stiffening of suspension and loss of preload may work against each other - 
generally, the loss of preload is more influential than the stiffening of the suspension. In 
order to avoid this problem, this design can be improved as shown in Fig. 7.1 (b). The 
improved design has a circular track for the slideway of a spring/damper unit. The 
design will not cause any loss of preload but it may be difficult to develop practically.

A quarter-car suspension model, which involves variable geometry without the above 
problems, is shown in Fig. 7.2. This model includes a lower arm, an upper arm, a hub 
carrier, a wheel, a spring/damper unit and an inclined track. The lower and upper arms 
are connected to the ground (A/) by pin joints at point 1 and point 2, respectively. The 
hub carrier is connected to the lower arm by a pin joint at point 6 , and to the upper arm 
by a pin joint at point 5. The wheel moves together with the hub carrier and a vertical 
force is applied to the wheel through point 7. The spring/damper unit acts between point 
3 and point 4, where point 3 is connected to the ground while point 4 is movable on the 
track. The nominal ground coordinates of the seven points are shown in Table 7.1.

An actuation works at point 4, horizontally, and it makes one end of the spring/damper 
unit move along the track which, in turn, makes an angle of 15 degrees to the lower arm, 
as shown in Fig. 7.3.

Simulations

Computer simulation programmes of the quarter-car suspension model were developed 
via the computer language, AUTOSIM, and simple simulations have been done.

Firstly, point 7 was fixed at the nominal point and point 4 was moved along the track. A 
kinematic relationship between the spring/damper unit length and actuator movement, 
showing that an actuator movement in an outwards direction increases the preload of the 
spring/damper unit until the movement of 0.116 m, is shown in Fig. 7.4.

Secondly, vertical forces were applied to the wheels through point 7 with various 
positions of point 4. Relationships between the wheel forces and spring forces for the 
various positions of point 4 are shown in Fig. 7.5. (The spring stiffness was 60000 N/m.) 
The leverage ratios at the various positions of point 4 are shown in Table 7.2. An 
actuator movement in an outwards direction makes the suspension stiffer (increasing the 
leverage ratio).
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Overall, both preload and leverage ratio work together in the same direction of actuator 
movement. The presented kinematic design will be used for development of a half-car 
model, which will be described in the next section of this chapter.

7.2 Development of Half-Car Model

A half-car suspension model, which involves a variable leverage ratio for each wheel, is 
shown in Fig. 7.6. The model includes a vehicle body and one wheel on each of the 
starboard and port sides. Each side consists of a lower arm, an upper arm, a hub carrier, 
a wheel, a spring/damper unit and an inclined track. The model is specified in the 
nominal ground coordinates as shown in Table 7.3.

A computer simulation programme of the half-car model was developed via the 
computer language, AUTOSIM, and the following representative model parameters have 
been used:

W eights and levelling of vehicle bodies

Body weight conditions: normal, light and heavy, are specified in Table 7.4. When a 
vehicle body mass is specified in the simulation programme, all positions of the 
mechanical components converge to the equilibrium states.

Table 7.5 shows the vehicle body height change for each of the three body weight 
conditions. (Both starboard and port actuators stay at their nominal positions on the 
tracks.)

* It was too late to find the mistake o f the parameter setting o f  the wheel camber inertia. The 

parameter should be 1 kg m2. However, the mistake does not affect seriously the following

simulation results, as described in Appendix B. ** The parameter was adopted in order to avoid 

unnecessary body roll caused by tyre deformations.

Vehicle body m ass:
Vehicle body inertia:
Wheel m ass:
Wheel camber inertia: 
Suspension spring stiffness: 
Suspension damping ra te : 
Tyre stiffness:
Tyre damping ra te :

6000 N/(m/s); 
2000000 N/m **; 
50 N/(m/s);

40 kg m *; 
60000 N/m;

be specified later; 
1 0 0  kg m2;
25 kg;



77

The positive displacement of the vehicle body is downwards and negative is upwards. 
As shown in Table 7.5, the vehicle body sags with the normal and heavy body weight 
conditions and it jacks up with the light body weight condition.

Presumably, the body height is controlled by symmetrical actuations on the starboard and 
port sides. The two actuations work at point 4 and point 12, horizontally, and each point 
moves along the inclined tracks on the starboard and port sides, respectively, as shown in 
Fig. 7.7.

Table 7.6 shows the starboard actuator movements for the three body weight conditions, 
maintaining the nominal body height. It was shown that in order to maintain the nominal 
body height, each actuator moves in an outwards direction for the normal and heavy 
body weight conditions, while they move in an inwards direction for the light weight 
condition.

Free vibrations

Free vertical vibrations of the vehicle bodies with the three body weight conditions were 
investigated. Both starboard and port actuators were fixed at the equilibrium positions, 
which maintaining the nominal body height, for each body weight condition (see Table 
7.6). An external vertical force was applied to each body mass for 0.5 second and was 
then released. Body height responses for the three body weight conditions are shown in 
Fig. 7.8. Each natural frequency was calculated via a Fourier analysis and the range of 
the natural frequencies obtained, i.e. 0.82-0.90 Hz, might be of potential benefit for ride 
comfort (see Table 7.7). The frequency pattern is the reverse of ordinary suspension 
characteristics. There may be design possibilities of a constant natural frequency.

Lateral and side forces

Forces acting on the half-car model during cornering are shown in Fig. 7.9. Three lateral 
forces act in the same direction through the body mass centre, starboard wheel mass 
centre and port wheel mass centre, respectively, while two side forces act in the opposite 
direction through the ground touching points of the starboard wheel and port wheel, 
respectively. The lateral forces are given by:

FYh -  Mh • La (through the body mass centre), (7.2)

Fysw = M w • La (through the starboard wheel mass centre), (7.3)

Fypw = M w • La (through the port wheel mass centre), (7.4)
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where La is the lateral acceleration caused by cornering. The side forces of the starboard 
and port wheels are given by:

fys = (Fyb Fysw ^ypw )» (7.5)

fyp ~ —(1— (FYb + Fysw Fypw)» (7.6)

respectively. £ is the load transfer ratio given by:

^ ~ r f r '  (7-7)1 Z S  ~  1 ZP

where Fzs and Ftp are the vertical forces through point 7 and point 15, respectively. The 
division of the lateral forces between port and starboard sides would not, in practice, be 
exactly proportional to the vehicle loads. This is a simplification, made for convenience.

7.3 Control Scheme

As described in the previous section of this chapter, body height can be controlled by 
symmetrical actuations on the starboard and port sides. In a similar way, we can think 
that body roll can be controlled by anti-symmetrical actuations. The feedback control 
scheme here involves body roll and height controls, and we must be concerned with how 
to measure the body height and body roll in a practical way.

Sensing system

Fig. 7.10 shows a vehicle body, which involves a movement in the Z  direction and a 
rotation in roll. The body movement and displacement of the body mass centre, Zb, are 
identical but it can not be measured practically. (It can be measured via very expensive 
equipment, e.g., optical height sensor.) However, supposing there are two measurable 
displacements at points, Ps and PP, which are located at a distance of dY from the mass 
centre on the starboard and port sides respectively, we can measure both the body 
movement and rotation as follows:

When the vehicle body moves and rotates, the displacements of Ps and Pp, will be:
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Z s = Z b + d Y -<s>, (7 .8 )

Z r = Z t - d r -ty, (7.9)

respectively. Therefore, the displacement of the body mass centre, Zb, and the body 
rotation, (j), can be obtained by:

Z b = ( Z s + Z p) /  2, (7.10)

$ = (ZS - Z p) l 2 d r . C7-11)

Zs and Zp can be measured by wheel/body displacement sensors on the starboard and 
port sides. The starboard displacement sensor is located between P 3 and Pe. The port 
displacement sensor is located between P n and P i4. Zs and ZP are:

Zs =\ds\0 - \ d s\, (7.12)

Z P =\dP\0 - \ d P\, (7 ' 13>

respectively. | ds I o is the magnitude of the nominal distance between Pi and Pe, and 
I | o is the magnitude of the nominal distance between Pi i and Pit.

P + D body height and roll controls

A detailed control scheme is shown in Fig. 7.11. Outputs of the wheel/body 
displacement sensors on the starboard and port sides, Zs and ZP, are fed back through 
both the height and roll controllers. The height change can be calculated by the sum of 
the sensor outputs, while the roll can be calculated by the difference between them. Each 
controller involves a proportional and a differential gain. The output from the height 
controller determines symmetrical actuator velocities on the starboard and port sides, 
while the output from the roll controller determines anti-symmetrical actuator velocities. 
The actuator velocity commands on the starboard and port sides are:

Vs = ^iCZy + Z p) + G2(Zs + Z p) + G3(Zs - Z p) + G4(Zs - Z p),
. . . . C7-14)

Vp = -G ,(Z 5 + Z p) - G 2(Zs + Z p) + G3(Zs - Z p) + G4(Zs - Z p), 

respectively.

The details of computer programming in AUTOS IM corresponding to the above system 
and the equations created are described in Appendix C.
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7.4 Simulation Results

Ramp lateral force inputs were applied to the half-car model through the body (loaded 
with a body mass of 665 kg) and two wheels. The lateral accelerations corresponding to 
the force inputs, the maximum value of which is 7.848 m/s2 (0.8 G), is shown in Fig. 
7.12. These inputs may provide a similar circumstance to a maximum steering wheel 
input velocity of 270 degrees/second.

Sensor outputs were fed back through both height and roll controllers and each control 
signal was sent to a distributor circuit, where the outputs determined actuator velocity 
commands on the starboard and port sides. Control gains, which were chosen by trials, 
are: G\ = 0.22 (m/s)/m, G2 = 0.02 (m/s)/(m/s), G3 = 2.89 (m/s)/m and G4 = 0.78 
(m/s)/(m/s).

Fig. 7.13 (a) and (b) show the starboard and port actuator movements of the P + D 
controlled system from each equilibrium position, respectively. Fig. 7.14 shows a 
comparison between body height responses of the P + D controlled and passive systems. 
In the passive system, both starboard and port actuators were fixed at the equilibrium 
positions. Fig. 7.15 shows a comparison between body roll responses of the P + D 
controlled and passive systems.

From the results obtained, the P + D controlled system removes steady state error of the 
body height change and body roll during 0.8 G cornering. In particular, the P + D 
controlled system dramatically improved on the roll response when compared with the 
passive system. However, it caused a severe overshoot of the body height change, which 
should be reduced.

7.5 Conclusions

It was shown how the leverage ratio, i.e. that of the spring/damper unit length change to 
the wheel displacement, can be varied by actuation which is substantially perpendicular 
to the suspension force. The developed half-car model, which involves the variable 
geometry, demonstrated that the nominal vehicle body height was maintained by 
symmetrical actuations on the starboard and port sides for the various vehicle weight 
conditions.
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The P + D controlled system successfully removed steady state error of both the body 
height change and body roll for ramp lateral force inputs, which involved maximum 
lateral acceleration of 0.8 G. Although the P + D controller was one of the best 
performing controllers in the author's trials, it caused a severe transient response of the 
body height change. This weakness may be reduced by a learning control system, that 
will be described in the next chapter.

Table 7.1 The nominal ground coordinates of the points in the 
quarter-car variable geometry suspension model

Point Y axis (m) Z axis (m) Description

0 0 0 Ground coordinate system origin

1 0.3 -0.15 Lower arm inner pivot
2 0.4 -0.35 Upper arm inner pivot

3 0.485 -0.55 Spring/damper unit top mounting point

4 0.485 -0.165 Spring/damper unit bottom mounting point

5 0.67 -0.5 Upper arm outer pivot

6 0.67 -0.18 Lower arm outer pivot

7 0.75 0 Tyre contact point

Table 7.2 Values of the leverage ratio for the various actuator movements

Actuator movement (m) Leverage ratio (— )
-0.06 0.31

-0.03 0.39
-0.015 0.43

0 0.47
0.015 0.51
0.03 0.55
0.06 0.63
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Table 7.3 The nominal ground coordinates of the points in the half-car variable 
geometry active suspension model; (S) and (P) denote the starboard and port 
sides, respectively

Point Y  axis (m) Z  axis (m) Description
O 0 0 Ground coordinate system origin
1 0.3 -0.15 Lower arm inner pivot (S)
2 0.4 -0.35 Upper arm inner pivot (S)
3 0.485 -0.55 Spring/damper unit top mounting point (S)
4 0.485 -0.165 Spring/damper unit bottom mounting point (S)
5 0.67 -0.5 Upper arm outer pivot (S)
6 0.67 -0.18 Lower arm outer pivot (S)
7 0.75 0 Tyre contact point (S)
8 0.75 -0.34 Wheel mass centre (S)

9 -0.3 -0.15 Lower arm inner pivot (P)
1 0 -0.4 -0.35 Upper arm inner pivot (P)
1 1 -0.485 -0.55 Spring/damper unit top mounting point (P)
1 2 -0.485 -0.165 Spring/damper unit bottom mounting point (P)
13 -0.67 -0.5 Upper arm outer pivot (P)
14 -0.67 -0.18 Lower arm outer pivot (P)
15 -0.75 0 Tyre contact point (P)
16 -0.75 -0.34 Wheel mass centre (P)
17 0 -0.5 Vehicle body mass centre

Table 7.4 Vehicle body weight conditions

Light (kg) Normal (kg) Heavy (kg)
Vehicle mass 1 0 0 0 1 0 0 0 1 0 0 0

Petrol 0 60 60
Passengers 0 60 * 2  (people) 60 * 4 (people)

Luggage 0 0 30
Total 1 0 0 0 1180 1330

Half mass 500 590 665
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Table 7.5 Vehicle body height change without actuations 
for the three body weight conditions

Body weight 
condition

Vehicle body mass 

(kg)

Vehicle body height 
change(m)

Light 500 -0.013
Normal 590 0.033
Heavy 665 0.084

Table 7.6 Starboard actuator movements for the three body weight conditions; 
maintaining the nominal body height (The port actuator works symmetrically)

Body weight 
condition

Vehicle body mass 

(kg)

Starboard actuator movement 
(m)

Light 500 -0.0058
Normal 590 0.0129
Heavy 665 0.0282

Table 7.7 Natural frequencies of vehicle bodies for the three body weight 
conditions (Both starboard and port actuators are fixed at the equilibrium 
positions, which maintain the nominal body height, for each body weight 
condition)

Body weight 
condition

Vehicle body mass 

(kg)
Natural frequency of vertical 

vehicle body motion (Hz)
Light 500 0.82

Normal 590 0 . 8 6

Heavy 665 0.9
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spring/dam per unitpreload loss ,

actuation

V  wheel displacement

(a) Variable geometry design with a sliding 
spring/dam per unit end on a lower arm

spring/dam per unit 

actuate
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\J / wheel displacement

(b) Variable geometry design with a sliding 
spring/dam per unit end on a circular track

Fig. 7.1 Alternative designs of variable geometry suspension systems
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Fig. 7.3 Actuator movement on the inclined track
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0.3 --

0 . 2  - 0.116 (m)

0 .1  --
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7.4 Relationship between the spring/dam per unit length and 
actuator movement without wheel displacement
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Fig. 7.5 Relationships between the wheel forces and spring forces for the various 
positions of one end of the spring/dam per unit via actuation
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Fig. 7.6 Half-car variable geometry active suspension model 
(Vehicle front end viewed from rear)
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Fig. 7.7 A ctuator movements on the inclined tracks 
on the starboard and port sides
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Vehicle Body

Fig. 7.10 Vehicle body, which moves in Z direction and rotates in roll
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external inputs: i.e. lateral forces

Fig. 7.11 Detailed feedback control scheme of variable geometry 
active suspension system
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.12 Lateral acceleration corresponding to the ramp force input
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Fig. 7.13 Actuator movements on the starboard and port sides from 

the equilibrium positions (vehicle body mass : 665 kg)
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Fig. 7.15 Comparison between vehicle body roll responses of the P + D controlled 
and passive systems during 0.8 G cornering (vehicle body mass : 665 kg)
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Chapter 8
Neuro-Control of Variable Geometry Active Suspension 
System

In chapter 7, the variable geometry active suspension system was developed and 
controlled by P + D body height and roll controllers. Control gains in each controller 
were chosen by hand-trials. In this chapter, two neural networks are applied in a similar 
manner, but they learn and optimise by themselves to reduce a quadratic cost function to 
its minimum value. (I will use the term 'neuro-control' or 'neuro-controller' to refer to the 
two neural networks for the body height and roll controls together.)

The first section of the chapter deals with the full system, which includes the vehicle 
suspension model and neuro-controller, and the learning process involving a cost 
function. The second section describes how a simulation programme can be provided 
using the two computer packages, AUTOSIM and MATLAB/Neural Network Toolbox. 
In the third section, the learning process is tracked. The performances of the neuro­
controlled system are compared with those of passive and P + D controlled systems 
under various conditions, which involves various levels of lateral force inputs and vehicle 
body weight changes.

8.1 The System and Learning Process

The full system is depicted diagrammatically in Fig. 8.1 (a). External inputs, i.e. lateral 
forces, are applied to the vehicle system. Outputs from the vehicle system are fed back 
through the neuro-controller and its outputs determine actuator velocities on the 
starboard and port sides. Vehicle states and actuator velocities are used to form a cost 
function, which is used, through the optimisation process, to update the weighting 
parameters of the neuro-controller.

The vehicle system can be represented in the following standard difference equation 
form:
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x((n + 1)D = O (x(nT), u(nT), v (nT)\
(8 .1)

y(nT) = '¥(x(nT)),

where n and T  denote discrete step number and discrete sampling time, respectively. The 
ten states of x,  the four outputs of y, the control inputs, u, and the external disturbance 
inputs, v, are:

vehicle body height change; 

vehicle body roll;

lower arm (S) rotation relative to vehicle body; 

wheel (S) rotation relative to lower arm (S); 

lower arm (P) rotation relative to vehicle body; 

wheel (P) rotation relative to lower arm (P); 

vehicle body height speed; 

vehicle body roll rate;

lower arm (S) rotation speed relative to vehicle 

body;

xio*. lower arm (P) rotation speed relative to vehicle 

body;

where (S) and (P) denote the starboard and port sides, respectively.

state vector, x: x\

x2

*3

X4

*5

X6

x7

* 8

Xq

output vector, y: y i : sum of wheel/body displacements on the starboard

and port sides; 

y2. sum of wheel/body velocities on the starboard and 

port sides;

yy. difference between wheel/body displacements on 

the starboard and port sides; 

y4: difference between wheel/body velocities on the 

starboard and port sides;

control input, u : u\\ starboard actuator displacement;

u2: port actuator displacement;

disturbance inputs, v: lateral forces applied to the body and wheels.



94

The vehicle parameters were described in section 7.2 in chapter 7. Each lateral force 
input, vj (j = 1,2,3), is considered as one batch of a ramp input having N  data points in 
discrete-time:

V j ( i T )  =

•rj-i

Vj™ 1 (0 < iT < 0.5)
0.5 ’ ( 8 .2)- 

v. , (0.5 < i T <NT)
J  max

where v, rises linearly to the maximum value of y, max in 0.5 second and then is constant.

The controller involves two multi-layer neural networks for body height and body roll 
control, respectively, as shown in Fig. 8.2. Each network includes; 2, 3 and 1 elements 
in the input, hidden and output layers, respectively. Two outputs from the vehicle 
system, yi and y2, are fed back through the network for the height control and its output 
determines symmetrical actuator velocities on the starboard and port sides, while the 
other two outputs, y3 and y4, are fed back through the other network and its output 
determines anti-symmetrical actuator velocities.

The actuator velocities on the starboard and port sides can be represented by:

u(nT) = Fm (y(nT),w(nT)), (8.3)

where the weighting vector, w, involves all of the weighting parameters of the two neural 
networks.

Using the following transform equation:

^  u{(n + \)T) — u(nT) , Q ^
u(nT) = -------------------- — , (8.4)

the actuator displacements can be represented by:

u((n + 1)7) = u(nT) + T  FKN(y(nT),w(nT)). (8.5)
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Cost function and  learning process

The system performance is assessed by a quadratic cost function of the form:

J  = l j l L { 4 1 *i2(nT) + q2 x 22(nT) + q3 u 2(nT) + q4 u 2(nT)), (8.6)
* ’ w=l

where q} = 26013, q2 = 6096, <73 = 300 and q4 = 300, as chosen by author's trials. The 
cost function can be written:

where Iq is a quadratic function. The weighting vector, w, is updated by the gradient 
method in order to reduce the cost function. The update rule is:

6 is the learning rate and Aw is the weighting vector update. The gradient, 3 J{nT) /3 
w(nT), is evaluated over the interval, [n - N  + 1, n], i.e. one batch. The weighting 
vector is updated at the step, n + 1. The sequence of the weighting vector updates in 
discrete-time is shown in Fig. 8.3.

A block diagram, showing the generation of the gradient, 3 J{nT) /3 w(nT), is shown in 
Fig. 8.1 (b). The Jacobians, 3 Iq(nT)/d x(nT) and 3 Iq(nT)/d u(nT)  are the partial 
derivatives of the cost function with respect to the state vector elements and actuator 
velocities at step, n, respectively. These are obtained by simple differentiation. The 
Jacobians, 3 x(nT) /3 w(nT) and 3 u (nT) /d w(nT), are the partial derivatives of the 
state vector elements and actuator velocities with respect to the weighting parameters, 
respectively. These are obtained by the partial differentiation of equations (8.1), (8.3) 
and (8.5) with respect to w as:

i= n-N + \

(8.7)

w((n + 1)T) = w({n -  N  + 1 )T) + Aw(nT), (8.8)

where

A w(nT) = -8

\{x{iT),u{iT)) 3 x(iT) ■ d Iq(x(iT),ii(iT)) 3 u{iT) > 
3 x(iT) 3 w(iT) 3 u(iT) 3 w(iT)j
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d x 9 0  9 x  . 3 0  3m . . 3 v
- — ((rc + l)T) = - —  •—  (nT) + — — •— (nT), since — = 0, (8.9)
aw  dJC dw  d u  dw  dw

jZ (nT) = ?L.i±(nT). (8.10)
dw  d x  dw

(8.11)
d "  ,n T ) _  d F m (y(nT)>w(n T )) d y  , T) : d Fm (y(nT),w (nT)) 
dw  d y(nT) dw  dw (nT)

^ - ( ( n  + l)T) = ^ - ( n T )  + T ~ ( n T ) ,  (8.12)
dw  dw  dw

where d 0 («7 ) /d x{nT) and d <F(«7) /d u(nT) are the sensitivities of the functions, O, 
with respect to the state vector elements and actuator displacements, respectively, d 
vF(/z7) /d x(nT) denotes the sensitivities of the functions, XF, with respect to the state 
vector elements. These three sensitivity matrices vaiy according to the values of x  and u 
(In the simulation programme, these three sensitivity matrices are updated every time 
step, as described in the next section of this chapter). dFNN(y(nT),w(nT))/dy(nT) and 
dFw  (y(nT),w(nT))/d w(nT) are specified in Appendix D and are calculated in a similar 
manner to that of the standard back-propagation algorithm taken from the literature 
(Hagan, Demuth and Beale, 1996).

8.2 Simulation Programme

The half-car variable geometry active suspension model was developed via the computer 
language, AUTOSIM, which automatically provides a computer simulation programme. 
The provided simulation programme involved the vehicle equations (8.1) and it was 
written in FORTRAN. On the other hand, the neuro-controller was provided via the 
computer package, MATLAB/Neural Network Toolbox.

Nevertheless, the vehicle equations written in FORTRAN can be converted to a 
MATLAB function-file. (MATLAB function-files may be used in a similar manner to a 
subroutine of a FORTRAN programme.) Therefore, it was decided that the full system 
would be implemented via one simulation programme in MATLAB code.

A flowchart of the simulation programme of the full system is shown in Fig. 8.4. This 
simulation programme involves the following MATLAB function-files:
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P C C O M P . M
This function-file contains the pre-computing of constants for the 
vehicle equations.

F C T . M
This function-file computes the vehicle equations using the pre­
computed constants given by 'PCCOMP.M' and a numerical 
integrator.

Each of 'PCCOMP.M' and 'FCT.M' was converted from the corresponding subroutine of 
the FORTRAN programme, which was provided via AUTOSIM.

P C S E N S . M
This function-file contains the pre-computing of constants for 
vehicle sensitivity matrices.

S E N S . M
This function-file computes the vehicle sensitivity matrices: 3 <D /9 
x, 3 0  /9 u and d *¥ /d x, according to the operating states and 
inputs, using the pre-computed constants given by 'PCSENS.M'.

AUTOSIM involves an option to automatically compute these sensitivity matrices, and 
write the elements of the matrices into a file in the form of MATLAB. Each of 
'PCSENS.M' and 'SENS.M' is a part of such a file.

J A C O B  . M
This function-file computes equations (8.9) and (8.10).

N E C O N . M
This function-file contains both forward and back propagation of 
the neuro-controller. The former provides u  and u with equations 
(8.4) and (8.5) respectively, while the latter provides 3 u / d w  and 3 
u  /9 w with equations (8.11) and (8.12) respectively. This 
function-file involves M-files from MATLAB/Neural Network 
Toolbox, e.g. 'TANSIG.M' (tangent sigmoid function).

E R R . M

W UPDATE.M

This function-file calculates the cost function.

This function-file contains the update of the neuro-controller 
weighting parameters.

LACC.M
This function-file generates the lateral force inputs given by 
equation (8.2).
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8.3 Simulation Results

Firstly, each of two neural networks learned to mimic the relevant input-output 
relationship of each of the P + D height and roll controllers, which were described in 
chapter 7. The neuro-controller successfully achieved to perform the P + D control 
system as described in Appendix E.

Secondly, the neuro-controller was installed into the system and learned to reduce the 
cost function (8.6). The batch lateral force inputs, involving maximum lateral 
acceleration of 7.848 m/s2 (0.8 G) depicted in Fig. 8.5, were repeatedly applied every 4 
seconds to the vehicle system loaded with a body mass of 665 kg. The cost function was 
successfully reduced from the initial cost, 4.5, to the final cost, 1.8, in 4612 seconds 
(1153 batches).

Fig. 8.6 (a) shows a comparison between starboard actuator responses with the neuro­
control and P + D control. Fig. 8.6 (b) shows a comparison between port actuator 
responses in a similar manner.

Fig. 8.7 (a) shows a comparison between vehicle body height responses with the neuro­
control and P + D control. Fig. 8.7 (b) shows a comparison between vehicle body roll 
responses in a similar manner. From these figures, the neuro-control not only 
dramatically reduced overshoot of the vehicle body height change, but also improved on 
the body roll response.

The neuro-controller was tested for various conditions, which involve different levels of 
ramp lateral force inputs and vehicle body weights. Table 8.1 shows an overall 
comparison between neuro, P + D, and passive systems in the vehicle responses: body 
height change, body roll and actuator movements; and cost under the various conditions.

From the table, the neuro-control reduces the overshoots of body height change and 
body roll, and achieves the minimum cost function in each condition.

8.4 Conclusions

It was shown how the neuro-controller is trained to optimise the performance of the 
variable geometry active suspension system. The two computer packages, AUTOSIM 
and MATLAB/Neural Network Toolbox, can be used together for the purpose. ( The 
computer package, SIMULINK, may be an alternative. It will be described in chapter 9.)
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The neuro-controller successfully reduced the cost function and, particularly, it improved 
the transient response of the body height change under all conditions tried, which involve 
various levels of ramp lateral force inputs and vehicle body weight changes.

One final point which needs to be clarified is the power consumption. This will be taken 
up in the next chapter.
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Table 8.1 Overall comparison between neuro-control, P + D control and passive 
systems in vehicle responses: vehicle body height change, body roll and actuator 
movements; and cost function
Condition Control

system
Body height change (mm) Body roll (deg)
Overshoot* Steady state Overshoot* Steady state

Condition 1 
0.8 G 
665 kg

Neuro -10.4 -0.0 1.0 0.1
P + D -28.8 -1.1 1.5 0.1
No-control -4.0 -11.7 0.9 8.1

Condition 2 
0.4 G 
665 kg

Neuro -  -2.1 1 -0.0 l i i l i i i S I l 0.0
P + D -5.5 -0.4 0.7 0.0
No-control -0.8 -2.2 0.4 3.7

Condition 3 
0.2 G 
665 kg

Neuro !: -0.5 0.0 i i i i i i i i i i 0.0
P + D -1.3 -0.1 0.3 0.0
No-control -0.2 -0.5 0.2 1.8

Condition 4 
0.8 G
590 kg

Neuro -10.4 -0.0 l i i i i i i i i i ! 0.1
P + D -31.9 -1.0 1.3 0.1
No-control -3.4 -9.5 1.2 8.6

Condition 5 
0.4 G 
590 kg

Neuro -2.1 -0.0 0.4 0.0
P + D -6.4 -0.4 0.6 0.0
No-control -0.7 -1.8 0.5 3.9

Condition 6 
0.2 G 
590 kg

Neuro -0.5 0.0 0.2 0.0
P + D -1.5 -0.1 0.3 0.0
No-control -0.2 -0.4 0.2 1.9

Condition Control
system

Starboard actuator (mm) Port actuator (mm) Cost
Overshoot* Steady state Overshoot* Steady state

Condition 1 
0.8 G 
665 kg

Neuro 1.8 46.1 67.5 00
P + D 14.2 47.1 0.8 67.1 4.5
No-control --------------- --— 110

Condition 2 
0.4 G 
665 kg

Neuro 0.2 25.2 1.2 , ;M 30.0 0.32
P + D 1.2 25.4 No-over** 29.8 0.43
No-control 22

Condition 3 
0.2 G 
665 kg

Neuro 0.1 13.2 0.3 l i i H i i i i i 0.075
P + D No-over** 13.2 No-over** 14.2 0.083
No-control 5.3

Condition 4 
0.8 G 

590 kg

Neuro 5.1 39.9 7.9 I H i l l i l l l l 1.6
P + D 14.3 40.0 No-over** 61.5 5.0
No-control ----------------------------- 123

Condition 5 
0.4 G 
590 kg

Neuro 0.7 22.0 1.6 27.1 0.28
P + D 1.8 22.2 No-over** 26.9 0.40
No-control --------------------- — 25

Condition 6 
0.2 G 
590 kg

Neuro 0.3 11.6 0.5 12.9 0.066
P + D 0.2 11.6 No-over** 12.7 0.072
No-control 6.0

*Overshoot: difference between transient response and steady state.
**No-over: no-overshoot, where transient response is smaller than steady state.
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Fig. 8.1 Diagrammatic representations of (a) full system and
(b) optimisation process
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Fig. 8.2 Neuro-controller involving two networks for body height control
and roll control
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Fig. 8.4 Flowchart of the simulation programme
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Fig. 8.7 Comparisons between the neuro-control and P + D control in vehicle 
body responses: (a) height change and (b) body roll; during 0.8 G cornering 
(vehicle body mass : 665 kg)
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Chapter 9
Energy Consumption of Variable Geometry Active 
Suspension System

This chapter considers the modelling and simulation of an actuator system, which is 
expected to be installed at each wheel station of the variable geometry active suspension 
system; using the computer simulation package, SIMULINK.

The first section of the chapter presents general information on the model building and 
simulation via SIMULINK. In the second section, an actuator model is built in 
SIMULINK's block diagram window, and it is described through the four parts: motor 
speed control, motor current control, electric motor circuit and mechanical system. The 
third section provides simulation results showing power and energy consumption of the 
variable geometry system, with either the P + D control or the neuro-control system. 
These are compared with those of other actively-controlled suspension systems taken 
from the literature, under similar circumstances, i.e. that involving 0.8 G cornering.

9.1 SIMULINK

SIMULINK is a computer package for simulating dynamic systems as an extension to 
MAILAB. SIMULINK has two phases of use, model building and simulation.

SIMULINK facilitates the model building via block diagram windows, in which models 
are created and edited principally by mouse driven commands. Building a system is 
much like drawing a block diagram. Instead of drawing the individual blocks, they are 
copied from either block libraries supplied with SIMULINK or block libraries which we 
define ourselves.

The feedback control scheme of the variable geometry active suspension half-car model, 
which consisted of the P + D control system in chapter 7 or the neuro-control system in 
chapter 8, can be converted to SIMULINK's block diagram window, as shown in Fig. 
9.1. This model involves three MATLAB function-files called: 'CONTROLLER.M',
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'PCCOMP.M' and 'VEHICLE.M'. 'CONTROLLER.M' contains either the P + D 
control, which was represented by equation (7.14), or the neuro-controller with optimal 
weighting parameters, whose function form was represented by equation (8.3). 
'PCCOMP.M' was already described in section 8.2 in the previous chapter. 
'VEHICLE.M' involves differential equations of the suspension model. The differential 
equations were converted to a MATLAB function-file from the corresponding 
subroutine of the FORTRAN programme, which was automatically generated via 
AUTOSIM.

In simulations, such differential equations are integrated; SIMULINK provides a number 
of integration methods, e.g. Runge-Kutta third and fifth-order methods, Euler's method, 
etc. In practice, a simulation result, provided via SIMULINK's variable geometry 
suspension with a controller model using the Runge-Kutta third-order method, agrees 
with that of the corresponding FORTRAN programme using the Runge-Kutta second- 
order method. Therefore, it is not necessary to show these results in figures.

9.2 Actuator Model

SIMULINK's block diagram window showing the actuator model for a single wheel 
station is shown in Fig. 9.2. (There will be four actuator models in order to represent a 
full car system having four wheels.) The actuator model can be described through the 
following four parts: motor speed control, motor current control, electric motor circuit 
and mechanical system.

Motor speed control

An actuator velocity demand is used, through the inverted leadscrew gear ratio (this will 
be described later on) and a D.C. speed transformer, to provide the motor speed demand 
signal. The actual motor speed feedback signal is provided through a D.C. 
tachogenerator, and the feedback signal is compared with the demand signal in the 
speed-error amplifier. The resulting speed-error signal is amplified by the gain, Ks, and 
the output determines the motor current demand signal.
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Hence, if the actual motor speed is less than the desired speed, the speed-error amplifier 
will demand current in proportion to the speed error; the motor will therefore accelerate 
in an attempt to minimise the speed error. As the motor speed comes up to the desired 
speed, the speed error reduces; and the final speed is approached smoothly.

Motor current control

A current feedback signal is obtained via a D.C. current transformer, and it is compared 
with the motor current demand signal in the current-error amplifier. The resulting 
current-error signal is amplified by the gain, KP, and the output determines the motor 
driving voltage, V.

Electric motor circuit

The motor driving voltage, V, is combined with the motor back-e.m.f., E, which is 

generated in proportion to the motor speed, 0 , to oppose the driving voltage. The 
back-e.m.f. is represented by:

where Ke is the motor back-e.m.f. constant in Vsec/rad. The combined voltage governs 
the motor current, 7, through the motor resistance, R. The voltage equation is:

I will use the term 'power' to refer to the electrical input power, VI; which is the sum of 
the mechanical output power and the power loss as described in equation (9.3). The 
energy consumption can be represented by the integration of the power:

E = K f i , (9.1)

V - E
7 = -----   or V = E  + IR .

R
(9-2)

Multiplying equation (9.2) by the current gives the power equation as:

Electrical Input Power (VI)
= Mechanical Output Power (El) + Power Loss ( I 2R).

(9.3)

(9.4)

The electromagnetic torque, Tm, is generated in proportion to the motor current, 7:



I l l

Tm = Kt I , (9 5 )

where KT is the electromagnetic torque constant in Nm/A. The motor responds to the 
electromagnetic torque and the load torque, which opposes the electromagnetic torque, 
by accelerating the motor armature of inertia, j:

JG = Tm - T l . (9.6)

The load torque, TL, is related to the mechanical load as described below.

Mechanical system

The mechanical arrangement of an actuator for a single wheel station is shown 
diagrammatically in Fig. 9.3. The actuator velocity, yact, is related to the motor speed,

0 , through a leadscrew gear ratio:

yact = 0  r ta n a ,  (9.7)

where r is the radius of the screw and a  is the helix angle.
When the slider moves on the track, a friction force occurs to oppose the action. The 
friction force is:

Ffnc = H Fim coscp tanh(Y yaa), (9 .8 )

where ji is the friction coefficient between the surfaces of the slider and the track; Fstrut is 
the strut force; cp is the angle between the direction of the strut force and the line, which 
is at a right angle to the track; and y is the shaping parameter. This friction function is 
illustrated in Fig. 9.4, where ji = 0.06, cp = 0 and y = 1000.

The mechanical load is represented by:

Load = H F „ru, cos(P tanh(Y yaa ) + F „ru, sin <P. (9.9)

where the first term on the right side of the equation always opposes the actuation. On 
the other hand, the second term (which is a component of the strut force acting parallel 
to the track) opposes the actuation when the actuation is towards the wheel, but they 
work together when the actuation is towards the vehicle body.
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Nevertheless, a simplification can be made by the neglect of the angle, cp, for 
convenience. Therefore, the simplified load is:

L°ad = M- F,,„„ tanh(y yaa). (9.10)

The equation (9.10) expresses that multiplying the friction function, p, tanh(y yact), by

the strut force gives the load, i.e. the friction force. The equation (9.10) is involved in 
the SIMULINK model.

When the leadscrew is loaded, the work for one rotation of the load torque is:

2k Tl = 27t r ta n a  x  Load+ 2% x  Friction Torque. (9-11)

The friction torque is:

Friction Torque = r x Friction Coefficient of Leadscrewx Load (9.12)

= r tan p x  Load,

where p is the friction angle of the leadscrew.

Substitution of (9.12) into the last term of (9.11) then yields:

2k Tl -  2% r ta n a  x  Load+27t rtanP  xLoad (9.13)

.*. Tl = > tan (a  + p ) x  Load.

Hence the load torque, TL, is related to the mechanical load through the Torque/Load 
ratio, r tan(a +P); strictly speaking, the leadscrew is irreversible, if the helix angle and 
friction angle have the relationship, a  < p.

In SIMULINK’s actuator model, the following representative model parameters have 
been used:

D.C. current feedback transformer : Kctf=  0.2 V/A ;

D.C. tachogenerator (D.C. motor speed transform er): K tCh =  0.05 Vs/rad ;

Speed control gain : K s= 20 V/V ;

Power amplifier gain: Kp = 20 V/V;
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Motor back-e.m.f. constant: 

Electromagnetic torque constant: 

Motor inertia:

Ke-  0.09 V sec/rad;

Kt = 0.09 Nm/A ; 

j  = 0.001 kgm2 ;

R - I C 1 ;  

r = 0.005 m ;

a  = 0.087266 rad (= 5 d eg ); 

P = 0.087266 rad (= 5 deg );

Motor resistance :

Mean radius of leadscrew : 

Leadscrew helix angle: 

Leadscrew friction angle:

Friction coefficient between the slider and the track : JI = 0.06.

9.3 Simulation Results

Firstly, SIMULINK's half-car model, involving the variable geometry active suspension 
with control system, is simulated, (see Fig. 9.1) In this model, the actuator demand 
velocities govern the actual actuator velocity responses, i.e. the actuators respond, 
perfectly, to the demand. When the simulation is completed, the time histories of the 
actuator demand velocities and suspension strut forces are stored in the output data 
called 'data 1' and 'data 2', respectively. Each data consists of two column-vectors for 
the starboard and port sides.

Secondly, SIMULINK's actuator model is used for each side actuators via data 1 and 
data 2. (Here, one column-vector of each data is used.) The time-histories of the 
actuator velocity, the motor current signal and its demand, the power and energy 
consumption are stored as column-vectors for each simulation.

Fig. 9.5 shows the demand velocity and actual velocity response of the starboard 
actuator with the neuro-control system under ramp lateral force inputs, which involve 
maximum lateral acceleration of 7.848 m/s2 (0.8 G); the half-car is loaded with the 
vehicle body mass of 665 kg. As shown in this figure, the actuator velocity response 
accords with the demand velocity.

Fig. 9.6 shows the motor current demand and the current feedback signals; Fig. 9.7 (a) 
and (b) show the power and energy consumption, respectively, in the similar manner.

Table 9.1 shows the power and energy consumption of the starboard and port actuators 
with each of the P + D control and neuro-control systems. Each system responds in a 
similar manner. From this table, the neuro-controlled system consumes more energy



114

than the P + D controlled system on each side of the vehicle. The possible reason is that 
the neuro-controller seems to require faster actuator responses than the P + D controller, 
see Fig. 8.6 in the previous chapter. Thus, we can compromise the performance and 
energy consumption using the cost function (8.6), when we train the neuro-controller.

Table 9.2 shows a comparison between the r.m.s. value of the power with each of three 
hydraulic active suspension systems, involving direct actuations between bodies and 
wheels, and that of the variable geometry active suspension with either the P + D control 
or the neuro-control system. Each system relates to a full-car, having four wheel stations 
with four actuators; under a 0.8 G cornering. Data of the hydraulic active suspension 
systems are taken from the literature (Williams and Miller, 1994). From this table, the 
hydraulic high-bandwidth system requires the lowest power for cornering. However, it 
requires the highest power among the three hydraulic systems on a straight road as 
described by Williams and Miller. On the other hand, if the variable-geometry systems 
do not activate on a straight road, they are inherently passive suspensions. Overall, the 
variable-geometry systems require low power as compared with the hydraulic systems.

Table 9.3 shows a comparison between the energy consumption of a hydraulic active roll 
control system, which involves rotary actuators in the anti-roll bars at front and rear, and 
that of the variable geometry active suspension with either P + D control or neuro­
control system. Each system relates to a full-car, having four wheel stations; under a 0.8 
G cornering. Data of the active roll control system is taken from the literature (Sharp 
and Pan, 1993). From this table, the variable-geometry suspension with the P + D 
control system achieves lower energy consumption than the active roll control system, 
while the neuro-controlled system consumes higher energy than it. Hence, we can 
compromise the performance and energy consumption, as mentioned earlier.

Table 9.4 shows the power and energy consumption of the variable-geometry 
suspensions with neuro-control, involving each of three different friction levels between 
the sliders and the tracks. Each system relates to a full-car, having four wheel stations 
with four actuators; under a 0.8 G cornering. From this table, the system, involving the 
larger friction of the mechanical system, requires higher power and energy consumption. 
Therefore, when we design the mechanical arrangement of the actuators, it is necessary 
to consider the materials of the sliders and tracks.
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9.4 Conclusions

It was shown how the actuator model can be built via the computer simulation package, 
SIMULINK.

It turned out that the neuro-control system, which demonstrated better performance than 
the P + D control system in the previous chapter, required higher power and energy 
consumption for a 0.8 G cornering. Therefore, the controller design may involve a 
compromise between the performance and energy cost.

Nevertheless, from the simulation results presented, the variable geometry active 
suspension systems require low power and energy consumption as compared with the 
other actively controlled suspension systems taken from the literature.
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Table 9.1 Power and energy consumption of the starboard and port actuators of 
the variable-geometry active suspension half-car model with each of the P + D 
control and neuro-control systems. Each system responds to 0.8 G cornering; the 
half-car is loaded with the vehicle body mass of 665 kg

Starboard actuator Port actuator
Control R.m.s. Peak power Energy * R.m.s. Peak power Energy *
system power (W) (W) consum. (J) power (W) (W) consum. (J)
Neuro 293 1654 431 341 1796 473
P + D 191 1239 221 186 1210 182

* Energy consumption is calculated for 4 second.

Table 9.2 Comparison between the r.m.s. value of the power with each of three 
hydraulic active suspension systems, involving direct actuations between bodies 
and wheels, and that of the variable geometry active suspension with either the P 
+ D control or neuro-control system. Each system relates to a full-car, having 
four wheel stations with four actuators; under 0.8 G cornering. Data of the 
hydraulic active suspension systems are taken from the literature (Williams and 
Miller, 1994)

R.m.s. power (W)
Hydraulic high-bandwidth system 190
Hydraulic low-bandwidth system 1 3829
Hydraulic low-bandwidth system 2 3743
Variable geometry system (neuro) 1268
Variable geometry system (P + D) 754
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Table 9.3 Comparison between the energy consumption of a hydraulic active roll 
control system, which involves rotary actuators in the anti-roll bars at front and 
rear, and that of the variable geometry active suspension with either P + D control 
or neuro-control system. Each system relates to a full-car, having four wheel 
stations; under 0.8 G cornering. Data of the active roll control system is taken 
from the literature (Sharp and Pan, 1993)

Energy consumption (J)
Active roll control system 1194
Variable geometry system (neuro) 1808
Variable geometry system (P + D) 806

Table 9.4 Power and energy consumption of the neuro-controlled variable- 
geometry suspension systems, involving each of three different friction levels 
between the sliders and the tracks. Each system relates to a full-car, having four 
wheel stations with four actuators; under 0.8 G cornering

R.m.s. power 
(W)

Energy 
consum. (J)

No-friction 1062 1368
Friction* : (X = 0.06, friction angle** : 5° 1268 1808
Friction* : |X = 0.1, friction angle** : 5° 1442 2274

* Friction between the sliders and the tracks,
** Friction angle of the leadscrews.
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Fig. 9.3 Diagrammatic representation of mechanical arrangem ent 
of an actuator for a single wheel station
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Fig. 9.5 Comparison between the demand velocity and actual velocity response of 
the starboard actuator with the neuro-control system under ramp lateral force 
inputs, which involve maximum lateral acceleration of 7.848 m/s2 (0.8 G); the half­
car is loaded with the vehicle body mass of 665 kg
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Fig. 9.6 Comparison between the motor current demand and current feedback 
signals of the starboard actuator with the neuro-control system under ramp lateral 
force inputs, which involve maximum lateral acceleration of 7.848 m/s2 (0.8 G); the 
half-car is loaded with the vehicle body mass of 665 kg
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Chapter 10
Conclusions

Energy consumption problems in automotive active suspension systems have resulted in 
a general lack of commercial enthusiasm for them. One way to tackle the high energy 
consumption is to employ low energy system types, which involve variable geometry. 
However, the control system design problems are novel, since variable geometry 
implies non-linearity.

Multi-layer neural networks can learn to control non-linear systems to reduce cost 
functions of general form under external inputs, e.g. road disturbance or lateral forces. 
One contribution of this work is to demonstrate how a neural network can be integrated 
with a dynamic system physical model to minimise a defined cost function relating to the 
controlled system.

The spring/damper unit length change to the wheel displacement ratio can be varied by 
actuation, which is substantially perpendicular to the suspension force. In the variable 
geometry design, one end of each spring/damper unit moves on an inclined track of each 
lower swing arm of the suspension. The inclined track was designed to ensure that both 
preload of the spring/damper unit and leverage ratio change work together in the same 
direction resulting from actuator movement. The developed half-car model with the 
variable geometry demonstrated that the nominal vehicle body height was maintained by 
symmetrical actuation on the starboard and port sides for the various vehicle body 
weight conditions. The neuro-controller successfully reduced the cost function 
(consisting of the weighted sum of the squares of the body height change, body roll and 
actuator velocities) and it improved the responses of the body height change and body 
roll under all conditions tried. These involved various levels of ramp lateral force inputs 
and vehicle body weight changes.

It turned out via the simulations using the developed actuator model that a variable 
geometry active suspension system is economical in energy consumption as compared 
with other actively controlled suspension systems taken from the literature. Since the 
variable geometry system without actuation is a conventional passive suspension, there 
appear to be possibilities to work as a passive vibration isolator on a straight road and to
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obtain the benefits of active suspensions - levelling function, body-attitude-control and 
preview control for special occasions, i.e. bump and pot-hole. The neuro-controlled 
system demonstrated better performance but consumed higher energy than the P + D 
controlled system. Therefore, a practical controller design will need to involve 
compromise between performance and energy cost.

As a continuation of the work, the following activities are suggested:

a. A full-car model, having four-wheel stations with variable geometry, could be 

developed in the computer;

b. The full-car model with a neuro-controller could be tested under various levels of 

lateral force inputs for roll control performance or longitudinal force inputs for pitch 

control performance;

c. The system could be tested as a vibration isolator with cylindrical or cross level road 

disturbance input;

d. Preview techniques could be applied to rear suspension control using front suspension 

sensors in order to improve on vibration isolation and to cope with bumps and pot­

holes;

e. To improve on learning efficiency, there remains a further investigation of the neural 

network learning algorithm, involving the following factors: network structure, the 

number of layers, the number of processing elements, transfer function and update 

rule of weighting parameters;

f. Detailed design for particular applications from economical cars to special purpose 

cars, e.g. military vehicles and off-road vehicles, could be considered. Designs could 

be derived from full studies of mechatronic systems and learning control.
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Appendix A 

Back-propagation for the Multi-Layer Neural Networks in Chapters 5 
and 6

The architecture of the multi-layer neural network is shown in Fig, 5.2. There are Sp 
inputs, Sh hidden elements and Sr = 1  output from the network. The input-output 
relationship is:

wH is a ShXSp matrix, x  is a 5^x1 vector and bH is a Sh><1 vector.

Solving d FNN(x,w)/d w, partial derivatives of u with respect to the weight parameters 
and biases are given for each layer as follows:

Output layer. Partial derivatives of u with respect to h th weighting parameter and bias 
are:

u = L(wRS ( w HL(x)  + b H) + bR). (A .l)

Output from each layer follows as:

Output layer: u = L(wRa H + b R) = w Ra H + b R, (A.2)

where wR is a 1 xSh vector, aH is a ShX 1 vector and bR has one element.

Hidden layer: a H = S ( a H*) , (A.3)

where

1 , respectively (A.4)

Hidden layer: Partial derivatives of u with respect to the weighting parameter (between 
p  th element at the input layer and h th element of the hidden layer) and h th bias can be:
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3 u _  d u 3 a Hh 3 a Hh
H — 3  H ^ ^ H (A-.D)d W h , P a a h o a h o w  h,P

=  w R\,h S'{a*Hh) x p,

3 u d u 3 a Hh 3 a*Hh 
d b Hh,P ~ d a Hh ' d a Hh ' d b Hh,P

= w Ri,h S \ a Hh) 1,

respectively. Solving 3 F^dx,w)/d x , partial derivatives of u with respect to x  are given 
as:

3 u =  3 u 3 a H 3 a H
d x  d a H 3 a*H d x  (A.6 )

= h> * S V * ) w h ,

where S'(a*H) is a diagonal matrix.



Appendix B

The Error due to the Mistake of the Parameter Setting

In chapter 7, the value of the wheel camber inertia was set to 40 kg m2, incorrectly. The 
parameter value should be 1 kg m2. However, the mistake was found too late to correct 
it. Therefore, simulation results with the wheel camber inertia of 40 kg m2 and 1 kg m2 

are compared in this appendix to establish that the results are not critically affected.

Fig. B .l shows a comparison between the vehicle body height responses of passive half­
car models with the wheel camber inertia of 40 kg m2 and of 1 kg m2 under ramp lateral 
force inputs, which involve maximum lateral acceleration of 0.8 G. Fig. B.2 shows a 
comparison between the vehicle body roll responses in a similar manner.

From these figures, it can be concluded that the mistake does not affect these calculation 
results seriously.
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£
- 0.010ca>

Ea>ow
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‘■5
>.■a
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- 0.020
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 w h e e l  inertia: 1 .0  k g -m 2-0 .0 2 5

-0 .0 3 0

-0 .0 3 5

0.0 1.0 2.0 3 .0 4 .0

T im e ( s e c o n d )

Fig. B.l Comparison between the vehicle body height responses of passive half-car 
models with the wheel camber inertia of 40 kg m2 and of 1 kg m2 under ramp 
lateral force inputs, which involve maximum lateral acceleration of 0.8 G.
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Fig. B.2 Com parison between the vehicle body roll responses of passive half-car 
models with the wheel cam ber inertia of 40 kg m 2 and of 1 kg m 2 under ram p 
lateral force inputs, which involve maximum lateral acceleration of 0.8 G.
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Appendix C 

Model Building of Variable Geometry Active Suspension System using 
AUTOSIM

Firstly, there is the AUTOSIM programme of the variable geometry active suspension 
system described in Chapter 7. Secondly, there is the Rich Text Format file, written by 
AUTOSIM. The file was read by MICROSOFT WORD and printed from it.

AUTOSIM programme for variable geometry active suspension system 
(Programme name: Hal21r)

; AUTOSIM PROGRAM FOR VARIABLE LEVERAGE RATIO 
;ACTIVE SUSPENSION SYSTEM 
;HALF CAR MODEL 
;WRITTEN 24/9/97 BY YUKIO;

(reset)
(setsym *multibody-system-name* "HAL21r")
(si)
(add-gravity: direction [nz])
(setsym *no-zees* t)

;ADD INITIAL POINTS ON BODY N
(add-point p i :name "starboard lower arm inner pivot" :body n 

:coordinates ( 0  y l z l))
(add-point p2  :name "starboard upper arm inner pivot" :body n 

xoordinates ( 0  y2  z2 ))
(add-point p3 :name "starboard spring damper top mounting point" :body n 

xoordinates (0 y3 z3))
(add-point p5 :name "starboard upper arm outer pivot" :body n 

xoordinates (0 y5 z5))
(add-point p6  :name "starboard lower arm outer pivot" rbody n 

xoordinates ( 0  y6  z6 ))
(add-point p7 :name "starboard tyre contact point" :body n 

xoordinates ( 0  y l  zl))
(add-point p8  :name "starboard hub carrier centre mass point" rbody n
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xoordinates ( 0  y8  z8 ))
(add-point p9 :name "port lower arm inner pivot" :body n 

xoordinates (0 y9 z9))
(add-point plO :name "port upper arm inner pivot" :body n 

xoordinates (0 ylO zlO))
(add-point p 1 1  rname "port spring damper top mounting point" :body n 

xoordinates ( 0  y l 1 z l 1 ))
(add-point p l3  :name "port upper arm outer pivot" :body n 

xoordinates (0 y l3  zl3))
(add-point p l4  :name "port lower arm outer pivot" :body n 

xoordinates (0 y l4  zl4))
(add-point p l5  :name "port tyre contact point" :body n 

xoordinates (0 y 15 zl5))
(add-point p l 6  :name "port hub carrier centre mass point" rbody n 

xoordinates ( 0  y l 6  z l 6 ))
(add-point p l7  :name "vehicle body centre mass point" rbody n 

xoordinates (0 y l7  zl7))

;VEHICLE MAIN BODY 
(add-body vehicle rparent n 

rname "vehicle body" 
rmass Mbod 
rinertia-matrix (ixx 0  0 ) 
rcm-coordinates p l7  
r translate z
rbody-rotation-axes x rsmall-angles t 
rparent-rotation-axis x 
rreference-axis y)

(add-point vehiclep3 rbody vehicle rcoordinates p3)
(add-point vehiclep 1 1  rbody vehicle rcoordinates p 1 1 )

;STARBOARD SIDE OF VEHICLE
(add-body s_la rparent vehicle rname "starboard lower arm" rmass 0  

rinertia-matrix 0  rjoint-coordinates p i rbody-rotation-axes x 
rsmall-angles t rparent-rotation-axis x rreference-axis y)

(add-body s_ua rparent vehicle rname "starboard upper arm" rmass 0  

rinertia-matrix 0  rjoint-coordinates p2  rbody-rotation-axes x
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:small-angles t rparent-rotation-axis x rreference-axis y)

(add-point uap5 rbody s_ua rcoordinates p5)

(add-body s_hc rparent s_la rname "starboard hub carrier" rmass Mwhl 
rinertia-matrix (ixxwhl 0  0 ) rjoint-coordinates p6  rcm-coordinates p 8  

rbody-rotation-axes x rsmall-angles t rparent-rotation-axis x rreference-axis y)

(add-point hcp5 rbody s_hc rcoordinates p5)
(add-point hcp6  rbody s_hc rcoordinates p6 )
(add-point hcp7 rbody s_hc rcoordinates p7)

(add-speed-constraint "dot ((vel(uap5,hcp5)),[vehicley])" :u"ru(s_hc)") 
(add-speed-constraint "dot ((vel(uap5,hcp5)),[vehiclez])" ru"ru(s_ua)")

;PORT SIDE OF VEHICLE
(add-body p_la rparent vehicle rname "port lower arm" rmass 0  

rinertia-matrix 0 rjoint-coordinates p9 rbody-rotation-axes x 
rsmall-angles t rparent-rotation-axis x rreference-axis y)

(add-body p_ua rparent vehicle rname "port upper arm" rmass 0  

rinertia-matrix 0  rjoint-coordinates p 1 0  rbody-rotation-axes x 
rsmall-angles t rparent-rotation-axis x rreference-axis y)

(add-point uap 13 rbody p_ua rcoordinates p i 3)

(add-body p_hc rparent p_la rname "port hub carrier" rmass Mwhl
rinertia-matrix (ixxwhl 0 0) rjoint-coordinates p l4  rcm-coordinates p l 6  

rbody-rotation-axes x rsmall-angles t rparent-rotation-axis x rreference-axis y)

(add-point hep 13 rbody p_hc rcoordinates p i 3)
(add-point hep 14 rbody p_hc rcoordinates p i4)
(add-point hep 15 rbody p_hc rcoordinates p i 5)

(add-speed-constraint "dot ((vel(uapl3,hcpl3)),[vehicley])" ru"ru(p_hc)") 
(add-speed-constraint "dot ((vel(uapl3,hcpl3)),[vehiclez])" :u"ru(p_ua)")

;PD CONTROLLED ACTUATIONS AND MOVING POINTS
(setsym s_zdis "mag(pos(p3,p6))-mag(pos(vehiclep3,hcp6))")



(setsym p_zdis "mag(pos(p 11 ,p 14))-mag(pos(vehiclep 11,hep 14))") 
(setsym ds_zdis "dxdt(@s_zdis)")
(setsym dp_zdis "dxdt(@p_zdis)")

-  (add-variables dyvars real smov dsmov)
(add-state-variable smov dsmov 1) r
(add-equation difeqn dsmov ̂ Grp*(@s_zdis-@p_zdis)+Grd*(@ds_zdis-@dp_zdis) + 
Ghp* (@ s_zdis+ @ p_zdis)+Ghcfc (@ ds_zdis+ @ dp_zdis)"

:comment "PD controlled differential equations of actuator dynamics (starboard)")

j (add-variables dyvars real pmov dpmov)
(add-state-variable pmov dpmov 1)
(add-equation difeqn dpmov "Grp*(@s_zdis-@p_zdis)+Grd*(@ds_zdis-@dp_zdis)- 
Ghp *(@ s_zdis+@ p_zdis)-Ghd* (@ ds_zdis+@ dp_zdis)"

:comment "PD controlled differential equations of actuator dynamics (port)")

(set-units bank "a")

(add-point lap4 :body s_la 
:name "s. actuationpoint" 
coordinates (0 'Vy4+smovi' "z4-smov*tan(bank)")
: moving t)

(add-point lap 1 2  :body p_la 
:name "p. actuation point"
xoordinates ( 0  "yl2 +pmov" "z l2 +pmov*tan(bank)")
: moving t)

;ADD LATERAL FORCE TO VEHICLE CENTRE MASS 
(add-table LAcc "lateral acceleration to vehicle body (m/s/s) vs. time" :npts 30 

:table-function tabf :yunits "1/t/t"
:values ((0 0) (0.5 7.848)))

(add-line-force centrF :name "lateral force to vehicle body"
:direction [ny] :magnitude "Mbod*LAcc(t)" :pointl vehiclecm)

(setsym Preload "(ini_Mbod*G/2)/ini_dldz)")
(setsym Tpreload "(Mbod/2+Mwhl)*G")
(set-units ini_Mbod "f*t**2/l")



;ADD VERTICAL FORCES /  1 f V
(add-strut s_spdp rname "starboard spring/damper force" £/\

rmagnitude "-ks*(x-xO)-cs*\0@Preload" ^  ^
rpointl vehiclep3 :point21ap4)

(add-line-force s_verF :name "starboard tyre vertical force"
:direction [nz] rmagnitude "-kt*(x-xO)-ct*v-@Tpreload" 
rpointl hcp7)

(add-strut p_spdp rname "port spring/damper force" 
rmagnitude "-ks*(x-xO)-cs*v+ @Preload" 
rpointl vehiclepll rpoint2  lap l2 )

(add-line-force p_verF rname "port tyre vertical force" 
rdirection [nz] rmagnitude "-kt*(x-xO)-ct*v-@Tpreload" 
rpointl hep 15)

(setsym load_trans "fm(s_verF)/(fm(s_verF)+fm(p_verF))")

; ADD LATERAL FORCES
(add-line-force s_whlF rname "starboard tyre lateral external force" 

rdirection [ny] rmagnitude "Mwhl*LAcc(t)". 
rpointl s_hccm)

(add-line-force s_sideF rname "starboard tyre side force"
rdirection [ny] rmagnitude "-1 * @load_trans*(Mbod+Mwhl*2)*LAcc(t)" 
rpointl hcp7)

(add-line-force p_whlF rname "port tyre lateral external force" 
rdirection [ny] rmagnitude "Mwhl*LAcc(t)" 
rpointl p_hccm)

(add-line-force p_sideF rname "port tyre side force"
rdirection [ny] rmagnitude M-l*(l-@load_trans)*(Mbod+Mwhl*2)*LAcc(t)" 
rpointl hep 15)

; OUTPUT
(add-standard-output)
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(add-out @s_zdis "s_zdis" :long-name "starboard potentiometer displacement" 
:body s_hc :units 1)

(add-out @p_zdis "p_zdis" :long-name "port potentiometer displacement"
:body p_hc :units 1)

(add-out @ds_zdis "ds_zdis" :long-name "starboard potentiometer velocity"
:body s_hc :units 1/t)

(add-out @dp_zdis "dp_zdis" :long-name "port potentiometer velocity"
:body p_hc :units 1/t)

;DIAGNOSTICS
(print-points) (print-coordinates) (print-bodies)

;;;;This command is used for the FORTRAN simulation
;;;;;;(finish)

;;;;This command is used to create the RTF file
(dynamics :formalism numerical-lud)

;UNITS AND DEFAULT PARAMETER VALUES 
(set-defaults

y l 0.3 z l -0.15 y2 0.4 z2 -0.35 y3 0.485 z3 -0.55 y4 0.185 z4 -0.015 
y5 0.67 z5 -0.5 y6  0.67 z6  -0.18 y l  0.75 z7 0 y8  0.75 z8  -0.34 
y9 -0.3 z9 -0.15 ylO -0.4 zlO -0.35 y l 1 -0.485 z l l  -0.55 y l2  -0.185 z l2  -0.015 
y 13 -0.67 z l3  -0.5 y l4  -0.67 z l4  -0.18 y l5  -0.75 z l5  0 y l 6  -0.75 z l 6  -0.34 
y l7  0 z l7  -0.5
ks 60000 cs 6000 kt 2000000 ct 50
Mbod 665 Mwhl 25 ixx 100 ixxwhl 40 ini_dldz 0.5 ini_Mbod 590 
bank 0.349 Ghd 0.02 Ghp 0.22 Grd 0.7835 Grp 2.8866 
iprint 50 step 0.001 stopt 10)

(set-defaults format "TEXT")

(set-names
ks "suspension spring stiffness" 
cs "suspension damping coefficient" 
kt "tyre spring stiffness" 
ct "tyre damping coefficient"
Mbod "mass of vehicle body"
Mwhl "mass of wheel"
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\ ixx "inertia of vehicle body" 
ixxwhl "camber inertia of hub carrier" 
ini_dldz "initial value of the leverage ratio" 
ini_Mbod "mass of vehicle body (nominal condition)" 
bank "angle of actuation on coordinate sys. of lower arm"
Grp "gain of roll controller regarding body roll"
Grd "gain of roll controller regarding roll rate" G\^
Ghp "gain of height controller regarding body height"
Ghd "gein of height controller regarding body height velocity" 
smov "starboard actuator displacement" 
pmov "port actuator displacement")

;;;;;This command is used to create the RTF file
(write-to-file write-eqs "half2 lR.rti^L, (j^qQ

The equations of motion of the system has been written by AUTOSIM in Rich Text 
Format (RTF file). The RTF file created has been read into WORD and edited below 
(except pre-computed constants):

*1* *!* *1* 4* 4* 4* 4* 4? 4* 4* 4* 4* 4? 4? 4̂  4* 4* 4* 4f 4* 4? 4* 4* 4f 4* 4f 4* 4* 4* 4̂  4* 4* 4* 4* 4« 4* 4* 4« 4« 4  ̂4« 4« 4« 4« 4« 4< 4< «!• 4*•j' ^  *1* v  •j* 4* v  4 ' 4* 4* 4̂  4* 4* v  4̂  4* 4* 4* 4* 4̂  4* 4* 4* 4* 4* 4* 4* *•* 4* 4 ' 4* 4* v  4̂  4* 4̂  4 * 4 * 4̂  4 * 4 * 4̂  4̂  4 * 4  ̂ 4  ̂4  ̂4  ̂4r 4  ̂4  ̂4  ̂ 4 ^

Equations For The Hal21r
Dynamic simulation of hal21r. Version created by AUTOSIM 2.0h on September 24, 
1997. Copyright (c) The Regents of The University of Michigan, 1989 - 1995. All 
rights reserved. The hal21r is represented mathematically by 14 ordinary differential 
equations that describe its kinematical and dynamical behavior. It is composed of 7 
bodies, has 4 DOF, and includes 9 forces and 0 moments.

Bodies
Vehicle body (VEHICLE); parent=N; trans coord = Q\\  rot coord = Q2  

Starboard lower arm (S_LA); parent=VEHICLE; rot coord = Qs 
Starboard hub carrier (S_HC); parent=S_LA; rot coord = <24 
Starboard upper arm (S_UA); parent=VEHICLE; rot coord = <25 
Port lower arm (P_LA); parent=VEHICLE; rot coord = <26 
Port hub carrier (P_HC); parent=P_LA; rot coord = Q-j 
Port upper arm (P_UA); parent=VEHICLE; rot coord = <28

Multibody Coordinates
Ql Abs. Z trans. of VEHICLEO (m)
Q2  Abs. X rot. of VEHICLE (rad)
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<23  X rot. of S_LA rel. to VEHICLE (rad)
<24 X rot. of S_HC rel. to S_LA (rad)
<25 X rot. of S_UA rel. to VEHICLE (rad)
Q6  X rot. of P_LA rel. to VEHICLE (rad)
<27 X rot. of P_HC rel. to P_LA (rad)
<28 X rot. of P_UA rel. to VEHICLE (rad)
SMOV Starboard actuator displacement (m)
P mov port actuator displacement (m)

Independent Speeds
U\ Abs. Z trans. speed of VEHICLEO (m/s)
U2 Abs. X rot. speed of VEHICLE (rad/s)
U3 X rot. speed of S JLA  rel. to VEHICLE (rad/s)
I/ 4  X rot. speed of P_LA rel. to VEHICLE (rad/s)

Forces
CENTRF Lateral force to vehicle body; Acts on the vehicle body from the inertial 
reference through mass center of the vehicle body. Magnitude = Fm \\ Direction = ny. 
S_SPDP Starboard spring/damper force; Acts on the vehicle body from the 
starboard lower arm through VEHICLEP3 and s. actuation point. Magnitude = -Fm %
Direction =  ( l / ( -p c 102 "Pcl05 -(PclOO "Pcl03) Smov "(Pcl04 "Pcl06 +  (Pc98 +  Pcl07) smov) 

q3 +  (34 +  smov) (Pc99 +  Smov "Pc98 43) +  (Z4 "Pc97 Smov) (PclOl "Pc97 smov +  p c l00 

43))0'5 P c i00 v e h ic le y  +  l/( -p c102 -Pcl05 -(PclOO "Pcl03) smov -(Pcl04 "Pcl06 +  (Pc98 +  

Pcl07) Smov) 43 +  0 4  +  smov) (Pc99 +  Smov ~Pc98 43) +  (Z4 ~Pc91 Smov) (PclOl ~Pc91 Smov 

+  PclOO 43))0'5 Pc98 v e h ic le z - l / ( -p c102 "Pcl05 "(Pcl00 "Pcl03) smov "(Pcl04 "Pcl06 +  

(Pc98 +  p c107) Smov) 43 +  0 4  +  smov) (Pc99 +  smov "Pc98 43) +  (Z4 ~Pc91 smov) (PclOl - 

Pc91 Smov +  PclOO 43))0'5 (j4  +  smov) S_lay - l/(-/? d 0 2  -pcl05 "(PclOO ”Pcl03) smov "(Pcl04 

"Pci06 +  (Pc98 +  Pcl07) Smov) 43 +  0 4  +  sm0v) (Pc99 +  smov "Pc98 43) +  (Z4 "Pc97 smov) 

(PclOl ~Pc91 Smov +  PclOO # 3) ) ^  (^4 ~Pc91 Smov) S_laz).
S_VERF Starboard tyre vertical force; Acts on the starboard hub carrier from the 
inertial reference through HCP7. Magnitude = -Fm3 \ Direction = n z.
P_SPDP Port spring/damper force; Acts on the vehicle body from the port lower 
arm through VEHICLEP11 and p. actuation point. Magnitude = -Fma\ Direction = -
( l / (P c ll2  +  P ci 15 +  (pci 10 +  Pci 13) Pmov + (pc U4  "Pel 16 +  (Pcl08 "Pel 17) Pmov) 46  +  

O l2  +  Pmov) (Pcl09 +  Pmov +  p c 108 46) +  (Z12 +  Pc91 Pmov) (P c ll l  +  Pc91 Pmov "Pel 10 

46))0-5 P ci 10 vehicley +  l /(p c112 +  Pci 15 +  (PcllO + p c113) Pmov +  (P c ll4  "Pel 16 +  

(Pc 108 "Pel 17) Pmov) 46 +  0 ;12 +  p m0v) (Pcl09 +  Pmov +  p c 108 46) +  (Z12 +  Pc91 Pmov) 

(P c ll l  +  Pc91 Pmov -PcllO  46))0-5 Pcl08 vehiclez +  l /(p e l l2  +  P ci 15 +  (PcllO +  P ci 13) 
Pmov +  (Pci 14 "Pel 16 +  (Pcl08 "Pel 17) Pmov) 46 +  (y i2  + p mov) (P d 0 9  +  Pmov +  Pcl08 46) 

+  (Z12 +  Pc91 Pmov) (P c ll l  +  Pc91 Pmov "PcllO ^6))0,5 O l2  +  Pmov) P _ la y +  l/(P e ll2  +  

Pci 15 +  (PcllO +  Pci 13) Pmov +  (Pci 14 "Pel 16 +  (Pcl08 "Pel 17) Pmov) 46  +  0 4 2  +  Pmov)
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i P c m  +  Pmov +  P c i08 q6) +  0 4 2  +  Pc91 Pmov) (P c ll l  +  Pc97 Pmov "PcllO 4 6 ) ) ° -5 (Z12 +  

Pc97 Pmov) P _ la z)
P_VERF Port tyre vertical force; Acts on the port hub carrier from the inertial
reference through HCP15. Magnitude = -Fm 5', Direction = nz.
S_WHLF Starboard tyre lateral external force; Acts on the starboard hub carrier
from the inertial reference through mass center of the starboard hub carrier. Magnitude 
= Fm6 \ Direction = ny.
S_SIDEF Starboard tyre side force; Acts on the starboard hub carrier from the
inertial reference through HCP7. Magnitude = -F m i; Direction = ny.
P_WHLF Port tyre lateral external force; Acts on the port hub carrier from the
inertial reference through mass center of the port hub carrier. Magnitude = Fm%\ 
Direction = ny.
P_SIDEF Port tyre side force; Acts on the port hub carrier from the inertial
reference through HCP15. Magnitude = -Fm9 \ Direction = ny.

Parameters
#ANK angle of actuation on coordinate sys. of lower arm (0.349 -)
Cs suspension damping coefficient (6000 -)
Ct  tyre damping coefficient (50 -)
G h d  gein of height controller regarding body height velocity (0 . 0 2  -)
Ghp gain of height controller regarding body height (0 . 2 2  -)
G rp  gain of roll controller regarding body roll (2.8866 -)
/ n i  d l d z  initial value of the leverage ratio (0.5 -)
^NI_MBOD mass of vehicle body (nominal condition) (590 -)
/XXWHL camber inertia of hub carrier (40 -)
/x x inertia of vehicle body ( 1 0 0  -)

suspension spring stiffness (60000 -)
K t tyre spring stiffness ( 2 0 0 0 0 0 0  -)
M b o d  mass of vehicle body (665 -)
Mw hl  mass of wheel (25 -)
Yio Y coordinate of attachment point for the port upper arm (-0.4 -)
Yn Y coordinate of VEHICLEP11 (-0.485 -)
Y n term in Y coordinate of p. actuation point (-0.185 -)
Yn Y coordinate of port upper arm outer pivot (-0.67 -)
Y u Y coordinate of port lower arm outer pivot (-0.67 -)
Yn Y coordinate of port tyre contact point (-0.75 -)
Yie Y coordinate of port hub carrier centre mass point (-0.75 -)
Yn Y coordinate of mass center of composite body VEHICLE (0 -)
Y\ Y coordinate of attachment point for the starboard lower arm (0.3 -)
Yi Y coordinate of attachment point for the starboard upper arm (0.4 -)
P3 Y coordinate of VEHICLEP3 (0.485 -)
Ya term in Y coordinate of s. actuation point (0.185 -)
Y5 Y coordinate of starboard upper arm outer pivot (0.67 -)
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76 Y coordinate of starboard lower arm outer pivot (0.67 -)
7 7  Y coordinate of starboard tyre contact point (0.75 -)
78 Y coordinate of starboard hub carrier centre mass point (0.75 -)
7 9  Y coordinate of attachment point for the port lower arm (-0.3 -)
Z 10  Z coordinate of attachment point for the port upper arm (-0.35 -)
Zi 1 Z coordinate of VEHICLEP11 (-0.55 -)
Z 1 2  term in Z coordinate of p. actuation point (-0.015 -)
Z 13 Z coordinate of port upper arm outer pivot (-0.5 -)
Z 14 Z coordinate of port lower arm outer pivot (-0.18 -)
Z 15 Z coordinate of port tyre contact point (0 -)
Z i6  Z coordinate of port hub carrier centre mass point (-0.34 -)
Z 17 Z coordinate of mass center of composite body VEHICLE (-0.5 -)
Zi Z  coordinate of attachment point for the starboard lower arm (-0.15 -)
Z2  Z coordinate of attachment point for the starboard upper arm (-0.35 -)
Z3 Z coordinate of VEHICLEP3 (-0.55 -)
Z4  term in Z coordinate of s. actuation point (-0.015 -)
Z5  Z coordinate of starboard upper arm outer pivot (-0.5 -)
Z6  Z coordinate of starboard lower arm outer pivot (-0.18 -)
Z7  Z coordinate of starboard tyre contact point (0 -)
Zg Z coordinate of starboard hub carrier centre mass point (-0.34 -)
Z9  Z coordinate of attachment point for the port lower arm (-0.15 -)

Precomputed Constants

(There are 378 pre-computed constants: from P c i to Pc3is)

Equations Of Motion
Each derivative evaluation requires 456 multiply/divides, 567 add/subtracts, and 25 
function/subroutine calls.

define extra variables

Smov =<29 
P mov = <2io

Kinematical equations

Q'l =Ui 
< 2 2  = u 2
Q '3 ~ U3
<2'4 = -((PC23 + PC47) U3 + U2 (PC44 + PC46 ~(PC20 + PC45) (<23 + <24)))
Q'S = PC42 U3 + U2 (PC37 "PC43 (Q3 + <24))
<2'6 =U4
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Q l  = -((P cil + PC95) U4 + U2 (-PC92 + P 094 + (Pc68 + PC93) (Q6 + Q l)))
Q'8 =  ~(PC90 U4 -U2 (PC85 ~PC91 (Q6 +  Ql)))

External subroutines and equations for forces and moments 

define expression for lateral force to vehicle body

PMl = M b o d  lacc(7)

define expression for starboard spring/damper force

FM2 = ~(PC156 + PC158 + 1/(^C165 + •S'MOV (^ 4  + PC99 -PciOO + Pc\03 ~Pci6l ~Pci62 

+ (1.0 + P C163) ‘S'MOV) )0*5 (PC172 ~PCl73 + (PcilO  + P c ll l)  ^MOV) U3 ~(Pd65 + 
Smov (Y4 + P c99 -Pcioo + P c m  - P c m  -P c \62 + (1-0 + Pci63) Smov) - (2  

P Cl04 -2 P Cl0 6  +  (2 PC107 +  Pc\64) S m o v )  <23)0*5 Ks)

define expression for starboard tyre vertical force

Fm3 = Pci76 + C t U \+  K t  Q\ - P c m  Q4 + ( P c m  + P c m  + P c m  + P c m )  U2 + 
(Pc i 87 ~Pc i 88 + P c m )  U3 + ( P c m  - P c m  + P c m )  Q2 - ( P c m  -P c m )  Q3

define expression for port spring/damper force

FM4 = ~(PC156 + PC191 “1/(PC197 + PMOV (Y l2  + PC109 + PcilO  + P c i l 3 + PC194 + 
Pci95 + (l.o  + P c m )  Pm ov ) ) 0 -5  (PC204 -P a o s  -(PC202 -PC203) Pm ov) U4  - 
(P c i  97 + Pm ov (^12  + Pcio9 + P c n o  + P c i 13 + Pci94 + Pci95 + ( 1 - 0  + P c i 63) 
Pm ov) - ( - 2  P c i 14 + 2  P c ii6  + ( 2  P c i 17 -Pci96) Pm ov) <26)0-5 Ks)

define expression for port tyre vertical force

Fm5 = P c m  + C t U\ + K t Qi + P c20i  Q i + (PC209 + PC210 + P c 2i i  -PC212) U2 -
(PC212 ~PC213 + PC214) U4 + (PC206 + PC207 ~PC20S) Q2 + (PC207 -PC20S) Q6 

define expression for starboard tyre lateral external force 

Fm6 =M wHLlacc(7)

define expression for starboard tyre side force 

Fm I  = PC216 lacc(P) Fm 3^(Fm 3 + Fm s) 

define expression for port tyre lateral external force 

PM8 =M wHLlacc(7)
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define expression for port tyre side force

Fm9 = PC216 lacc(7) (1.0 -Fm3KFm3 + FM5))

terms for force array eq. 4

GfAI = ~(~PC312 + Fm3 + Fm5 + Ql  (1/("PC264 "PC261 % OV “(PC263 + P d 6 2  %OV) 
S 3 + {Fa + Smov) (PC99 + Smov -Pc98 Qi) + (Z* -P091 Smov) (Pcioi -Pc97 
SmOV + PciOO S3))0-5 (Z4 ~PC91 •S'MOV) <23 Fm2 + H{PC260 + PC251 PMOV + 
(PC259 + P C258 PMOV) <26 + (J l2  + PMOV) (PC109 + PMOV + PC108 <26) + (Zl2
+ P C9 7  Pm ov) (P c m  + ^C 9 7  Pm ov -P c n o  S 6 ) ) 0 -5 (Z1 2  + P 0 1  Pm ov) <26 
FmA))

G fA2~ P C313 "S2 (PC314 + ^17 PMl) -Zl7 (Fjifi + l/(-Pc264 "PC261 SmOV "(PC263 + 
PC262 Smov) <23 + (^4 + Smov) (PC99 + SmOV -PC98 <23) + (Z4 -PC91 Smov) 
(PC101 ~P091 SmOV + PCIOO <23))0-5 (PC308 + SmOV -(Z4 -Pc97 Smov) 03) PM2 
+ 1/(PC260 + P C257 Pm ov + (PC259 + PC258 PMOV) <26 + (^12 + PMOV) (PC109 
+ Pm ov + Pcios Qi) + (Z12 + P 0 1  Pm ov) ( P c m  + P 0 1  Pm ov -P cn o  S6))0-5 
(PC309 + Pm ov -(Z12 + Pc9i Pm ov) Qi) Fma.) -(P c288 -Pc3 <24 -Pc287 (<23 + 
<24)) (Pa/6 -FmI -Fm3 {Qi + <23 +.<24)) + (PC301 + PC51 Q l ~PC300 (<26 + Ql)) {- 
pM8 + Fm9 + Fms {Qi + Q6 + Ql)) + FmI (1/(PC333 + SmOV (PC351 + PC350 
Smov) ~{PC353 + Pc351 Smov) S3)0-5 (PC334 -PC335 S'MOV + (PC336 + Y \1 
Smov) S 3) + l/(-Pc264 -P c26i Smov -{Pciei + P c i62 Smov) S 3 + (^4  + Smov) 
(PC99 + Smov -Pc98 S 3) + (Z4 -Pc9i Smov) (P cio i -Pc9i Smov + Pcioo
5 3))0 .5 (-PC357 + PC354 SmOV “(PC356 + PC355 Smov) S3 “(^4 + Smov) (Pc267 
"PC265 S 3) + (Z4 _P C97 Smov) (PC265 + PC267 S 3))) + Fm4 (1/(PC337 + PMOV 
(PC358 + P C350 Pmov) + (PC360 + PC359 PMOV) S6)0’5 (PC338 + PC335 PMOV + 
(PC339 + ^17 Pmov) S 6) + 1/(PC260 + P C257 PMOV + (PC259 + PC258 PMOV) S 6 

+ (F12 + Pmov) (Pcio9 + Pmov + Pcios S 6) + (Z12 + Pc9 i  Pmov) (P c m  + 
Pc9i Pmov -P cno S 6))0 -5 (-PC364 + Pc36i Pm ov -(Pc363 + PC362 Pmov) S 6 + 
(7 i2 + Pmov) {Pcin -Pciio Qi) -(Z12 + Pc9i Pmov) {Pcno + P a n  Qi))) + 
(PC284 + PC285 S3 + PC340 S 4) (G -Pc6 (PC221 C/3 + U2 {P ail + PC217 (S3 +
54)))2) + (PC297 + PC298 S6 + PC341 Ql) {G + PC54 (PC223 C/4 + U2 {PaiA ~ 
PC219 (S6 + Ql)))2) ~{PC283 + PC4 S4 + PC282 (S3 + S 4)) (PM3 + {Ql + S3 + 
S4) (FM6 ~Fmi)) ~{PC296 "PC52 S7 + PC295 (S6 + S 7)) (^M5 "(S2 + S6 + Ql) (- 
PM8 + PA/9)) ~{PC289 -PC290 S3 “PC342 S4) (G (S2 + S3 + S 4) ~PC5 (PC221 C/3 + 
C/2 {Pcill + P C217 (S3 + S 4)))2) "(PC302 "PC303 S6 -PC343 S 7) (G (S 2 + S6 + 
Ql) + PC53 (PC223 C/4 + U2 {PaiA ~Pc219 (S6 + S 7)))2) "(PC344 + PC217 (S3 + 
S4)) (FM3 (PC275 "PC276 {Ql + S3 + S 4)) --FM7 (PC276 + PcilS {Ql + S3 + 
S 4))) + (PC345 "PC219 (S6 + S 7)) {Fm5 {P dll -PdlS {Ql + S6 + Ql)) ~Fm9 
{Pens + P a n  {Qi + S6 + S 7)))
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GfA3= C264 ~PC261 ^MOV “(PC263 + PC262 ^MOV) 23 + (^4 + % OV) (PC99 +
■SMOV -PC98 23) + (^4 ‘^C97 •S'MOV) (PciOl ~PC91 SmOV + PciOO 23))0'5 (“ 
P C263 "-PC262 %OV + (PC315 + P c 261 % OV) 23) FM2 + FM3 (PC347 "PC346 (22  
+ 23 + 24)) -FmI (PC346 + PC347 (22 + 23 + 24)) + (PC248 "Pc3 24) (PM6 "PM7 
-Fm3 (22  + 23 + 24)) + (PC246 + PC4 24) (Fm3 + (22  + 23 + 24) (Pjtf6 -PM7)) - 
(PC293 + PC286 24) (G -Pc6 (PC221 ^3 + ^2 (PC222 + PC217 (23 + 24)))2) + 
(PC292 _PC291 24) (2  (22 + 23 + 24) "Pc5 (PC221 ^3 + ^2 (PC222 + PC217 (23  
+ 24)))2))

GfA4= 1/(PC260 + PC251 PMOV + (PC259 + PC258 PMOV) 26 + (^12 + PMOV) (PC109 
+ Pm ov + Pcios 2 6 )  + ( Z 12 + Pc9i Pm ov) ( P c m  + Pc9i Pm ov -P cn o  2 6 ) ) ° - 5  

(-PC259 "PC258 PMOV + (Pc324 + PC257 PMOV) 26) Pm4 + PM5 (PC349 "PC348 
( 2 2  +  2 6  +  Q l ) )  - F m 9  (PC348 +  PC349 ( 2 2  +  2 6  +  Q l ) )  ~(PC256 -PC51 2 7 )  ("PM8 
+  F m 9  +  F m 5  { Q l  +  2 6  +  Q l ) )  +  (PC254 +  PC52 2 7 )  (PM5 " ( 2 2  +  2 6  +  Q l )  ( ~ F m S  

+ F m 9 ) )  ~ ( P C306 + PC299 2 7 )  (<? + Pc54 (PC223 U 4  + U 2  (PC224 "Pc219 ( 2 6  + 
2 7 ) ) ) 2 )  + (PC305 “PC304 2 7 )  (G ( 2 2  + 2 6  + 2 7 )  + PC53 (PC223 ^4 + ^2 (PC224 " 
PC219 ( 2 6  +  Q l ) ) ) 2 )

terms for mass matrix, element 4 ,4

M i ,i = P c216
A*2,l = PC369 “PC280 22 + PC285 23 + PC298 26 + PC340 24 + PC341 Q l -PC289 (22 + 

23 + 24) “PC302 (22 + 26 + 27)
M i ,2=M2,1
M 2,2 = P C372 + (PC284 + PC285 23 + PC340 24) (PC283 + PC4 24 + PC282 (23 + 24)) 

+ (PC289 “PC290 23 -PC342 24) (PC288 "Pc3 24 "PC287 (23 + 24)) + (PC297 + 
PC298 26 + PC341 27) (PC296 “PC52 Q l + PC295 (26 + 27)) + (PC302 ~PC303 26  
"PC343 27) (PC301 + PC51 27 "PC300 (26 + Ql)) + (PC344 + P d l l  (23 + 24)) 
(PC365 + PC281 (23 + 24)) "(PC345 “PC219 (26 + 27)) (~PC361 + PC294 (26 + 
27))

M 3,1 = P C293 + P C286 24 “PC292 (22 + 23 + 24)
M l,3 = M3 4

M3,2 = PC373 + PC374 (23 + 24) + (PC293 + PC286 24) (PC283 + PC4 24  + PC282 (23  
+ 24)) + (PC292 "PC291 24) (PC288 -PC3 24 -PC287 (23 + 24))

^ 2 ,3 = M3,2

M3,3 = PC375 + (PC246 + Pc4 24) (PC293 + PC286 24) + (PC248 “PC3 24) (PC292 - 
P C291 24) 

M4 ,i = -(PC306 + PC299 27 "PC305 (22 + 26 + 27))
M i ,4=M 4, i

M4,2 = -(-PC376 + PC377 (26 + 27) + (PC306 + PC299 27) (PC296 "PC52 27 + PC295 
(26 + 27)) + (PC305 "PC304 27) (PC301 + PC51 Ql -PC300 (26 + Ql)))

M 2,4 = M4,2
M4 3  = 0
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Ms,4 = 0

Ma,4 =  PC378 +  {PC254 +  ^C52 £>7) (^C306 + PC299 Ql) + (PC256 ~PC5\ Ql) {PC305 ~ 
PC304 Ql)

Set derivatives of extra state variables

<29 = D sm o v  
<2f10 =^PM O V

Above equations and corresponding information between the lines of have been
written by AUTOSIM. The equations are in the form:

dU2 dU4 _A/f  L -l. M   L  4 . A/T  L  j_  A/T ------------— (2
dt u  dt u  dt ,A dt FA"

dU , , ,  dU 2 „  dU , dUt
— L + M ,, — 1  + M , , — 1  + M ,, — -

dt “  dt 2 3  dt 2,4 dt

, „  dt/, , „  dt/, , „  dU<
M - i  , -------h M O 2 ------- 1" M r ,  rt    4* M r ,  4 ------  — G F A r, ,

3J dt 3-2 dt . 33 dt 3’4 dt ™

dU, dU, dU , dU,
M ^ + M ^ + M ^ + M ^ = G -  (C .l)

which involve non-linear components.
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Appendix D 

Back-propagation for the Multi-Layer Neural Networks in Chapters 8

The architecture of the neuro-controller involving two multi-layer networks for body 
height control and roll control is shown in Fig. 8.2. The actuator velocities on the 
starboard and port sides are:

U = [Mj m2]t  =
fll . R2a +a

„ R l  , R2—a + a
(D .l)

where aRI and aR2 are the outputs of the height control and roll control networks, 
respectively (superscripts 1 and 2  denote the height control and roll control networks, 
respectively). The input-output relationship of each network is the same as the one 
which was described in Appendix A. Therefore, the partial derivative of each network 
output with respect to a weighting parameter also follows the description in Appendix A. 
For example, the partial derivatives of u with respect to h th weight at the output layer of 
the height control network is:

du
3 w R\

a h 
h\—a h (D .2)

where aHIh is the output of h th element at the hidden layer of the height control network.

Solving 3 FNN(y,w)/dy, partial derivatives of u with respect toy  are given as:

3 u 
3 y

d a Rl 
d y l 
3 a Rl

.R1 d a R2 3 a R  2

3 y2 

3 a m
3 y3 

d a R2

d y 4

da
(D .3)

9>', d y 2 dy,  d y 4

where each element in the above matrix follows the description in Appendix A.



149

Appendix E 

Neural Network Off-Line Training to Mimic the Relevant Input-Output 
Relationships of the P + D Controllers

This appendix describes how to mimic the relevant input-output relationships of the P + 
D controllers using neural networks.

Firstly, the P + D controllers (i.e. the height and roll controllers in chapter 7) run in the 
system (see Fig. 7.11) and an input-output relationship of each controller was sampled in 
a look-up data table. The form of the look-up data table involving proportional and 
differential inputs and a control output is illustrated in Fig. E .l.

Secondly, each of two neural networks was trained, off-line, to mimic each of the two 
look-up data tables in a learning structure depicted in Fig. E.2. Each training proceeded 
in order to minimise the error function, Je:

(E -1}

1 (E.2)
eR(n) = - ( d R( n ) - a R(n))2,

where a R and a R are the outputs of network and look-up data table, respectively. The 
reduction of the error function is shown in Fig. E.3, demonstrating how the neural 
network mimics the data of the height controller.

Finally, the trained two neural networks were integrated with the variable geometry 
suspension system and the system run under external lateral force inputs involving the 
maximum lateral acceleration of 0.8 G. The vehicle responses of the neural-control are 
compared with those of the P + D control system in Fig. E.4 showing how accurately the 
neural networks mimic the system.
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Input-output look-up data table 

(P + D  height controller)

data No. inputs output

1 x l ( l )  x2 (l) S(D
2 x l(2 ) x2(2) a(2)
• •  • •
• •  • •
• •  • •

A
n xl(n) x2(n) a(n)
• •  • •
• •  • •
N xl(N )x2(N ) a(N)

Fig. E .l  The input-output look-up data  table

output,input, x

Error
function

Neural Network

Inpu t-ou tpu t look-up  data tabic 

(P + D  height contro ller)

data N o. inputs output 

x 1 (1) x 2 ( l )  £(1)

x 1(2) x2(2) ?(2)

x l(n )  x2(n) a(n)

x l(N )  x2(N ) a(N )

Fig. E.2 The off-line training structure  using the look-up data  table
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Error function

10%

10000 500 1500 2000 2500

Weighting parameter update

Fig. E.3 The descending error function, as learning proceeds for the data of the 
height controller (Training information: learning algorithm is back-propagation, 
2422 weight update, learning rate is 0.39957 and final error is 1.00 x 10'4)
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(a) Vehicle body height change response
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Time (se co n d )

(b) Vehicle body roll response

Fig. E.4 Comparison between the P + D control and neural-control (off-line 
mimic) in vehicle body responses: (a) height change and (b) body roll; during 0.8 G 
cornering (vehicle body mass : 665 kg)


