
1

A Real-Time Nonlinear Model Predictive Control

Strategy for Stabilisation of an Electric Vehicle at

the Limits of Handling
Efstathios Siampis, Efstathios Velenis, Salvatore Gariuolo, and Stefano Longo

Abstract—In this paper we propose a real-time nonlinear
Model Predictive Control strategy for stabilisation of a vehicle
near the limit of lateral acceleration using the rear axle electric
torque vectoring configuration of an electric vehicle. A nonlinear
four-wheel vehicle model coupled with a nonlinear tyre model are
used to design three Model Predictive Control strategies of differ-
ent levels of complexity that are implementable online: one that
uses a linearized version of the vehicle model and then solves the
resulting Quadratic Program problem, a second one that employs
the Real Time Iteration scheme on the nonlinear Model Predictive
Control problem and a third one that applies the Primal Dual
Interior Point method on the nonlinear Model Predictive Control
problem instead until convergence. After analysing the relative
trade-offs in performance and computational cost between the
three Model Predictive Control strategies by comparing them
against the optimal solution in a series of simulation studies, we
test the most promising solution in a high fidelity environment.

Index Terms—vehicle dynamics; nonlinear control systems;
predictive control; accident prevention.

I. INTRODUCTION

The effectiveness of controlling a vehicle at the limit of

lateral acceleration by regulating its velocity is well docu-

mented in the vehicle dynamics literature. For example, in

[1] a simple proportional feedback controller is shown to be

more effective than brake actuated yaw control in following

the intended vehicle path, as defined by the driver. In [2]

a strategy that reduces the torque request from the driver

when the lateral acceleration exceeds a specific threshold

is presented, while in [3] a high level controller providing

decoupled longitudinal force and yaw moment requests is

combined with a static control allocation scheme to calculate

forces and actuator inputs. In [4] we presented a multivari-

able control architecture that uses combined velocity, sideslip

and yaw rate regulation to stabilize the vehicle in terminal

understeer conditions using the torque vectoring capabilities

of the rear axle of an electric vehicle. A nonlinear vehicle

model combined with a nonlinear tyre model was employed

to design a scheduled Linear Quadratic Regulator (LQR). The

actuator limits and system constraints have been taken into

account in [5], where we presented a linear Model Predictive

Control (MPC) strategy and compared it against the LQR from
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[4] in two limit-handling manoeuvres. Results showed that

accounting for the input and state constraints has a noticeably

positive impact on the stabilisation of the vehicle under such

scenarios. In this paper we explore recent developments in the

area of fast Nonlinear MPC (NMPC) solutions that can be

implemented online and the relative trade-offs in performance

and computational time when such strategies are used in the

context of controlling an electric vehicle near the limit of

lateral acceleration, as already established in [4], [5].

The huge leaps in computational power and memory storage

in the past 20 years along with the introduction of new optimi-

sation algorithms and the continuous improvement of existing

ones have led to extensive research on potential application of

MPC in large volume domains, such as the aerospace, auto-

motive and robotics industries [6]. In the automotive sector,

replacing the currently finely-tuned controllers with optimal

controllers that require a reduced number of parameters to

calibrate can dramatically reduce development times. For this

reason, a variety of MPC solutions for automotive applications

have been already proposed in the literature, ranging from

steering [7] to active and semi-active suspension control [8],

engine management [9], emission regulation [10] and control

of vehicle platoons [11]. Looking more specifically in the area

of vehicle dynamics control systems, we can distinguish two

main MPC application areas: 1) on the control of autonomous

and semi-autonomous vehicles and 2) on active safety control

systems. However, it is interesting to note here that the

distinction between autonomous vehicle control and active

safety control is now becoming less clear, mainly due to the

rapid development of sensor technologies and sensor fusion

algorithms.

The series of papers from Borrelli, Falcone and Keviczky

[7], [12]–[14] explore the application of MPC for trajectory

tracking in an autonomous vehicle application using the Active

Front Steering (AFS) system with or without differential

braking and traction control. In [12], [13] an NMPC strategy

for controlling the vehicle in a highly transient manoeuvre

is constructed using a bicycle vehicle model that neglects

load transfer effects. The authors report the necessary increase

in both the prediction and control horizon with higher entry

speeds in a double-lane change scenario to keep the vehicle

stable, and the subsequent increase in computational time.

Since the NMPC strategy proposed in [12], [13] is not im-

plementable online, a Linear Time Varying MPC (LTV-MPC)

controller is presented in [7]. Simulation and experimental

results show that the LTV-MPC strategy shows no infeasibility
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problems with higher initial velocities but poorer tracking

when compared to the NMPC. Finally in [14] the authors

construct two NMPC strategies using internal vehicle models

of different levels of fidelity, one that employs a four-wheel

vehicle model with wheel dynamics and control inputs the

front steering and individual wheel brake torques and one

that uses a bicycle model instead with a direct yaw moment

along with AFS as control inputs. While simulation tests

on a double-lane change show promising results, the main

problem for both controllers remains the high computational

cost which makes it impossible to implement them online.

A real-time NMPC strategy that employs the Real Time

Iteration (RTI) scheme originally proposed in [15] on an

autonomous vehicle application is presented in [16]. The

authors use a four-wheel vehicle model and a nonlinear tyre

model to derive the track-dependent (spatial) dynamics for the

NMPC strategy. Results show that the proposed solution is

implementable online and that is can successfully navigate

around two consecutive obstacles in a simulation test. In

[17] a collision avoidance method for an autonomous vehicle

is presented, with the NMPC strategy constructed using a

single-track vehicle model and a nonlinear tyre model and

solved using the C/GMRES algorithm [18]. Simulation results

show that a vehicle equipped with the proposed controller

can successfully avoid an obstacle, however the computational

time is about 6 times longer than the sampling time so the

solution is not implementable online. In the context of semi-

autonomous vehicles applications, Gray et. al. [19], [20] pre-

sented a NMPC strategy for obstacle avoidance: the best path

for the vehicle to follow according to specific criteria on the

tracking error, distance from the obstacle and aggressiveness

of the manoeuvre is computed by the high level path planner

and passed on to the low-level path follower, which uses an

NMPC strategy to follow the desired path, subject to input

constraints. Results show the effectiveness of the proposed

strategy however the high computational complexity of the

overall solution meant that the problem could be solved again

only offline.

In the scope of active safety systems, most solutions have so

far focused in the control of the lateral dynamics of the vehicle

using a linear or an explicit MPC formulation. For example, in

[21] a yaw stability controller based on a LTV-MPC formula-

tion using independent braking of the four wheels is presented.

Hard constraints are imposed on both state and input and the

proposed strategy is successfully tested in the sine and dwell

test but with a considerable decrease in speed. In [22], a linear

MPC is used in a lateral stability control application using

the steer-by-wire system of a Rear Wheel Drive prototype

vehicle. The sampling time is chosen at the low rate of 10ms

with prediction and control horizons at 15 steps, and delay

compensation is also employed by solving the optimization

problem for the next time step. Simulation and experimental

results using a slalom manoeuvre at a speed of 10m/s on a

loose surface, show that the controller can successfully restrict

the steering command from the driver when the yaw rate and

sideslip angle limits are violated. In [23] a hybrid MPC and a

switched MPC formulation for a yaw stability controller using

AFS and differential wheel braking are presented. Simulation

results using a hybrid MPC formulation against a standard

ESC strategy show that the hybrid MPC converges faster to

the target yaw rate and slip angle targets. Since the complexity

of the hybrid MPC makes it unsuitable for online application,

an explicit switched MPC is presented next, with experimental

results showing it can successfully stabilize the vehicle under

various scenarios on a slippery road by constraining the tyre

slip angles within their limits. Another example of an explicit

MPC law can be found in [24], where a yaw control strategy

using a rear active differential is presented. Here the NMPC

strategy is constructed using a single track model and, since

it cannot be solved fast online, it is solved offline using the

Nearest Point approach. Simulation results using more than

105 points from a rather limited set of variables show a

good agreement between the proposed approach and a nominal

NMPC controller but with some chattering, a problem which

could be potentially corrected with higher number of offline

computed points but at the expense of higher memory and

computational requirements.

In this paper we explore recent developments in the area of

fast NMPC and its application on the problem of controlling

an electric vehicle at the limits of handling using combined

longitudinal and lateral dynamics control. To this end, we

employ a four-wheel nonlinear vehicle model coupled with a

nonlinear tyre model to construct three strategies of different

complexity: 1) a linear MPC strategy [5], 2) an NMPC

strategy that employs the Real Time Iteration (RTI) scheme

[15] as available in the ACADO Toolkit [25], and 3) an

NMPC strategy that employs the PDIP method as available

in FORCES Pro [26]. After comparing the three strategies

against each other and against the optimal solution in terms

of closed-loop performance and computational cost in a series

of case studies, we deploy the most promising solution on an

automotive-grade processor board and finally validate it in a

high fidelity simulation environment under two limit-handling

manoeuvres.

The paper is organised as follows. Section II introduces

the nonlinear tyre and vehicle model and the steady-state

cornering analysis used to generate the reference for the

controllers to follow. Section III presents the general nonlinear

program problem and how the three NMPC strategies can be

derived from it. Section IV details the comparison of the three

strategies as already introduced above, along with the dSPACE

deployment. Finally, Section V presents the complete control

structure that is then validated in CarMaker environment in

Section VI.

II. VEHICLE MODEL AND REFERENCE GENERATION

In this section we present the vehicle model along with a

short description of the steady-state analysis used to generate

feasible targets for the controller to follow. The formulation is

similar to [4], [27], where the interested reader is referred to

for more details.
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Fig. 1. The four-wheel vehicle model.

A. Vehicle Model

The Equations Of Motion (EOM) for the four-wheel vehicle

model with front wheel steering (Fig. 1) are

mV̇ = (fFLx + fFRx) cos(δ − β)

− (fFLy + fFRy) sin(δ − β)

+ (fRLx + fRRx) cosβ

+ (fRLy + fRRy) sinβ, (1a)

β̇ =
1

mV
[(fFLx + fFRx) sin(δ − β)

+ (fFLy + fFRy) cos(δ − β)

− (fRLx + fRRx) sinβ

+ (fRLy + fRRy) cosβ]− ψ̇, (1b)

Izψ̈ = ℓF [(fFLy + fFRy) cos δ

+ (fFLx + fFRx) sin δ]− ℓR (fRLy + fRRy)

+ wL (fFLy sin δ − fFLx cos δ − fRLx)

+ wR (fFRx cos δ − fFRy sin δ + fRRx) (1c)

Iwω̇ij = Tij − fijxRw, i = F,R, j = L,R. (1d)

where the relevant variables and parameters are as defined in

the Notation section at the beginning of the paper.

The tyre forces fijx and fijy in the above EOM are found

as functions of the tyre slip using Pacejka’s Magic Formula

(MF) [28]. In particular, we first find the resultant tyre force

coefficient µij at each tyre using the MF:

µij(sij) = MF(sij) = D sin(Catan(Bsij)),

where sij =
√

s2ijx + s2ijy is the resultant tyre slip [28], and

subsequently we calculate the longitudinal and lateral tyre

force coefficients from

µijk = −
sijk
sij

µij(sij).

Then, the longitudinal and lateral tyre forces are given by

fijx = µijxfijz , fijy = µijyfijz ,

where the vertical force fijz on each of the four wheels is

calculated as the sum of the static load on that wheel and the

TABLE I
VEHICLE AND TYRE PARAMETERS

Parameter Value Parameter Value

m (kg) 1137 ℓF (m) 1.187

Iz (kgm2) 1174 ℓR (m) 1.313

Iw (kgm2) 1.04 Rw (m) 0.298

wL (m) 0.687 B 11.24

wR (m) 0.687 C 1.45

h (m) 0.317 D 1
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Fig. 2. Selection of target steady-state according to the driver’s steering angle
command of δ=10deg: (a) Rkin feasible at V ss = 10.6m/s; (b) Rkin not
feasible at V ss = 12.6m/s; (c) Rkin coincides with the minimum calculated
Rss at V ss = 11.6m/s.

longitudinal/lateral weight transfers under longitudinal/lateral

acceleration [27].

Table I shows the values for the above vehicle and tyre

parameters, which correspond to a small sports car.

B. Reference Generation

Steady-state cornering analysis of the four-wheel vehicle

model (1) is used to derive feasible targets for the controller to

follow where, similar to common practice in vehicle stability

control [29], we set the desired path radius from the driver as

a function of the steering input by the kinematic relationship

Rkin = (ℓF + ℓR)/δ.

The desired path radius Rkin may or may not be feasible

depending on the vehicle’s velocity. Consider for example the

steady-state conditions for a fixed δss and a range of V ss in

Fig. 2. In all three cases the desired Rss = Rkin is around

14m, according to the steering command of δss = 10deg.

Then, if the vehicle velocity is 10.6m/s the requested Rkin is

feasible, whereas if the vehicle velocity is 12.6m/s the Rkin

is smaller than the minimum achievable Rss and not feasible

anymore. In this case the controller will reduce the vehicle

velocity so that the desired Rkin becomes feasible again by

selecting a steady-state velocity such that Rkin coincides with

the minimum Rss, which in the above example corresponds to

a maximum vehicle velocity of Vmax = 11.6m/s (please refer

to [5] for a detailed discussion in the reference generation used

in this paper).
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III. NONLINEAR PROGRAM PROBLEM AND MPC

STRATEGIES

In this section, we compare three MPC strategies of different

levels of complexity in a series of simple simulation studies

designed so that both the advantages and disadvantages of

each strategy can be observed. To this end, we first obtain the

optimal solution for each study and use it as a benchmark to

compare the three solutions from two points of view: closed-

loop performance and computational complexity. The section

is therefore comprised by two parts, the first one presenting

the optimal control problem under consideration and how this

can be solved offline, and the second one showing how the

problem can be simplified and solved online.

A. Optimal Solution

For the nonlinear continuous-time system with state and

input x and u respectively

ẋ = f(x, u), (2)

the discrete optimal control problem under consideration is

min
x,u

N−1
∑

k=0

[

(xk − xref )
T
Q (xk − xref )

+ (uk − uref)
T
R (uk − uref)

]

, (3a)

s.t. x0 = xin, (3b)

xk+1 = f(xk, uk), k = 0, ..., N − 1, (3c)

h(xk, uk) ≤ 0, k = 0, ..., N − 1, (3d)

The aim is to minimize the state and input error from a given

reference (3a) along the simulation time Tsim = NTs where

Ts is the sampling time, subject to the initial condition (3b),

the discretised system dynamics (3c) and the state and input

constraints (3d). The resulting NonLinear Program (NLP)

problem can then be solved offline using one of the popular

optimization methods: we employ the Sequential Quadratic

Program (SQP) algorithm with an active set method to solve

it, as available in the ACADO Toolkit [25]. In this way we

obtain the benchmark against which the three online MPC

strategies will be compared.

B. MPC Strategies

For the MPC strategies, the problem to solve is

min
x,u

M−1
∑

k=0

[

(xk − xref )
T
Q (xk − xref )

+ (uk − uref )
T R (uk − uref )

]

, (4a)

s.t. x0 = xin, (4b)

xk+1 = f(xk, uk), k = 0, ...,M − 1, (4c)

x ≤ xk ≤ x, k = 0, ...,M − 1, (4d)

u ≤ uk ≤ u, k = 0, ...,M − 1, (4e)

where M ≤ N is the prediction horizon and the nonlinear

constraints on state and input (3d) are replaced by simpler

box constraints (4d)-(4e) for fairness of comparison between

the simpler linear MPC strategy and the two NMPC strategies.

Then, the three real-time-implementable formulations inves-

tigated here are:

• a linear MPC strategy, where the nonlinear system dy-

namics (2) are linearized and discretised with the result-

ing Quadratic Program (QP) problem solved using the

Primal Dual Interior Point method (PDIP) as available in

FORCES Pro [26]

• an NMPC strategy that applies only the first SQP iteration

on problem (4) according to the RTI scheme as available

in the ACADO Toolkit [25]

• an NMPC strategy that applies the PDIP method as

available in FORCES Pro [26] to (4) until convergence

to the optimal solution

1) Linear MPC: From (4) and the short description of the

MPC strategies above we can see that the main difference

in the problem definition between the linear MPC and the

rest of the strategies is how the discrete system dynamics are

defined. Linearising the continuous system dynamics (2) about

the equilibrium point (xss, uss) gives

ẋ = Acx+Bcu− (Acx
ss +Bcu

ss), (5)

where (Acx
ss + Bcu

ss) is a constant. Then discretising the

above affine system we get

xk+1 = Adxk +Bduk − c, (6)

with

Ad = eAcTs ,

Bd =

∫ Ts

0

eAcηdηBc,

c =

∫ Ts

0

eAcηdη(Acx
ss +Bcu

ss),

assuming that the input remains constant for the discretisation

interval. The resulting QP can then be solved using the PDIP

method as available in FORCES Pro [26].

2) NMPC - RTI scheme and PDIP method: For the two

NMPC strategies we use one step of the explicit Runge-Kutta

4th order method to derive the nonlinear discrete dynamics

(4c) from the continuous dynamics (2): the specific method

was found to give a good approximation of the continuous

dynamics for our system at the chosen sampling time of 50ms.

The resulting NMPC can then be solved using the RTI scheme

or the PDIP method:

• NMPC-RTI

In the case of a real-time application like the one consid-

ered here, the RTI scheme can be used for fast solutions

of problem (4): this scheme, in its simplest form, has

the benefit of producing fast but suboptimal solutions by

precomputing the necessary sensitivities and performing

only one SQP iteration (see [15], [25] for more details).

This approach can quickly lead to convergence if the
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solution does not change much from one time step to

the next but can also diverge.

• NMPC-PDIP

We can also try to solve (4) using the PDIP method,

as available in the Forces Pro NLP solver [26], un-

til convergence. This approach attempts to solve the

NMPC problem in a relatively short time by employing

a Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm

for the computation of the Hessian of the Lagrangian

and can give solutions that are very close to the optimal.

IV. COMPARISON OF THE THREE MPC STRATEGIES

In this section we first compare the linear MPC, NMPC-

RTI and NMPC-PDIP strategies as presented in section III-B

against the optimal solution from section III-A for a range of

simple simulation studies on a standard desktop machine (i7-

2600k at 3.40GHz with 16GB of memory), and then deploy

the most promising solution on a dSPACE DS1005 board

(PowerPC 750GX at 1.00GHz with 128MB of memory).

We will neglect for now the fast wheel dynamics (1d), so

we set for both the simulation model and the internal model

for the MPC strategies x = [V β ψ̇]T and u = [sRLx sRRx]
T

[5]. The input constraints are then set, according to the MF

parameters of Table I, to

|sRjx| ≤ 0.15, (8)

while we also set a constraint on the product of the vehicle’s

yaw rate and velocity based on the lateral acceleration limit

−µmaxg ≤ ψ̇V ≤ µmaxg, (9)

which for the MPC strategies is simplified to a constraint on

the yaw rate only as a function of the velocity at the beginning

of the prediction horizon [5]:

|ψ̇| ≤ µmaxg/Vin. (10)

In the test scenarios considered here, the vehicle is initially

moving on a straight line and at time t = 0s we apply

a step steering input for the duration of T = 10s 1, with

the initial speed chosen so that it is greater than the corre-

sponding Vmax for that steering input. Each controller will

then aim to stabilize the vehicle to the steady-state reference

xref = [V ss βss ψ̇ss]T , uref = [sssRLx s
ss
RRx]

T by minimising

(4b) subject to (4c)-(4e). The sampling time and the prediction

horizon for the MPC strategies are set to Ts = 50ms and

M = 20steps respectively, while for the evaluation of the

performance of the MPC strategies we use the closed-loop

cost, defined as the summation of the running costs

Jcl =

⌈T−Ts

Ts
⌉

∑

k=0

[

(xk − xref )
T
Q (xk − xref )

+ (uk − uref )
T
R (uk − uref )

]

,

where ⌈·⌉ is the ceiling function which maps a real number

to the smallest following integer.

1the simulation time chosen long enough so that the states always converge
to the steady-state reference before the end of each test.

TABLE II
COMP. TIMES AND PERFORMANCE RESULTS FROM THE MPC STRATEGIES

Avg comp. Max comp. Min per. Max per.

time (ms) time (ms) penalty (%) penalty (%)

Linear MPC 1.1 5.3 28.08 109.85

NMPC-RTI 3.0 14.9 2.01 5.91 · 105

NMPC-PDIP 3.6 29.5 0.79 28.23

Table II shows the average and maximum computational

times along with the minimum and maximum closed-loop

costs (expressed as percentage difference from the optimal)

for the three MPC strategies for a range of step steering

inputs from 2 to 10deg and different initial velocities, ranging

from 1m/s to 4m/s above the Vmax for that steering input2.

Looking at the computational times in Table II, we can see

that they scale according to the problem complexity, with the

linear MPC being the fastest and the NMPC-PDIP the slowest

across all results. Another interesting point is the maximum

observed time for the NMPC-PDIP which is much higher than

the two other strategies: this happens when the NMPC-PDIP

reaches the maximum number of iterations allowed (which in

our tests is set to 200 iterations) without fully converging, at

which point it gives the last computed sub-optimal solution.

Looking at the performance penalty for the three strategies

on the last two columns of Table II, we observe that the

linear MPC is consistently above 28.08% difference from the

optimal, but does not go above 110%, while the NMPC-PDIP

only reaches a maximum of 28.23%. The NMPC-RTI strategy

on the other hand reaches high maximum closed-loop cost

values due to infeasibility problems, a result that shows the

main disadvantage of performing only one SQP iteration at

each time step. Fig. 3 shows the computational time versus

performance penalty plots for the set of simulation tests from

Table II. It can be confirmed that the linear MPC strategy

(in red, with the red circle showing the average for each

test) performs almost the same across all the tests and, apart

from only a few occasions when more iterations of the PDIP

method are used to find a solution, it returns a solution in

less than 5ms. On the other hand, the NMPC-PDIP strategy

(in blue, with the blue asterisk showing the average for each

test) performs closer to the optimal across all tests and mostly

drops in performance when the initial velocity is further away

from the reference velocity Vmax. However this is done at the

expense of longer computational times since in quite a few

tests the maximum number of iterations is reached at least

once, hence the much larger maximum times observed in some

of the results. Finally, the NMPC-RTI strategy (in green, with

the green x showing the average for each test), shows excellent

performance with low computational times when the initial

state is close to the target, but quickly drifts to higher closed-

loop penalty values for higher initial state errors, showing the

main disadvantage of using this strategy as already observed

in the analysis of Table II above.

2the range of steering inputs and initial velocities chosen so that the original
NLP problem subject to the hard yaw rate constraint is always feasible for
the given vehicle topology and actuator limits.
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Fig. 3. Computational times versus performance penalty from the optimal
solution for a range of step steering inputs from 2 to 10deg and different
initial velocities.
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Fig. 4. Velocity, yaw rate and longitudinal slip histories for a step steering
input of 8deg and an initial velocity difference from Vmax of 4m/s for the
three MPC strategies (note that for clarity reasons the longitudinal slip results
for the NMPC-RTI have been omitted).

An example of the difference in state regulation from

the optimal for the three MPC strategies in one of the test

scenarios presented in Fig. 3 above can be seen in Fig. 4

where we find the velocity, sideslip angle, yaw rate and

longitudinal slip time histories for a step steering input of

8deg and an initial velocity which is 4m/s higher than Vmax

for this steering input. While the velocity time histories for

the linear MPC and the NMPC-PDIP strategies are similar

and both close to the optimal trajectory (Fig. 4a), the yaw
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Fig. 5. Comparison of maximum (blue bars) and average (green bars)
computational times for the NMPC-PDIP (in dark blue and green) and the
NMPC-PDIP with soft constraints (in light blue and green) for the range of test
scenarios considered in this section, starting from different initial velocities.

rate time histories are quite different. While the linear MPC

strategy exhibits large oscillations, the NMPC-PDIP strategy

remains close to the optimal solution (Fig. 4b), with only a

small overshot at the yaw rate, which is directly connected

to the oscillations observed from the NMPC-PDIP strategy in

the longitudinal slip time histories (Figs. 4c-4d) and is the

result of the NMPC-PDIP strategy finding it difficult to cope

with the hard yaw rate constraint. Despite this, the NMPC-

PDIP strategy shows excellent response with results very close

to the optimal solution and demonstrates the importance of

accounting for the nonlinear system dynamics in the form of

the equality constraint (4c) rather than linearising the system

dynamics as is the case with the linear MPC strategy. Finally,

for this test scenario the vehicle with the NMPC-RTI strategy

quickly becomes unstable due to the high initial state error.

While the NMPC-RTI convergence problems with higher

initial state errors, as explained above, could be possibly

addressed using a shorter sampling time and/or more SQP it-

erations, the fact remains that the NMPC-PDIP strategy shows

more promising results, the main problem been the longer

computational times. One way to help the PDIP solver achieve

convergence faster while avoiding infeasibility problems is by

soft constraining the state by introducing slack variables into

the cost function (4a) and relaxing the state constraints (4d):

min
x,u

M−1
∑

k=0

[

(xk − xref )
T Q (xk − xref )

+ (uk − uref )
T
R (uk − uref) + ρǫǫk

]

, (12a)

s.t. x0 = xin, (12b)

xk+1 = f(xk, uk), k = 0, ...,M − 1, (12c)

x− ǫk ≤ xk ≤ x+ ǫk, k = 0, ...,M − 1, (12d)

u ≤ uk ≤ u, k = 0, ...,M − 1, (12e)

ǫk ≥ 0, k = 0, ...,M − 1, (12f)

where ǫk ∈ R
+ (k = 0, ...,M − 1) and ρǫ are the slack

variables and their weight respectively.
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Fig. 6. Velocity, yaw rate and longitudinal slip histories for a step steering
input of 8deg and an initial velocity error of 4m/s for the hard constrained
and the soft constrained NMPC-PDIP strategy.

Fig. 5 shows the change in average and maximum compu-

tational times for the NMPC-PDIP strategy after softening the

yaw rate constraint (10). The maximum time has decreased

to less than half in all cases, while the average times show

no difference from the hard constrained NMPC-PDIP strategy

despite the fact that the inclusion of the slack variables has

increased the number of optimisation variables. It is worth

noting here also that no infeasibility problems have been

observed after softening the yaw rate constraint and that the

maximum number of 200 iterations was never reached across

all cases. These results confirm that soft constraining not

only removes infeasibility problems in the solution of the

optimisation problem at hand but also helps in reaching a

solution faster.

Returning to the example scenario examined in Fig. 4,

in Fig. 6 we see the difference in response from the vehi-

cle with the NMPC-PDIP strategy after softening the yaw

rate constraint. While the velocity time histories are similar

(Fig. 6a), the yaw rate overshot has disappeared in the soft

constrained NMPC-PDIP case (Fig. 6b), a result also linked

to the smoother longitudinal slip inputs from this strategy, as

evidenced in Figs. 6c-6d.

dSPACE Deployment

The soft constrained NMPC-PDIP strategy has been also

deployed on a dSPACE DS1005 board (PowerPC 750GX at

1.00GHz with 128MB global main memory). The limited

processing power of such platform means that it was necessary

to cap the maximum number of iterations that the solver

can perform before returning a (sub-)optimal solution to 25.

However, since each iteration takes a fixed time to run, this

also means that we can guarantee that the solver will always
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Fig. 7. Maximum (blue bars) and average (green bars) computational times
for the soft constrained NMPC-PDIP after deployment on the DS1005.

return a solution within the given sampling time.

In order to test the soft-constrained NMPC-PDIP strategy in

real-time, we connected it again with a simulation model that

neglects the fast wheel speed dynamics (1d) and deployed the

complete closed-loop control system on the dSPACE DS1005

board. This involved deploying the source code for the soft

constrained NMPC-PDIP solver and the simulation model as

one closed-loop model, along with linking any additional files

needed by the solver. Then, to record the computational times

for the solver the dSPACE Profiler was used: this application

runs on the host machine and, by receiving time-stamped

events, can provide information on the timing of a defined

task (such as the time to run the solver per call).

Fig. 7 shows the average and maximum computational times

when the same series of case studies as before is performed

on the DS1005. We notice that the maximum computational

time across all case studies is around 43ms which corresponds

to the set maximum number of 25 iterations per call of

the solver, while the relative increase in computational effort

can also be seen in the average times. However, the loss

in performance due to the cap in the maximum number of

iterations is less than expected. As we can see from Fig. 8 for

a characteristic example of a scenario where the maximum

number of iterations is reached multiple times, the velocity,

yaw rate and longitudinal slip trajectories for the deployed

controller remain close to the trajectories obtained from the

desktop machine (where the maximum number of iterations is

never reached).

From the above short analysis it is obvious that NMPC

solutions are in general very demanding in terms of required

computational power. However, using the PDIP method we

can obtain maximum performance for the given hardware

and therefore – after setting a cap on the maximum number

of iterations – it is possible to deploy such solutions on

real time hardware: as we have seen here, the proposed

soft constrained NMPC-PDIP strategy can be successfully

deployed with minimal performance loss, even for the extreme

step steering input cases considered so far.
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Fig. 8. Velocity, yaw rate and longitudinal slip histories for a step steering
input of 10deg and an initial velocity error of 4m/s for the soft constrained
NMPC-PDIP strategy on the desktop machine and the DS1005.

V. NMPC-PDIP WITH SLIDING MODE SLIP CONTROLLER

The soft constrained NMPC-PDIP strategy (12) is cascaded

with a Sliding Mode slip controller that computes the nec-

essary torques on the rear wheels based on the requested

longitudinal slips [5], with the complete control structure seen

in Fig. 9. We also set two extra inequality constraints due to

implementation reasons, one that restricts the sideslip angle of

the vehicle for subjective feel and another one that considers

the electric motor limits in the form of its static torque map.

Then the state and input constraints are:

A. State constraints

As in (10), a yaw rate constraint as a function of the current

velocity Vin is set at the beginning of the optimization and

fixed throughout the prediction horizon

|ψ̇| ≤ µmaxg/Vin. (13)

+

_
δ

V

(V ss, βss, ψ̇ss)

(V, β, ψ̇)

sRLx
sRRx

TRL
TRR

Reference

Generation

Vehicle

NMPC SMC

NMPC-PDIP with SMC

Fig. 9. Block diagram of the final control structure.

A constraint on the maximum sideslip angle is also set as

a function of Vin:

|β| =







2
k1
V 3
ch

V 3
in − 3

k1
V 2
ch

V 2
in + k2, Vin < Vch

k2 − k1, Vin ≥ Vch

(14)

where Vch is the characteristic velocity of the vehicle and the

positive constants k1 and k2 are tuning parameters.

B. Input constraints

The longitudinal slips on the rear wheels should never

exceed the maximum allowable value for safe operation of the

vehicle so we set, similarly to (8) the slip input constraints as

|sRjx| ≤ 0.15. (15)

Since the wheel dynamics are neglected in the internal

model for the NMPC-PDIP strategy, we can not directly ac-

count for the motor limits. We therefore construct an additional

constraint on the slip input in order avoid excessive torque

requests to the two motors. If the maximum torque that can be

provided by a motor is Tmax
Rj , then the maximum longitudinal

force on the wheel – assuming steady-state conditions – is

fmax
Rjx = Tmax

Rj /Rw, (16)

and using the reverse MF the torque based limit on the

longitudinal slip on the tyre can be computed as

smax
Rjx ≤

1

B
tan

(

1

C
sin−1

(

fmax
Rjx

DfRjz

))

. (17)

Then, assuming that the motor provides equal maximum

torque in the positive and negative direction, we can compare

the two limits (15) and (17) and set the input constraints at

the beginning of the prediction horizon as

|sRjx| ≤ min(0.15, smax
Rjx ). (18)

VI. SIMULATION RESULTS

In this section we compare the NMPC-PDIP with Sliding

Mode slip controller from section V in Carmaker environment

against a vehicle without a controller and one that applies a

linear MPC controller instead on problem (12) with the same

constraints (13)-(18) in two simulation scenarios: 1) a U-turn,

where the vehicle enters a corner with excessive speed and

2) an obstacle avoidance manoeuvre according to ISO 3888-

2:2011 [30]. The purpose of the two tests is to show how

the velocity regulation combined with the lateral dynamics

control – while respecting the system constraints – from the

two MPC strategies manage to keep the vehicle stable and

what are the advantages of using a NMPC strategy against

the faster but sub-optimal linear MPC strategy in real world

critical situations. Note that for both simulation studies a

standard desktop machine (i7-2600k at 3.40GHz with 16GB

of memory) is used.
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Fig. 10. Comparison of the uncontrolled vehicle (in green), the vehicle with
the linear MPC (in red) and the vehicle with the NMPC-PDIP (in blue) in
the U-turn avoidance scenario.
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Fig. 11. Longitudinal slip (actual) and torque (requested) time histories for
the linear MPC and the NMPC-PDIP strategies in the U-turn scenario.

A. U-turn Scenario

For the U-turn scenario, we use the driver model in Car-

Maker to steer the vehicle through a turn of 40m radius. The

road is dry (µmax =1) and 6.5m wide, the entry speed is

set at 85km/h, and we assume that no acceleration or braking

commands come from the driver.

As we can see from Fig. 10a, the uncontrolled vehicle looses

control due to high entry speed and eventually leaves the road.

The two MPC strategies on the other hand keep the vehicle

on the road, but with a small difference: looking more closely

especially to the first half of the turn, we can see that the

NMPC-PDIP manages a much smoother trajectory compared

to the linear MPC.

The above observation on the difference between the tra-

jectories of the vehicle with the NMPC-PDIP strategy against

the one with the linear MPC is directly connected to how

the two strategies regulate the state as seen in Fig. 10. While

the velocity regulation from the two strategies is, apart from

the exit speed, mostly the same (Fig. 10b), the sideslip angle

and yaw rate time histories (Figs. 10c-10d) show oscillations

for the linear MPC strategy due to the simpler linear internal

model used in this case which can not predict as effectively

the state violations.

The difference in response between the two strategies is also

apparent in the longitudinal slip and torque time histories as
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found in Fig. 11, where we observe excessive oscillations in

the longitudinal slip demands from the linear MPC (Fig. 11a

and Fig. 11c), especially in the case of the less loaded rear

left wheel, which also translate into violent torque commands

(Fig. 11e). The NMPC-PDIP strategy on the other hand shows

much smoother torque commands (Fig. 11f) and a more

efficient longitudinal slip regulation (Fig. 11b and Fig. 11d).

Note that the torque limit violations as seen in Figs. 11e-

11f occur due to the fact that the two MPC strategies do not

directly control the torque on the wheels. However, however it

has been noticed in our studies that removing them from the

MPC formulations result in much higher demanded torques.

Finally, the computational times for the linear MPC returned

an average and a maximum time of 0.42ms and 0.98ms

respectively, while for the NMPC-PDIP the corresponding

times were 1.9ms and 3.4ms, which are much lower than the

sampling time of 50ms for the two strategies.

B. Obstacle Avoidance Scenario

For the obstacle avoidance scenario we use again the driver

model available in CarMaker, but this time to navigate through

a double-lane change, as defined by three valleys of cones

according to the specifications of ISO 3888-2:2011 [30]. The

road is assumed again dry (µmax = 1), the entry speed is set

to 75km/h, while no acceleration or braking commands come

from the driver.

Fig. 12 shows the trajectories for the three vehicles. We

can see that the uncontrolled vehicle spins out of control

towards the end of the manoeuvre, while the two MPC

strategies manage to keep the vehicle stable. However, only the

vehicle with the NMPC-PDIP strategy manages to successfully

complete the test since the linear MPC fails to pass through

the last valley of cones without hitting them.

This slight difference between the trajectories of the two

MPC strategies is again related, as in the U-turn scenario

above, to the way they handle the system constraints. As

observed in Fig. 13, while the velocity time histories between

the linear MPC and the NMPC-PDIP are almost identical

throughout the manoeuvre (Fig. 13a), the sideslip angle and

yaw rate histories are quite different, with the linear MPC

showing higher values and more oscillations in Figs. 13b-13c

caused again by the simpler linear internal model used in this

case.

Looking at Fig. 14, excessive oscillations are again ob-

served in the longitudinal slip time histories from the linear

MPC (Fig. 14a and Fig. 14c) and violent torque commands

(Fig. 14e) which are in strong contrast to the subtle regulation

from the NMPC-PDIP (Fig. 14b, Fig. 14d and Fig. 14f). Note

that the torque limit violations (Figs.14e-14f) occur again due

to the fact that the two MPC strategies do not directly control

the torque on the wheels.

Finally, for the double-lane change scenario the average

and maximum computational times for the linear MPC were

0.44ms and 0.75ms respectively, while for the NMPC-PDIP

the corresponding times were 2.1ms and 3.3ms, times similar

to the ones found for the U-turn scenario.
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Fig. 13. Velocity, sideslip angle and yaw rate time histories for the uncon-
trolled vehicle (in green), the vehicle with the linear MPC (in red) and the
one with the NMPC-PDIP (in blue) in the obstacle avoidance scenario.

VII. CONCLUSION

In this paper we have presented a real-time NMPC for

stabilisation of an electric vehicle near the limits of handling

using combined longitudinal and lateral dynamics control.

Using a nonlinear four-wheel vehicle model coupled with a

nonlinear tyre model, three MPC strategies of different com-

plexity that can be implemented online have been constructed

and compared against each other and against the optimal so-

lution in terms of closed-loop performance and computational

cost. Results show that, while the linear MPC strategy is the

fastest solution, the NMPC strategy using the PDIP method

can achieve a much better performance close to the optimal

solution while still been implementable online. The importance

of soft constraining the state is investigated next, with results

showing that it not only eliminates infeasibility problems in the

solution of the optimisation problem, but it can also help reach

a solution faster. The derived soft constrained NMPC-PDIP

strategy is also deployed on an automotive grade dSPACE

board: here, to avoid overrun problems, the maximum number
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Fig. 12. Trajectory of the uncontrolled vehicle (in green), the vehicle with the linear MPC (in red) and the one with the NMPC-PDIP (in blue) in the obstacle
avoidance scenario.

0  0.51  1.52  2.53  3.54  4.55  
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

Time (s)

s
R

L
x

 

 
Constraints

(a) Lin. MPC rear-left
long. slip

0  0.51  1.52  2.53  3.54  4.55  
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

Time (s)

s
R

L
x

 

 
Constraints

(b) NMPC-PDIP rear-left
long. slip

0  0.51  1.52  2.53  3.54  4.55  
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

Time (s)

s
R

R
x

 

 
Constraints

(c) Lin. MPC rear-right
long. slip

0  0.51  1.52  2.53  3.54  4.55  
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

Time (s)

s
R

R
x

 

 
Constraints

(d) NMPC-PDIP rear-right
long. slip

0  0.51  1.52  2.53  3.54  4.55  
−1000

−800

−600

−400

−200

0

200

400

600

800

1000

Time (s)

T
o
rq

u
e
 (

N
m

)

 

 

(e) Lin. MPC torques

0  0.51  1.52  2.53  3.54  4.55  
−1000

−800

−600

−400

−200

0

200

400

600

800

1000

Time (s)

T
o
rq

u
e
 (

N
m

)

 

 
T

RL

T
RR

Constraints

(f) NMPC-PDIP torques

Fig. 14. Longitudinal slip (actual) and torque (requested) time histories for
the linear MPC and the NMPC-PDIP strategies in the obstacle avoidance
scenario.

of iterations had to be capped. This shows once again the rel-

ative trade-off between problem complexity and performance

in order to stay real-time implementable, but also points to

the fact that using the PDIP method we can obtain either

maximum performance for a given hardware or conversely

select the necessary hardware given a required minimum

performance. Finally the soft constrained NMPC-PDIP stategy

is tested in a high-fidelity simulation environment under two

limit-handling scenarios: a U-turn, where the vehicle enters

a corner with excessive speed and an obstacle avoidance ma-

noeuvre. It is shown that the NMPC-PDIP strategy can achieve

a better negotiation of both manoeuvres when compared to a

linear MPC strategy, with lower sideslip angle and yaw rate

values and smoother torque demands.
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