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Behaviour Monitoring Using Learning Techniques
and Regular-Expressions Based Pattern Matching

Hyo-Sang Shin, Dario Turchi, Shaoming He and Antonios Tsourdos

Abstract—This paper addresses the problem of manoeuvre
recognition and behaviour anomaly detection for generic targets
by means of pattern matching techniques. The problem analysis
is performed making specific reference to moving vehicles in
a multi-lane road scenario, but the proposed technique can be
easily extended to significantly different monitoring contexts.
The potential extensions include, but are not limited to, public
surveillance in train station or airport, road incidents and relative
precursors detection and vehicle trajectories monitoring. The
overall proposed solution consists of a trajectory analysis tool
and a string-matching method. This allows integration of two
different approaches, to detect both a-priori defined patterns
of interest and generic manoeuvre/behaviour standing out from
those regularly exhibited. This paper develops a new string
matching method based on Regular Expressions. For generating
reference patterns, a technique for the automatic definition of
a dictionary of regular expressions matching the commonly
observed target manoeuvres is presented. The advantages of the
proposed approach are extensively analysed and tested by means
of numerical simulations and experiments.

I. INTRODUCTION

Airborne surveillance and monitoring systems have drawn
increasing attention within the field of aerospace and robotics,
thanks to dramatic improvements on unmanned aerial systems
capabilities and associated sensing technology [1]. There have
been numerous studies undertaken to develop such a system
for many different application fields. Those include, but are not
limited to, perimeters patrol [2], contaminant clouds extension
estimation [3] and forest fires monitoring [4]. An application
that has received an extremely wide consideration is airborne
traffic monitoring [5], [6] using Unmanned Aerial Vehicles
(UAVs). Since UAVs can cover large/unfixed area and extend
their monitoring functions to off-road zone, they could enable
better and more flexible coverage, compared with traditional
camera-based systems.

A specific application under this frame is the airborne
monitoring of ground targets, which aims to detect and identify
peculiar behaviours exhibiting hidden threats [7]. The current
solution widely practised consists in two parts: UAVs imple-
ment tracking functionalities, and human operators assess and
classify target behaviours. The issue with this current solution
is that it requires highly skilled human operators and their
workload could exponentially increase as the data collected
from UAVs increases. Therefore, the current solution appears
to be expensive and unsustainable.
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It would be beneficial to reduce human operators’ workload
by providing them a filtered and summarising picture of the
monitored scenario. This could be possible if UAVs signal
human operators the level and nature of the associated target,
and send the vehicle information when required. Hence, this
paper aims to develop an efficient solution for automated
airborne behaviour monitoring of ground targets. The main
objective of the behaviour monitoring is to detect and identify
‘possible threats’ or, more generally, ‘misbehaving targets’,
which will be indicated as Targets Of Interest (TOIs) in the
paper.

The TOIs identification task can be framed within the more
generic problem of ‘anomaly detection’, which is a relevant
research field extensively analysed over the last century. In its
most general definition, an anomaly is a single data point or
a points pattern that does not comply with a given definition
of ‘normality’; this is related to pieces of knowledge provided
from experts in the field or inferred by a set of data constituting
the available information.

There have been mainly two approaches that have been
considered in literature for tackling the anomaly detection
problem: detection of specific behaviour patterns of interest
exhibited by the target; recognition of behaviours that do not
comply with what is considered usual. The former approach
is usually adopted in the cases where the monitoring action is
focused on identifying a few well-known behaviours of interest
or when a comprehensive description of all the unacceptable
manoeuvres is provided from domain experts. With reference
to this approach, techniques widely adopted in literature in-
clude probabilistic frameworks ([8], [9], [10]), fuzzy systems
([11]) and pattern matching ([7]). The issue with this approach
is that it requires a prior knowledge of behaviours of interests
or involvement of human experts in defining descriptions of
unacceptable manoeuvres.

When no a priori specific knowledge about the moni-
tored events is available, learning techniques are typically
implemented to allow extraction of behaviour models from
previous observations. Note that this approach is the main
stream of current researches due to the large data-availability
provided by modern computer systems. In this approach, any
pattern that stands out with respect to other data-points is
considered as anomaly, paying however the necessary attention
in discriminating anomalies from novelties in the observed
behaviours (referred as problem of ‘novelty detection’, [12],
[13], [14]). Various approaches involving different techniques,
usually based on learning processes, have been used for dis-
criminating anomalies from regular data points: classification
of patterns by means of neural networks ([15], [16]), Bayesian
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networks ([17], [18]), SVM ([19]) or rule-based systems ([20]),
clustering of data for outliers identification ([21], [22]), dis-
tance or density analysis respect to nearest neighbour ([23]),
statistical approaches leveraging parametric models (Gaussian
regression models, [24], [25]) or Kernel Functions ([26]),
information-theoretic techniques based on entropy ([27]) or
Kologomorov complexity ([28]), spectral analysis performed,
e.g., by means of Principal Components Analysis (PCA, [29]
) or wavelet transform ([15]). There have been also interesting
studies exploiting the recent developments in Convolutional
Neural Networks (CNNs) and Recurrent Neural Networks
(RNNs) for the anomaly detection, directly based on the
images [30], [31], [32], [33]. A comprehensive survey on the
anomaly detection problem is provided by Chandola et al. in
[34], while Bolton et al. in [35] and Patcha et al. in [36] present
surveys focused on fraud detection and intrusion detection,
respectively.

As reference to traffic monitoring, Knowledge-Based (KB)
pattern matching was proposed in [7], [37], [38]. This ap-
proach tries to identify suspicious targets by matching the driv-
ing behaviours with pre-defined suspicious patterns. Clearly,
this approach requires domain experts to analyse and define
prior knowledge of behaviours of interest, which is expensive
and unsustainable under deluge of data and information. To
reduce the workload of human operators, Learning-Based
(LB) approaches, e.g., Gaussian regression models [24], [39],
unsupervised clustering [22], multi-feature clustering [21],
nonparametric bayesian learning [18], were widely utilised
in traffic monitoring in recent years. The issue with the LB
approaches is that it is hard to identify any behaviour of
interest, which is not exhibited in the data. If some behaviours
are not present in the data, it implies that those behaviours are
most likely different from other data-points. In a logical sense,
such a behaviour should be considered as anomaly. Moreover,
although a certain type of behaviours is often presented from
the data, it could be still considered as abnormal to human
experts. However, such interpretation and identification of
behaviours are not possible in the LB approaches.

To this end, this paper proposes a new TOIs identification
approach that integrates the a prior knowledge based on
learning based approaches to leverage the advantages of both
approaches. The proposed algorithm relies on a novel pattern
matching technique by means of regular expressions. As a
preliminary step, we generate behaviour features from a ma-
noeuvre detection using speed and curvature analysis of target
trajectory using differential geometry techniques ([7], [40]).
The behaviour features generated are stored as a sequence of
discrete values. These results are then matched with reference
patterns, representing behaviours of interest. The proposed
integrated approach generates the reference patterns by specific
behaviour patterns of interest or sets of patterns representing
what is considered “normal” to various extents. This paper
proposes to retrieve the latter patterns by applying automated
learning. The learning objective is to infer, from observed
sequences of target motion, a set of strings taking the form of
regular expressions describing typical ‘legitimate’ behaviours;
these then form a ‘dictionary’ of behaviour patterns, together
with a measure of frequency of occurrence (‘regularity’) of

target behaviours. The pattern matching algorithm then finds
which pattern in the dictionary best matches to the exhibited
behaviour and provides its regularity level. When a pattern
observed during the monitoring process does not match any
of the expressions in the dictionary, the relevant target is
considered as TOIs, since it is exhibiting some unexpected
behaviour which should reasonably raise the alert level. If
domain experts consider a certain pattern, regularly exhibited
by the target, abnormal, then they can simply place the pattern
to an irregular position in the dictionary.

II. OVERALL FRAMEWORK

The overall framework of the proposed approach is outlined
in Fig. 1.
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Fig. 1. Schematic representation of the proposed approach

Each enabling block and their inter-connection shown in
Fig. 1 can be briefly described as follows. First, target tracks
are processed based on measurements obtained from sensors
such as vision camera, radar and LIDAR aboard monitoring
platforms. Then, classification is performed using the tracks
to obtain a string of target behaviour features, that is, Driving
Modes (DMs), in the form of Regular Expression (regex). In
this paper, track classification is done by trajectory analysis
taking the monitoring scenario into account, but it could be
done by other means depending on monitoring context. Next,
the string of the behaviour features exhibited by the target is
compared with reference strings by using pattern matching.
This paper applies a string matching technique for the pattern
matching. As discussed in Introduction, the reference patterns
can be generated by two different, i.e. learning based and
knowledge based, approaches. The learning based approach
generates a set of reference patterns and ‘regularity’ by
applying learning, typically performed off-line, on training
data available. Here, regularity indicates occurrence frequency
of reference patterns. The knowledge approach leverages the
knowledge of domain experts for defining reference patterns
that have to be spotted. The KB references can be not only
generated off-line, but also updated and integrated to the LB
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references online during the online assessment if the experts
consider necessary. When generating KB reference patterns,
its regularity also needs to be produced. Note that depend-
ing on the availability and necessity, the reference patterns
generated by the two approaches can be used individually
or together after integration. The results obtained by pattern
(string) matching are then forwarded to the next processing
block indicated as ‘Target Assessment Process’: its role is to
apply some kind of filtering action to the automatic Target
Of Interest Warnings (TOIWs), accordingly with the operator
specification and requests. Details of each building blocks in
the TOI assessment block will be given in the subsequent
sections.

Note that on-line components are depicted in violet, while
the off-line part is in orange in Fig. 1. Since the experts input
can be given off-line and also online, the corresponding block,
i.e. block Experts, is depicted neither in violet, nor in orange.

III. TRAJECTORY CLASSIFICATION

In the proposed approach, the first step necessary to achieve
behaviour recognition is the classification of behaviour fea-
tures exhibited by the target. The purpose of this classification
is to translate general behaviour features into a set of prede-
fined motion categories; these are referred in the following as
DMs. In behaviour monitoring of ground targets, one of the
most intuitive features would be DMs. Therefore, this paper
selected DMs as behaviour features. However, this doesn’t
constrain the selection of other types of behaviour features.
Classification of DMs based on trajectory analysis is only
a way to realise the approach proposed in this paper. Any
features could be utilised if they present target behaviour fea-
tures well. The identification of motion categories can be done
by identifying and analysing a few, simple quantities (e.g.,
position, velocity, heading rate, etc.) capable of characterising
the trajectories and using this information for selecting the
most suitable DM.

Two main steps can thus be identified within the trajectory
classification process:
• Curvature Analysis step allows to extract from the target

track some quantities of interest: trajectory curvature,
speed and acceleration;

• Manoeuvre Classification step produces a classification of
the target trajectory within a predetermined set of DMs
driving modes, on the basis of the quantities defined in
the previous step.

A. Curvature Analysis

The proposed approach to curvature analysis is based on
a moving-window-based trajectory approximation ([7]) and
exploits a third-order polynomial function generating a trajec-
tory with a virtually increased sampling frequency ([7], [24]).
Given a window composed of NT original samples taken at
time instants1

[0, Ts, 2Ts, . . . , (NT − 1)Ts] ,

1Time instants are expressed as offset respect to the window initial time.

a new sample sequence is generated by means of a resampling
process, taking place at instants

[0, Tn, 2Tn, . . . , (NT − 1)cTn] ,

where the final instant of the two time sequences is the same,
that is

(NT − 1)cTn = (NT − 1)Ts. (1)

In the previous description, Ts and Tn are the original2 and
“artificial” sampling times, and c is the ratio between the
two times. In the following, the case is considered where
Tn < Ts (c > 1): this allows defining a sequence of data
generated at ‘virtually increased’ sampling frequency. The
resampling process has been performed with the purpose of ap-
plying the curvature analysis procedure to finer-grained, even
if approximated, information, which leads to more effective
identification of DMs. The polynomial function leveraged for
the trajectory approximation has the following form:

p(x) = pnx
n + pn−1x

n−1 + . . .+ p1x+ p0 (2)

where n is the desired order, and the coefficients p0, . . . , pn
are chosen so as to minimise the approximation error in a least
squares sense. Such optimisation can be formulated as:

P̃ = argmin
[p0,...,pn]

T∑
k=T−m+1

(p (k)− x(k))
2 (3)

where P̃ = [p̃0, . . . , p̃n] is the vector of optimal coeffi-
cients for the polynomial, T is the current time step and
X = [x(1), . . . , x(m)] is the history of the target position
(single coordinate) within the considered time window of
dimension m. Note that n is a design parameter that should
be decided by considering the complexity of the pattern and
computational efficiency. With this approach two polynomial
functions are defined for approximating the target trajectory in
the two coordinates of motion3, referred as px(t) and py(t).
The target position at discrete time instants within the time
window [T −NTTs, T ] is then obtained by sampling from
the two polynomial approximating functions. This process
is performed at a “higher rate” with respect to the sensing
frequency, that is with time step Ts instead of the original value
Tn; in the following, indices k and i make reference to original
and virtual samples, respectively, within the considered time
window. After this, the velocity (ẋ(i), ẏ(i)) and acceleration
(ẍ(i), ÿ(i)) profiles relative to the two coordinates of motion
are derived by simple differentiation of the re-sampled position
and velocity profiles. These are then used to calculate the
forward acceleration af (i), the orientation rate of change θ(i)
and the minimum speed U of the vehicle for each i:

2It could be the time step of a tracking filter or simply the sampling time
of a discrete measurement process

3Since our research is focused on ground vehicles, a bi-dimensional motion
is assumed, but the approach proposed can be easily extended to the case of
3D trajectories.
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U = min v(i) = min
√
ẋ(i)2 + ẏ(i)2 (4)

θ(i) = v(i)κ(i)

=
√
ẋ(i)2 + ẏ(i)2

ẋ(i)dẏ(i)− ẏ(i)ÿ(i)

(ẋ(i)2 + ẏ(i)2)
3/2

(5)

af (i) = ẍ(i) cosψ(i) + ÿ(i) sinψ(i) (6)

where κ is the curvature, and ψ = tan−1(ẋ/ẏ) is the heading
angle from North.

B. Manoeuvre Classification

Given the quantities defined in Section III-A, DMs are
determined by checking how those quantities match with the
conditions defined in each DM within a single time-window.
This paper selected DMs after examination of the DMs from
previous studies, especially [41], [7]:
• Stopping(0) : this state is detected when U < Uth, indi-

cating that the target is stationary, stopping or moving;
• Left Turn (1): recognised when max (θ) > θth,1 > 0 and

max (θ) min (θ) > 0.
• Right Turn (8): min (θ) < −θth,1 and max (θ) min (θ) >

0;
• Left Lane Change (2): this kind of manoeuvre is de-

tected when  max (θ) min (θ) < 0
max |θ| > θth,1
θ(0) > 0

The difference with respect to a ‘Left Turn’ consists in
the detection of a sign change for the orientation rate of
change;

• Right Lane Change (7): characterised by max (θ) min (θ) < 0
max |θ| > θth,1
θ(0) < 0

The inspection of the sign change of θ is used to distin-
guish a lane change from a pure ‘Right Turn’ manoeuvre;

• Straight (9): in this mode the monitored target is moving
straight at constant speed, i.e. max(|θ|) < θth,1 and
max(|af |) < ath;

• Closing Gap (6): characterised by af (0) > ath and
max(af ) min(af ) < 0. When the driver wants to close
gap with the preceding vehicle, the monitored target
will exhibit positive and negative accelerations at the
beginning and in the end of the considered time-window
respectively;

• Widening Gap (3): af (0) < −ath and
max(af ) min(af ) < 0. Considerations about this
driving mode are similar to those for the ‘Closing Gap’
case, with the difference that the initial acceleration is
negative over the whole time window;

• Accelerating Ahead (5): this driving mode is recognised
when max(af ) min(af ) > 0 and af (0) > ath. The sign
of acceleration is positive during the whole time-window;

• Decelerating Ahead (4): in this case
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Fig. 2. Flow chart of the DM classification

max(af ) min(af ) > 0 and af (0) < −ath, i.e. the sign
of acceleration stays negative;

• U-Turning (A): detected when max |θ| > θth,2. A U-
turn manoeuvre, where the vehicle inverts the direction of
motion through a 180◦ rotation, can indeed be associated
to large values for the orientation change.

In the previous classification, the quantities Uth, θth,1,θth,2 and
ath are threshold values that need to be tuned on the basis of
the estimation accuracy and expected target dynamics.

Fig. 2 represents an overall flow chart of the classification
of DMs

C. Test Patterns Definition

The classification introduced in Section III-B allows to
define at each time step k a driving mode mk. This is chosen
among the set of pre-defined modes M = [0, 1, . . . , 9, A],
which describes the behaviour of the monitored target during
the considered time-window. These modes can then be lever-
aged for defining classes of complex behaviours that could
draw the attention on the monitored target.

In the proposed approach, complex behaviours are defined
as specific strings of DMs, and the behaviour detection relies
on string matching techniques. More specifically, given the
modes set M , a symbolic time-series of DMs yk = {mj ∈
M |j = k − Nw + 1, k − Nw + 2, . . . , k} is generated at
each time-step k, where Nw is the adopted window dimension
for behaviour detection. This last quantity depends on the
expected duration of the events that have to be detected:
assuming to be interested in events that last no longer than
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tw, Nw can be calculated as follows:

Nw =

⌊
tw
Tn

⌋
− (NT − 1) (7)

IV. STRING PATTERN MATCHING

The list of DMs extracted from the target trajectory is
then compared with pre-defined strings associated to peculiar
behaviours that need to be detected, referred in the following
as reference patterns. Such comparison process is indicated as
pattern (or string) matching, and it is implemented employing
both basic strings of characters and regexes in the proposed
approach. These two techniques are thoroughly described and
analysed in Sections IV-A and IV-B, respectively.

A. Edit Distance Based Matching

The concept of ‘edit distance’ has been introduced as a
generalised measure of the difference between the reference
and an observed pattern: this allows defining a discrete level
of similarity between patterns instead of a binary matching
value. In [42] the edit distance between two strings Sr and
St (reference and tested strings respectively) is defined as
the minimum total number of changes C, insertions I and
deletions R required to turn string St into Sr, that is:

D(Sr, St) = min
j

[C(j) + I(j) +R(j)] (8)

where j runs over all possible combinations of symbol varia-
tions in order to obtain Sr from St. The main drawback of this
simple approach is that the same relevance is given to missing,
excess, wrong or misplaced terms within the analysed pattern.

The issue is that numerous patterns need to be recognised
as a specific pattern of concern in practice. Setting a thresh-
old on the edit distance values allows to recognise these
slightly different patterns. However, at the same time, it does
not consider properly the characterising peculiarities of each
manoeuvre. Note that the concept of using string matching
and edit distance with a threshold was already introduced in
[7]. For more detail, the reader is referred to [7]. A possible
solution to this problem could account for different coefficients
for the components of the edit distance (C,R and I . However,
it is important to note that weights-tuning is often a tricky
process requiring deep insight into the considered problem.
The previous considerations suggest that it is probably worthy
to investigate for new, flexible approaches to reference patterns
definition. To this end, this paper proposes to express reference
patterns as regexes.

B. Regular-Expressions Based Matching

Expressing reference patterns as regexes allows defining a
fixed binding structure for the behavioural patterns of interest,
specifying mandatory and optional terms. With this approach,
a reference pattern consists of any combination of the follow-
ing components:
• Specific Symbol, e.g. 1: indicates a driving mode that

must be present in the tested string;

• Character Class, e.g. [65]: gives multiple possibility,
equally acceptable, for a term of the tested string (6 and
5 in the example);

• Upper Unbounded Character Sequence, + : one or
more instances of the preceding element are allowed;

• Unbounded Character Sequence, * : zero or more of
the preceding element are allowed;

• Bounded Character Sequence, {n, m}: a number be-
tween a minimum n and a maximum m of instances of
the preceding element are matched.

In the cases where the reference string is expressed as regex,
the matching result is a value representing an extension of the
previously described edit distance:

• Dr(Sr,St) = −1: the tested string does not match with
the reference pattern

• Dr(Sr, St) = minj I(j) ≥ 0: the edit distance indicates
the number of insertion required for the test string to
comply with the reference pattern;

With this approach, a possible reference pattern for an
overtaking manoeuvre is:

Sr,o = ‘ [123456789] ∗ 2 + [34569] {4, 16}7’

where the monitored vehicle moves to the overtaking (or outer)
lane (‘2+’), maintains a straight direction for at least four time
steps (regardless of the acceleration profile, ‘[34569] {4, 16}’)
and then moves back to the right (or inner) lane (‘7’). The
use of the unbounded sequence term (‘*’) allows decoupling
the length of the reference and tested strings without affecting
the edit distance. By adopting regexes, instead, the symbol
‘*’ can be used to reject the influence of driving modes
detected before the manoeuvre of actual interest. The use of
bounded and unbounded sequences appears to be particularly
useful when the target dynamics is uncertain, and thus the
length of the time interval needed by the target to exhibit the
behavioural pattern of interest is not exactly known a priori. In
the case of the overtaking manoeuvre, for example, the time
interval between the two lane changes, and thus the number
of characters between modes 7 and 2, depends on the relative
velocity of the two vehicles involved. Consider the following
three reference strings:

Sr,o1 = ‘255997’ (9)
Sr,o2 = ‘ [13456789A] ∗ 2 + [34569]{4, 16}7’ (10)
Sr,o3 = ‘ [13456789A] ∗ 2 + [34569]{4, }7’ (11)

where Sr,o1 is expressed with the basic approach, while Sr,o2

and Sr,o3 are defined as regexes. Sr,o1 clearly represents a
strict reference pattern: if it would be compared only with
strings of the same length, the matching approach would not
be robust with respect to little variations in the expected target
dynamics since, for example, an overtaking that takes slightly
longer, e.g. ‘25599997’, would not be recognised. This clearly
shows how the proposed approach leads to greater flexibility
in pattern recognition over the classic edit distance.
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V. APPROACHES TO REFERENCE PATTERNS DEFINITION

A. Knowledge-Based Reference Patterns

The simplest way to implement the pattern matching ap-
proaches is to define one or more patterns representing particu-
lar behaviours considered “concerning” or, more generally, “of
interest”. In the traffic monitoring scenario, such behaviours
could consist in any manoeuvre representing a danger for the
regular traffic flow: e.g., to continuously switch from a lane
to another. It is clear that this approach requires exploiting
the knowledge of domain experts for defining the patterns of
interest. On the one hand, a monitoring application designed
for matching KB reference patterns is able to precisely identify
particular behaviours of interest. On the other hand, this kind
of approach cannot detect general unexpected manoeuvres
that differ significantly from those regularly exhibited by the
targets.

B. Learning-Based Reference Patterns

To overcome the limitations due to considering only KB
reference patterns, this paper proposes to consider a new com-
ponent: reference patterns defined on the basis of previously
observed target behaviours.

1) Basic Concepts: The rationale behind the use of a LB
component is that the detection of manoeuvres that are rarely
observed, even if not ‘a-priori’ classified as “concerning”,
should raise the attention level. This idea appears justified as-
suming that a sufficient large amount of target manoeuvres has
been analysed, and thus that almost any legitimate manoeuvre
has been observed a fair amount of time.

With reference to the string matching approach described in
Section IV-B, the purpose of the learning component is to infer
a set of regular expressions the observed sequences of driving
modes. This set is referred as ‘dictionary’ in the following and
is capable of summarising all the “frequent”, and thus assumed
“regular”, target manoeuvres. When a pattern observed during
the monitoring process does not match any of the expressions
in the dictionary, the relative vehicle can be reasonably con-
sidered a TOI, since it has exhibited an unexpected behaviour
that should reasonably raise the alert level.

2) Learning Technique: The objects of the proposed learn-
ing process are patterns of driving modes, that is sequences
of alpha-numerical characters with no ordinal meaning. The
proposed approach leverages learning approaches, especially
in defining a dictionary, not competes with them. In this
study, the learning accepts a sequence of driving modes of
fixed length as input and produces a single value denoting to
what extent the pattern can be assumed “regular”. Hence, any
learning approach that can support this concept can be utilised.
In this study, a Neural Network (NN) is applied for simplicity
after considering various learning techniques. Note that there
have also been some other interesting developments on refer-
ence driving pattern generation by Bayesian nonparametric ap-
proaches in recent years, for examples Hierarchical Dirichlet
Process-Hidden Markov Model (HDP-HMM) [43], [44] and
Hierarchical Dirichlet Process-Hidden Semi Markov Model
(HDP-HSMM) [45]. With careful craft, those approaches can
be also applied.

Implementing the learning process based on a NN enables
defining groups of regular expressions constituting the regex
dictionary. This NN is denoted as ‘supporting neural network’
in the following since its role is solely to support the creation
of the dictionary.

3) Neural Network Implementation and Training: The
structure of the neural network adopted is composed of three
layers: the first one, the ‘input layer’, is made of n neurones,
where n is the size of the input vectors. This layer has the sole
purpose of ‘presenting’ the input data to the network and thus
does not entail any calculation (passive nodes). The second
layer, referred as ‘hidden layer’, is composed of n neurones
as well, while the third, or ‘output’, layer has a single neuron
connected to all those within the hidden layer.

In the proposed approach, the dataset used for training the
neural network (NN-training set) entirely or partially consists
of synthetic data and is composed as following:
• A set of “assumed regular” patterns, associated with

output value 1. These can be obtained: i) by utilising
a Markov Model, designed for producing sensible se-
quences of driving modes, ii) by logging patterns gener-
ated from a traffic simulator (described in Section VI-A2)
or iii) by analysing real traffic data. Different sources of
data have been considered for testing the effectiveness of
the proposed methods under different conditions.

• A set of “irregular” sequences of driving modes, associ-
ated with the output value 0. These patterns are produced
in an automated manner, by including within a random
sequence of driving modes a sub-sequence representing
a manoeuvre that is known to be concerning.

4) RegEx Dictionary Creation: Once the neural network
has been trained to distinguish between “regular” and “sus-
picious” behaviours, it can be used to derive one or more
sets of regular expressions that allow summarising and gener-
alising the observed behavioural patterns. This can be done
by providing a new set of patterns as input to the neural
network. These patterns are denoted as RD-training set (where
RD stands for Regex Dictionary) and are defined, following
the same procedure used for the NN-training set. Considering
that the network outputs lie in the [0, 1] range, the RD-training
patterns can be split among a pre-defined number of bins on
the basis of the NN output associated with each of them:

{
nn (pi) > γ
nn (pi) ∈ [1− (j − 1) sb, 1− jsb)

⇒ pi ∈ bj (12)

where the ‘nn’ operator represents the neural network, pi is
the i-th pattern of the RD-training set, γ is the threshold on
the NN outputs for the patterns to be considered within the
regex creation process, sb = (1− γ) /Nb is the step between
the values associated with two successive bins, Nb is the
number of bins adopted and bj denotes the j-th bins, with
j = 1, . . . , Nb.

The set of patterns associated with the j-th bin can thus be
denoted as pbj = {pi : pi ∈ bj}, and it can be used to define
one or more regexes capable of expressing all the behaviours
related to patterns pbj . This is done through a newly-developed
algorithm that, given a set of patterns pbj , returns a set of
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regexes rbj = {ri,j}, for i = 1, .., nrj where nrj is the number
or regexes generated for the j-th bin. Accordingly, a dictionary
of regular expressions is built from the RD-training patterns
and the output values provided by the supporting NN. Each
of the Nb bins constituting the dictionary is associated with a
different level of “regularity” assumed for the patterns matched
by the regular expressions contained in the bin.

Given a regex dictionary d, the assessment process for a
generic pattern p is simply to find the first bin from the
top (index 1) containing a regex that matches the pattern.
Assuming k as the result of the search, the assessment for
the considered pattern can be formulated as follow:

l (k) = l (srch (p,d)) = 1− (k − 1) sb (13)

where the function srch() returns the index of the first bin
containing a regex that matches the input pattern.

Novelty of the on-line monitoring approach developed con-
sists in querying a dictionary of regexes as if it were the
supporting NN4. The dictionary is created ‘offline’ on the basis
of the NN outcomes and is characterised by a granularity that
is a function of the number of bins Nb and the threshold γ
adopted. This approach can be adopted under the assumption
that

nn (p) ' l (srch (p,d))

This assumption implies that the dictionary-query technique
represents a valid approximation of the neural network. Valid-
ity of the assumption is investigated through a comprehensive
set of tests in Section VI-B.

5) Real-Time Dictionary Update: A relevant advantage of
using a dictionary of regexes against a neural network is that
the former can be easily updated in real-time. This means
that the system can match patterns that are not accounted for
during the system design phase, but appears to be of consider-
able importance during the operational phase. Therefore, the
monitoring application can quickly adapt to different scenarios
or temporary conditions influencing the targets behaviour.

For example, a prolonged slowdown on a motorway could
be a priori considered as a suspicious manoeuvre, but if
all the vehicles were doing that, e.g. because of a closed
lane, the assessment for that pattern should be updated to
“regular”. Such result can be obtained by adding, during the
monitoring process, new regular expressions to the dictionary
or by moving an existing regex to a different bin in the
dictionary hierarchy.

6) Assessment Framework structure: Given the two pro-
posed approaches to TOI detection (KB and LB), an hybrid
assessment framework for supporting operator decisions can
be considered, whose structure is outlined in Fig. 1. It is
possible to notice that the TOI warnings (TOIWs) produced
by the pattern matching techniques are not directly forwarded
to the operator but are provided to a further processing
block indicated as ‘Target Assessment Process’: its role is to
apply some kind of filtering action to the automatic TOIWs,
accordingly with the operator specification and requests. From
the practical point of view this component could:

4The NN used for the dictionary creation.

• Implement the logic sum of the two input signal;
• Impose a threshold on the number of warnings necessary

for classifying a vehicle as a TOI;
• Implement any arbitrarily complex policy.

The functionalities related to this component are not further
analysed since they are strictly related to the operator choices
and its personal interpretation of what represents an actual
threat.

VI. NUMERIC SIMULATIONS

This section reports the results from an extensive set of
simulations and tests performed for checking the effectiveness
of the pattern matching approaches proposed in Section IV.
KB and LB matching solutions have been tested separately, al-
lowing to compare the proposed solutions with corresponding
well-established techniques. The final target assessment step
has not been taken into consideration in the following tests,
since it entails a non-univocal interpretation of the problem
and no labelled datasets or similar assessing techniques can
be easily retrieved.

A. Knowledge-Based Matching

The two string-matching techniques described in the Section
IV have been tested and compared for assessing whether the
approach based on regexes performs better than the basic
technique. Note that the basic technique is identical to the
method proposed in [7]. For the simulation purpose, two
different methods have been considered for generating the
strings to be tested against the reference patterns. As first
approach, a Markov chain has been leveraged, which produces
sequences of DMs accordingly with some reasonable prob-
abilities. Then, a dynamic system simulating a car moving
on a two-lane highway has been implemented: in this case,
the strings of driving modes have been produced through the
analysis technique described in Section III.

1) Simulations Based on Markov Chain: The Markov chain
described in Table II has been used for generating plausible
sequences of driving modes: probability values are defined
with a simple approach5, taking into account some basic
considerations:
• Manoeuvres time correlation suggests that the probability

of remaining in the same state must be higher than
switching to any other state;

• After the target has moved to the outer lane, it will not
reduce its speed immediately;

• After the target has moved back to the inner lane, it will
not reduce its speed immediately;

Lastly, notice that when in states 4, 5 or 9 the probabilities of
switching to modes 7 and 2 have been aggregated, since they
depend on the lane occupied, i.e.:

lane = left =⇒
{

P (2) = 0
P (7) = P

, otherwise
{

P (2) = P
P (7) = 0

where P is the probability reported in the table. A sequence

5Driving modes ‘widening gap’, ‘closing gap’ and ‘U-turn’, codified as
‘3’,‘6’ and ‘A’ respectively, are not considered in the following for simplicity.
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TABLE I
NUMERICAL RESULT FOR SIMULATIONS BASED ON MARKOV CHAIN AND DYNAMIC MODEL (%)

Markov Chain Dynamic Model
Consistent Knowledge Inaccurate Knowledge

regex Basic
regex Basic regex Basic

Correct Detections 90.5 16 63.8 22 84.4 15.4
Missed Detections 9.5 49.5 36.2 58 15.6 84.6
False Detections 0 34.5 0 20 0 0
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Fig. 3. Numeric results for regex and simple-strings based approaches: 3(a) “consistent” case simulation, 3(b) “inaccurate” case simulation, 3(c), dynamic
system simulation

TABLE II
MARKOV CHAIN FOR PATTERN GENERATION, KB APPROACH

Driving Modes

(2) (7) (5) (4) (9)

D
riv

in
g

M
od

es

Left Lane Change (2) 1/2 1/6 1/6 0 1/6

Right Change (7) 1/6 1/2 1/6 0 1/6

Acceleration Ahead (5) 1/6 1/2 1/6 1/6

Deceleration Ahead (4) 1/6 0 2/6 2/6

Constant Speed (9) 2/6 1/6 1/6 1/6

of one hundred thousand driving modes has been produced
and analysed leveraging the two string-matching approaches,
with the aim of identifying overtaking manoeuvres. The con-
sidered reference pattern for the simple-string approach [7] is
Sr,o1 = ‘255997’, assuming a threshold value of two for the
edit distance. This means that only strings with edit distance
smaller or equal to two have been considered matching the
reference pattern. For the regex-based approach, the regular
expression adopted for describing an overtaking manoeuvre
is Sr,o2 = ‘ [13456789] ∗ 2 + [345689]{4, 16}7’, assuming a
zero threshold on the edit distance. This is because the use
of metacharacters and character classes already provides a
sufficient degree of flexibility. The Ground Truth (GT) about
the number of overtaking manoeuvres has been defined in two
different cases:
Consistent Knowledge: just the sub-sequences with at least

four “straight-direction” DMs between the left-lane-
change and right-lane-change modes have been counted
as actual overtaking manoeuvres. The term “consistent” is
used since the assessment of the ground truth complies
the definition of the reference patterns Sr,o1 and Sr,o2 .
With this approach, the DMs sequence exhibits 3412
overtaking manoeuvres.

Inaccurate Knowledge: sub-sequences with two or more
“straight-direction” DMs between the two lane changes
have been considered as actual overtaking manoeuvres.
In this case, a non-exact knowledge of target dynamics
is simulated since overtaking manoeuvres are executed
much faster than expected (the reference patterns account
for four straight-direction driving modes). With this ap-
proach, 6253 overtaking manoeuvres have been counted.

The results for the two cases are shown in Fig. 3(a) and
3(b), and summarised in Table I: in the consistent case the
correct detection rates are 90% and 16% for the regex-based
and simple-string approaches, respectively. In the case of
inaccurate knowledge the regex-based technique lowered its
success ratio to 63.8% and the performance of the simple-
string approach remains almost the same. False positive detec-
tions are not a problem concerning the regex-based technique
(absent in both the cases), while in the simple-string case their
fraction is not negligible: it is indeed of the same order of
magnitude with respect to correct detections.

2) Simulations Based on Dynamic Model: A second test for
the two string-matching techniques has been carried out using
a dynamic system model representing a single car moving
on a two-lane highway. An always-straight road is considered
for simplicity reasons, but it can be readily extended to the
more complex case of a generic road by making reference to
differential geometry techniques ([40], [24]). The car trajectory
has been simulated for fifty thousand seconds (corresponding
to one hundred thousand driving modes, assuming a sample
time Ts = 0.5 s), on the basis of the following procedure:

I) The car moves along the inner lane for a randomly
distributed time interval tin ∼ N (30, 16). The accel-
eration profile during tin is defined dividing the inter-
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val into nin randomly distributed6 sub-intervals tin,j ∼
N
(
2, 6.25× 10−2

)
with j = 1, 2, . . . , nin. For each in-

terval tin,j the vehicle can decide to accelerate, decelerate
or maintain a constant velocity;

II) The car starts to move towards the outer lane with
constant velocity;

III) The vehicle arrives on the outer lane and determines
how long it will stay on this lane: to ∼ N (5, 4). The
acceleration profile during this period is defined using
the same procedure as in step I;

IV) The car moves back to the lane on the right;
V) The procedure restarts from the first step.

Other simulation parameters are:
• Maximum forward speed: 30 m/s;
• Minimum forward speed: 5 m/s;
• Lateral speed: ±1.75 m/s;
• Acceleration: ±2 m/s2

All the ‘inner-to-outer lane’ events followed by ‘outer-to-
inner lane’ have been considered as overtaking manoeuvres;
1262 overtaking manoeuvres have been identified with this ap-
proach. The reference patterns for the two matching techniques
are the same of the previous example (Section VI-A1), and
the numeric results obtained from the simulation are reported
in Table I and Fig. 3(c). Again, the regex-based approach
undoubtedly outperforms the simple-string technique: 84%
instead of the 15% of correct detections.

3) Computation Complexity Analysis: The time complexity
for edit distance calculation is O(n ·m) ([46]) where n and
m are the lengths of the compared strings. On the other hand,
for classical regular expressions (the type here considered) the
time complexity can be reduced to O(n), with n length of the
tested string, by the use of a Deterministic Finite Automata
(DFA).

B. Learning-Based Matching

The learning approach has been tested under the same two
cases considered in Section VI-A, and has been applied to
real-world vehicle trajectories (made available by the NGSIM
project). The objective of the simulations reported in the
following is to establish whether or not the use of a RD
represent a suitable solution for replacing a neural network,
i.e., if the two methods have comparable outcomes. This
analysis appears to be more meaningful than considering
actual detection capabilities since: i) No GT is available for
most7 of the data ii) A neural network is assumed to be an
effective tool for pattern recognition and thus its outputs are
considered to be valid references.

1) Markov Model: Similarly to the KB case, a Markov
model (Figure 4) has been defined for producing DM se-
quences associated with “regular” behaviours.

However, unlike the KB case, “irregular” patterns are also
required for properly training the neural network. Each irreg-
ular pattern is generated as a random sequence of DMs where

6The length of the last sub-interval tin,nin is constrained by the length of
interval tin.

7Only patterns produced by means of the Markov model are associated
with an actual GT.

S0/‘9’

S1/‘4’ S2/‘5’ S3/‘7’

S4/‘2’ S5/‘5’ S6/‘9’

0.125

0.5

0.125

0.5

0.5 0.25

0.5

0.25

0.125

0.375

0.125
0.375

0.0625 0.375
0.56250.125

0.875

0.25

0.25
0.5

0.25

Fig. 4. Markov model for pattern generation, LB approach

a sub-sequence that represent a known irregular behaviour is
added.

The following datasets have been produced on the basis of
the criteria just described:

NN-training set: 20.000 patterns, used to train the neural
network;

RD-training set: 20.000 patterns, used to query the trained
network and populate the regex dictionary;

Test set: 2000 patterns, used to query both the neural network
and the dictionary-based matching technique for valida-
tion and comparison.

All the datasets are composed of regular patterns for the
75% and irregular patterns for the remaining part. This ratio
for the two components of the dataset, clearly privileging
the regular patterns, has been chosen considering that the
simulation focus is in learning regular, while irregular patterns
are provided to the network just for training purposes. Using
these datasets, a test accounting for various numbers of bins
for the dictionary-based technique have been performed, and
the results are depicted in Fig. 5. X, Y, and Z axes in the
figure represent the number of bins generated, error threshold,
and correction matching ratio. The aim of the test consists
in verifying for what percentage of the input patterns the
regex and the NN approaches provide the “same” result. With
“same”, it is here meant that the difference in the outcomes
of the two methods lies within a given error threshold. The
higher the correction matching ratio is, the less the difference
between the two approaches is. If the correct matching ratio
is equal to 1, it implies that the outcome of the proposed
approach well matches to the outcome of the NN approach.
This interpretation is the same for Fig. 6.

The numeric results indicate that the proposed dictionary-
query approach has been able to reproduce the NN outputs
for a fair portion of the test patterns: approximately 85% of
correct matching assuming an error threshold of 20%.

2) Dynamic Model: The test described in Section VI-B1
has also been performed using data from the dynamic sim-
ulator described in Section VI-A2 instead of patterns from
the Markov model. The test results for this different case
are depicted in Fig. 6. From a qualitative point of view, the
results are not substantially different from those obtained for
the Markov model data. The resulting curve (Figure 6(b))
exhibits a trend similar to that of Fig. 5(b), but it results in a
considerably less pronounced slope. This could be due to the
fact that the dynamic-model simulator has probably produced
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Fig. 5. Results for RD against neural network approaches confrontation,
Markov-model data: 5(a) multiple bins test, 5(b) detail of the results for the
highest number of bins considered (100)

a set of patterns with lower ‘entropy’, that is a smaller variety
of DM sequences in training.

3) Real Data Analysis: For the purpose of testing the pro-
posed approach in real-world conditions, the data collected for
the Federal Highway Administration (FHWA) Next Generation
SIMulation (NGSIM) project ([47], [48]) has been considered.
This is available to researchers in the field of transportation
and traffic flow theory and incorporates a collection of single-
vehicle related data, including processed trajectories in global
and road-local reference frames.

For the simulations, the original NGSIM data have been
corrected by applying the technique described by Montanino
et al. in [49] to allowing removal of outliers and infeasible
acceleration profiles caused by measurement errors.

We have considered 5200 trajectories from the NGSIM
US101 dataset, within the period of time between 7.50am-
8.35am. On the basis of these target trajectories and by
employing the analysis technique described in Section III,
3563 driving patterns have been identified. These have been
then leveraged for the definition of a dictionary accounting
for 30 regular expressions distributed among 100 bins. For this
example test, the dictionary threshold γ has been set to 0, thus
allowing to have a granularity of 1/100 in the representation
of the NN outputs by means of the RD. The test results are
depicted in Fig. 7, where the ratio of correct matching between
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Fig. 6. Results for RD against neural network approaches confrontation,
dynamic model: 6(a) multiple bins test, 6(b) detail of the results for the highest
number of bins considered (100)

0 20 40 60 80 100
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Percentage Error Threshold

C
or

re
ct

 M
at

ch
in

g 
(%

)

 

 

5%
15%
25%
50%
90%

Fig. 7. Results for RegEx dictionary against neural network approaches
confrontation

NN and RD outcomes are plotted against the error threshold
(X-axis) and the training set portion8. Note that percentage
values in the legend of Fig. 7 represent the percentage of
data dedicated to the training process. The numeric results
show that the proposed RD based approach provides the results
almost 90% identical to the NN results when only 15% of the
data is used in training. The correct matching ratio between the

8Notice that, for the test here reported, the training set portion is equally
distributed between the NN-training and RD-training sets
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proposed approach and NN gets higher as more data is utilised
in training. This clearly demonstrate even with a relatively
small amount of data dedicated to the training process, the
proposed RD based approach is capable of replicating the
outcomes of the neural network. Furthermore, it is shown
that in the case of extremely small training sets, the matching
performance is not sensibly affected by the error threshold.
This implies that for most of the patterns in the test set, the
dictionary-query technique either provides a perfect match or
does not recognise the pattern at all.

4) Computation Time Analysis: Let us now compare the
computational efficiency for the dictionary-query and neural
network techniques.
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Fig. 8. Distribution of the computation times for the 3563 patterns obtained
from NGSIM data

The test has considered the real-word data case (Section
VI-B3), and the neural network and the regex dictionary have
been defined on the basis of a training set portion equal to 0.5.
Then, each pattern in the dataset has been assessed through
both the considered techniques and the actual computation
times9 have been recorded. The neural network outputs have
been calculated using the Matlab built-in net() function, while
the dictionary-query approach relies on a newly-implemented
function that browses the dictionary and checks for the first
regex matching the pattern under assessment.

The measured time intervals only for pattern evaluation
between the two approaches are reported in the histogram in
Fig. 8. This figure clearly shows that the RD based technique
is always faster than the neural network. Furthermore, it
is shown that the use of a neural network leads to quite
evenly distributed time values, while the dictionary-query has
taken the minimum observed elaboration time for most of the
patterns. This aspect can be attributed to the fact that the
regular patterns are usually matched almost immediately by
a regex located in the first few bins as they are most frequent.
On the other hand, irregular patterns take longer since they
require most or all of the dictionary to be browsed. Regarding
the overall performance, however, this does not seem to be a
problem, since irregular patterns are expected to be observed
far less frequently than regular ones. The measured mean value
and standard deviation for the elaboration times in the two

9The reported time values make reference to a Matlab 2015 environment on
an Intel i7-3770 16 GB RAM machine, with no parallel computation enabled.

cases are t̄NN = 5.9 ms, σNN = 1.5 ms and t̄RD = 0.12 ms,
σRD = 0.49 ms for the neural network and RD approaches,
respectively.

It is clear that the performance of the proposed approach
depends on the number of bins defined. Moreover, the com-
putational time clearly relies on the number of bins. The
proposed approach can trade off computational complexity
against performance by adjusting the design parameter, that
is, the number of bins. On the other hand, it is hard, if not
impossible, to achieve the trade-off in NN approaches. When
the data becomes much bigger and more complicated, the
pattern elaboration time could significantly increase. In this
case, the advantage of having the trade-off capability could
become more significant.

VII. EXPERIMENTS

To validate the proposed approach, especially in the in-
tegrated form, this paper considers a military scenario and
performs experiments. This section presents test results under
the military scenario, with comparison to KB pattern matching
and LB approaches. Note that the KB approach chosen for
comparison is identical to the method in [37] and NN is
selected for the LB approach as it is one of the most well-
known learning techniques.

A. Indoor Test

We evaluate the proposed behaviour monitoring algorithm
based on experiments in an indoor flight arena. The flight arena
is equipped with a VICON motion capture system, which can
be utilised to provide real-time six-degree-of-freedom pose
parameters. Figure 9 shows the layout of the indoor flight
arena.

Fig. 9. Indoor flight arena Fig. 10. Ground moving vehicle
with marker

In the indoor experiment, one ground moving vehicle with
a QR code marker attached on the top for target detection
(shown in Fig. 10) is leveraged as the target to be tracked
by a stationary GoPro camera. The ground moving vehicle is
connected to the Robot Operating System (ROS) through WIFI
mode. Waypoint following guidance commands are sent to the
vehicle by ROS such that they can move in some specified
trajectories for the purpose of behaviour monitoring test. A
GoPro 5 camera is mounted on a stationary platform to provide
a certain height for target tracking. The GoPro camera is set as
video mode with a fixed frequency of 30Hz and is accessible
by a Linux-based Nvidia TX2 single board computer, which
is also connected with the ROS system.
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In the scenario, a Unmanned Ground Vehicle (UGV) is
assumed to move in a circular trajectory to monitor a military
base which is suspicious. In the experiment scenario, the
UGV also performs a deceleration and stop/slowly moving
manoeuvre at around 7s for about 15s and stops at around
33s for about 35s and these behaviours are considered as
abnormal. Therefore, the abnormal behaviour pattern can be
defined as Sr =′ [123456789] ∗ 4{2, 10}0{2, 10}′. To imple-
ment KB pattern matching [37], the reference string is defined
as ′999444440000′. Note that it is difficult for the human
expert or operator to provide an exact form of reference string
under the given mission scenario. Therefore, we can expect
that the KB approach chosen for comparison might not be
able to identify suspicious target behaviours.

The specific trajectory exhibiting such a behaviour is gener-
ated by using waypoint-following guidance. The ground truth
provided by VICON and estimated UGV trajectories for the
considered scenario are shown in Fig. 11.
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Fig. 11. Real and estimated UGV trajectories for the considered scenario.

To demonstrate the advantage of the integrated approach
developed, it is assumed that the abnormal behaviour pattern
is not exhibited by the target before and hence data containing
this pattern is not available for NN training. This means that
this specific string pattern cannot be generated in the dictio-
nary. However, human operators considered such a behaviour
is suspicious and thus inserted the pattern to a lower bin
with a score close to 0 using the proposed approach. Fig. 12
shows the assessment results of pattern matching, NN and
the proposed approach. As expected, the results show that
KB pattern matching cannot identify the suspicious behaviour
of the vehicle. This is because no string exhibited by the
target matches to with the specific reference string, albeit
the target behaviour can be considered as suspicious. The
results also clearly demonstrate that the regularity level of
the normal vehicle in the proposed monitoring approach is
close to zero at around 7s and 33s, but it is very close
to 1 in the NN method. This confirms that the proposed
monitoring approach successfully identifies anomaly exhibited
by the target at around at around 7s and 33s, whereas the NN
approach cannot. To solve this problem in the NN approach,
the NN has to be retrained for different scenarios and thus
could become a case-by-case solution. Note that NN training

is usually time consuming. Moreover, the running time of the
proposed RD based approach is approximately 50% of that of
the NN method.
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Fig. 12. UGV regularity level assessment (1 for normal and 0 for abnormal).

B. Outdoor Test

To further validate the proposed behaviour monitoring al-
gorithm, we also performed outdoor experiments at the airport
of Cranfield University.

In the outdoor experiment, one ground moving vehicle with
remote control is leveraged as the target for test. The ground
moving vehicle is connected to the ground ROS through WIFI
mode such that we can get the real-time position data. The
vehicle is manually controlled such that it can move in some
specified trajectories for the purpose of behaviour monitoring
test. The targets are monitored by two UAVs and tracked by
GoPro cameras aboard the UAVs.

Like in the indoor experiment, a UGV moves in a circular
trajectory, monitoring a military base. The UGV performs a
’deceleration and stop/slowly moving’ manoeuvre at around
7s until 15s . We use the same neural network (without re-
training) and regular expression dictionary, generated for the
indoor test, for the regularity level assessment. The query
results are depicted in Fig. 13. From the figure, it is clear that
the proposed RD based approach can successfully identify the
suspicious behaviour exhibited by UGV. On the other hand,
the results show that pattern matching and neural network
approaches cannot identify abnormal behaviour. The chattering
at around 14s is due to the estimation accuracy of the target
tracks. The results clearly prove that the proposed algorithm
could be an effective way to assess the regularity level of
ground moving vehicles.

VIII. CONCLUSION

This paper proposes a new behaviour monitoring approach
that integrates two main anomaly detection trends, a priori
KB approach and LB approach, to exploit advantages of
both the approaches. In general sense, the proposed method
consists of two main steps: classification of target behaviours
in sequences of behaviour features and comparison of the
behaviour feature sequences with reference patterns. As the
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Fig. 13. UGV regularity level assessment (1 for normal and 0 for abnormal).

main monitoring context considered in this study is monitoring
of ground vehicles, DMs are selected as behaviour features
and trajectory analysis is performed for the classification.
Integrating the two types of approaches, the reference patterns
are either defined a priori on the basis of specific knowledge
or automatically learnt by means of a supporting NN. The
proposed method with each way of defining reference patterns
was tested through numerical simulations and compared with
well-established techniques in the field, leading to promising
matching results. To demonstrate its potential, the proposed
approach with the two types of reference patterns combined
together was also tested through experiments. The experiment
results clearly show that the proposed approach is an effective
way of assessing the regularity level of target behaviours
and could potentially overcome the limitations of a priori
knowledge based on learning based approaches.

The main contributions of the work presented in this paper
are: i) The application of a regex-based matching technique to
the field of automated monitoring, specifically to the problem
of behaviour classification, ii) Development of a procedure for
the automatic derivation of a dictionary of regular expressions
representing the behaviours commonly observed in monitoring
context. The RD enables assessing to what extent an observed
pattern can be considered regular and thus to detect uncommon
and unexpected manoeuvres that should be considered as
concerning or even possible threats.

It is worthy to remark that the flexibility and generality
of the proposed approach: the proposed method can thus be
easily applied to various monitoring scenarios by defining
appropriate reference patterns and driving modes. Note that
in a general context, the term ‘driving’ should be replaced
by ‘moving’, thus fitting to other monitoring problems such
as boat or person monitoring. Defining reference patterns and
moving modes will depend on the specific application field
(e.g., maritime, highways, urban roads) and on the behaviours
of interest (e.g., fickle speed, suspicious stops, periodic be-
haviours).
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