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Using Bayesian Networks to Forecast Spares Demand from Equipment Failures in a 
Changing Service Logistics Context 

Abstract 

A problem faced by some Logistic Support Organisations (LSOs) is that of forecasting the demand for 

spare parts, corresponding to equipment failures within the system.  Here we are particularly 

concerned with a final phase of operations and the opportunity to place only a single order to cover 

demand during this phase. The problem is further complicated when the service logistics context can 

change during this final phase, e.g. as the number of systems supported or the LSO’s resources 

change. Such a problem is typical of the final phase of many military operations.  

 

The LSO operates the recovery and repair loop for the equipment in question. By developing a 

simulation of the LSO, we can generate synthetic operational data regarding equipment 

breakdowns, etc. We then split that data into a training set and a test set in order to compare 

several approaches to forecasting demand in the final operational phase.  We are particularly 

interested in the application of Bayesian network models for this type of forecasting since these 

offer a way of combining hard observational data with subjective expert opinion.  

 

Different LSO configurations were simulated to create a test dataset and the simulation results were 

compared with the various forecasts. The BN that learned from training data performed best, 

followed by a hybrid BN design combining expert elicitation and machine learning, and then a 

logistic regression model. An expert-adjusted exponential smoothing model was the poorest 

performer and these differences were statistically significant. The paper concludes with a discussion 

of the results, some implications for practice and suggestions for future work. 
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1. Introduction 

 The management and forecasting of spare parts for repairable systems is a vital part of support 

operations. This is particularly true for military equipment. For example, Moon et al. (2012) examine 

the forecasting of spare parts demand in a naval setting. Dekker et al. (2013) also clearly stress the 

importance of good demand forecasts. The usual methods applied are variations of time-series 

(Petropoulos et al. 2014). However, as Dekker et al. (2013) discuss, there are cases where time-

series cannot cope well. Firstly, many parts do not exhibit a constant failure rate. Secondly, the 

usage context is unlikely to stay the same throughout the life of a supported system. Usage rate 

changes not only due to changes in the workload but also because of how many systems share the 

workload. The number of systems sharing the workload changes due to purchases and retirements, 

and the length of time for which some systems are undergoing repairs. This is where availability 

affects consideration of future failures:  if periods of downtime are comparable to the designed time 

between failures of important parts, then equipment downtime becomes a driving factor affecting 

the frequency of failures. Consequently, the effectiveness of the whole support system itself 

becomes an indirect but important contributor to the experienced failure rates. Finally, time-series 

cannot cope well when such changing conditions are combined with time-limited operations such as 

Search and Rescue (SAR), Disaster Relief, etc. The change in the demand producing context and the 

need for a single period demand forecast calls for more research in approaches to forecasting which 

might be better suited to such problems.   A similar call is made by Dekker et al. (2013), to develop a 

forecasting method that explicitly takes account of installed base information: 

 “One could say that installed base forecasting is a kind of causal forecasting, in the sense that the 

forecast is not only made on the historic demand data but also on data about installed base aspects 

that trigger demand.”  (Dekker et al. 2013 p36) According to their definition, installed base refers to 

“the whole set of systems/products for which an organisation provides after sales service”. Relevant 

information related to  this definition includes maintenance and spare parts needed to support the 
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systems, the service network with repair and stock locations, the maintenance concept, the age and 

the condition of equipment (e.g. for UAVs, the number of flying hours / usage), the lead times for 

spare parts and other logistic delays.  

Additional factors that can affect the installed base functions include the environmental conditions, 

the number of operating hours and users’ interventions such as decisions to change the geographical 

distribution of the operational systems or the repair capabilities at certain nodes of the support 

network. This thinking was indirectly supported by the study of Sherbrooke (2000) on the effect of 

the number of sorties and of the flying hours on the prediction of aircraft spares demand in 

Operation Desert Shield/Desert Storm in Iraq (1993-1996). In his analysis of more than 700,000 

sorties, Sherbrooke understood that he needed to control for factors such as material condition, 

aircrew proficiency and mission type.  

 In this paper, we investigate the final phase  of operations of an LSO in which contextual factors, 

such as those mentioned above, can change, thus influencing failures and subsequent spare parts 

demand.  This is an important problem in practice but one which has received little attention in the 

literature. A notable recent exception in this regard is work by Rekik, Glock, and Syntetos (2017). 

While the focus of their work is on improving the level of adjustment made by the human expert, 

however, ours is on investigating the potential of an alternative approach, that of Bayesian 

Networks.   

A useful review of spare parts forecasting was conducted by Boylan and Syntetos (2010). Within this, 

they suggested that the activities supported by a forecasting support system (FSS) (Fildes, Goodwin, 

and Lawrence 2006)  could be split into three phases: pre-processing, processing and post-

processing. These phases corresponded to problem classification, implementation of an appropriate 

forecasting approach and subsequent expert judgemental adjustment, respectively. They also noted 

that in practice, the use of both simple forecasts based on some kind of exponential smoothing and 
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expert judgemental adjustment were widespread in spare parts forecasting. This helps to explain our 

inclusion of such an approach as a comparator to Bayesian networks. 

 The particular problem considered here can be categorised as a  single-period, non-stationary 

forecasting problem since we have to forecast spare part demand for a limited time-period ahead, 

during which the operational context can be very different to that which has been recently 

experienced. The literature concerning  non-stationary forecasting problems suggests increasing the 

available relevant dataset by gradually collecting demand data from the new period, and applying 

Bayesian (Popović 1987; Huang, Leng, and Parlar 2013) or time series (Alwan et al. 2016) updates to 

the first moment of the assumed distribution . However, such methods are not suitable for the 

problem considered here due to its single-period nature. For example, in an overseas military 

operation, where the lead times are quite long, only a single order can usually be made before any 

additional data can be collected, and therefore the ability to regularly update the forecast of 

remaining demand in the light of fresh demand information is of little value.  

In order to provide comparisons with the forecasts developed using BNs, we have chosen logistic 

regression and a forecast employing expert adjustment away from a single exponential smoothing 

baseline. The logistic regression model can take account of the changing contextual factors and, like 

the BN models, estimate the probability of an equipment failing during a time interval within the 

final period of interest which can then be scaled up to create a demand forecast. The expert-

adjusted forecast relies on the expert’s judgement to take suitable account of the information 

available regarding the contextual factors. Full information was made available to the experts 

concerning the values taken by the contextual factors during earlier operating periods, together with 

the associated baseline forecasts and realised demands. They were then presented with the values 

taken by the contextual factors corresponding to the final period along with the SES baseline 

forecast and asked to predict the demand. Such contextual information is sometimes described as 

‘market intelligence’ in the context of sales. Our reason for including this comparison was motivated 
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by our expectation of this being typical of current practice. As well as Boylan and Syntetos (2010), 

many other authors, including Franses and Legerstee (2010), Fildes et al. (2009) and Klassen and 

Flores (2001), make clear that many of the model-provided demand forecasts are often then 

adjusted by the decision makers/subject matter experts before arriving at the final figure to  be 

used, “ostensibly to take account of exceptional circumstances expected over the planning horizon” 

(Fildes et al. 2009 p.3). 

 Our main interest in this paper is in exploring the application of BNs (Pearl, 1988) to this problem. 

These provide a powerful and flexible approach to reasoning under uncertainty.  There have been a 

number of  studies investigating the use of BNs in related fields including reliability (Langseth and 

Portinale 2007),maintenance  (Weber, Jouffe, and Munteanu 2004; Weber and Jouffe 2006), system 

testing in manufacturing (Chan and McNaught 2008) and supplier selection (Hosseini and Barker 

2016). However, we have not found any application to the kind of logistical support problems 

outlined here.  

We present a comparison of results generated from BNs developed in different ways along with 

those generated from more traditional forecasts – a statistical regression model and expert 

predictions adjusted from a fixed exponential smoothing forecast. The comparison makes use of 

data from a simulated scenario of a logistics support network of a fleet of generic UAV systems. 

Differences arise due to the way in which the different methods make use of available information 

on the demand and support defining context.  Furthermore, as we discuss later, BNs have the 

potential to provide not only predictions of the failure rates, but also of other factors such as the 

time to repair and to resupply which are needed for Multi-Indenture Multi-Echelon (MIME) spares 

optimization models. 

The rest of the paper is organised as follows. In Section 2 we describe the simulation that we built in 

order to generate the data needed to develop the demand prediction models that we compare and 

also for the evaluation of their performance. In Section 3 we describe the forecasting methods 
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employed to predict the number of failures in the final phase of operations. Section 4 contains the 

results from the simulation runs and a comparison of the various models’ forecasts. These are 

discussed before some final conclusions are drawn and potential future work outlined.  

2. Simulated system 

Given the lack of readily available data of the kind needed to develop and test our models, and the 

likely sensitivity of such data even if it were available, it was necessary to simulate a Logistics 

Support Organisation (LSO) instead. In this section we describe the nature of the LSO, the scenario 

chosen for investigation and the generation of data for model building and subsequent testing. 

2.1 Simulation of the LSO 

The simulation (see Figure 1) concerned the support provided to a small fleet of generic Unmanned 

Aerial Vehicles (UAVs) that are used for surveillance at a single Forward Base (FB). The Logistics 

Support Organisation (LSO) was composed of a Forward support level (FORWARD) at which broken 

down items (Line-Replaceable Units (LRUs)) that make the UAVs non-operational are replaced with 

new ones from the inventory, and a Central repair level (CENTRAL) at some distance from the FB 

where the inventory of spares is kept and repairs are performed on the broken down items (the 

LRUs). The scenario was intentionally kept simple, so only corrective maintenance has been 

considered.  Again, for the sake of initial simplicity, the Equipment Breakdown Structure (EBS) of a 

generic UAV unit was composed of only a single LRU that could be repaired at the CENTRAL depot by 

the replacement of a single Disposable Part (DP) kept in the same store as the LRUs. Furthermore, 

we did not consider the case where systems’ innate failure rates change with age. Finally, even 

though in real-life situations the spares demand might be intermittent, in order to get enough data, 

we simulated a UAV system that has breakdowns each month.  
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Figure 1: The simulated Logistics Support Organisation 

The main objective of the LSO is to provide logistical support to a number of UAVs in their air-

surveillance operations. In the assumed scenario, each UAV has a nominal Time on Task (TOT) of 

four hours, after which it has to land for a quick refuelling. If another UAV is available then it will 

take off; if not, the same UAV will be used again. The operational demand is to cover an area 

assigned for aerial surveillance by a single unit for a given proportion of the day, each day. For 

example, if the operational demand is to cover 4/5 of the day, since either there is no need to fly 

during night hours, or a different group takes over that period, then the operational demand 

(OpDem) is 4/5. Because of the importance of the air-surveillance function, there is always a 

mechanic assumed to be waiting to help in case of a breakdown (B). If a breakdown occurs, another 

UAV takes off if one is available, and the grounded UAV is taken over by the mechanic who starts the 

diagnosis procedure. The duration of this procedure depends on the skill level of the mechanic, but 

we assume that the fault is always a single one and is always found correctly. After the diagnosis is 

over, an order for a spare is given at the CENTRAL depot. The spare takes some time to be located 

and acquired by a driver and is then brought to FORWARD. The mechanic replaces the faulty LRU 

with the spare, making the UAV available again. The LRU is then transported back to CENTRAL by the 
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mechanic and the driver in order to be repaired. There are three available workbenches (W) at 

CENTRAL which are used for diagnosis and repair of the faulty items. The same mechanic is assumed 

to undertake the diagnosis and repair on one of the available workbenches and brings the LRU in a 

usable condition back to the LRU inventory, provided there is a DP in stock. Due to the assumed high 

cost of a DP, the depot uses an (S-1, S) inventory policy and thus initiates a resupply order whenever 

there is a single DP unit removed from the DP inventory. 

2.2 Scenario for dataset generation 

The chosen scenario involves a single iteration of the following consecutive eight phases (Table 1): 

Phase Duration 

(Months) 

xSLRU xSDP xNU xNM xNTr OpDem 

1 3 3 3 2 2 1 4/5 of a day 

2 3 3 3 3 3 2 4/5 of a day 

3 4 4 5 4 3 3 4/5 of a day 

4 3 4 6 3 2 3 4/5 of a day 

5 3 3 3 2 2 1 5/5 of a day 

6 3 3 3 3 3 2 5/5 of a day 

7 4 4 5 4 3 3 5/5 of a day 

8 3 4 6 3 2 3 5/5 of a day 

Table 1: Scenario Phases 

The assumed story behind the phases shown above is that during the 1st phase when operations 

started, there were two UAVs (xNU = 2) deployed with a mission to provide an air-surveillance 

function for the Operational Demand (OpDem) of 4/5 of a day. For the manning of the LSO in the 1st 

phase, there were two mechanics deployed (xNM = 2) and one driver (xNTr = 1), while the initial 

spares stock levels were three LRUs and three DPs (xSLRU = 3, xSDP = 3). The UAVs were flown by an 

equal number of operators with an initially sampled level of proficiency. As the operations built up in 
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Phase 2, an additional UAV was deployed along with an additional driver to help with the transports 

of the spares and the mechanics. This situation lasted for three months and was followed by Phase 

3, a four months phase when a 4th UAV was deployed along with an additional operator and driver.  

The spares holdings of LRUs and DPs were also increased at the beginning of Phase 3. In Phase 4, one 

UAV is withdrawn along with its operator and a mechanic. In Phase 5, the OpDem had to be 

increased to full 24hrs surveillance, although at the same time, one UAV was assumed to be failed 

beyond repair. In addition, it was assumed that one operator, two drivers and some spares were 

transferred out of the LSO. Further changes of this nature affecting the LSO’s configuration were 

assumed for Phases 6 to 8, as shown in Table 1. 

Records of take-offs and landings, of break-downs, of repair and re-order incidents, of on-hand (OH) 

and due-in (DI) spares and of number of deployed UAVs, mechanics and operators were kept from 

the single run of the consecutive eight phases, just like the records that would be kept in the relative 

logs of real operations. Furthermore, variables that can affect the incidents and the duration of 

diagnosis, repair and transport were also recorded. Such variables were the environmental 

conditions, the operators’ skill levels/ experience, the mechanics’ skill level / experience and their 

workload level. 

2.3 Simulation of test data to allow forecast comparison 

The end of Phase 8 provided the initial conditions for a follow-on ninth phase of six months’ duration 

that was used to evaluate the performance of the demand prediction models. Our interest is in how 

well we can provide demand predictions when the failure-context factors are about to change. 

Consequently, Phase 9 could take different courses in order to represent a range of changes likely to 

be experienced in practice. Therefore, we simulated 18 different possible configurations of Phase 9, 

none of which exactly replicate any of the earlier phases. These 18 configurations are listed in Table 

2. 



10 
 

xSLRU xSDP xNU xNM OpDem Env 

3 3 2 2 1 30% 

3 3 3 3 1 50% 

4 5 3 2 1 70% 

8 8 3 2 1 50% 

4 5 4 2 1 50% 

3 3 4 2 2 30% 

3 3 3 2 2 50% 

8 8 4 2 1 30% 

4 6 2 3 1 50% 

3 3 4 2 2 70% 

4 5 2 2 1 30% 

4 6 4 3 2 70% 

8 8 3 3 2 70% 

4 6 3 3 2 50% 

8 8 4 3 2 70% 

4 5 4 2 2 50% 

4 5 2 2 2 50% 

4 5 3 2 2 30% 

Table 2: The sample of LSO configurations that constituted the test dataset  

 

3. Forecasting Approaches Employed 

 Within the described LSO and operating context, there are many interacting factors to consider. This 

suggests the need for a modelling methodology that can take into account the effects of and the 

associations among the context defining variables. A natural modelling framework to consider here 

is that of Bayesian Networks (BNs). This is because within the problem being considered there are 
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several random variables with probabilistic dependencies between them and BNs provide an 

efficient way of representing and manipulating such joint probability distributions. BNs also provide 

a flexible way of combining subjective expert opinion with observed data so that the same type of 

approach can be applied to situations with varying levels of available hard data.  

The qualitative structure of a BN is represented by a directed acyclic graph (DAG), portraying 

probabilistic dependencies and independencies within the domain. This contains a great deal of 

information, even before we consider any probability distributions. The nodes correspond to 

variables of interest within the domain and arcs correspond to direct probabilistic dependencies. A 

fully specified BN, however, also requires a conditional probability table (CPT) for each node. These 

can be obtained from an appropriate dataset or elicited from a domain expert when insufficient data 

exists. Once complete, a BN offers efficient probabilistic inference over the domain of interest, 

allowing a decision maker to see how the probability distribution of some target variable is likely to 

change in response to new observations or other relevant information. In our specific case, our main 

value of interest is the probability of experiencing a failure incident (binomial variable “FRT” in Table 

3) at any specific hour. Under the assumption of a Poisson process we get the required mean 

number of failures for the duration of the forecasting period by multiplying the acquired rate figure 

by the respective 4320 hours included in the 6 months of the final phase. We believe that the 

Poisson process is a valid assumption in these cases, given that we have also assumed that the 

operated systems do not degrade and that the only reason for the change in the failure rates is the 

context formulated by the support operations and the operational demand. 

In order to provide a comparison with the BN predictions, we also provide forecasts using two other 

methods. The first is a logistic regression, which will also try to account for the relationships 

between the contextual factors and the observed number of failures. The appropriateness of this 

type of regression model stems from the underlying random process which involves the generation 
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of failed equipment. The output, as for the BNs, is the probability of experiencing a failure incident in 

any specific hour. 

The second type of additional forecast is the one most likely to be encountered in practice – human 

judgement. Since, along with the starting configuration for the ninth/final operational phase, our 

judges were also supplied with the simple exponential smoothing forecast available at the end of the 

eighth operational phase, this could be described as an expert adjusted forecast, with adjustment 

being made away from the fixed SES forecast.  

A BN can be developed in different ways, using different combinations of human expertise and data 

(Korb and Nicholson, 2004). When developed entirely from a dataset, it is said to have been learned 

from that dataset. This entails both the structure of the network, i.e. the DAG, and the associated 

CPTs being derived from the dataset. While obtaining CPTs from a dataset is relatively 

straightforward, deriving the structure is much more involved. This is primarily due to the huge 

number of DAGs which can be built from even a relatively small number of variables. Since there are 

also potentially a large number of DAGs which can represent the dependence structure of the joint 

probability distribution of interest, albeit some more efficiently than others, we need a way of 

identifying an efficient DAG for our purposes.  

Instead of deriving a BN’s structure from data, another common approach is to elicit the structure 

from a subject matter expert. In particular, making use of their causal knowledge of the domain, 

human experts can often quickly identify an efficient DAG. Such a DAG is usually easier to 

understand and so explain to decision makers. However, this DAG may omit subtle or less obvious 

relationships within the domain. In such a case, a BN learned from data might outperform the 

expert-elicited ‘causal’ BN. 

A hybrid approach can also be adopted. Here, the subject matter expert (SME) can provide an initial 

DAG and some constraints on the structure which is then built upon by an automated machine 
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learning algorithm. This ensures that key relationships are communicated in an understandable way 

and that more subtle effects are not missed. 

As should now be clear from this discussion, different types of BNs can be applied depending on the 

quantity of data available. Of course, when datasets are plentiful, many approaches are possible, 

including, for example, artificial neural networks. The situation is very different, however, when data 

are sparse. Their ability to cover the spectrum of data availability is one of our key motivations for 

employing BNs in this paper. They still allow a logical forecasting model to be developed for new 

products or situations with very limited historical data. 

 In order to develop forecasts using the approaches described above, we began by identifying 

candidate variables. Key to our thinking was to use the kind of data we could expect to be recorded 

in log-books across the LSO.  

3.1 Grouping of the variables 

The failure rate of repairable systems and the associated demand for spare parts is affected not only 

by how many systems we have deployed but also by their availability. This makes the factors that 

affect the systems’ operational availability an important set of variables that indirectly contributes to 

the experienced number of failures.  

Additionally, we can expect the failure rates of the systems to be affected by a number of factors 

such as the conditions in which each one works, the skill level of the operator, etc. Hence, we can 

identify three groups of “causal” variables. Each of these groups can be considered individually at 

each level of the LSO, including the level where the supported systems work. These groups are: 

1. Factors related to the amount of use of the supported system – the “failure creators”,e.g. 

the operational demand for number of missions in a given day, and the time required on 

task. 
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2. Factors that make the usage more prone to failure - the “failure enhancers”,e.g.  the 

environmental conditions, the number of hours that the system has flown without 

maintenance, and the level of expertise of the system’s user such as the pilot. 

3. Factors that affect the repair loop – the “repair loop characteristics”, such as the time to 

repair a fault and the level of on-hand spares. 

Eventually, we included the following variables: 

OpRT: Operational Incident at FB, with values “Take-off” and “No new take-off” 

xNU: The number of UAV units deployed 

OpDem: Operational demand, with values 4/5 and 5/5 of a day 

TOT: Time on Task; the realized continuous but discretized time on task of the UAV that 

performs the flight 

PExp: The skill level of the operator (pilot) with three discrete values 

Env: The environmental conditions with two discrete values, “OK” and “Not OK” 

FRT: Failure Incident at FORWARD, with values “New Failure” and “No-New Failure” 

Rdu: The duration of repair at FORWARD (discretized) 

FlHbd: The number of flying hours since the last repair (discretized) 

xNM: The number of mechanics deployed 

MExpB: The skill level of the mechanic that took over the repair at FORWARD 

QM: The percentage of mechanics that are idle 

BWkld: The percentage of the FORWARD repair facilities that are occupied 
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xNTr: The number of drivers that have been deployed to do the transport from CENTRAL to 

FORWARD and back 

QAdm: The percentage of drivers that are idle 

WFRT: Workbench LRU failure Incident at CENTRAL, with values “New Failure” and “No New 

failure” 

WRdu: The duration of repair at CENTRAL (discretized) 

MExpW: The skill level of the mechanic that took over the repair at CENRTAL 

WWkld: The percentage of the CENTRAL repair facilities that are occupied 

ORT: Order for a resupply Incident, with values “New Order placed” and “No New Order placed” 

Odu: The duration to be realised of the resupply that was ordered (discretized) 

xSLRU: The nominal level of LRUs in the inventory 

OhLRU: The on-hand level of LRUs 

xSDP: The nominal level of DPs in the inventory 

OhDP: The on-hand level of DPs 

DiDP: The number of DPs which are on order but have not arrived yet (Due-in) 

Table 3: Nomenclature 

The variables in Table 3 that are highlighted in bold relate to incidents at the LSO levels in which the 

UAVs are used and supported. The other variables correspond to the three groups of contextual 

factors discussed earlier.  

3.2 Expert-elicited BN 
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A BN of the problem situation was developed by first eliciting a DAG from a domain expert. This DAG 

displays the relationships believed by the expert to exist in the system. Such a human-elicited DAG 

can often be portrayed as a causal model since humans think naturally about relationships in a 

causal manner and this is in fact how we usually encourage experts to think when eliciting a BN DAG 

from them. Naturally, this predominantly causal form makes the model easier to understand and 

explain to others. The DAG elicited from our domain expert is presented in Figure 2. 

 

Figure 2: DAG of a BN model elicited from a domain expert 

3.3 BN learned from data 

It is important to realise that a BN learned from a dataset will not necessarily produce the same DAG 

as a BN developed using expert elicitation. The simulated log-book records can be used to obtain 
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values for all the variables. Using the BN learning package in R called “bnlearn”1 this sampled dataset 

of records from Phases 1 to 8 was fed into a score-based unsupervised learning algorithm. This 

applied the tabu search algorithm to 300 bootstraps and developed 300 networks that were 

averaged to form the final network. The scoring method employed the Modified Bayesian Dirichlet 

equivalent uniform (MBDeu) score (Heckerman, Geiger, and Chickering 1995; Cooper and Yoo 1999) 

The above procedure produced the network displayed in Figure 3. The resulting graph is a 

representation of the joint probability distribution of the modelled variables.  

 

Figure 3: DAG of the BN model that was learned from the simulation training dataset 

Note that the resulting model is not a causal BN since the causality assumptions are not met (see eg 

Pearl (1988)). However, it does provide an interpretation of the relationships / associations among 

                                                           
1
 Developed and maintained by Dr Marco Scutari 



18 
 

the variables. For example the arc which connects xNU directly to OpRT and the arcs that connect 

the latter to the TOT indicate that the number of units operated (xNU) has a direct effect on the 

Operational Rate (OpRT), i.e. how often missing take-offs affect directly the resulting duration of any 

single take-off (TOT).  Furthermore, most of the arcs are directed towards the variables OhLRU (the 

on-hand LRU), WWkld (how busy are the repair workshops at the CENTRAL level) and BWkld (how 

busy are the workshops at the FORWARD level). This indicates that these facilities are key to the 

whole system.  

3.4 Hybrid BN 

A hybrid BN was developed in order to try and obtain the best of both worlds. Ideally, we would like 

to have the understandable nature of the expert-elicited BN combined with the ability to learn less 

obvious relationships provided by the learned BN. To develop this hybrid, we began with a simplified 

version of the expert-elicited BN and used this as a starting point for the machine learning algorithm 

which was employed to develop the learned BN. This constrains the final DAG to incorporate the 

expert-elicited components but allows additional relationships to be included alongside that. 
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Figure 4: DAG of a hybrid BN, combining expert elicitation and machine learning 

As should now be evident, in order to obtain the joint probability distribution of the variables chosen 

to model the system, many different factorizations are possible, corresponding to different DAGs. 

However, some of these are simpler and more efficient, depending on the actual relationships 

between the variables. For each of these DAGs, the simulated data were then used to calculate the 

Conditional Probability Tables (CPTs) associated with them (Korb and Nicholson, 2004).  

3.5 Logistic regression model 

The logistic regression model derived from the first eight phases of the simulation training dataset 

was the following: 

𝑙𝑜𝑔𝑖𝑡(𝐹𝑅𝑇)  =  𝑏0  +  𝑏1𝑂𝑝𝐷𝑒𝑚 +  𝑏2 𝐸𝑛𝑣𝐶𝑜𝑛𝑑, 
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where FRT corresponds to the occurrence of an equipment failure, OpDem represents the level of 

operational demand (in this scenario, how much of the day an equipment is required for) and 

EnvCond represents the severity of environmental conditions.  

The coefficients of 𝑏0, 𝑏1 and 𝑏2 are -4.5273, 0.4418 and 0.1836, respectively, where the reference 

settings of the variables are ‘4/5 of a day’ for OpDem and ‘OK’ for EnvCond. In order to forecast 

demand for Phase 9, where the state of the EnvCond variable is not yet known but we have a 

probability distribution for it, the forecast uses a weighted average of the output obtained with the 

two possible values of this variable. 

3.6 Expert-elicited forecast  

In order to construct this forecast, four domain experts were consulted. Each was talked through the 

scenario implemented in the simulation and provided with the same information. This consisted of 

the configurations of the eight initial phases of operation and the resulting number of failures 

observed. Each was then asked to provide a forecast of the number of failures expected for a final 

ninth phase of operations given the LSO configuration and the simple exponential smoothing 

estimate, purely based on the previous eight phases and independent of the Phase 9 configuration.  

The fixed SES forecast was obtained using the “tsintermittent” R-package and provided monthly 

predictions with a smoothing factor of 0.2. 18 different possible configurations were considered for 

Phase 9 and each expert provided an individual forecasts for each of these. The mean of the four 

forecasts was then taken to represent the expert-elicited forecast for each Phase 9 configuration. 

4. Results and Discussion 

4.1 Results from the simulation and the forecasts 

Results from the various forecasts are shown over Figures 5 and 6 in order to reduce the amount of 

cluttering in the overlaid plots. In each figure, the same set of 18 boxplots are reproduced to show 

the distribution of the Phase 9 failure rates across 100 simulation replications for each of the 18 
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configurations. The boxes in each case include the inter-quartile range of the number of failures 

from the 100 replications. The crosses indicate outlying values in the simulation results. Overlaid on 

each boxplot are the forecasts for that Phase 9 configuration. In Figure 5, forecasts from each of the 

three BN models are displayed in addition to the boxplots of the simulation results. In Figure 6, the 

logistic regression and expert-adjusted forecasts are given in addition to the simulation boxplots.  

The vertical axes of these figures record the number of failures for Phase9, either observed from the 

Phase 9 simulation results or forecast by one of the considered models. The 18 Phase 9 

configurations are arranged in increasing order of the median number of failures obtained from the 

100 replications of each of them.  

Apart from the indicative differences evident within Figures 5 and 6, we tested for significant 

differences in the forecast accuracy, as measured by the Absolute Relative Error (ARE) score: 

𝐴𝑅𝐸 =  
|𝑌 − 𝑌′|

𝑌
,  

(𝑌: 𝐴𝑐𝑡𝑢𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠,  𝑌′: 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠)  

 The AREs of the various models were compared using the Friedman non-parametric test over the 18 

configurations of simulated futures, each such configuration being replicated 100 times. Friedman’s 

test was chosen instead of its parametric equivalent, ANOVA, since we cannot assume sphericity in 

the measured absolute relative errors (Demšar 2006). The test’s p-value was less than 1%, providing 

evidence to reject the null hypothesis of no difference in the forecast accuracy between methods at 

that significance level. Furthermore, we applied a post-hoc Nemeneyi test to rank the models 

(Garcia and Herrera, 2008). This test showed that the order for the accuracy performance of the 

examined models (from best to worst) was the unsupervised BN learned from data, the hybrid BN, 

the logistic regression model, the causal BN with its DAG elicited from an SME and the SME adjusted 

SES, with a critical distance between ranks of 2.098 at the 1% significance level and mean ranks of 
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178.7, 211.2, 249.6, 254.1 and 359.1, respectively, i.e. the accuracy performance of all forecast 

methods are significantly different at the 1% level. 

 

 

Figure 5: A comparison of the BN models’ forecasts and the simulation results 

 

 

Figure 6: A comparison of the regression and the mean SME forecasts and the simulation results 
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4.2 Discussion 

 From Figures 5 and 6, and the subsequent statistical analysis, we can see that the Bayesian network 

models outperformed both the expert-adjusted forecast and the logistic regression model. 

Furthermore, of the three approaches to BN construction considered, the BN developed by machine 

learning algorithm performed best, followed by the hybrid BN and then the expert-elicited BN. Of 

course, we need to speculate on why the BN models did not perform even better.  

Predicting failures with the BN and logistic regression models essentially treats the situation like a 

classification problem, taking some characteristics of the period during which a failure occurred in 

the training data and using these to help estimate the probability of a failure when such 

characteristics are present at the start of a new period in the test data. However, there could still be 

differences in a time period’s initial conditions outwith these characteristics, having some influence 

on demand. Simple aleatory or random variation of the Poisson failure process is also going to play a 

part.  

Regarding the dataset, one of the decisions that needed to be made was on the time periods that 

would be used in the collection of the data and in the subsequent development of the regression 

and the BN models. A useful framework to consider in this regard is the Aggregate-Disaggregate 

Intermittent Demand Approach (ADIDA) (Nikolopoulos et al (2011)). The method mainly addresses 

the problem that models have when there are intermittent demand time series. 

Fildes et al (2009) note that provision of a statistical forecast to the expert is likely to influence their 

thinking which may result in under-adjustment from that forecast, based on Tversky and 

Kahneman’s (1974) anchoring heuristic. That could have been true in our experiment as we provided 

our experts with the SES forecast. However, since this forecast was fixed and known to take no 

account of planned changes to the LSO configuration, it is likely to have had a weaker effect than a 

forecast which did account for planned changes. In fact, looking at the mean performance of the 
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experts in Figure 6, the magnitude of adjustment does not appear particularly small but the direction 

of the adjustment is often wrong. This appears to echo Sterman’s observations on the difficulty of 

incorporating feedback into our thinking. The nature of the repair system considered gives rise to 

dynamic feedback effects which can sometimes create counter-intuitive behaviour and present 

difficulties for human judgment (Sterman 2000). 

The benefits of using a BN to forecast the number of failures are not limited to that immediate 

forecast. Other variables can also be queried which is useful in itself and also for providing 

explanations. In Phase 9 of the simulation, for example, we found that if there are 4 UAVs deployed 

for an operational demand of 24/7 surveillance, which are supported by 3 mechanics and by an 

investment on 3 DPs, a TOT of at least 3 hours has a probability of 0.85 while the probability of such 

a desired event increases to 0.92 if one more mechanic is deployed and the level of DPs is increased 

by 2. Furthermore, a TOT of at least 3 hours has a probability of 0.91 when there are 3 mechanics 

and 5 DPs but with one less UAV, i.e. 3 instead of 4. As another example, our BN suggested that the 

duration from the time that a DP resupply order was placed until it arrived was most probably less 

than 210 hours, while the median value experienced throughout Phases 1 to 8 was 215.7 hours. This 

is useful since MIME optimization models make use of time durations, like time to repair, time to 

transport / resupply, etc., which are used in order to calculate the parameters for the pipeline levels’ 

probability distributions. A final example for the intuition that the development of the BN can offer 

is related to a logical fallacy that decision makers tend to make due to the human limitations in 

seeing the support system as a whole. We have experienced cases in which the decision makers, in 

order to maintain the required fleet availability in the face of anticipated increases in operational 

demand, they suggest the deployment of more units. In our case, Phase 8 ended with an operational 

demand for a unit to be in the air 24/7 and 4 UAVs deployed. In the following table we see what we 

should expect if during phase 9 the decision makers deploy 2 UAVs and what if instead they deploy 4 

UAVs without though affecting any parameters of the repair or the resupply configuration of the 

support system. In the table’s first column (Table 4) we have these two questions which we examine 
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under three different possible environmental conditions (30%, 50% and 70% of Phase 9’s 6-months 

environmental conditions to be ok), while on the fourth column we have the percentage of the day 

that the decision makers should expect to actually have a UAV in the air. What we observe is that by 

operating 4 UAVs (3rd column rows 4 to 6) the percentage of time we actually have one in the air is 

less than when 2 UAVs are deployed (rows 1 to 3). The cause can be inferred from the two last 

columns. When deploying 4 UAVs without sufficiently amending the repair and resupply 

configuration of the support chain, the jobs both forward and at the repair shop increase to a level 

such that the actual flights performed are reduced.  

  OpRT BWkld WWkld 

Phase 9 - alternatives Env OK Flying Working Working 

OpDem:2 - U:2 - M:3 30% 97.82% 36.45% 60.79% 

 50% 97.71% 38.13% 61.27% 

 70% 97.58% 40.09% 61.83% 

OpDem:2 - U:4 - M:3 30% 92.59% 75.37% 78.26% 

 50% 93.12% 75.54% 78.15% 

 70% 93.74% 75.75% 78.02% 
Table 4: Additional BN queries 

Naturally, using simulation data can be criticised as being less realistic than using real-life data 

collected from an LSO. The acquisition of real-life data would require access to multiple logbooks 

from the different nodes within the LSO and subsequent cleansing and synchronising of that data 

which would nearly always be of a sensitive nature. The main advantage of using real data in studies 

such as this one would be the increased credibility of the results, particularly in the eyes of 

practitioners. However, for the purposes of comparing forecasting approaches, the use of simulation 

offers real benefits. Since real data can be contaminated with all kinds of errors and contain 

anomalies which are unrepresentative, the use of simulation provides a control to remove such 

undesirable effects. Reducing the level of noise in the data makes forecast comparisons more 

accurate and it is this comparison which is our primary interest. Furthermore, whereas the use of 

real life data would restrict us to just one realised future configuration of the LSO to make a 

prediction for, with simulation we can create many such possible future configurations. This 

provides a wider range of situations to compare the forecasting approaches over and increases the 
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power of statistical testing when looking for significant differences between them. Finally, although 

the development of a simulation is not a trivial task, it may well still be quicker than the time that 

would be needed to collect and process the necessary real-life data.  

However, we also need to reflect on the cleaner nature of simulation data when drawing any 

conclusions about the likely benefits arising from the use of any of the forecasting approaches in 

practice. The introduction of messier, real data is undoubtedly likely to cause the level of 

improvement obtained from using any of these approaches to be less than that indicated when 

using simulated data. 

 

4.3 Implications for Practice 

In a review of forecasting within supply chains, Syntetos et al (2016) note that many important 

problems faced by practitioners have not been addressed by academic research. We believe that the 

problem addressed in this paper comes close to falling in that variety. While there is little published 

work in this area, a notable recent exception is (Rekik, Glock, and Syntetos 2017) which investigates 

expert judgmental adjustments from a statistical forecast in a finite-time horizon setting and 

proposes an analytical model to support this. 

We believe that our initial investigation is useful to practitioners in that it shows that relying purely 

on human judgmental adjustments in such situations is sub-optimal and can be improved upon to 

some extent by an alternative approach. Our work suggests that approaches based on Bayesian 

Networks and machine learning are worth further investigation in problematic areas where the 

assumptions of traditional forecasting methods such as those based on time series analysis could be 

questioned.  

As alluded to in 4.2, practitioners can often obtain additional benefits from the development of a BN 

to forecast a particular variable since it is a more general and flexible type of model. For example, 

military commanders might be interested in the probabilities of the Time on Task (TOT) duration of a 
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typical mission under certain support settings (which can be entered as “evidence” in the BN model 

already developed). This helps to illustrate a useful advantage of BNs in this kind of setting – having 

developed a joint probability distribution across a set of variables, we can quickly use it to make 

inferences about variables other than the immediate forecast variable.  

Several authors have established that human judgmental adjustments applied to statistical demand 

forecasts are common in industry (e.g. Klassen and Flores, 2001). Various cognitive biases, such as 

optimism bias, have also been postulated as influencing those adjustments (Fildes et al, 2009). 

However, most of this research has been conducted in the context of sales, where higher demand is 

generally desirable. When the context is instead demand for spare parts following equipment 

failures within the same organization, lower demand is desirable. This different framing of the 

problem may lead to different biases being at work or to different effects arising from the same 

biases. Practitioners should be aware of the need to take such framing effects into account.  

5. Conclusions 
 

In this paper, we have applied a novel approach to a problem which despite being of real practical 

relevance has received relatively little attention in the literature.  The problem setting considered is 

that of an LSO, where an accurate forecast of spare parts demand is required, corresponding to 

equipment breakdowns within the system. However, the distribution of demand is non-stationary 

due to several contextual factors which can take different values in each time period. Furthermore, 

we are particularly concerned with the final phase of operations and the placement of a single order 

to cover demand during this single period.  

In current practice, the most common approach to such a problem is that of unaided expert 

judgement or else expert judgment applied to adjust a relatively simple statistically based forecast 

such as single exponential smoothing. Our results showed the relatively poor performance of expert 

adjusted forecasts away from a SES forecast. Supplied with information regarding configuration 
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changes to the LSO, forecast adjustments were often made in the wrong direction, possibly 

indicating counter-intuitive behaviour.  

 The BN-based approaches that we investigated, and particularly the machine learning BN, 

outperformed both the expert-adjusted forecasts and the logistic regression model. However, 

although the differences in performance were statistically significant, the level of improvement was 

less than we had anticipated. This might be due to both the presence of simple random variation 

from the failure generating process and the inherent dynamic feedback within the simulated system 

which poses a challenge to all of the approaches considered.  

Boylan and Syntetos (2010) have discussed how it may be beneficial to adopt a Forecasting Support 

System for spare parts forecasting. We agree with them but suggest that the scope of such a system 

should be expanded to include and cater for a wider range of circumstances than those they 

discussed. The criteria considered during their initial pre-processing or classification phase, should 

be expanded to cover these new situations; e.g. the number of periods to be forecast, the presence 

and extent of contextual factors affecting demand, and the extent of market (or equivalent) 

intelligence available regarding the values of these factors. Such an expansion would also cater for 

the kind of problem described by Dekker et al. (2013) and outlined in Section 1. Similarly, the range 

of approaches which can be used in the second processing phase needs to be expanded to suit the 

wider range of problems. 

Finally, regarding future steps: 

 Our simulation settings created failure data which were not intermittent. These demand 

data were sufficient to learn a BN to adequately model the examined variables. In future 

work, we will consider scenarios  with intermittent failures 

 We further need to investigate how frequently such a BN should be updated to take account 

of fresh data.  
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 We also plan to investigate the applicability of neural network approaches for this type of 

problem since neural networks lend themselves to problems where non-linearities are 

prevalent. However, it is not yet clear whether the kind of simulation data we have 

employed in this paper would be sufficient to train such a model adequately. 

  More realistic support problems will be investigated by increasing the complexity of the 

Equipment Breakdown Structure of the generic UAV and in that way we will also be able to 

use service level metrics in our evaluation criteria. 
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