Electrochemically generated bimetallic reductive mediator Cu¹⁺[Ni²⁺(CN)₄]¹⁻ for the degradation of CF₄ to ethanol by electro-scrubbing

G. Muthuraman^a, A.G. Ramu^a, Y. H. Cho^b, E.J. McAdam^c, and I. S. Moon^a*

^aDepartment of Chemical Engineering, Sunchon National University, #255 Jungangno, Suncheon 540-742, Jeollanam-do, Rep. of Korea. ^bKorea Atomic Energy Research Institute, Yuseong P.O Box 105, Daejeon, Rep. of Korea ^cCranfield Water Science Institute, Cranfield University, Building 39, MK43 0AL, UK

*Corresponding author(<u>ismoon@sunchon.ac.kr</u>)

Abstract

Remediation of electronic gas CF₄ by using commercially available technologies ended up with another kind of greenhouse gas and corrosive side products. This investigation aimed to develop CF₄ removal at room temperature with formation of useful product by attempting an electrogenerated Cu¹⁺[Ni²⁺(CN)₄]¹⁻ mediator. In the initial electrolysis of bimetallic complex at anodized Ti cathode demonstrated the Cu¹⁺[Ni²⁺(CN)₄]¹⁻ formation, which was confirmed by additional ESR results. The degradation of CF₄ followed mediated electrochemical reduction (MER) by electrogenarated Cu¹⁺[Ni²⁺(CN)₄]¹⁻. The removal efficiency of CF₄ was achieved 95% by this present electroscrubbing process at room temperature. Through the spectral results of online and offline FTIR analyzer either in gas or in solution phase demonstrated that the formed product during the removal of CF₄ by electrogenerated Cu¹⁺[Ni²⁺(CN)₄]¹⁻ at electroscrubbing was ethanol (CH₃CH₂OH) with small amount of trifluoroethane (CF₃CH₃) intermediate.

Key words: Bimetallic mediator, Cu¹⁺[Ni²⁺(CN)₄]¹⁻, MER, CF₄ degradation; Ethanol formation

Introduction

The so called electronic gases (CF₄, NF₃ and SF₆) become inevitable to human life in the both extreme ways either positive by new sophisticated electronic goods or negative by environmental pollution. The increasing number of electronic gas pollutions not only forced to innovate new removal technologies but also due to the currently and commercially available two methods such as combustion (Rittmeyer and Vehlow (1993); Lee et al., (1996)) and plasma arc (Lee et al., (2005); Gal et al., (2003)) were produced mostly another greenhouse gas CO₂ and its derivatives (COF₂, CO, H₂O), with HF (Xu et al., (2007); Gandhi and Mok (2012); Narengerile et al., (2010); Zhang et al., (2005)) depending upon the carrier gas. In recent past, catalytic combustion has attracted some additional interest towards more practical level (Xu et al., (2011); Takita et al., (1999)), especially hydrolytic combustion possess less Gibbs energy (-150 kJ/mol). Unfortunately, the final product that obtained is highly corrosive hydrofluoric acid (HF) as shown in reaction 1, that produced HF led to deactivation of the used catalyst (Farris et al., (1992)). In order to minimize the deactivation of catalyst, binary metal catalyst were attempted, with the idea of C-F bond breaking at Lewis-acid catalysts that formed metal fluoride can be easily hydrolyzed, to degrade CF₄ by hydrolytic combustion process (El-Bahy et al., (2003); Takita et al., (1999)-2; Song et al., (2013)). El-Bahy et al., (2003) have attempted various bimetal combinations and found Ga-Al and Ni-Al oxide catalyst were stable from HF Xu et al., (2007) have found CF4 conversion to CO2 with minimized deactivation. deactivation of γ -Al₂O₃ catalysts by addition of Zn, Ni, Mg, Sr and Ba metals. Song et al., (2013) were developed Ce/Al₂O₃ binary catalyst that was not effectively performed on removal of CF₄ though the catalyst found stable. In result, the catalytic combustion also produces another greenhouse gas CO₂ in CF₄ decomposition process.

$$CF_4 + 2H_2O \longrightarrow CO_2 + 4HF (\Delta G = -150 \text{ kJ/mol}) --- (1)$$

At the same time, electrochemical technique offers degradation of chloro fluoro carbons (CFCs) can be done at room temperature and release non-fluoro compounds with absence of additional greenhouse gas CO₂ (Sonoyama and Sakata (1998); Cabot et al., (2004); Wagoner and Peters (2013)). Sonoyama and Saakta (1998)-2 have performed metal (Cu) supported gas diffusion electrode on degradation of CCIF₃ (CFC-13) that results in methane formation and on Ag supported gas diffusion electrode tend to form CHF₃. In solution phase electrochemical degradation process, direct reduction of CFCs in acetonitrile (Schizodimou et al., (1999)) and DMF (Wagoner et al., (2012)) on different metal electrodes have been reported, with the idea of solubility of CFCs, to produce main products CF₂CF₂, CH₂F₂, CH₃F, CF₂CFCl and CHCF₃ that are used as raw material in production of polymers and refrigerants. Cabot et al., (2003) have used methanol water mixture medium to degrade CFC-11 and CFC-113 using Pb cathode with Pd contained gas diffusion anode by constant potential electrolysis, where complete or partially dehalogenated product were achieved depending on the Pd contents. Taylor-Smith and Sayres (1999) have found through fundamental electrochemical studies on selective site-specific PFCs compounds that the reduction reaction follows radical reaction with carbanion formation with subsequent oligomeric products such as C₃H₈, C₃F₈, and CH₄ from CF₄ and etc.,. Note that most of the electrochemical studies to degrade CFCs in aprotic medium or combination of aprotic and protic solvents using CV or constant potential electrolysis, none were performed in only aqueous medium and constant current in degradation process. Very recently, CF₄ removal have reported by our group using mediated electrochemical reduction (MER) in aqueous KOH medium at room temperature by electrochemically generated mediator Co^{1+} at electro-scrubbing process (Muthuraman and Moon (2017)). Ethanol and HF were the products found in the Co^{1+} MER of CF₄ (Muthuraman and Moon (2017)). As well explained in the literature that HF formation will affect the removal of CF₄ process, the HF formation in our report may reduce the pH in long term electrolysis that will affect mediator generation process finally removal efficiency will be reduced. In order to avoid HF formation in the removal process, here in, we have attempted a binary metal complex or bimetallic complex, as reported in catalytic combustion process for catalysts activation, in MER of CF₄.

In the present investigation, a bimetallic complex $Cu^{2+}[Ni^{2+}(CN)_4]$ was used as mediator precursor in degradation of CF₄ gas. A cathodic half-cell in a divided electrolytic cell was used to generate a low valent active mediator generation in 10 M KOH medium by constant current method. The electrolytic reduction of $Cu^{2+}[Ni^{2+}(CN)_4]$ was performed on anodized Ti or TiO₂ cathodeconducted in 10 M KOH on an anodized Ti cathode. The oxidation/reduction potential (ORP) of the Cu^{2+} and Ni^{2+} in the dissolved electrolyzed solution during electrolysis were taken as indication and quantification, by potentiometric titration separately, for the low oxidation state active mediator formation. Additional, ESR analysis was used to support in differentiation of Cu^{2+} or Ni^{2+} reduction in the electrolyzed solution. The CF₄ degradation was carried out at electro-scrubbing where the CF₄ was fed continuously at a controlled rate and concentration through the bottom of the scrubber and subsequently the spent bimetallic complex was sent to cathodic half-cell to generate low oxidation state active mediator. The CF₄ removal efficiencies were monitored using an online Fourier transform infrared (FTIR) gas analyzer. Solution phase and gas phase analyses were conducted to find the final product.

Experimental methods

Preparation of mediator precursor

 $Cu^{2+}[Ni^{2+}(CN)_4]$ was prepared, as per the literature procedure (Chippindale et al., (2015)). In brief, $Cu^{2+}(NO_3)_2.3H_2O$ and $Ni^{2+}(CN)_4^{2-}$ were added in 200 ml water with the mole ratio of 1:4 Cu^{2+} to Ni^{2+} . A light blue precipitate formed slowly with constant stirring, which was separated by filtration, washed several times with water, and dried in a desiccator prior to use. $Ni^{2+}(CN)_4^{2-}$ was prepared using existed literature procedure (Fernclius et al., (2007)). Briefly, $Ni^{2+}(NO_3)_2.6H_2O$ was taken with 1:4 mole ratio (Ni^{2+} to cyanide) to KCN, which is already dissolved in 200 ml cooled water (extreme care was taken when handling the KCN during complex preparation due to highly dangerous to human). To this reaction solution, an equal volume of chilled alcohol was then added. The resulting thin orange platelets was filtered rapidly, washed with cold alcohol, recrystallized in ethanol, dried in a vacuum desiccator, and stored in an air-tight brown bottle.

Setup and procedure for mediator generation and degradation

A divided flow-through electrolytic cell was used, as in our previous publication (Muthuraman and Moon (2017)), with suitable additional conditions, as shown in Fig.1. Briefly, a 4 cm² working electrode area capacity thin layer plate and frame divided cell (divided with Nafion324) was connected to catholyte (200 ml of mediator precursor in 10 M KOH) and anolyte (200 ml of 5 M H₂SO₄) glass tanks through a polycarbon tubing. So that the anolyte and catholyte were able to circulate (using peristaltic pumps) through the respective anode and cathode compartments. The electrolysis experiments were conducted in constant current mode using a DC power supply. All solutions were prepared using reverse osmosis purified water (Human Power III plus, South Korea) with a resistivity of 18 M Ω -cm.

For the electro-scrubbing process, a 50 cm₂ electrode area capacity divided plate and frame electrochemical cell was connected to a 40 cm high and 5.5 cm (i.d) column packed with 1 cm² of Teflon tubes as the packing material on top of the catholyte tank (1 L capacity), as our previous published literature (Muthuraman and Moon (2017)). The electrolyte solutions (500 ml) were circulated continuously to flow through the electrolytic cell at different flow rates (1 to 5 L min⁻¹) using magnetic pumps. The catholyte solution as scrubbing solution (electrolyzed mediator in a KOH solution) was pumped separately into the scrubber column at a flow rate of 3 L min⁻¹. CF₄ gas (from RIGAS (1000 ppm), Korea) and N₂ mixtures, which were obtained by the controlled mixing of air and CF₄ gas using mass flow controllers (MFCs), were introduced to the bottom of the scrubber at a set gas flow rate. An online gas analyzer (FTIR) was attached at scrubber exit to facile the instantaneous degradation measurements. Prior to each electrolysis experiment, the Ti electrode (cathode) was pretreated by anodization (for the partially anodized TiO₂ electrode) process separately in 0.1 M KNO₃ at a constant current of 1 A for 5 min. All experiments were conducted at room temperature (20 ± 2 °C).

Quantification of mediator ion

The electrolyzed solution contained Cu^{1+} or Ni^{1+} concentrations were determined using a potentiometric titration method (Muthuraman and Moon (2017)). In the present case, the electrolyzed sample solution was titrated against a standard Fe³⁺(CN)₆ (From Sigma Aldrich, USA) solution (0.001 M) and monitor the potential variation using an ORP (oxidation/reduction potential) electrode (EMC 133, 6 mm Pt sensor electrode and Ag/AgCl reference electrode containing a gel electrolyte) connected to an iSTEK multimeter. The initial catholyte (Cu²⁺[Ni²⁺(CN)₄]) solution potential was approximately -170 mV, which then decreased as electrolysis progressed at a constant current density to reach approximately -400

mV. By titration against 0.001 M Fe³⁺(CN)₆, the initial ORP value can be attained that Fe³⁺ concentration can be used to derive the concentration of Cu^{1+} , as shown eqn. 2

Concentration of Cu^{1+} with respect to the initial Cu^{2+} in $Cu^{2+}[Ni^{2+}(CN)_4] =$

$$(C_{Cu2+} \times C_{Cu1+})/C_{Cu2+-Ni2+} --- (2)$$

Analysis

The gas phase online analysis was performed using online FTIR gas analyzer (from MIDAC Corporation, USA). The solution phase sample analysis was carried out by attenuated total reflectance – Fourier transform infrared (ATR-FTIR, Thermo scientific, Nicolet iS5, USA) spectroscopy using a 2 μ L drop of the reaction sample on the diamond sample holder to derive products. To understand the low oxidation state of the metal ion its influence in CF₄ degradation process, ESR spectrometer with focused light of a 1000 W high-pressure Hg lamp through an aqueous filter. The ESR spectra were measured at 143 K with a JEOL X-band spectrometer (JES-RE1XE) using an attached VT (Variable Temperature) apparatus under non saturating microwave power conditions.

Results and discussion

Generation of reductive mediator

Fig.2 shows the ORP value changes during electrolysis of different mediator precursor contained electrolyzed solution $(Cu^{2+}(OH)_4^{2-}, Ni^{2+}(CN)_4^{2-}, and Cu^{2+}[Ni^{2+}(CN)_4])$. The ORP values of the electrolyzed solution reached a maximum of -450 mV for $Cu^{2+}(OH)_4^{2-}$ in 1h electrolysis (Fig.2 curve a). In the case of Ni²⁺(CN)₄²⁻ electrolysis, the ORP value was reached to nearly -800 mV in 1h (Fig.2 curve c). On the other hand, the ORP value of $Cu^{2+}[Ni^{2+}(CN)_4]$

electrolyzed solution shows ~ – 500 mV in 1h electrolysis time indicating that Cu^{2+} is reduced instead of Ni²⁺ reduction in the heterobimetallic complex. In order to confirm whether Cu^{2+} is reduced, the electrolyzed solution of $Cu^{2+}[Ni^{2+}(CN)_4]$ was analyzed by ESR that results are shown in Fig.3. The ESR spectra shows symmetrical with identical g_{xx} and g_{yy} values, A_{xx} and A_{yy} and a large A_{zz} value, which is greater than 140 G confirms Cu^{2+} complex with a squareplanar geometry (Savelieff et al., (2008)) (Fig.3 curve a). At the same time the electrolyzed $Cu^{2+}[Ni^{2+}(CN)_4]$ samples shows reduced intensity without change in symmetrical values evidences the Cu^{1+} formation with square planar geometry (Fig.3 curve b). The insert figure of Fig.4 shows Cu^{1+} concentration variation with electrolysis time, where Cu^{1+} concentration obtained was maximum of 3.1 mM out of 12 mM in the bimetallic complex at given conditions.

CF₄ degradation

Once reached the Cu¹⁺ concentration to around 3 mM by electrolysis, the electrolyzed solution of Cu¹⁺/Cu²⁺[Ni²⁺(CN)₄] was pumped into the scrubbing column via top of the scrubbing column then after 10 ppm of CF₄ was injected at 0.2 L min⁻¹ gas flow rate into the bottom of the scrubbing column, while electrolysis was continued to regenerate the Cu¹⁺. The obtained results under these conditions are shown in Fig.4, there found almost o ppm at scrubber exit at initial timings and then 0.2 ppm of CF₄ started come out at the scrubber exit in 1h duration, which is equal to the removal efficiency of 96% that explains CF₄ removal at room temperature by the electrogenerated Cu¹⁺[Ni²⁺(CN)₄] is possible. Noteworthy here that CF₄ absorption in to 10 M KOH solution attained saturation in 5 min (Muthuraman and Moon (2017)). The Cu¹⁺ concentration variation during the CF₄ removal reaction. The insert figure of Fig.4 shows that there is a Cu¹⁺ concentration decrease from 3.1 mM to 2.1 mM initially then

decreases further to 1.2 mM in 1h CF₄ removal time, which is clearly indicate the CF₄ removal reaction follow MER by electrogenerated $Cu^{1+}[Ni^{2+}(CN)_4]^{1-}$.

Fig. 5A shows CF₄ removal at different gas flow rates. Initially there shows almost 100% removal of CF₄ up to 1 L min⁻¹, but decreased to 55% with increasing gas flow rate at later removal timings. The decrease in CF₄ removal efficiency at high gas flow rate could be due the feed CF₄ is higher than the generation rate of Cu¹⁺. In the case of feed concentration variation, up to 10 ppm of CF₄ feed shows almost 95% removal efficiency (Fig.5B curve a & b). Beyond 10 ppm of CF₄ shows removal efficiency of nearly 40% at initial stages but then decreased to 0% removal efficiency in 30 min (Fig.5B curve c) explains Cu¹⁺ generation rate is not at all meet with feed CF₄ concentration or 10 ppm of CF₄ feed is more optimum at given conditions.

Product identification

According with Fig.4, almost 95% of CF₄ removal has been achieved from the beginning of the removal process, but no products has been noticed at scrubber in first 30 min (Fig.6). After 30 min, there found a huge concentration ethanol (CH₃CH₂OH) suddenly emerged at scrubber exit around 125 ppm Fig.6 curve a). In similar time interval, trifluoroethane (CH₃CF₃) started exit around 10 ppm (Fig.6 curve b). Surprisingly, no HF is coming out of scrubber, interestingly no greenhouse gases also found in exit gas (Fig.6 curve c). Note that ethanol and HF have started produced from the beginning of the removal process while electrogenerated Co¹⁺ mediator used to remove CF₄ gas (Muthuraman and Moon (2017)). The CF₄ removal process follow mediated degradation to soluble products that products came out after a saturation point attained, which could be the reason for the late exit of CH₃CH₂OH and CH₃CF₃. The scrubbing solution underwent an ATR-FTIR analysis after the electroscrubbing process was completed that reaction solution revealed only CH₃CH₂OH presence (-

O-H and -C-O stretching frequencies well matched with instrument library CH₃CH₂OH sample) in solution (Fig.7), confirming that the reaction product is CH₃CH₂OH. Many electrochemical reports have shown that CFCs form CH₄ and fluorine reduced derivatives such as CF₃CH, CH₂F₂, CH₃F, CF₂CFCl (Schizodimou et al., (1999); Wagoner et al., (2012); Cabot et al., (2003); Taylor-Smith and Sayres (1999)), but found no report to form CH₃CH₂OH during degradation of CF₄. Very recently, direct ethanol formation on copper electrode during reduction of CO₂ through the carbon dioxide dimer formation (Song et al., (2016); Kuhl et al., (2012)). Similarly, carbon tetrafluoride dimer could have formed via electrogenerated Cu¹⁺ that might have easily hydroxylated to ethanol, because of the scrubbing solution is 10 M KOH, as shown by proposed scheme 1. The possibility of dimerization confirmed by the additional product CF₃CH₃ (Fig.6 curve b) found at scrubber exit that may be due to incomplete reaction or intermediate formation.

Electrogenerated

$$Cu^{1+}[Ni^{2+}(CN)]^{1-}$$

 $CF_4 \xrightarrow{} CF_3CH_3 \xrightarrow{} CH_3CH_2OH + 2F_2$
in 10 M KOH
Intermediate
Product

Scheme 1 Plausible reaction pathway for CF₄ degradation to ethanol

Conclusions

We have demonstrated through this investigation that the electrogenerated $Cu^{1+}[Ni^{2+}(CN)_4]^{1-}$ was successfully degraded CF_4 to ethanol without forming HF. The electrogeneration of Cu^{1+} from the bimetallic complex of $Cu^{2+}[Ni^{2+}(CN)_4]$ was identified and confirmed by ORP variation of ESR analysis. Cu^{1+} concentration variation during injection of the CF_4 into the scrubber column or CF_4 removal process confirms the mediated reduction. The

online and offline FTIR analyzer results demonstrate CH_3CH_2OH is a final product along with an intermediate or incomplete product CF_3CH_3 during the degradation of CF_4 by using the electrogenerated $Cu^{1+}[Ni^{2+}(CN)_4]^{1-}$ in highly KOH medium.

Acknowledgement

This study was supported by the National Research Foundation of Korea (NRF) funded by Ministry of Engineering Science and Technology (MEST) from the Korean government (Grant No. NRF-2017R1A2A1A05001484).

References

- Cabot P L, Segarra L, and Casado J (2003) Electrodegradation of Chlorofluorocarbons 11 and 113 at Small Concentrations in Closed Cells, *Electrochem. Solid-State Lett.* 6(3): B15-B18.
- Cabot P L, Segarra L, and Casado J (2004) Electrodegradation of Chlorofluorocarbons in a Laboratory-Scale Flow Cell with a Hydrogen Diffusion Anode, J. Electrochem. Soc. 151(2): B98-B104.
- Chippindale A M, Hibble S J, Marelli E, Bilbe E J, Hannon A C, and Zbiri M (2015) Chemistry and Structure by Design: Ordered CuNi(CN)₄ Sheets with Copper(II) in a Square-Planar Environment, *Dalton Transactions* 44(28): 12502-12506.
- El-Bahy Z M, Ohnishi R, and Ichikawa M (2003) Hydrolysis of CF₄ over Alumina-Based Binary Metal Oxide Catalysts, *Appl. Catal. B* 40(2): 81-91.
- Farris M M, Klinghoffer A A, RosSnl J A, and Tevault D E (1992) Deactivation of a Pt/Al₂O₃ Catalyst During the Oxidation of Hexafluoropropylene, *Catalysis Today* 11(4): 501-

516.

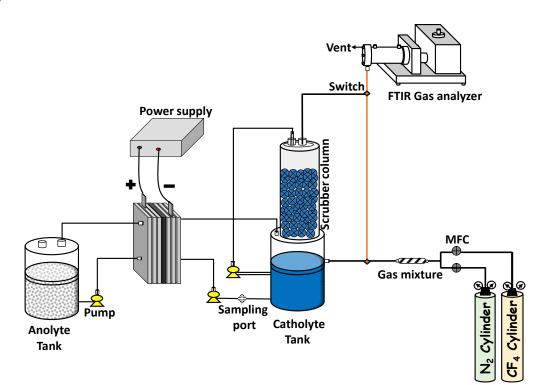
- Fernelius W C, Burbage J J, and Ballou N E (2007) Potassium Tetracyanonickelate(II), in: Inorganic Syntheses, John Wiley & Sons, Inc., pp. 227-228.
- Gal A, Ogata A, Futamura S, and Mizuno K (2003) Mechanism of the Dissociation of Chlorofluorocarbons During Nonthermal Plasma Processing in Nitrogen at Atmospheric Pressure, *The Journal of Physical Chemistry A* 107(42): 8859-8866.
- Gandhi M S, and Mok Y S (2012) Decomposition of Trifluoromethane in a Dielectric Barrier Discharge Non-Thermal Plasma Reactor, J. Environ. Sci. (Beijing, China) 24(7): 1234-1239.
- Kuhl K P, Cave E R, Abram D N, and Jaramillo, T F (2012) New Insights into the Electrochemical Reduction of Carbon Dioxide on Metallic Copper Surfaces, *Energy & Environmental Science* 5(5): 7050-7059.
- Lee C W, Ryan J V, Hall R E, Kryder G D, and Springsteen B R (1996) Effects of Copper Contamination on Dioxin Emissions from Cfc Incineration, *Combustion Science and Technology*, 116-117(1-6): 455-478.;1;k
- Lee H M, Chang M B, and Lu R F (2005) Abatement of Perfluorocompounds by Tandem Packed-Bed Plasmas for Semiconductor Manufacturing Processes, *Ind. Eng. Chem. Res.* 44(15): 5526-5534..
- Muthuraman G, and Moon I S (2017) Innovative Reductive Remediation of Carbon Tetrafluoride at Room Temperature by Using Electrogenerated Co¹⁺, *J. Hazard. Mater.* 325: 157-162.
- Narengerile Saito H, and Watanabe T (2010) Decomposition Mechanism of Fluorinated Compounds in Water Plasmas Generated under Atmospheric Pressure, *Plasma Chem*.

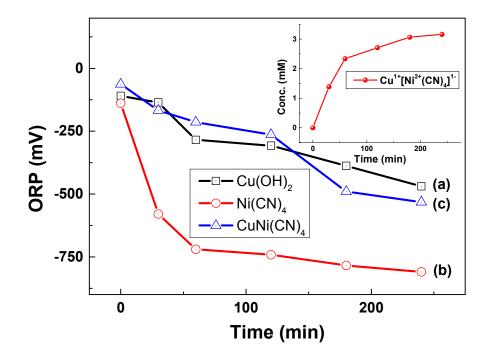
Plasma Process. 30(6): 813-829.

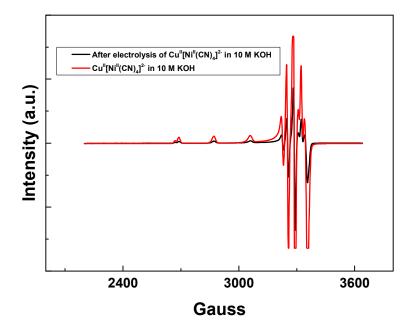
- Rittmeyer C, and Vehlow J (1993) Decomposition of Organohalogen Compounds in Municipal Solid Waste Incineration Plants. Part I: Chlorofluorocarbons, *Chemosphere* 26(12): 2129-2138.
- Savelieff M G, Wilson T D, Elias Y, Nilges M J, Garner D K, and Lu Y (2008) Experimental Evidence for a Link among Cupredoxins: Red, Blue, and Purple Copper Transformations in Nitrous Oxide Reductase, *Proceedings of the National Academy of Sciences* 105(23): 7919-7924.
- Schizodimou A, Kyriacou G, and Lambrou C (1999) Electrochemical Reduction of Dichlorodifluoromethane in Acetonitrile Medium to Useful Fluorinated Compounds, J. *Electroanal. Chem.* 471(1): 26-31.
- Song J-Y, Chung S-H, Kim M-S, Seo M-g, Lee Y-H, Lee K-Y, and Kim J-S (2013) The Catalytic Decomposition of CF₄ over Ce/Al₂O₃ Modified by a Cerium Sulfate Precursor, *J. Mol. Catal. A: Chem.* 370: 50-55.
- Song Y, Peng R, Hensley D K, Bonnesen P V, Liang L, Wu Z, Meyer H M, Chi M, Ma C, Sumpter B G, and Rondinone A J (2016) High-Selectivity Electrochemical Conversion of CO₂ to Ethanol Using a Copper Nanoparticle/N-Doped Graphene Electrode, *Chemistry Select* 1(19): 6055-6061.
- Sonoyama N, and Sakata T (1998)-2 Electrochemical Hydrogenation of CFC-13 Using Metal-Supported Gas Diffusion Electrodes, *Environ. Sci. Technol.* 32(24): 4005-4009.
- Sonoyama N, and Sakata T (1998) Electrochemical Decomposition of CFC-12 Using Gas Diffusion Electrodes, *Environ. Sci. Technol.* 32(3): 375-378.
- Takita Y, Morita C, Ninomiya M, Wakamatsu H, Nishiguchi H, and Ishihara T (1999)-2

Catalytic Decomposition of CF₄ over AlPO₄-Based Catalysts, Chem. Lett. (5): 417-418.

- Takita Y, Ninomiya, M., Miyake, H., Wakamatsu, H., Yoshinaga, Y. and Ishihara, T. (1999),
 Catalytic Decomposition of Perfluorocarbons Part II. Decomposition of CF₄ over
 AlPO₄-Rare Earth Phosphate Catalysts, *Physical Chemistry Chemical Physics* 1(18):
 4501-4504.
- Taylor-Smith R E, and Sayres D (1999) Electrochemical Routes to Perfluoro Compound Abatement, Proc. - Electrochem. Soc. 99-8(Environmental Issues in the Electronics and Semiconductor Industries): 116-125.
- Wagoner E R, and Peters D G (2013) Electrocatalytic Reduction of 1,1,2-Trichloro-1,2,2-Trifluoroethane (CFC-113) at Silver Cathodes in Organic and Organic-Aqueous Solvents, J. Electrochem. Soc. 160(10): G135-G141.
- Wagoner E R, Hayes J L, Karty J A, and Peters D G (2012) Direct and Nickel(I) Salen-Catalyzed Reduction of 1,1,2-Trichloro-1,2,2-Trifluoroethane (CFC-113) in Dimethylformamide, J. Electroanal. Chem. 676: 6-12.
- Xu X-F, Jeon J Y, Choi M H, Kim H Y, Choi W C, and Park Y-K (2007) The Modification and Stability of Γ-Al₂O₃ Based Catalysts for Hydrolytic Decomposition of CF₄, *J. Mol. Catal. A: Chem.* 266(1-2): 131-138.
- Xu X, Niu X, Fan J, Wang Y, and Feng M (2011) CF₄ Decomposition without Water over a Solid Ternary Mixture Consisting of NaF, Silicon and One Metal Oxide, *J. Nat. Gas Chem.* 20(5): 543-546.
- Zhang H, Ng C F, and Lai S Y (2005) Catalytic Decomposition of Chlorodifluoromethane (HCFC-22) over Platinum Supported on TiO₂–ZrO₂ Mixed Oxides, *Applied Catalysis B: Environmental* 55(4): 301-307.


Figure captions


- Fig.1 Schematic experimental setup used to degrade CF_4 at wet-scrubber by electrochemically generated $Cu^{1+}[Ni^{2+}(CN)_4]^{1-}$
- Fig.2 Oxidation/reduction potential (ORP) variation during electrolysis of different mediator precursors in 10 M KOH solution: (a) 50 mM Cu(OH)₄²⁻; (b) 50 mM [Ni²⁺(CN)₄]; (c) 50 mM Cu²⁺[Ni²⁺(CN)₄] (Cu to Ni ratio 1:4). Electrolysis conditions: Electrodes (4 cm²) = Pt (anode) and anodized Ti (cathode); Current density 30 mA cm⁻²; Solution flow rate = 70 ml min⁻¹. Inset figure shows formation of Cu¹⁺ from Cu²⁺[Ni²⁺(CN)₄] during electrolysis at the above conditions.
- Fig.3 ESR spectra of frozen Cu²⁺[Ni²⁺(CN)₄] in 10 M KOH solution (a) before and (b) after electrolysis. Electrolysis conditions are the same as in legend of Fig.2.
- Fig.4 CF₄ removal efficiency variation during electro-scrubbing by scrubbing solution of electrolyzed Cu²⁺/Cu¹⁺[Ni²⁺(CN)₄]^{1-/0} solution. Conditions: Feed concentration of CF₄ = 10 ppm; Gas flow rate = 0.2 L min⁻¹; Scrubbing solution flow rate = 3 L min⁻¹. Solution flow rate to electrolytic cell = 2 L min⁻¹; Electrodes area = 50 cm². Inset figure shows electrogenerated Cu¹⁺[Ni²⁺(CN)₄]¹⁻ concentration variation during removal of CF₄ pollutant.
- Fig.5 (A) Effect of gas flow rate (mentioned in the figure) with time on removal of CF₄ using electrogenerated Cu¹⁺[Ni²⁺(CN)₄]¹⁻ in 10 M KOH solution at electro-scrubbing. Remaining experimental conditions are same as in the legend of Fig.4
 (B) Effect of CF₄ feed concentration variation with time on it's removal by electrogenerated Cu¹⁺[Ni²⁺(CN)₄]¹⁻ in 10 M KOH solution at electro-scrubbing. Remaining experimental conditions are same as in the legend of Fig.3.


- Fig.6 Online FTIR gas analyzer results of exit gas products (mentioned in the figure) during CF₄ removal at electro-scrubbing by electrogenerated Cu¹⁺[Ni²⁺(CN)₄]¹⁻ in 10 M KOH solution at electro-scrubbing. Remaining experimental conditions are same as in the legend of Fig.4.
- Fig.7 Subtracted (from before and after electro-scrubbing) solution phase offline ATR-FTIR spectrum for the product formed in the solution during removal of CF₄. The experimental conditions are same as in the legend of Fig.4.

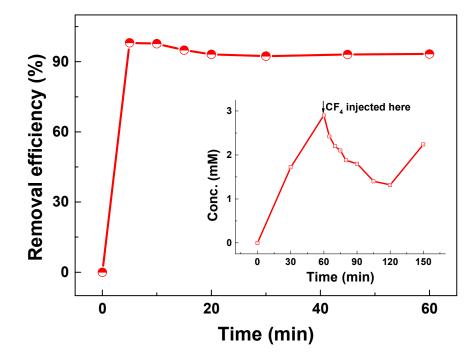

Figures

Fig.1

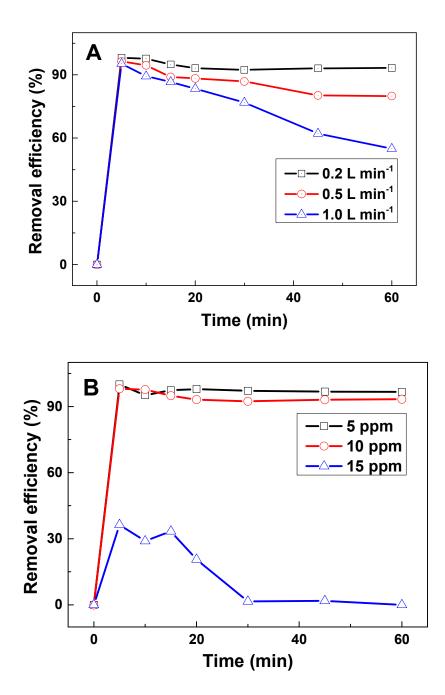


Fig.6

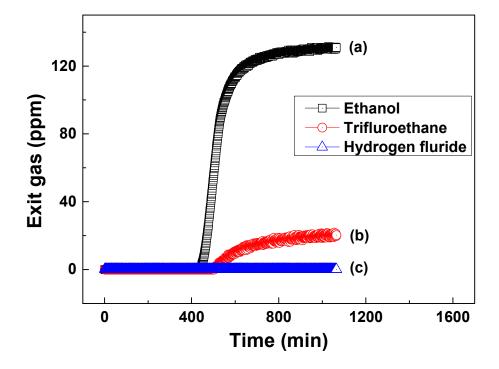
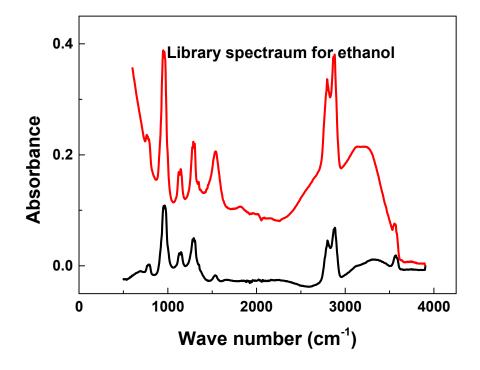



Fig.7

