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Abstract 14 

The flexible piezoelectric nanocomposites based on lead magnesium niobate titanate 15 

[Pb(Mg1/3Nb2/3)0.65Ti0.35O3; PMNT] particles in polydimethylsiloxane (PDMS) matrix were 16 

fabricated and characterized. PMNT powders are synthesized using the columbite precursor 17 

method. PMNT/PDMS flexible nanocomposites are then prepared by spin casting technique, 18 

where a small amount of carbon nanotubes (CNTs) is added into the PMNT/PDMS composite 19 

to enhance cross-links between PMNT particles and PDMS matrix. The phase and 20 

microstructure of the nanocomposite are investigated by using X-ray diffraction and scanning 21 

electron microscope (SEM). The electromechanical behavior is evaluated by using an 22 
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autonomous pneumatic actuator. The flexible composite, occupying approximately 300 mm2, 1 

is capable of generating an open-circuit voltage (Voc) of 2.83±0.24 V and a short-circuit current 2 

(Isc) signal of 0.33±0.01 µA across 10 Ω resistor under mechanical load of 300 N. The 3 

generated electrical charges are 29026 pC. The relative dielectric constant is measured at 10 4 

kHz and found to be 6.76±1.15. The piezoelectric PMNT/PDMS composite can be potentially 5 

used in a variety of applications such as wearable sensors, actuators, and energy harvesting for 6 

converting kinetic energy into useful electrical energy.  7 

Keywords: PMNT, polydimethysiloxane (PDMS), carbon nanotube, nanocomposite, energy 8 
harvesting   9 

 10 

1. Introduction 11 

Nowadays, renewable energy such as solar, vibrations, electromagnetic wave and thermal 12 

energy are widely used in technological applications. These ambient energies have been 13 

received much attention from many researchers for applications in the energy conversion 14 

technology. The ambient energy sources can be converted to electrical energy via energy 15 

conversion processes, i.e. electromagnetic induction [1-2], triboelectric generator [3], 16 

electrostatic transduction [4], or using energy conversion materials, e.g., electroactive 17 

ferroelectret [5] and piezoelectric materials [6]. Piezoelectric materials are one of the energy 18 

conversion materials that can convert kinetic energy from mechanical vibrations to electrical 19 

energy via direct piezoelectric effect. Vice versa, they can convert electrical energy to 20 

mechanical strain, which is called the converse piezoelectric effect. Using the direct effect, 21 

piezoelectric materials can be used to harvest kinetic energy generated from human activities 22 

(e.g. walking and running). To date Pb-based piezoelectric materials are the most used in 23 

applications due to their high electromechanical coupling factor (k) and stimulating at 24 

resonance frequencies could realize an energy conversion efficiency above 80% [7]. Of these, 25 
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lead magnesium niobate titanate (PMNT) materials is of great interest due to their high 1 

electromechanical coupling coefficient which make them as one of promising solution for 2 

piezo-sensors and actuators applications [8-9]. The composition of PMNT are typically 3 

Pb(Mg1/3Nb2/3)1-xTixO3 and it is well-known as relaxor-based ferroelectric material. The 4 

composition with x = 0.30-0.35 is at morphotropic phase boundary (MPB) region 5 

demonstrating best piezoelectric properties [10]. However, the ceramic form of these PMNT 6 

materials is brittle and heavy, making them unsuitable for flexible devices. This disadvantage 7 

can be overcome by flexible piezoelectric ceramic-polymer composite [11-12]. The particle 8 

size of ceramic powder in the composite is one of the main factors that could affect the 9 

piezoelectric properties of the composite. Nevertheless, there were a few works studying the 10 

effect of the size of piezoelectric particles on piezoelectric properties of the flexible 11 

piezoelectric composites. For example, the work studied by Lee et al. reported that the 12 

dielectric and piezoelectric constants of the piezoelectric composite with PbTiO3 as the 13 

piezoelectric phase increased as the size of the piezoelectric particle increased [13]. Although 14 

most polymers exhibit poor piezoelectric properties and dielectric constant, their high 15 

flexibility, and forming and shaping abilities make them suitable to be a matrix phase for 16 

piezoelectric composites [14-15].   To fabricate piezoelectric ceramic-polymer composite, 17 

Polydimethylsiloxane (PDMS) was frequently used as a polymeric matrix due to its flexibility, 18 

biocompatibility, and optical transparency. Importantly, it is cost-effective, low toxicity, low 19 

permeability to water, high oxidative and high thermal stability [16-18]. Recently, Park et al. 20 

developed a flexible nanocomposite generator based on PZT particles distributing in a PDMS 21 

matrix with added CNTs [19]. The output voltage and current signals of the device were 10 V 22 

and 1.3 µA. Furthermore, NaNbO3 nanowires-PDMS composites with output voltage and 23 

current of 3.2 V and 72 nA have been synthesized by Jung et al. [20]. Chen et al. fabricated 24 

piezoelectric nanogenerators based on PZT nanofibers which generated the output voltage and 25 
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power under periodic stress application of 1.63 V and 0.03 µW, respectively [21]. Jeong et al. 1 

successfully produced lead-free flexible nanocomposite generators by a simple spin-casting 2 

method. The output voltage and current signals, which were generated during repeated bending 3 

and unbending motions with a maximum displacement of 5 mm at a rate of 0.2 m s-1, were 12 4 

V and 1.2 µA, respectively [22]. To date, based on our knowledge, only few studies have been 5 

reported on flexible piezoelectric composite based on PMNT in PDMS matrix [23-25].  6 

In this work, flexible piezoelectric composites based on Pb(Mg1/3Nb2/3)0.65Ti0.35O3 (PMNT) 7 

particles dispersed in PDMS polymeric matrix were fabricated. 1wt% CNTs was added into 8 

the composite in order to improve the electrical conductivity path between micron-sized 9 

piezoelectric particles while maintaining the domain switching during poling process. Physical 10 

and electromechanical properties such as phase, microstructure, dielectric properties, and 11 

power output of the fabricated composite were then characterized in order to obtain more 12 

detailed description of the piezoelectric nanocomposite.   13 

2. Experimental Details 14 

Pb(Mg1/3Nb2/3)0.65Ti0.35O3 (PMNT) powders employed as the dispersed phase in this research 15 

were prepared by the columbite precursor method from PbO, MgO, Nb2O5 and TiO2 precursors 16 

[25]. Firstly, MgO and Nb2O5 powders were mixed and then calcined at 900 °C for 4 hr to 17 

produce columbite (MgNb2O6) powders. The MgNb2O6 powder was then mixed with PbO and 18 

TiO2 powders and calcined at 850 °C for 2 h to produce PMNT powders. Polydimethysiloxane 19 

(PDMS) Sylgard 184 from Dow Corning was used as the matrix phase. PDMS elastomer was 20 

mixed with a curing agent using the weight ratio between the elastomer and the curing agent 21 

of 10:1. The mixture was exposed to thermal curing in order to harden PDMS. 12 wt% PMNT 22 

particles were dispersed in the PDMS elastomer in a beaker. After that, 1 wt% CNTs 23 

(NANOCYLTM NC7000) was added into the mixture and desiccated under vacuum for 20-30 24 

min to remove air bubbles formed during the mixing process. The layered composites, as 25 
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shown in Fig. 1(a), were fabricated by the following steps; (i) spinning PDMS polymer onto a 1 

glass plate and then curing at 85 °C for 1 h in an oven (ii) spinning CNTs-added PMNT/PDMS 2 

mixture onto the PDMS layer and then curing at 85 °C for 1 h in an oven and (iii) spinning 3 

PDMS polymer onto the mixture layer and then curing at 85 °C for 24 h in an oven. After these 4 

steps, a flexible piezoelectric composite with a thickness in the range of 200-300 µm was 5 

achieved as illustrated in Fig. 1(b). Both sides of the layered composite were etched by oxygen 6 

plasma before electrodes were deposited. The silver electrodes were sputtered on plastic 7 

substrates (200 µm in thickness) and attached onto the etched surfaces using unsolidified 8 

PDMS as a binder. The composite electrodes were cured in an oven at 85 °C for 1 h. Each 9 

composite sample was poled under an applied DC electric field of 2.5 kV/mm at 80 °C for 15 10 

h in silicon oil bath. An electrical poling process was required to align the dipole moment to 11 

the same direction and to enhance piezoelectric properties of flexible nanocomposite devices. 12 

The phases of samples were identified by X-ray diffraction (XRD) technique (Bruker D8 13 

Advance) with Cu Kα radiation wavelength of 1.54 Å. Frequency dependence of a dielectric 14 

constant (εr) and loss tangent (tanδ) was measured using a LCR meter (GW INSTEK LCR-15 

821). Microstructure was observed by a field emission scanning electron microscope (FE-16 

SEM, JEOL JSM-7800F). Chemical composition was analyzed by an energy dispersive X- ray 17 

spectroscopy (EDX). The internal distribution of the dispersed and matrix phases was 18 

investigated using synchrotron X-ray computed tomography. The synchrotron X-ray beam 19 

with energy range of 2-18 keV (white beam) was scanned on the sample. The 20 

Electromechanical behavior of the composites was investigated using an in-house developed 21 

autonomous pneumatic actuator. The output voltage and current under mechanical load were 22 

measured using an oscilloscope (Tektronix MSO 3034) and a multi-meter (Agilent 34461A).   23 

3. Results and Discussion 24 
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X-ray diffraction patterns of PMNT powder, PDMS polymer, and PMNT/PDMS 1 

nanocomposite are shown in Fig. 2. It is obvious that the XRD pattern of the PMNT powder 2 

was well-matched with the ICSD file No. 157487 of Pb(Mg1/3Nb2/3)0.65Ti0.35O3 compound with 3 

tetragonal P4mm space group. No secondary phase was observed on the pattern. The XRD 4 

pattern of the PDMS indicated an amorphous phase of the sample. A broad peak at 2θ ≈ 12° 5 

was found, which is consistent with the previous observation of Niu et al. [27]. In addition, for 6 

the composite, unknown peaks were observed at 2θ ≈ 28°. The unknown peaks were believed 7 

to be possessed by Pb1.83Nb1.71Mg0.29O6.39 pyrochlore phase (JCPDS file No. 33-0769). The 8 

splitting of (002) and (200) peaks at 2θ ≈ 45° was also presented. None of CNTs pattern was 9 

observed in the composite. Since only 1 wt% CNTs was added, it is likely that such small 10 

amount was below the detection limit of the XRD apparatus. 11 

SEM images of a cross-sectional view of a composite is shown in Fig. 3(a). The layer of the 12 

CNTs-added PMNT/PDMS material with 203.58±1.96 µm of thickness was observed in the 13 

middle region of the composite sandwiched by the PDMS layers. It can be seen from Fig. 3(b) 14 

that the particle size of PMNT phase was about 3 µm. It was clear that CNTs bridged PMNT 15 

particles to the matrix, as indicated by the arrow in Fig. 3(b) and (c). This contributed to an 16 

improvement of a transportation of charge carriers between the dispersed phase and the matrix 17 

phase while maintaining domain switching in a poling process. This could be confirmed by a 18 

result observed by Gong et al., that the applied field amplitude used in poling CNTs-added 19 

composite was lower than the composition without CNTs [28]. A synchrotron X-ray image of 20 

CNTs added PMNT/PDMS composite is shown in Fig. 3(d). The different contrast is depended 21 

on the level of X-ray absorption of each phase composed in the composite. As shown in the 22 

figure, the dark and bright regions represented the locations of the PMNT and PDMS phases, 23 

respectively. The brightest region indicated the position at which voids or porosities were 24 

located, resulting in a reduction of X-ray absorption at those positions of materials. By using 25 



Manuscript SACT2016 Integrated Ferroelectrics 

the synchrotron X-ray imaging technique, the dispersion of PMNT particles in PDMS polymer 1 

matrix can be determined. It was also found from the figure that the average size of the dark 2 

region was about 30 µm. This indicated the agglomeration of PMNT particles. Although the 3 

particle size of PMNT was small, the agglomeration of the PMNT particles and the bridging 4 

between the dispersed and the matrix phases of CNTs could contribute to a good piezoelectric 5 

properties of the composite. Energy dispersive X-ray spectroscopy (EDX) of CNTs-added 6 

PMNT/PDMS nanocomposite was shown in Fig. 4(a) and (b). The results clearly showed the 7 

present of Pb, Mg, Nb, Ti and O peak in the PMNT particles and showed C peak representing 8 

local CNTs. 9 

Frequency dependences of relative permittivity (εr) and dielectric loss (tanδ) measured at 10 

room temperature of CNTs-added PMNT/PDMS nanocomposite is shown in Fig. 5. The result 11 

showed that εr of the composite suddenly decreased while tanδ increased when frequency 12 

increased from 1 kHz to 10 kHz and it decreases when the frequency is greater than 10 kHz. 13 

The decreasing tendency with frequency of dielectric constant could be caused by an interfacial 14 

relaxation. The interfacial polarization arise as a result of difference in conducting phases, but 15 

was interrupted at grain boundaries due to lower conductivity. Generally, in polycrystalline 16 

materials, the grain exhibits semi-conducting behavior while the grain boundary is insulator. 17 

At higher frequency, the charge carriers will no longer be able to rotate sufficiently rapidly, so 18 

their oscillation will be laid behind the field resulting in a decrease of dielectric permittivity 19 

[29]. The dielectric losses at low frequencies are much higher than those occurring at high 20 

frequencies.  However, the permittivity of the composite is still above 5. It was found in a 21 

previous result observed by Du et al. that a monolithic PDMS and PDMS based materials 22 

showed dielectric constant in the range of 2.32-2.40 [30]. Furthermore, Romasanta et al. [31] 23 

reported that the nanocomposite containing 1.0 wt% of CNT influenced to electrical insulator 24 

behavior with a permittivity constant of 1.5 times. It is ascribed to the motion of free charge 25 
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carriers due to the formation of a continuous conductivity pathway throughout the medium 1 

between CNTs. Therefore, it could imply that an addition of PMNT and CNTs improves 2 

dielectric properties of PDMS polymers.  3 

The electrical characterization of PMNT/PDMS nanocomposites with an area of 30 mm × 4 

10 mm is illustrated in Fig. 6(a). The output voltage and generated current under an applied 5 

mechanical load of 300 N were about of 2.83±0.24 V and 0.33±0.01 µA. The calculated output 6 

power of this device is 0.934 µW at load resistance of 10 ohm. As compared to the piezoelectric 7 

generators in literature [20,32,33], it was found that the output power of our nanocomposite 8 

was lower than that of the flexible PZT-based composite, which is equal to 13 µW, but higher 9 

than those of the BaTiO3 thin film and NaNbO3 nanowires-PDMS composite piezoelectric 10 

generators, which are equal to 0.026 and 0.23 µW. Fig. 6(b) showed the output current versus 11 

time of the composite. The charge generated by the composite can be determined by integrating 12 

the current over the time. Using an applied force of 300 N, the average generated charge was 13 

equal to 29026 pC. By dividing the charge with the force, the piezoelectric constant (d33) of the 14 

composite was calculated which was about 97 pC/N. Moreover, with the permittivity measured 15 

at 1 kHz of 10.5, the piezoelectric voltage constant (g33) was calculated to be about 1.04 V⋅m/N. 16 

As compared to PZT/PDMS composites prepared in the previous works by Babu et al. [33] 17 

and Sharma et al. [34] at the equivalent amount of the piezoelectric elements (∼ 2 vol%), it was 18 

found that our CNTs-added PMNT/PDMS nanocomposite showed higher d33 and g33. The d33 19 

and g33 values of the PZT/PDMS composites were below 40 pC/N and 50 mV⋅m/N, 20 

respectively. The greater of piezoelectric properties of CNTs-added PMNT/PDMS 21 

nanocomposite is possibly due to two contributions; 1) low coercive field (Ec ∼ 7 kV/cm) with 22 

large remanent polarization (Pr ∼ 31 µC/cm2) of the PMNT material [26] and 2) bridging a 23 

PMNT particle to the neighboring particles and PMNT particles to PDMS matrix by added 24 
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CNTs. These could allow most dipole moments of PMNT phase to switch their directions to 1 

the direction of applied field in the poling process.   2 

4. Conclusion 3 

CNTs-added PMNT/PDMS flexible nanocomposites have been successfully fabricated. The 4 

electrode was prepared by sputtering silver onto plastic substrate. Both sides of the composite 5 

were etched by oxygen plasma before electrodes were attached. XRD pattern of the composite 6 

indicated PMNT phase and PDMS phase. PMNT particles were dispersed around in PDMS 7 

polymer matrix and bridged the neighboring particles and PDMS polymer by CNTs.  Dielectric 8 

permittivity and loss tangent of the composite almost decreased with an increase in frequency. 9 

The voltage and current output were found to be 2.83±0.24 V and 0.33±0.01 µA, equivalent to 10 

0.934 µW. Under an applied force of 300 N, the composite generated the electrical charge of 11 

29,026 pC. The calculated piezoelectric and voltage constants were 97 pC/N and 1.04 V⋅m/N, 12 

respectively. The use of CNTs as a bridging conductive material could facilitate a poling 13 

performance, thereby improving piezoelectric properties of CNTs-added PMNT/PDMS 14 

nanocomposites which are suitable for flexible electronic devices and sensor applications. 15 
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 1 

Figure captions 2 

Fig. 1 (a) Schematic of layered CNTs-added PMNT/PDMS nanocomposite and (b) showing 3 

high flexibility of the composite. 4 

Fig. 2 XRD patterns of monolithic PMNT particles and PDMS polymer, and a CNTs-added 5 

PMNT/PDMS nanocomposite. 6 

Fig. 3 SEM images of microstructures of (a) cross-section (b) an agglomerated PMNT particles 7 

(c) CNTs bridging PMNT particles and PDMS polymer of a layered CNTs-added 8 

PMNT/PDMS nanocomposite and (d) tomographic of the particles distributed in the polymer 9 

phase using synchrotron X-ray tomography.   10 

Fig. 4 Energy dispersive X-ray spectra of (a) CNTs phase and (b) PMNT phase indicated by 11 

arrows in the CNTs-added PMNT/PDMS nanocomposite.   12 

Fig. 5 Frequency dependence of dielectric constant (black line) and dielectric loss (red line) of 13 

CNTs-added PMNT/PDMS nanocomposites. 14 

Fig. 6 Cycling output (a) voltage and (b) current under an applied mechanical force of 300 N 15 

of CNTs-added PMNT/PDMS nanocomposite. 16 
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