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Abstract

Guar gum based hydrogels have evoked great attention in research as well as in industry for

exploring miscellaneous applications in the field of water purification, medicine, agriculture,

explosives, cosmetics, textile, paper and food to name a few. In this article, latest modifications

for developing guar gum based hydrogels and composite materials for water purification

application are extensively reviewed. Regenerative nature of Guar gum hydrogels makes it a better

choice for treating waste water as well as other value added applications. Moreover, non-ionic

nature makes guar gum an acceptable material for further modifications. In this article, we also

presents brief discussion on structure and properties of guar gum.
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Introduction

Over past 50 years hydrogel technology has come in to view as a new prevalent technology which

may be going to discover more applications in different fields of research[1]. Hydrogels have

evolved with inherent advantages beyond continuing technologies like diffusion and

adsorption[2]. Due to industrial evolution and population expansion, need for more drinkable

water as well as other sustainable materials from natural resources including gums and natural

biomass has become an important issue[3–8]. The inattentive behavior of humans towards

environment has majorly affected the condition of water by contaminating it with inadequate

quantities of pesticides, drugs, dyes and other pollutants[9–13]. Hydrogels may act as new

emerging technology that is being researched for water remediation[14]. Self-assembly of

molecules is considered as the unique property, which is essential for the emergence or

advancement of any material and hydrogel also show self-assembling nature in water[15].

Hydrogels exhibit most fragile three dimensional structure, soft nature, high water soaking

capacity and porosity which makes it extremely suitable for loading water soluble bodies[16].

Furthermore, hydrogels are the biodegradable gels with interconnecting pores which play essential

role in adsorption process and for confining more aquatic pollutants[3, 9], its porosity can be

permanently achieved by following modifications: (a) by cryogelation[17], (b) integrating

nanoparticles[4, 18], (c) by lyphilization (drying-freeze of swollen hydrogel)[17], (d) by grafting

mechanism[19–21] and (e) by cross-linking polymerization[22]. Natural hydrogels can be

replaced by artificial hydrogels having long life, high adsorption capacity, more mechanical

strength and high swelling nature[23]. Herein, this review article, we have focused on guar gum

derived hydrogel composites for waste water treatment. The structure and properties of gaur gum

and composites have also been discussed in this article.



Guar gum

A drought resistant plant named Cyamopsis tetragonoloba belongs to family leguminosae is an

important agrochemical, derived from the endospermic part of guar seed mostly cultivated in

Pakistan and India from ancient time is now becoming useful for many purposes[24]. It is a source

of guar gum or guaran. Before 1940, guar gum has been reviewed in a limited extend[25]. It has

achieved popularity in the field of science roughly around 1940s and 1950s and was used as

industrial product in 1943[26]. Guar gum has strong hydrogen bonding tendency in water, that’s

why it acts as best thickener and stabilizing agent in various chemical processes. The use of this

gum has increased tremendously in last few years specially in cosmetics, oils, paints, as adjunct in

paper making, emulsifier, suspending and wound-healing agent[25]. The yellowish-white, natural,

non-ionic and unprocessed guaran is a reserved part of the cluster bean which is essential for the

germination of seed. On coming in contact with water like alginic acid, its inter-molecular chain

creates a strong bond with surrounding hydroxyl groups which is necessary for attaining maximum

viscosity potential in cold water[27]. Cluster bean is not considerably influenced by the pH, but at

3.5 pH it exhibits low viscosity potential and in between 6-9 it shows maximum viscosity potential

that means over a broad pH range it resist with unchanging viscosity rate[28]. The development of

gum derivatives is often necessary for fulfilling specific application requirements, derivatization

of the unprocessed or virgin gum escort the desired and modified properties of the gum without

ignoring inherent values up to the mark[29]. No doubt, chemical modifications like grafting, cross-

linking, etherification and carboxylation makes it suitable for elevating potential applications in

various fields of science but sidewise care should be taken to remove its inborn deficiencies so that

we can use it for long term applications[30][31]. A raw structure with high molecular weight can

be tailored to obtain desired range of properties for making it suitable for the certain applications.



A number of derivatizations have been made on guar gum to elaborate its use in various fields like

food industry[32], explosives[33], flocculating agent[34][35][36], agriculture[37], pollutant

removing agent[38][39][40][41], paper industry[42], cosmetics[43], drug delivery[44] and in

pharmaceuticals[45].

Structural compositions of guar gum

Guar gum is a natural non-ionic polysaccharide having high molecular weight drawn out from the

endosperm portion of seed which basically consist of straight chain of D-mannose subunits united

by β (1-4) glycosidic bond and D-galactose subunits linked together by (1-6) glycosidic bond at 

each alternate positions[46]. The endosperm layer of guar kernel predominates the presence of

galactose and mannose sub-unites which are collectively called as galactomannan units[47]. The

ratio of galactose to mannose units has been reported as 1:2 and in range of 1:1.6 to 1:1.8[48].

Figure 1 shows the enlarged structure of endosperm wherein subunits are linked together at

different positions to form a large polymeric chain. The core network of guar gum resembles like

other polysaccharide gums but its elemental composition includes complex galactomannan units

(75-85%), 8-14% of moisture content, 5-6% of protein, 2-3% of fibers and 0.5-1.0% of ash[46].

Physical and chemical properties of guar gum

The properties like swelling, solubility and hydrogen bonding making tendency are maximum in

polar solvents rather than non-polar. Herein this review, we have tried to study all physical and

chemical nature of the gum like dissolution, rheology, effect of pH and temperature, viscosity and

most important one hydration rate which can be reduced by adding certain salts and binding sugars

like sucrose [49].



Viscosity

It is a state of being thick, which depends upon percentage hydration of guar gum in cold water[50].

Guar gum is commonly thixotropic in nature because, on continuous stirring its gels come in liquid

form. Moreover, high thixotropic behavior can be seen in case of more than 1% of guar gum in

aqueous solution[51]. Its viscosity equally depends upon temperature, pressure, pH and amount of

continuous agitation during synthesis[28].

Rheology study

Rheology gives the idea of deformation and flow of the viscous fluids when any external stress is

applied. Guar gum exhibits pseudo plastic behavior which in rheology called as non-Newtonian

behavior of gels[52]. According to shear-strain theory, viscosity of fluids undergo reduction with

increase in shear-strain and this theory confirms the shear-thinning behavior of the different

polymeric gels[53].

Strong hydration rate

Hydration is a physical phenomenon in which gum creates the cementing bonding with the water

molecules[54]. Hydration rate dynamically depends upon time and size of the gum particles[33].

Rate of hydration increases with small particle size that means very fine powder of guar gum is

required for getting quick viscosity at initial stage[55].

Strong hydrogen bonding

Strong hydrogen bonding in guar gum is because of the presence of hydroxyl groups[29]. For

hydrogen bonding, a strong electronegative atom with heteronuclear dipole moment is required to

complete dipole-dipole and attractive electrostatic interactions[56]. Guar gum shows strong



bonding with hydrated molecules and cellulose derivatives. Importantly, the stability of bonds

decreases by steric hindrance caused due to substitution of –OH groups of gum by hydroxypropyl

groups[57].

Effect of temperature

Temperature equally affects the hydration rate and viscosity of the fluids. Guar gels attain higher

viscosity at high temperature but long term heating may also cause degradative effect. They also

show high rate of hydration in warm water whereas cold water permits the gum to hydrate

slowly[58]. The reported temperature for attaining maximum viscosity is about 25-40° C wherever

for 0.5% guar solution, 25° C temperature gives higher viscosity than the temperature of 37° C

and at constant temperature, 0.5% gum solution behaves as Newtonian system[59].

Effect of pH

Because of uncharged and non-ionic behavior, guar gum exhibits stable properties for wide range

of pH. Different pH solutions do not affect the final viscosity but it may affect the hydration rate,

and fastest hydration rate can be found at pH 8 which may drop at more than pH 10 or less than

4[60]. Considerably, maximum adsorption for various pollutant is shown by the guar gum based

hydrogels at pH 10[61].

Effect of concentration

High viscosity is essential for fulfilling food applications and guar gum forms deep thick solution

at low concentration[62]. Viscosity is just proportional to the concentration and size of the gum

particles and this is because of water and galactose chain interaction. Increase in these side chain

interactions entangles the more viscous behavior of gum solution[63].



Guar gum based hydrogels for water purification

One of the possible mechanisms followed in water purification is adsorption. For this, numbers of

fillers and chemical modifications have been investigated to achieve required application in water

remediation program[64],[65], [66], [67], [68], [69], [70],[71],[72]. Table 1 shows different types

of modified guar gum based hydrogels adsorbents material for water pollutants removal.

Hydrogels based on guar gum-polyacrylamide (GG-Poly-AAm) and modified guar gum-

polyacrylamide m-(GG-Poly-AAm) were used for evaluating removal percentage of azure B and

crystal violet dyes[65]. Methylene bis-acrylamide and glutaraldehyde were used as cross-linkers

for getting well linked network. In this work, saponification of prepared hydrogel was performed

in strong basic media to improve compatibility for dye sorption. Moreover, alkaline hydrolysis of

m-(GG-Poly-AAm) led to the generation of carboxylic groups which enhanced the anionic moiety

of the hydrogel network.

The differential scanning calorimetry (DSC) pattern of GG-Poly-AAm (neutralization equivalent

(NE) =0), m-GG-Poly-AAm1 (NE= 426.2), m-GG-Poly-AAm2 (NE=294.4) and m-GG-Poly-

AAm3 (NE=222.0) were investigated. The melting transition peak for GG-Poly-AAm was spotted

at 273 °C, which was slowly diminished in m-GG-PolyAAm because of formation of carboxylic

groups from amide functionality and totally disappeared in m-GG-Poly-AAm3 which again

assured the formation of more –COOH groups inside the gel. TGA analyses showed the mass loss

of the samples which was about 5 % at starting and then increased to 30-35 % at 230-350 °C

assigned to the loss of –OH groups of guar gum. The hygroscopic nature of m-GG-Poly-AAm

samples was confirmed by higher mass loss percentage at initial stage which was then equivalent

to the GG-Poly-AAm gel at intermediate stage. Kinetic study displayed that system followed the



second order kinetics and thermodynamic evaluation supported the exothermic adsorption of dyes

on mGG-Poly-AAm2 surface.

Methylene blue dye was removed by Sharma et al. using polyaniline based guar gum/acrylic acid

hydrogel[66]. They synthesized guar gum cross-linked polyacrylic acid (GG-cl-Poly(AA))

hydrogel by solvent evaporation which was further used for the preparation of guar gum cross-

linked polyacrylic acid with interpenetrating network of polyaniline (GG-cl-Poly(AA-ipn-aniline).

Similar method was followed in acidic conditions where GG-cl-Poly (AA-ipn-aniline) hydrogel

was treated with 0.5N solution of HCl to form doped-GG-cl-Poly (AA-ipn-aniline) hydrogel.

Molecules of methylene dye were separated from different gel mixtures, their dye uptake

efficiency was investigated in detail. It was mentioned that percentage removal for dye may vary

with different parameters. With passage of time, methylene blue percentage removal was increased

to 52.98%, 54.68 % and 61.83% for doped-GG-cl-Poly (AA-ipn-aniline), undoped-GG-cl-Poly

(AA-ipn-aniline) and GG-cl-Poly (AA) hydrogels respectively (Figure 2a). Figure 2b shows that

dose of 300 mg was optimized for maximum removal percentages of 64.4 %, 56.4 % and 54.9 %

for GG-cl-Poly (AA), undoped-GG-cl-Poly (AA-ipn-aniline) and doped-GG-cl-Poly (AA-ipn-

aniline) hydrogels respectively. The maximum methylene blue adsorption was found at pH 10,

dye adsorption was higher at high pH, poor adsorption at low pH because of high repulsive

electrostatic interactions between dye and hydrogel samples (Figure 2c). The high temperature

conditions were resulted in increased porosity and swelling, hence adsorption was enhanced with

temperature (Figure 2d). At 70°C, adsorption efficiency was 69.15% for GG-cl-Poly (AA)

hydrogel whereas undoped and doped hydrogel samples exhibited the efficiency of 64.22 %

and62.60 % respectively. The rough surface of cross linked hydrogels (Figure 3b-d) was observed



in comparison to smooth surface of pure guar gum (Figure 3a). The roughness of doped hydrogel

surface was more intense than undoped hydrogel surface.

Thombare et al. developed hydrogel of guar gum cross linked with borax (GG-cl-B) at different

concentrations[67]. The developed hydrogel was applied for the adsorption of aniline blue (AB)

dye from water. The synthesis of GG-cl-B is clearly represented in Figure 4, where boron was

believed to make bond with different oxygen atoms of hydroxyl groups[73].

Distinct flake like morphology (Figure 5a) and a compact smooth surface (Figure 5b) was

reported for pure gum powder and guar gum film respectively[74]. But for GG-cl-B hydrogel, an

extraordinary change was observed, the surface morphology changed to porous scaly structure

which attributes more fluid diffusion (Figure 5c). Guar gum represented three different weight

loss zones of 25–270 °C, 270–330 °C and 330-562oC whereas GG-cl-B hydrogel showed four

different weight loss zones of 25–280 °C, 280–330 °C, 330–508 °C and 508–600 °C. Both samples

showed maximum weight loss in second zone which were nearly about 54 % and 34 % for guar

gum and GG-cl-B hydrogel respectively.

Variety of modifications has been done for the removal of heavy metal ions. Among all, grafting

and integration of nanoparticles are considered as best techniques for developing best adsorbent

material[68]. A low cost guar gum was used as a backbone for making novel hydrogel adsorbent

material for sorption of Cr (VI) metal ion from water. The incorporation of bentonite nanoclay

increased the mechanical strength and hydrophilicity of the prepared composite hydrogel. This

hydrogel composite had achieved the removal percentage of 97.8% at pH 2.0.

Figure 6a shows the stepwise synthesis of guar gum/bentonite hydrogel composite (CPGB) started

with free radical generation from initiator (potassium peroxydisulfate), followed with generation

of monomers and gum radicals with the addition of N, N-methylenebis acrylamide as cross linker.



Finally, polymerization with bentonite nanoparticles was carried out to produce guar

gum/bentonite hydrogel composite. Figure 6b represents the repeated evaluation of swellability

and de-swellability of hydrogels at pH of 2.0 and 8.0. This study confirmed the good reversibility

of hydrogels after 3 to 4 cycles of high and low pH and best mechanical strength was shown by

the bentonite incorporated guar gum composite hydrogel (CPGB4) (guar gum = 1wt%, bentonite

= 2wt% and monomer ratio (acrylic acid: hydroxyethyl methacrylate) = 10:1) than copolymer

hydrogel (CP4) (guar gum = 0wt%, bentonite = 0wt% and monomer ratio (acrylic acid:

hydroxyethyl methacrylate) = 10:1) and guar gum incorporated copolymer gel (CPG4) (guar gum

= 5wt%, bentonite = 0wt% and monomer ratio (acrylic acid: hydroxyethyl methacrylate) =

10:1).Importantly, there was a loss in crystal behavior of guar gum and clay particles because of

the attractive and repulsive interactions residing in between the functional groups of the gum and

bentonite clay particles presented inside the polymeric gel (water + guar gum).

In another work, grafting of acrylamide was carried out to synthesize guar gum based hydrogel for

the removal of hexavalent chromium ion [70]. The polymerization technique was used for the

grafting of acrylamide onto the guar gum using redox system of potassium bromate and thiourea

dioxide. In final step, prepared guar gum based polyacrylamide grafted polymer was cross-linked

with glutaraldehyde to produce the hydrogel. The prepared guar gum grafted polyacrylamide

hydrogel was utilized for the removal of chromium hexavalent ion with maximum adsorption

capacity of 588.24 mg g-1.

The synthesis of guar gum based polyacrylamide grafted copolymer is shown in the Figure 7a.

The prepared guar gum based polyacrylamide grafted copolymer was further cross linked with

glutaraldehyde for the formation of cross-linked hydrogel as represented in the Figure 7b.

Furthermore, sorption study revealed that amount of adsorbed Cr (VI) ion depends upon the extent



of grafting in prepared hydrogel (Figure 7c). A novel guar gum based hydrogel was synthesized

by Chauhan et al. for the sorption of Cu (II) ions using clean and effective acid hydrolysis[71].

Depolymerized guar gum and domestic guar gum were oxidized with the help of nitrogen oxide

NOx (oxidant) and then samples were cross-linked with N, N-methylene bisacrylamide. Maximum

adsorption capacity of 125.893 mg g-1 was reported after 2 hours at 40 oC using 20 ppm of Cu (II)

solution.

Conclusions

In this article, we have tried to explore structure, chemical and physical aspects of guar gum with

prime focus on its application as pollutant removing agent in water purification. It is a natural,

harmless, renewable, low cost, highly viscous and pH compatible polysaccharide which may easily

blend into supportable products. All these properties of guar gum provide an edge to other similar

derivatives of this field. Guar gum is now being considered as one of the most promising potential

candidate to explore better outcomes in possible adsorption techniques and can act as preferred

choice for different areas of research interests.
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Figures:

Figure 1. Showing endospermic part of guar seed which is made up of galactomannan units

Figure 2. Different adsorption parameters explaining (a) effect of time, (b) effect of dose, (c)

effect of pH and (d) effect of temperature [66]. Reprinted with permission from [66]. Copyright

2015 Elsevier.



Figure 3. SEM images of (a) guar gum (b) GG-cl-Poly(AA) (c) undoped-GG-cl-Poly(AA-ipn-

aniline) (d) doped-GG-cl-Poly(AA-ipn-aniline) [66]. Reprinted with permission from [66].

Copyright 2015 Elsevier.
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Figure 4. Schematic representation of synthesis of borax cross linked guar gum hydrogel (GG-cl-

B)[67]. Reproduced with permission from [67]. Copyright 2017 Elsevier.



Figure 5. SEM images of (a) guar gum powder, (b) guar gum film, (c) GG-cl-B hydrogel[67].

Reprinted with permission from[67]. Copyright 2017 Elsevier.



Figure 6. (a) Possible scheme for the synthesis of guar gum/bentonite composite hydrogel, (b)

reversibility study of hydrogels with respect to time [68]. Reprinted with permission from [68].

Copyright 2016 Elsevier.



Figure 7. Possible mechanism for (a) synthesis of guar gum based polyacrylamide grafted

copolymer, (b) crosslinking of guar gum based polyacrylamide grafted copolymer with

glutaraldehyde and (c) effect of grafting on Cr (VI) ion adsorption [70]. Reprinted with permission

from[70]. Copyright 2011 Elsevier.



Table 1. Guar gum based hydrogels for removal of organic and inorganic pollutants.

Sr. No. Hydrogel Composites pH Organic &

Inorganic

Pollutants

References

1. Guar gum-poly(acrylic acid-

aniline) based interpenetrated

network hydrogel

10 Methylene blue [64]

2. Guar gum–polyacrylamide

network hydrogel

7 Crystal violet and

Azure B

[65]

3. Guar gum based acrylic acid

hydrogel

10 Methylene blue [66]

4. Guar gum/borax hydrogel Maximum

at 9

Aniline dye [67]

5. Guar gum based bentonite clay

hydrogel

2 Cr(VI) [68]

6. Guar gum-polyacrylamide

network hydrogel

Maximum

at 7

Cu(II), Ni(II), Pb

(II), and Zn(II)

[69]

7. Polyacrylamide/guar gum graft

copolymer hydrogel

3 Cr (VI) [70]

8. Guar gum-cl-N,N-methylenebis

acrylamide hydrogel

7 Cu(II) [71]

9. Guar gum based silica

nanocomposite hydrogel

9 Cd(II) [72]
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