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Abstract:

The physico-chemical factors affecting the distribution, behavior and speciation of chromium (Cr),

copper (Cu) and arsenic (As) was investigated at a former wood impregnation site (Fredensborg,

Denmark). Forty soil samples were collected and extracted using a sequential extraction technique

known as the Chemometric Identification of Substrates and Element Distributions (CISED) and

multivariate statistical tools (redundancy analysis) were applied. CISED data was linked to water-

extractable Cr, Cu and As and bioavailable Cu as determined by a whole-cell bacterial bioreporter

assay. Results showed that soil pH significantly affected the solid phase distribution of all three

elements on site. Additionally, elements competing for binding sites, Ca, Mg and Mn in the case of

Cu, and P, in the case of As, played a major role in the distribution of these elements in soil. Element-

specific distributions were observed amongst the six identified soil phases including residual pore

salts, exchangeable, carbonates (tentative designation), Mn-Al oxide, amorphous Fe oxide, and

crystalline Fe oxide. While Cr was strongly bound to non-extractable crystalline Fe oxide in the oxic

top soil, Cu and notably, As were associated with readily extractable phases. While water-extractable

Cu and As significantly correlated to CISED identified soil phases, water-extractable Cr and

bioavailable Cu did not, the latter suggesting that sequential extraction schemes may not be ideally

suited for inferring bioavailability and toxicity of elements to ecological endpoints such as microbes

in soil. Findings from this study suggest that after 40 years of ageing, Cu and As at CCA-contaminated

field sites constitute the highest risk to environmental and human health through ecotoxicological

impact and leaching to groundwater reservoirs.
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1. Introduction

Multi-element contaminated sites resulting from anthropogenic activity are of serious concern as:

(1) these types of contaminants accumulate and persist in the environment, (2) complex chemical

mixtures of elements behave differently from each other in soil and (3) the interactions between

elements and potential synergistic effects are not well understood. Chromated copper arsenate

(CCA) contaminated sites are a result of the wood impregnation industry which, for several

decades, used a solution of salts (CrO3 and CuO) and arsenic acid (H3AsO4) to impregnate wood to

preserve it from decay by biotic and abiotic factors (Humphrey,

2002)\\a00143.science.domain\vxr881\Documents\DATA (D)\Abstracts-papers\CISED Stacie\Revision

STOTEN Oct 2018\) - Humphrey, 2002. As environmental legislations in Europe (Directive, 2003) and

North America became more stringent over the years, the use of these impregnation mixtures was

severely curtailed and numerous sites were closed down, remaining contaminated to this today

(Bhattacharya et al., 2002).

During the fixation of CCA-treated wood a number of different chemical reactions occur and their

resulting speciation can have significant effects on leachate toxicity and mobility (Hingston et al.,

2001). Namely, reactive and mobile hexavalent Cr is reduced to insoluble Cr(III); however a

fraction of Cr(VI) may remain oxidized (Gezer and Cooper, 2016). Arsenic is fixed as chromium

arsenates, but As(V) can be reduced to the toxic and mobile As(III) in soil (Nielsen et al., 2010).

Chromium, Cu and As, in the form of Cr(VI), Cu(II), and As(III), can cause significant

environmental impact, primarily as a result of leaching to groundwater reservoirs and transport to

downstream lakes and streams (Nielsen et al., 2013) and due to their high toxicity to soil and water-

dwelling organism alike (Gezer and Cooper, 2016; Nunes et al., 2016). Past studies of CCA

mixtures have reported that Cu was generally immobilized in the oxic top soil while Cr and As

exhibited high spatial mobility and risk of leaching (Allinson et al., 2000; Andersen et al., 1996;

Carey et al., 2002; Hopp et al., 2006). However, these studies have been focused on short-term

monitoring and/or under controlled laboratory environments and therefore do not provide a useful
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basis for determining element speciation and mobility in the field after substantial ageing processes

(Allinson et al., 2000; Andersen et al., 1996; Carey et al., 2002; Hopp et al., 2006).

Several sequential extraction techniques are available to quantify the distribution of elements in soil

phases, providing valuable tools to make assumptions on element speciation and mobility in the

field (Bacon and Davidson, 2008). In general, the extractable phases are categorized as

exchangeable, specifically adsorbed, carbonates, Fe and Mn-oxides, organic matter and sulphides,

and mineral lattice or residual (Cave and Harmon, 1997; Cave and Wragg, 1997). Among sequential

extraction methodologies, the Chemometric Identification of Substrates and Element Distributions

(CISED) provides an estimate of how much of the potentially harmful elements can be found in

each soil solid phase. This approach was developed as a result of limitations/weaknesses associated

with ‘classical’ sequential extractions (Cave et al., 2004): lack of specificity for the target phase,

methodological definition of the distribution of elements and re-adsorption of liberated metals, the

varied (and sometimes long) extraction times required to undertake the methodology, and the

complexity of the extraction matrices for analysis. The CISED methodology considers that a soil

and its associated phases are multi-elemental and has taken the approach of using a non-specific

acid extractant at increasing strengths combined with mixture resolution analysis to combat the

limitations outlined above (Cave et al., 2004). It has been successfully validated by comparison to

other sequential extraction procedures such as the Tessier method (Cave and Wragg, 1997), to

backscattered scanning electron microscopy (BSEM) analysis and digital energy-dispersive X-ray

microanalysis (Cave et al., 2004) and applied to diverse soil samples (Cipullo et al., 2018; Wragg

and Cave, 2012; Wragg et al., 2014). Furthermore, although the link between human oral

bioaccessibility and CISED has been studied (Cox et al., 2013; Wragg and Cave, 2012; Wragg et

al., 2014), the relationship between elements associated with CISED identified solid phases and

bioavailable elements, in the context of biological receptors such as bacteria, remains unexplored.

Physico-chemical factors, such as pH (Lu et al., 2005), organic C (Andersen et al., 1996), reactive

Fe oxides (Yang et al., 2002) and P content (Bolan et al., 2013; Cao and Ma, 2004), all play an
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important role in influencing the adsorption and occlusion of these elements between the soil solid

and liquid phases. However, studying the complex relationships between physico-chemical factors

and element distribution amongst phases in the field can be very challenging and requires the use of

multivariate statistical tools. Redundancy analysis (RDA), a form of constrained ordination founded

on the principles of multiple linear regression, can test the relationships between multivariate

explanatory and response datasets (Legendre and Anderson, 1999) and allows us to explore such

complex relationships in the field.

To our knowledge, no field studies investigating the physico-chemical factors governing the solid-

phase distribution of CCA in aged soils have occurred. To this end, we collected soil samples along

a contamination gradient at a CCA legacy site and assessed the factors affecting the solid-phase

distribution of Cr, Cu and As in the field. The study objectives were: (i) to identify the common soil

solid phases on site and the distribution of Cr, Cu and As amongst these phases, (ii) to study the

influence of different physico-chemical factors on this solid phase distribution, and finally, (iii) to

test the relationship between water extractable Cr, Cu and As and bioavailable Cu, as determined by

a whole-cell bacterial bioreporter assay, with elements distributed amongst the CISED easily

extractable phase.

2. Materials and Methods

2.1. Field site history and geology

The multi-element field contaminated site, located in Fredensborg, Denmark (55˚57N, 12 ˚21E), 

was used as a wood impregnation site, coating wood telephone poles with a mixture of CCA for

over 20 years (Fig. 1a). The most recent impregnation liquid being used on site was a water soluble

formulation of salts CrO3 (Cr(VI)) and CuO (Cu(II)) and arsenic acid As2O5 (As(V)) as 34%, 27%

and 25% respectively (Nielsen et al., 2014). The main contamination on site was derived from

drippings of surplus preservatives into the soil. In 1976, the entire site was abandoned and left as a
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brownfield in the surrounding forest. It was replanted in clearly visible rows of birch (Betula) and

oak (Quercus), and today, trees are found in various states of growth because of the heterogeneous

soil contamination.

In 1989, a full-scale site investigation was launched and reports on the bedrock geology and soil

chemistry by the company Samfundsteknik were published (Samfundsteknik, 1989a;

Samfundsteknik, 1989b) and an updated site investigation for the period between 1977 and 2009

was reported by Nielsen et al. (2010). Briefly, the 1989 investigation reported that soil

contamination was widespread across the 65,000 m2 site as a result of direct spillage and dripping

from highly contaminated bark during the drying process. The main contamination on sites derive

from the metals Cr (Cr3+ and Cr6+), Cu and metalloid As (As3+, As5+), in the top soil and shallow

groundwater. Top soil (0-0.5m) was found to be the most heavily contaminated with average

concentrations of 4-700 mg kg -1, 6-1500 mg kg-1 and 2-1000 mg kg-1 for Cr, Cu and As,

respectively (Fig. 1b: modified from Samfundsteknik report).

The bedrock geology at this site is predominantly a sandy glaciofluvial formation with lenses of

sand and clay. The site is located on the edge of the regional formation of the Alnarp Valley, which

extends across Northern Zealand and South of Sweden. The contaminated site is found upstream of

the Esrum Lake and connected via shallow, intermediate and deep aquifers, with local sediments

constituting one of the most important groundwater reservoirs in North Zealand, Denmark. Nielsen

et al. postulated that the most likely route for CCA leaching to the lake being the intermediary and

deep aquifers (Nielsen et al., 2010).

2.2. Experimental design and soil sampling

Ten sampling stations (1-10) were established at this site in October 2016. The sample selection

was based on the 1989 site investigation concentrations and a preliminary sampling (data not

shown) validating the establishment of a contamination gradient (Fig. 1b). At each location a plot

of 1 m2 was laid out and each plot separated into 4 quadrants with the intention of sampling
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biological replicates. It became apparent after soil chemical analysis, however, that heterogeneity

on site was extensive and as a result, samples were kept separate for downstream analysis. Samples

were named from 1-40 based on total cumulative Cr, Cu and As concentrations in the samples.

Approximately 500 g of top soil (~10 cm in depth) was collected from each quadrant in a

randomized sampling design within the quadrant and mixed thoroughly on site in plastic bags in

order to obtain a representative sample (10 sampling locations × 4 quadrants = 40 samples).

Individual fresh soil samples were divided and processed for analysis in the following way

(Supplementary Fig.1): (1) 2 g into 15mL falcon tube for water-extraction/bacterial bioreporter;

(2) 5 g into 50mL falcon tube for pH measurement; (3) 10 g in petri-dish for water content

measurement; (4) 5 g in airtight anoxic vials and stored at -20 °C for reactive Fe oxide measurement

and (5) 10 g was pooled from each quadrant into one composite sample for each sampling location

and thoroughly homogenized for texture analysis. Remaining soil was air-dried, sieved (2 mm mesh

size) and ground to a fine powder with mechanical pestle and mortar (henceforth referred to as

pulverized) for downstream physical-chemical analyses (Supplementary F1).

2.3. Soil physico-chemical analyses

Particle size distribution was determined on composite fresh soil by the hydrometer method (Gee

and Bauder, 1986) and classified according to international standard particle size classes. Water

content was measured after drying samples for 12h at 105˚C. Soil pH was measured on fresh soil in 

MilliQ water at a 1:2.5 ratio (soil liquid, w/v) using a combined glass electrode (Metrohm,

6.0228.000). Poorly crystalline Fe oxides, henceforth referred to as reactive fraction of Fe oxides,

were measured based on the experimental procedures described in Nguyen et al. (2014). Two

chemical extractions were performed in parallel for 24 hours in 1:100 (soil liquid, w/v) using: 1)

0.5M formic acid at pH 3, targeting the carbonates and phosphates and 10mM ascorbic acid and 2)

0.5M formic acid at pH 3, to target the ferrihydrite and very poorly crystalline goethite. Poorly

crystalline Fe oxides was determined by subtracting Fe2+ found in the first extraction from Fe2+ in
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the second extraction. Total carbon and total nitrogen concentrations were analyzed by dry

combustion at 1200° using a Vario Macro cube C/N elemental analyzer on dry, 2mm sieved and

pulverized soil samples (Elementar Analysen systeme GmbH, Hanau, Germany). Data quality of

C/N analysis was evaluated by inclusion of standard reference materials (1515 Apple leaves and

141d acetanilide, National Institute of Standards and Technology (NIST), Gaithers-burg, MD,

USA). Plant-available P was determined by the Olsen P method, extracting the dry, 2mm sieved and

pulverized soil with a 0.5M hydrogen carbonate solution at pH 8.5 and then spectrophotometrically

measuring the P content in solution, following ISO 11263:1994 protocol.

2.4. Water-extractable, total and CISED extractions

Water-extractable elements (Al, As, Ba, Ca, Cd, Co, Cr, Cu, Fe, K, Li, Mg, Mo, Mn, Na, Ni, P, Pb,

S, Sb, Si, Se, Sr, V and Zn) were analyzed in soil-water extracts at a 1:5 ratio (soil liquid, w/v),

extracted on a horizontal shaker at 200rpm for 2 hours.

Total element concentrations (Al , As, Ba, Ca, Cd, Co, Cr, Cu, Fe, K, Li, Mg, Mo, Mn, Na, Ni, P,

Pb, S, Sb, Si, Se, Sr, V and Zn) were determined following ISO 11047 protocol, which extracts the

elements with aqua regia (HCl/HNO3) using a microwave digestion system.

The solid phase distribution of elements (Al , As, Ba, Ca, Cd, Co, Cr, Cu, Fe, K, Li, Mg, Mo, Mn,

Na, Ni, P, Pb, S, Sb, Si, Se, Sr, V and Zn) was investigated using a modified non-specific sequential

extraction method, based on the CISED methodology (Cave et al., 2004), as described in (Cipullo et

al., 2018). Briefly, 2 g of pulverized soil was sequentially extracted (twice per reagent) with

deionized water (DI) and HNO3 in increasing dissolution strength: DI (E1-E2), 0.01 M (E3-E4),

0.05 M (E5-E6), 0.1 M (E7-E8), 0.5 M (E9-E10), 1.0 M (E11-E12) and 5.0 M (E13-E14), with

H2O2 (100 Volumes) addition in the last 4 extracts.

2.5. Bacterial bioreporter assay
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Henceforth, Bioavailable Cu (Cubio) is operationally defined as Cu species in soil-water extracts that

are able to induce gene expression in a Cu-specific Pseudomonas fluorescens bioreporter during a

90 minute incubation period. A dual strain whole-cell bacterial bioreporter assay was performed

using the same soil-water extracts as above, as described previously (Brandt et al., 2008). No

sample matrix correction factors were required.

2.6. Element measurement by Inductively Couple Plasma-Mass Spectrometry

Water-extractable, aqua regia and CISED samples were diluted (1:10) with HNO3, spiked with 5 μg 

mL-1 of internal standard mix (Se, Ge, Rh, and Bi), and subsequently measured for elements listed

above using an Inductively Couple Plasma-Mass Spectrometry (NexION® 350D ICP-MS, Perkin

Elmer). The instrument was calibrated with 9 major (Ca, Fe, K, Mg, Mn, Na, S, Si, P) and 17 trace

(Al, As, Ba, Cd, Co, Cr, Cu, Hg, Li, Mo, Ni, Pb, Sb, Se, Sr, V, Zn) elements. The concentration

ranged from 1 to 40 mg L-1 for major elements and 0.01 to 2 mg L-1 for trace elements. For data

quality control, acid blanks (1% nitric acid), digestion blank, and guidance material (BGS102) were

analyzed systematically, to account for blank contamination, sensitivity, operating conditions and

extraction accuracy. No recovery corrections were made as the mean repeatability (expressed as

relative standard deviation %) of the guidance material (BGS102) was below 15% for individual

elements. Sample 8 was removed from subsequent data analyses, as it did not meet the data quality

control criteria.

2.7. CISED self-modelling mixture resolution

The self-modelling mixture resolution (SMMR) algorithm (MatLab Version R2015a) was used to

model the solid-phase distribution of elements in soil as studied by the CISED sequential extraction

technique (Cave et al., 2004). The algorithm assumes that the chemical analysis data represents

different proportions of chemical components (which have fixed chemical composition) that have

been dissolved out of the soil by the extraction media. The algorithm then uses chemometric

methods to identify the number of components being extracted, the chemical composition (Al, As,
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Ba, Ca, Cd, Co, Cr, Cu, Fe, K, Li, Mg, Mo, Mn, Na, Ni, P, Pb, S, Sb, Si, Se, Sr, V and Zn) of each

component (CMP = composition) and the amount of each component in each extraction solution.

The extraction profile of each component is derived from the amount of each component found in

the 14 extracts (PRF = profile). In addition, the relative proportions of each element in each

component can also be calculated (DST = distribution). The SMMR algorithm was run separately

for each sampling location, including the 4 quadrants, resulting in 10 distinct sets of components (6-

13/sampling location), resulting in a total 89 individual components in the entire dataset. From here,

hierarchal clustering, geochemical profile interpretations and previous study with a certified

reference material (Cave et al., 2004; Wragg and Cave, 2012) was used to classify the 89

components into the common, distinct soil phases (i.e. residual pore salts and exchangeable phases).

Briefly, a matrix with mean-centered and scaled CMP and PRF, as described above, of each

component was performed with Ward’s method using the ‘agnes’ function in the cluster package

(Maechler et al., 2012) in R (v.3.4.1, R Foundation for Statistical Computing; available at

https://www.r-project.org/. The result from the clustering was visualized using a heatmap (Fig. 2)

created using ggplot2, reshape2, grid, and ggdendro packages (Wickham, 2007; Wickham, 2010).

2.8. Statistical analyses

All statistical analyses were performed in R (v.3.4.1, R Foundation for Statistical Computing). The

significant influence of specific physico-chemical soil parameters on the solid phase distribution of

Cr, Cu and As was tested using redundancy analyses (RDA) (Legendre and Anderson, 1999). In the

context of this research, it tested the relationship between physico-chemical properties of soil on the

solid phase distribution of either Cr, Cu or As (separate analysis for each element). In order to

choose which explanatory variables (physico-chemical factors) to include in the model, we pre-

selected physico-chemical parameters based on geological interpretation of the system, keeping in

mind that one of the central assumptions of this analysis is independence between explanatory

variables. Variables selected for hypothesis testing were based on evidence from the literature and
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included pH, total C, reactive Fe oxide, Olsen P, total P as well as total and water-extractable Ca,

Mg and Mn. A forward selection of variables using the ‘ordistep’ function in the ‘vegan’ package

was performed in order to select the variables to include in the final model. The final model was

built using the ‘rda’ and ‘anova.cca’ functions of the ‘vegan’ package (Oksanen et al., 2013).

Spatial autocorrelation between samples due to sampling design tested positive using the ‘mso’

function in the ‘vegan’ package. Thus, it was accounted for using partial redundancy analysis,

conditioning for sampling location. Reported adjusted redundancy statistics R2 were obtained using

the ‘RsquareAdj’ function of the ‘vegan’ package.

The relationship between elements in the water-extracts, bioavailable Cu and the common CISED

identified soil phases was not reported as it is generally assumed that soil particle associated-

elements are not directly available to bacteria (Brandt et al., 2006; Noll, 2003). Therefore, we tested

the relationships between bioavailable Cu (ug g-1), water-extractable Cr, Cu and As (ug g-1) and

elements (ug g-1) in the most easily extractable soil component identified by CISED for each

sampling location by using Pearson correlation coefficient with the ‘cor’ function in R.

3. Results

3.1 Soil physico-chemical properties

Selected physico-chemical soil properties are summarized in Table 1 and detailed characterization

is provided in Supplementary Table 1 and Table 2. Total concentrations of Cr, Cu and As ranged

between 26.1-1819 mg kg-1, 17.2-2205 mg kg-1 and 32.4-2839 mg kg-1, respectively, while water-

extractable concentrations ranged from 0.02-0.78 mg Cr kg-1, 0.11-5.99 mg Cu kg-1 and 0.17-18.3

mg As kg-1 and bioavailable Cu ranged from 0.04-3.52 mg kg-1.

Soil samples collected from location 1, 2, 3, 5, 6 and 8 were classified as sandy soils (sand >

85.0%) while 4, 7, 9 and 10 were loamy sand (sand = 81.0- 85.0 %). pH ranged from 3.53-6.83
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across all samples. Total C, ranged from 1.47-17.4% and total N from 0.09-0.83%. Reactive Fe

oxides in samples ranged from 1.48-5.97 mg kg-1, Olsen P 14.7-73.4 mg kg-1 and total P 319-713 μg 

g-1. Total and water-extractable Ca ranged from 1112-7414 μg g-1 and 3.42-50.8 μg g-1, respectively.

Total and water-extractable Mg ranged from 692-1951 μg g-1 and 0.66-6.72 μg g-1, respectively.

Total and water-extractable Mn ranged from 225.4-1174 μg g-1 and 0.08-2.45 μg g-1, respectively.

3.2 Soil solid phases identified by CISED

Extraction recoveries with the CISED extraction methodology compared with total element

concentration averaged 61 ± 13 %, 90 ±11% and 81 ± 11% for Cr, Cu and As, respectively. The

cumulative CISED extraction recoveries were less than 100 % because the CISED extraction

protocol mainly targets the easily soluble surface coatings and not the silicate matrix of soil.

The SMMR algorithm identified 6-13 soil components per sampling location giving 89 individual

components in the entire dataset. Using a combination of the chemical composition of the clusters,

the relative ease of their extraction as indicated by the amount extracted at each step and a general

knowledge of soil geochemistry, 6 common physico-chemical phases were identified (Fig. 2).

Table 2 describes the 6 common soil solid phases amongst the sampling locations, listed here in

decreasing ease of extractability: Residual pore salts, exchangeable, carbonates (tentative

designation), Mn-Al oxide, Fe oxide (amorphous) and Fe oxide (crystalline) (Table 2).

Residual pore salts-this cluster was extracted primarily during the first two extractions of CISED

using deionized water. It is dominated by Ca, Na, K, and Si, which are highly mobile elements and

can be derived from soluble pore water salts in soil.

Exchangeable-this cluster does not result in defined peaks like the other phases, likely as a result of

data processing of soil components of higher variability, and is comprised of several components

from each location. It is mainly comprised of exchangeable cations such as Na, Mg, S, Sb, Se and P,

which are typically bound to soil particle surfaces by weak electrostatic forces and can be displaced

by competing cations and released into solution, as exhibited in the saw toothed pattern of the
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extraction profile (Table 2). Some of these extractable components also come out at higher acid

strengths, conceivably being encased in more recalcitrant components which are only being released

later on in the extraction profile.

Carbonates (tentative designation)- typically we would designate this component as carbonates

however, due to the inherent physico-chemical properties (pH below 7) on site, which would

suggest that carbonates are unlikely to occur, we only tentatively assign this soil phase. This is

further discussed in Supplementary Material. This cluster is extracted on the first addition of acids

and is comprised of two sub-clusters which are carbonate (Ca-Mg) and carbonate (Ca). Carbonate

(Ca-Mg) sub-cluster is dominated with Ca and Mg, and comes out over a narrow range in the

extractions, primarily during the addition of 0.01M nitric acid. Other elements present in this

partition include Al, Ba, Cd, Cu, Sr and Zn. Carbonate (Ca) sub-cluster comes out a little later in the

extraction profile, indicating that this carbonate phase is less available than the previous. It is

composed of the same elements as the previous cluster, with the notable absence of Mg. Location 3,

4, 5, 8 and 10 have soil components in both sub-clusters while Location 1, 2, 6, 7 and 9 only have

soil components associated with more readily available carbonate phase (Ca-Mg).

Mn-Al oxide- this cluster is dominated by Mn and Al elements and tends to be extracted upon

addition of peroxide, a reagent commonly known to target Al oxides.

Two distinct clusters of Fe oxides were identified and suggest the presence of both amorphous and

crystalline Fe oxides:

Fe oxide (amorphous)- this cluster comprises soil components that are extracted from 0.1M-1M nitric

acid and are primarily made up of Fe and to a lesser extent, Al, Pb, Se and V.

Fe oxide (crystalline)- this cluster is comprised primarily of Fe and to a lesser degree Al and Si, and

requires high acid concentrations (0.5-5M) to extract. Within this cluster, there is a subcluster with

3 soil components belonging to the locations with the highest contamination (Location 3, 4 and 5)

and appear to be a CCA component, primarily made up of Fe, Cr and As.
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3.3 Solid Phase Distribution of Cr, Cu and As in soil

Chromium, Cu and As at this site were associated with specific soil phases along the contamination

gradient. Fig. 3 presents the data based on percentage of the individual element in the soil phases as

compared with the total Cr, Cu, As extracted in that sample with CISED and as such, the changes

observed are relative. The distribution of Cr, Cu and As (μg g-1) in each soil phase can be found in

Supplementary Table 3. Samples were separated into low, moderate and high contamination the

subsequent text in order to discuss their distribution along the contamination gradient, as follows:

(i) Low concentrations, samples 1-14 (below 175 μg g-1 for Cr, Cu and As), (ii) moderate

concentrations, samples 15-27 (between 175-200 for Cr, 175-600 for Cu and 175-400 μg g-1 for

As), and (iii) high concentrations, samples 28-40 (above 200 for Cr, 600 for Cu and 400 μg g-1 for

As).

Cr is almost exclusively found in the least reactive phase, in the crystalline Fe oxide. In the low

contamination, particularly in samples coming from location 9, Cr is present in the exchangeable

(avg. 78± 11 %) and Mn-Al oxide (avg. 22±11 %) phases. In the high contamination, at location 3,

some Cr is found in the exchangeable phase (avg. 42±10 %). In the low and moderate

contamination, some Cr is found in the amorphous Fe oxide phase (avg. 18 ±8 %) at location 8 and

2.

Cu is primarily found in Mn-Al oxides and to a lesser extent, the Fe oxide (amorphous) phases in

the lower end of the contamination gradient. In the moderate and high contamination, Cu is almost

exclusively found in the carbonate (tentative designation) phase (avg. 57±29 %). It is primarily

found in the less extractable carbonate sub-cluster, carbonate (Ca). At location 9 (avg. 33±25 %) as

well as locations 3 (avg. 17±8 %) and 4 (avg. 18±6 %), a portion of the Cu is found in the

exchangeable phase.

The As solid phase distribution pattern along the contamination gradient was more variable. At low

contamination, it was primarily in the crystalline Fe oxides (avg. 46±21 %), in the Mn-Al oxides
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(avg. 10 ±8 %), and amorphous Fe oxides (avg. 16 ±6 %). For samples from location 9, it is also in

the exchangeable phase (avg. 24 ±23 %). In the moderate contamination, the As contamination

shifts into the exchangeable (avg. 18±13 %), Mn-Al oxides (avg. 18 ±13 %) and amorphous Fe

oxides (avg. 34±22 %). In the high contamination, the As was no longer found in the Mn-Al oxides

but in the carbonates (tentative designation) (avg. 22±7 %), amorphous Fe oxides (avg. 18 ±10 %),

crystalline Fe oxides (avg. 33±11 %) and also in the exchangeable (avg. 24±3 %) for locations 3

and 4. In the moderate (avg. 4±3 μg g-1) and high contamination (avg. 2±1 %), a small proportion of

As could be detected in the residual pore salts, corresponding to alarmingly high concentrations in

specific samples (up to 37.5 μg g-1).

3. 4 Factors affecting the Solid-Phase Partitioning of Cr, Cu and As in Soil

Specific physico-chemical parameters significantly affected the solid-phase partitioning of Cr, Cu

and As in soil as shown with partial redundancy analyses (Fig. 4). Cr solid phase distribution was

significantly affected by pH (F=10.3, p=0.002), with the model adjusted R2=0.194 (Fig. 4a). The

amount of variance explained by this model was 20.9% and an additional 6.1% of the variation

could be attributed to spatial autocorrelation correction. Cu solid phase distribution was

significantly affected by total Mg (F=29.1, p=0.001), Olsen P (F=24.9, p=0.001), pH (F=22.4,

p=0.001), total Mn (F=14.0, p=0.003), water-extractable Mg (F=13.3, p=0.001) and water-

extractable Ca (F=6.2, p=0.018), with the model adjusted R2=0.759 (Fig. 4b). The amount of

variance explained by this model was 70.0% and an additional 8.1% of the variation could be

attributed to spatial autocorrelation correction. As solid phase distribution was significantly affected

by pH (F=24.3, p=0.001), reactive Fe oxides (F=5.2, p=0.022) and Olsen P (F=3.4, p=0.05), with

the model adjusted R2=0.437 (Fig. 4c). The amount of variance explained by this model was 46.5%

and an additional 9.0% of the variation could be attributed to spatial autocorrelation correction.

3. 5 Linking Cr, Cu and As solid phases to bioavailability
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While water-extractable Cu (r=0.374, p=0.019) and As (r=0.612, p<0.001) were significantly

correlated to the most readily available CISED component at each site, water-extractable Cr and

bioavailable Cu were not.

4. Discussion

To our knowledge, this is the first study to investigate and elucidate specific effects of physico-

chemical parameters on the solid phase distribution of elements at a complex field site after

substantial ageing processes. Element-specific distributions and behaviors in soil were observed

along a CCA-contamination gradient at former wood impregnation site.

4.1 Factors affecting the Solid-Phase Partitioning of Cr, Cu and As in Soil

Although past studies have already demonstrated that pH can alter the distribution of these

individual elements in soil (Kabata-Pendias, 2010; Lu et al., 2005), here we report the importance

of pH in affecting the distribution of all three elements simultaneously along a field contamination

gradient. These finding suggest that acidification of soil, as a result of events such as rainwater

leaching, decomposition of organic matter and release of carbon dioxide and/or plant root exudation

of reducing and chelating compounds for example, could lead to redistribution of Cr, Cu and As

amongst soil solid phases.

Additionally, element-specific influences were observed. Cu distribution was influenced by divalent

cations such as Ca2+, Mg2+ and Mn2+, which are known to be structurally similar and may compete

with Cu for binding sites in soil. For example, competition for binding sites and translocation into

plant roots between divalent cations such as Ca and Mn has been reported with Cd (Eller and Brix,

2016). Plant available P (Olsen P) was also shown to be important in influencing the distribution of

Cu, and could compete with Cu for binding to different oxides, such as Mn-Al oxides. In the case of

As, reactive Fe oxides were significantly affecting its distribution, a phenomenon generally known

(Yang, Barnett et al. 2002). Available P (Olsen P) also played a role in the distribution of As on soil
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solid phases. Interestingly, As(V) is a well-known phosphate analog which competes for sorption

sites in soil (Bolan et al., 2013). Thus, an increase in P could result in an increase in available As for

plant uptake, as demonstrated at a CCA site by Cao et al. (2004). Indeed, this suggests that sudden

changes in these specific physico-chemical factors could lead to shifts in the distribution of these

elements between soil liquid and solid phases, as discussed in the subsequent section 4.2.

4.2 Solid Phase Distribution of Cr, Cu and As in soil

In the wood impregnation mixture, Cr was found as Cr(VI), a highly reactive, mobile and toxic

form of Cr. During the fixation process, it is reduced to Cr(III) but residues of Cr(VI) may still

occur and leach into the soil. After a substantial ageing period, Cr on site was found almost

exclusively bound to the least extractable phase, the crystalline Fe oxide. Although the crystalline

Fe oxide minerals typically have lower adsorption capacity than amorphous phases such as

ferrihydrite minerals, the dominance of Cr in the aforementioned phase could be for several reasons.

Either there are more of these oxides present at this site and therefore a larger fraction is absorbed

onto this fraction, and/or perhaps more importantly, ferrihydrites age to crystalline Fe oxide over

time, a process which can be further aided by microbes in soil (Zachara et al., 2002) and as such, Cr

may have started off associated with ferrihydrites but this fraction became crystalline over time. As

a result, and in line with a previous report at this site (Nielsen et al., 2016), we suggest that the

dominant form of Cr in the top soil is Cr (III) because in this form, Cr is typically bound to

positively charged surfaces such as Fe and Al oxides and is very stable in soil (Namiesnik and

Rabajczyk, 2012). Although past laboratory and field studies have suggested that Cr from the CCA

mixtures is highly mobile, these studies have focused on short-term monitoring (Allinson et al.,

2000; Hopp et al., 2006). After 100 days of ageing, however, Carey et al. demonstrated in a

controlled leaching study, that less than 1% of Cr(VI) could be extracted in the top layer (Carey et

al., 2002) . Groundwater investigations of the terrain magazines at this site have suggested that the

mobile pools of Cr have been washed out, as concentrations in the groundwater have fallen
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significantly between 1977 and 1995, from 21-1500 μg L-1 to <3 μg L-1 (Nielsen et al., 2010).

Remaining Cr(VI) in the top soil was likely reduced to chromic cation Cr(III) by soil organic

matter, as previously shown (Carey et al., 2002; Kabata-Pendias, 2010). Although total

concentrations of Cr at the higher end of the contamination gradient exceed guideline values, it is

unlikely to leach and cause adverse ecological impact because of its association with crystalline Fe

oxide structures which are stable under oxic top soil conditions.

Cu, added as CuO salts in the impregnation mixture, is typically found as a divalent cation in soil.

After 40 years of ageing, Cu(II) occurred in readily available phases such as exchangeable, and less

available phases such as carbonates (tentative designation) and Mn-Al oxides. Previously, Cu(II) in

the oxic top soil has been shown to be highly reactive with soil organic matter (SOM), typically

exhibiting low mobility in soil (Andersen et al., 1996; Kabata-Pendias, 2010). At this site, however,

soil organic matter content is generally low (avg. 5.6±4.2%), particularly in the highly contaminated

end of the gradient where substantial amounts of Cu are bound (avg. 2.0±0.5%), suggesting that Cu

might not efficiently bind to SOM. In recent work at this contaminated site, Frick et al. (submitted)

also found that dissolved organic matter content in soil from the highly contaminated samples was

very low. Indeed, in their artificially CCA contaminated soils with low organic content, Balasoiu et

al., found that Cu was predominantly bound to soluble or exchangeable soil phases (Balasoiu et al.,

2001). In samples from the low contamination gradient at this site, Cu binds readily to Mn-Al oxides

and amorphous Fe oxide, which has been demonstrated in several soils with low organic matter soils

(Agbenin and Olojo, 2004; Yu et al., 2004). When moving towards the moderate to highly

contaminated samples, Cu shifted into the more extractable phase, carbonates (tentative designation)

(primarily the less extractable carbonate sub-cluster). Indeed, the differential vegetation cover and,

changes in plant species and physiology between the sampling location on site will affect the

geochemistry through direct (e.g. input and quality of organic matter, oxygen content and water

holding capacity) and indirect effects on the soil fauna by processes such as reduced organic material

breakdown by microorganisms and/or increased compaction of soil due to reduced earthworm activity
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(Arthur et al., 2012). The absence of trees, as seen in the higher end of the contamination gradient

which can only support the growth of mosses, can lead to increased mobility of elements via absence

of interception of incident precipitation, root accumulation and precipitation of elements in the

rhizosphere and could in part explain the shift of Cu into a more extractable phase. Determining the

isolated impact of individual effects discussed above on the solid phase distribution of elements,

however, is nearly impossible as these processes add-up and merge to form what is called the legacy

effect. Although carbonate associated elements are generally considered non-available to plants, a

drop in pH could release Cu to more readily-extractable phases (Martınez and Motto, 2000). In the 

highly contaminated samples, Cu was also associated to the exchangeable phase at specific locations,

a phase which has been described as readily available to plants and microorganisms (Maderova et al.,

2011). Furthermore, the cation characteristics of this phase (e.g. Na, Mg and S), are bound to soil

particle surfaces by weak electrostatic forces and can be displaced by competing cations (Rowell,

1994). Indeed, this study has reported that competing divalent cations such as Ca2+, Mg2+ and Mn2+

play a significant role in the distribution of Cu and as such, the divalent cations in this phase could

compete for binding with Cu, leading to the release of Cu in the soil solution. In this study we report

that Cu, particularly in highly contaminated samples, is present in soil phases that are readily

extractable and/or in phases that are could replenish exchangeable and soil pore water element

concentrations, under altering physico-chemical conditions (Degryse et al., 2009).

Arsenic was added as arsenate (As(V)) in the impregnation mixture, which is the less mobile and

toxic inorganic form of As as compared with arsenite (As(III)) (Masscheleyn et al., 1991). At this

CCA site (Frick et al., submitted) and in other studies (Balasoiu et al., 2001; Gräfe et al., 2008;

Hopp et al., 2008), As(V) is reported as the dominant form of As, which is consistent with our

knowledge that As (V) dominates in oxic top soil environments (Kabata-Pendias, 2010). Along our

contamination gradient, we observed that As was associated with all soil solid phases identified

with the CISED methodology. A large portion of the As on site was associated with Mn-Al and Fe

oxides, in line with our knowledge that the inorganic oxyanion As(V) strongly binds to positively
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charged Fe and Al oxides, both in natural (Lin and Puls, 2000; Wragg et al., 2014) and

contaminated soils (Bhattacharya et al., 2002). Arsenic bound in these phases is least likely to be

dissolved in the soil solution and leach to groundwater aquifers. But, As is also associated with

readily extractable phases such as residual pore salts and exchangeable. Arsenic concentrations in

those phases, reported at up to 37 and 437 μg g-1, respectively, are particularly alarming, given that

the soil guidelines for ecological risk are set at 20 μg g-1. Like Cu, As is also found in the

carbonates (tentative designation) phase and changes in specific physico-chemical factors such as

pH, reactive Fe oxides or available P, as described in section 4.1, could lead to redistribution of As

into different soil phases and thus, increase the risk of leaching and contamination of groundwater

reservoirs.

4.3 Linking Cu and As in solid phases to bioavailability

There is consensus in the literature that insignificant fractions of soil particle associated-Cu are

directly available to bacteria (Brandt et al., 2006; Noll, 2003; Ore et al., 2010). As a result, soil pore

water elements are often used to represent the biologically relevant element fraction (Giller et al.,

2009; Peijnenburg et al., 2007). This study found that although water-extractable Cu correlated to

Cu in the most extractable CISED component, bioavailable Cu measured with a bacterial

bioreporter, did not. This is in line with knowledge that bioavailability of Cu is influenced by

complexation with dissolved organic matter (Brandt et al., 2008; Nybroe et al., 2008). Results from

sequential extraction schemes have been used in the past to make inferences about bioavailability

and toxicity to soil dwelling organisms such as plants, invertebrates and microorganisms. Our study

has shown, however, that bioavailability of Cu to microorganisms cannot be fully inferred using

sequential extraction methodologies such as CISED. Indeed, Maderova et al. (2011) also concluded

that no single chemical method, including the BCR sequential extraction methodology they

employed in their study, could quantify bioavailability of Cu to microbes. This suggests that it is
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imperative to have receptor-targeted tests of bioavailability and highlights the importance of

including these tests alongside chemical methods.

Water-extractable As was also significantly correlated with As in the most extractable CISED

phase, and interestingly, past research at this site reported that water-extractable As was almost

exclusively bioavailable, as measured with an arsenic bioreporter assay (Frick, 2016). Collectively

these findings suggest that while no inferences can be made about Cu bioavailability from Cu in the

CISED residual pore salt phase, As bioavailability to bacteria could tentatively be inferred at this

contaminated site.

5. Conclusion/Summary

In this study we demonstrated that physico-chemical factors governing the solid phase distribution

of Cr, Cu and As at a CCA-contaminated site are element-specific. Hence, pH and elements

competing for binding sites, P in the case of As and divalent cations Ca, Mg and Mn for Cu,

affected this distribution. Changes in specific physico-chemical factors through natural processes

such as soil acidification from rainwater leaching, organic matter degradation and/or plant

exudation or targeted remediation approaches which increase available P or reactive Fe oxides in

the field, could alter the solid phase distribution and therefore, mobility of Cr, Cu and As. After

substantial ageing processes, Cu and particularly, As remained in readily extractable phases such as

residual pore salts and exchangeable while Cr was largely bound to the least extractable solid phase,

crystalline Fe oxides. Findings from this study suggest that Cu and As at aged CCA-contaminated

sites constitute the largest risks for environmental and human health and should be closely

monitored. In the case of Cu, risk is mainly related to ecotoxicological impact while As, due to its

higher mobility and severe human health effects, may represent a risk to adjacent aquatic

ecosystems and to human health via contamination of drinking water reservoirs. In addition, Cu

bioavailability to microbes could not be predicted solely using a sequential extraction procedure.
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This suggests that receptor-specific tests of bioavailability such as whole cell bacterial bioreporters

for microbes are needed to infer bioavailability in the soil environment and should be integrated

into risk assessments to complement analytical methods.
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Figures and Tables

Figure 1: (a) Map of Denmark and location of contaminated field site and (b) field site with
cumulative total Cr, Cu and As concentrations measured in 1990 by SAMFUNDSTEKNIK during
phase 2 risk assessment (Samfundsteknik, 1989b) with designated 10 sampling locations (1-10).
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Figure 2: Heatmap and hierarchal clustering of components identified by self-modelling mixture
resolution (SMMR) algorithm for 10 sampling locations. The heatmap color gradient represents the
mean-centered concentrations of elements and the extraction profiles (E1-E14) reported as total
extracted solids (μg g-1) of the individual components, where black is low and white represents high
concentrations. Each row represents a component identified by the SMMR algorithm with the name
indicating the origin of the sampling location and the major elemental composition (≥10%). The 
stipple line on the ward cluster tree is where the cut-off was made to inform the geochemical
assignment of common soil solid phases, listed in decreasing extractability; 1) Residual pore salts,
2) Exchangeable, 3) Carbonates (tentative designation), 4) Mn-Al oxide, 5) Fe oxide (amorphous)
and 6) Fe oxide (crystalline).
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Figure 3: Distribution (%) of Cr, Cu and As in different geochemical soil phases as compared to
total extracted using CISED, in decreasing ease of extractability from the soil samples, along

contamination gradient in Fredensborg, Denmark.
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Figure 4: The effect of significant (p≥0.05) physico-chemical factors on the solid phase distribution 
measured using CISED of (a) Cr (one-dimensional), (b) Cu and (c) As shown using constrained
partial redundancy analysis, while controlling for the effect of autospatial correlation of sample.
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Table 1: Selected physico-chemical properties of the top 10 cm of soil sampled (n=40) along the contamination gradient in Fredensborg, Denmark1

Samplea Sampling
Locationb Clayc Siltc Sandc Texturec pH C N Olsen P

Reactive
Fe oxides

CuBio
d Astot

d Cawe
d Crtot

d Cutot
d Mgtot

d Mntot
d Ptot

d Aswe
d Cawe

d Crwe
d Cuwe

d Mgwe
d Mnwe

d

% USDA % mg g-1 μg g-1 

1 9 6 13 81 Loamy sand 4.56 2.93 0.18 20.2 5.97 0.06 32.5 2441 28.9 17.2 1565 521 460 0.17 8.04 0.04 0.11 1.05 0.39

2 7 4.4 13.6 82 Loamy sand 5.27 2.69 0.14 32.1 1.48 0.40 39.8 2538 30.4 32.3 1672 457 403 0.40 18.8 0.13 0.56 4.78 2.45

3 9 6 13 81 Loamy sand 5.01 2.92 0.17 19.4 4.98 0.05 46.1 2524 33.4 24.0 1648 492 443 0.22 7.12 0.02 0.11 0.77 0.20

4 7 4.4 13.6 82 Loamy sand 5.26 2.5 0.13 27.3 1.98 0.25 36.7 2480 26.1 42.4 1622 445 399 0.24 11.2 0.06 0.38 2.27 0.70

5 9 6 13 81 Loamy sand 4.29 3.21 0.19 24.0 2.19 0.10 61.5 1997 30.4 22.9 1334 441 403 0.37 7.35 0.03 0.18 0.97 0.40

6 7 4.4 13.6 82 Loamy sand 5.64 3.83 0.21 27.9 2.2 0.32 48.0 2759 47.1 52.2 1455 447 394 0.67 26.0 0.17 0.70 4.70 1.38

7 7 4.4 13.6 82 Loamy sand 5.29 5.91 0.27 41.2 1.87 0.34 54.0 3137 59.0 52.8 1747 496 492 0.61 15.7 0.13 0.48 2.91 1.02

8 10 4 13 83 Loamy sand 6.42 11.6 0.6 29.6 2.95 0.14 109 3307 67.2 75.3 1550 463 538 2.19 36.1 0.04 0.38 2.02 0.09

9 1 6.4 8 85.6 Sand 4.53 9.55 0.56 14.7 1.73 0.19 109 2869 94.4 70.0 1535 276 455 1.22 13.7 0.15 0.60 1.73 0.47

10 1 6.4 8 85.6 Sand 3.53 12.6 0.69 18.2 1.93 0.21 113 3408 110 69.6 1601 304 486 1.79 17.8 0.21 0.48 2.55 1.03

11 10 4 13 83 Loamy sand 6.73 7.89 0.41 22.1 1.61 0.04 169 4596 94.0 93.9 1627 543 539 2.02 30.6 0.03 0.23 2.72 0.13

12 1 6.4 8 85.6 Sand 3.64 9.15 0.51 19.4 2.02 0.38 143 2847 128 94.6 1520 282 459 1.62 25.8 0.27 0.96 3.08 1.90

13 9 6 13 81 Loamy sand 5.62 4.24 0.25 31.0 1.89 0.09 178 4584 107 137 1584 533 633 0.54 6.31 0.03 0.14 0.98 0.24

14 10 4 13 83 Loamy sand 6.78 12.9 0.62 37.3 1.78 0.05 175 7414 142 122 1591 616 671 1.97 45.6 0.04 0.24 4.96 0.10

15 8 4 9 87 Sand 5.55 10.3 0.56 59.4 1.99 0.18 213 4775 154 158 1707 449 557 5.44 27.4 0.29 0.79 6.72 0.66

16 8 4 9 87 Sand 5.78 11.3 0.58 42.2 2.16 0.62 288 5021 128 149 1787 508 562 4.98 22.7 0.15 0.65 4.95 0.25

17 2 5.6 5.4 89 Sand 5.08 2.63 0.17 73.4 4.52 1.93 251 1399 74.2 289 872 225 516 4.80 5.11 0.13 1.69 1.34 0.70

18 10 4 13 83 Loamy sand 6.75 10.3 0.51 35.0 2.57 0.09 294 6797 161 203 1839 678 712 2.49 41.0 0.04 0.35 2.70 0.09

19 1 6.4 8 85.6 Sand 4.73 11 0.58 20.4 2.15 0.59 284 3637 244 134 1594 339 463 2.94 26.8 0.44 1.15 3.17 1.25

20 8 4 9 87 Sand 5.67 10 0.55 39.0 1.95 0.28 313 5294 169 188 1924 687 699 5.24 24.3 0.15 0.68 5.01 0.31

21 8 4 9 87 Sand 5.96 7.1 0.39 45.3 2.15 0.71 228 6096 213 251 1951 747 645 6.21 23.9 0.22 0.86 5.13 0.32

22 2 5.6 5.4 89 Sand 4.45 2.85 0.17 68.6 2.25 0.87 334 1144 216 281 755 230 384 7.63 3.42 0.23 1.51 1.00 0.69

23 2 5.6 5.4 89 Sand 4.51 2.56 0.16 59.5 1.91 1.53 221 1112 147 493 725 258 428 3.18 3.54 0.14 2.09 0.66 0.46

24 6 5.6 9.4 85 Sand 5.07 5.43 0.29 47.3 2.2 1.00 308 1564 267 371 898 623 576 5.33 4.71 0.29 1.47 1.21 0.51

25 6 5.6 9.4 85 Sand 4.38 7.93 0.41 40.8 2.1 0.72 386 1519 440 468 919 536 567 8.43 5.02 0.72 1.57 1.64 0.93

26 2 5.6 5.4 89 Sand 4.67 2.96 0.18 65.9 1.96 1.22 397 1169 372 561 721 434 438 3.87 4.02 0.21 1.59 0.94 0.60

27 6 5.6 9.4 85 Sand 4.2 17.4 0.83 22.2 2.17 3.52 203 1749 187 1129 692 484 445 7.51 11.2 0.35 5.99 2.36 0.90
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28 6 5.6 9.4 85 Sand 4.59 7.03 0.38 34.5 2.44 1.92 404 1925 568 674 864 683 582 5.84 10.9 0.78 2.98 2.71 1.06

29 5 2.4 6.6 91 Sand 6 2.57 0.17 26.3 2.4 1.03 459 1899 283 965 1095 1142 474 4.79 6.53 0.09 1.64 1.03 0.15

30 5 2.4 6.6 91 Sand 6.21 1.88 0.14 26.1 2.67 1.28 470 1818 239 1298 978 834 428 6.52 12.1 0.13 2.69 2.16 0.17

31 3 4.4 4.6 91 Sand 6.83 1.6 0.1 29.3 1.94 0.23 857 3285 336 879 1106 536 356 4.15 36.9 0.11 0.67 2.36 0.08

32 3 4.4 4.6 91 Sand 6.65 1.66 0.09 37.5 2.35 1.31 1088 3692 399 1097 1079 461 361 4.59 50.8 0.09 0.84 2.56 0.10

33 4 4.4 10.6 85 Loamy sand 6.35 2.4 0.12 27.4 3.87 1.01 1139 2400 434 1158 1124 385 319 18.4 15.7 0.29 3.66 4.05 0.86

34 3 4.4 4.6 91 Sand 6.21 1.47 0.09 26.6 2.43 1.34 1097 2509 555 1168 1144 343 363 7.65 37.5 0.24 2.02 3.02 0.16

35 5 2.4 6.6 91 Sand 6.23 1.76 0.11 24.8 1.48 0.76 973 2394 526 1462 1083 869 344 9.09 21.7 0.11 1.62 4.12 0.82

36 5 2.4 6.6 91 Sand 6.08 1.79 0.11 30.4 2.37 0.51 859 2442 456 1935 1172 1174 372 6.45 12.8 0.09 1.60 2.33 0.29

37 3 4.4 4.6 91 Sand 6.54 1.54 0.1 25.1 3.27 1.52 1357 2633 641 1785 977 397 350 7.63 47.3 0.24 2.05 2.70 0.13

38 4 4.4 10.6 85 Loamy sand 6.42 1.7 0.09 29.5 3.6 1.15 1795 4030 263 2205 1239 459 341 11.8 20.3 0.52 4.80 4.83 0.38

39 4 4.4 10.6 85 Loamy sand 6.27 2.16 0.11 23.9 3.49 0.60 2028 3867 1171 1844 1221 445 378 9.51 19.7 0.15 1.69 4.19 0.13

40 4 4.4 10.6 85 Loamy sand 6.26 3.08 0.11 25.3 3.99 0.58 2839 3038 1819 1630 1201 469 341 10.8 12.9 0.31 2.31 3.80 0.37

2

a Samples were named 1-40 by total cumulative concentrations of Cr, Cu and As in ascending order3

b Four samples were obtained from each sampling location (see Figure 1 for details)4

c Clay, silt, sand and texture classification were performed on composite sample at each sampling location5

d Cubio=bioavailable Cu as determined by whole-cell bacterial bioreporter assay, tot=total extracted by aqua regia digestion and we= water-extractable6

concentrations7

8

9

10

11

12

13

14
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Table 2: Common soil solid phases identified by CISED sequential extraction along the contamination gradient in Fredensborg, Denmark15

16

Soil Phase
Major element

composition
Minor element

composition
Extraction profile

example
Referencesa

Residual
pore-salts

Al, Ca, Na, K,
and S

Si (Cave et al., 2004; Rowell, 1994)

Exchangeable
K, Na, Mg,
S, Si and K

Sb, Se and P (Rowell, 1994)

Carbonates
(tentative

designation)

Ca and Mg
Al, Ba, Cd, Cu,

Sr and Zn
(Loeppert and Suarez, 1996)

Ca
Al, Ba, Cd, Cu,

Sr and Zn
(Loeppert and Suarez, 1996)

Mn-Al oxides Mn and Al
(Manning and Goldberg, 1996; Young,

2013)
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Fe oxide
(amorphous)

Fe and Al Pb, Se and V
(Cave et al., 2004; Cave and Wragg, 1997;

Cornell and Schindler, 1987)

Fe oxide
(crystalline)

Fe Al and Si
(Cave et al., 2004; Cave and Wragg, 1997;

Cornell and Schwertmann, 2003)

17

aReferences which informed the grouping into common soil phases18

E5 E10


