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H I G H L I G H T S

• An extensive review of the current status of oxy-fuel CFBC combustion has been written.

• Issues related to the scale-up of the technology, and the appropriate modelling approaches are discussed.

• The potential of pressurized oxy-fuel FBC is explored.

• Emissions and pilot plant performance are exhaustively examined.
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A B S T R A C T

Oxy-fuel combustion is a promising technology for carbon capture and storage (CCS) from large point sources. In
particular, fluidized bed (FB) boilers represent one of the power generation technologies capable of utilizing the
oxy-fuel concept. This paper reviews the published material on the key aspects of oxy-fuel circulating FB, in-
cluding the boiler heat balance, heat transfer mechanisms, furnace hydrodynamics, and the mechanical and
chemical mechanisms of the process. In particular, it demonstrates the challenges of utilizing high inlet O2

concentrations in the oxy-fuel process in fluidized beds. This requires significantly more efficient gas-particle
clean-up technology (especially for Cl with perhaps 19% retention and Hg with 2.15 μg/m3 in flue gases), high
circulating solids flux and, hence, significant heat extraction outside the furnace (up to 60% of the boiler’s total
heat extraction). Scale-up of oxy-fuel CFB technology can partially compensate for the energy penalty from air
separation by furnace downsizing when operating at high inlet O2 concentrations. Critically, while there are
numerous measurement campaigns and corresponding models from the pilot and, to a lesser extent, industrial
scale, the paper endeavors to answer the questions about what information taken from such experimental
campaigns is reliable, useful for future design, and for scale-up.

1. Introduction

The Fifth Assessment Report of the United Nations
Intergovernmental Panel on Climate Change [1] notes that human
impact on the climate system is certain, and recent anthropogenic
emissions of greenhouse gases (GHGs) are the highest in recorded his-
tory leading to global warming, sea level rises and more frequent
weather-related disasters. In particular, CO2 emissions have risen
sharply and are the main cause of and contributor to global warming
[2]. Fig. 1 shows the elevation in anthropogenic CO2 emissions since

1850, indicating a dramatic increase since ca. 1950, which was due to
the rapid global economic growth after the Second World War. It is now
widely accepted that action against unabated emissions of GHGs must
occur, in order to minimize the damaging effects of climate change.

The main methods for reducing CO2 emissions are:

• Carbon capture and storage (CCS) [3]

• Utilization of fuels with low C/H ratio such as natural gas [4]

• Improving energy efficiency, thus utilizing less fuel [5]

• Substituting fossil fuels with renewable or nuclear energy sources
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[4,6,7]

Carbon capture and storage is a bridging technology permitting a
smoother socio-economic shift from fossil fuels to renewable energy
sources. The main capture technologies in CCS are post-combustion,
pre-combustion and oxy-fuel combustion.

Post-combustion CCS relies on removal of CO2 from the flue gases
after combustion; however, since the concentration of CO2 in the ex-
haust gases is relatively low (usually 7–14 vol% for coal-fired boilers
and below 4 vol% for gas-fired boilers), the cost of CO2 separation is
high and imposes efficiency penalties of ∼8–12 percentage points
[8,9].

In pre-combustion CCS the fuel is gasified or reformed, and the CO2

is then removed from the produced gas before it is combusted or further
processed for another use. A significant benefit of pre-combustion CCS
technologies is that the CO2 concentration is typically far greater than
20 vol% (after water-gas-shift processing) and thus the separation of

CO2 is more economical than for post-combustion systems, with effi-
ciency penalties of ∼7–9 percentage points [8–10].

Finally, oxy-fuel CCS is the combustion of fuel in a mixture of almost
pure O2 and recirculated flue gases (RFG, predominantly composed of
CO2 and steam), resulting in a flue gas consisting mainly of CO2 and
steam, making the separation of CO2 relatively simple. An air separa-
tion unit (ASU) produces O2 cryogenically and the choice of O2 purity
significantly affects CO2 purity, plant capital cost and operating power
consumption [11]. Fig. 2 shows a generalized schematic of the oxy-fuel
CCS process, detailing the ASU, combustion boiler and RFG lines. Oxy-
fuel circulating fluidized beds (CFB) for CCS typically have an efficiency
penalty of ∼10 percentage points [9] and, therefore, a new focus of
current research in the oxy-fuel area is on pressurized oxy-fuel CCS
technologies which should lower the intrinsic efficiency penalty.

Symbols and notation

C Concentration
dp Particle diameter
Dg Radial dispersion coefficient
Gi Mass flux of species i
g Acceleration due to gravity
L path length
Ρ Density
r Distance from combustor centreline

U0 Superficial air velocity
Umf Minimum fluidization velocity
zgd Distance between the injection plane and sampling plane

Greek letters

μ Viscosity
ρf Fluid density
ρp Particle density
φ Voidage at minimum fluidization

Fig. 1. Global anthropogenic CO2 emissions from fossil fuel combustion, cement production and flaring in comparison to forestry and other land use [1].

Fig. 2. Generalized schematic of the oxy-fuel CCS process [12].
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1.1. The oxy-fuel process

The inlet O2 concentration is key for scale-up of the oxy-fuel pro-
cess. Utilizing a higher inlet O2 concentration while keeping the furnace
geometry constant leads to higher thermal output per furnace cross-
sectional area, improving the economics as it increases the process ef-
ficiency. For new facilities, however, it is more likely that a higher inlet
O2 concentration allows a smaller boiler size, with reduced capital costs
[13–16]. It has been shown that higher inlet O2 concentrations also lead
to lower CO emissions [14,17–19], improved desulphurization effi-
ciency [14], and a reduced power requirement for the flue gas recycle
(FGR) blower [20]. Nonetheless, higher inlet O2 concentration also lead
to constraints in heat extraction from the boiler (influenced further by
the smaller boiler size) [16,21], an increased risk of bed agglomeration
within the furnace [21], and if the O2 concentration increases beyond
∼27 vol%, a significant increase in piping costs due to the requirement
for somewhat specialized materials. An important consequence of re-
duced boiler size when utilizing elevated O2 concentrations is that the
solids inventory is smaller, which can result in a greater variation in the
CFB bed temperature since the bed mass acts to dampen temperature
changes due to its thermal capacity [22].

In this context, it is important to note that the inlet and exit O2

concentrations are among the major control parameters in CFB oxy-
fired boilers [23]. Lappalainen et al. [24] concluded that FGR leads to
higher perturbations in the furnace O2 content due to the lack of control
of the O2 supply from O2 injection, FGR and fuel O2. One requirement
identified in controlling the O2 content within the furnace is the online
measurement of the time-dependent O2 concentration in the RFG, and
consequently the required adjusted flow of inlet O2 in order to meet the
desired air/fuel ratio [25].

Given the importance of inlet O2 concentration, the present work
focusses on this parameter as a key variable. Information on oxy-fuel
pulverized combustion (PC) boilers can be found in Scheffknecht et al.
[26], Toftegaard et al. [27], Chen et al. [28], Wall et al. [29] and Yin
and Yan [30]. Unfortunately, the differences between oxy-fuel CFB and
oxy-fuel PC make them of less relevance to CFB operation. There are far
fewer reviews on oxy-fuel CFB than on oxy-fuel PC. One example is by
Mathekga et al. [31], and another is by Singh and Kumar [32] focusing
on the current status and experimental results from small oxy-FBC beds.
However, the present review looks at the challenges and opportunities
for process improvement through scale-up by reviewing the existing
literature in oxy-fuel CFB modelling, heat transfer phenomena, fluid-
bed dynamics, and pollutant emissions.

The work provides a comprehensive (fluid dynamics, combustion,
and heat transfer and emission formation) assessment of the oxy-fuel
fluidized bed scale-up process, not addressed in previous reviews. Given
that oxy-fuel CFB is a major carbon capture route for large coal power
plants, such information is of vital importance for furnace designers and
fluidized bed research and development. In particular, the authors
evaluate: (1) how the available models developed for lab-, pilot- and
large-scale oxy/air-fired CFBs can be adapted for modelling large-scale
oxy-fuel CFB units; (2) the major challenges and opportunities in the
design and scale-up of utility-scale oxy-fuel CFB boilers; and (3) the
important parameters for designing large-scale oxy-fuel CFB boilers.

2. Scale-up and design

Both experimental work and modelling simulations are pivotal in
the design and scale-up of oxy-fuel technology. To date, no commercial-
scale (> 300 MWe) oxy-fuel CFB boiler has been built despite the
technology currently having a Technology Readiness Level (TRL) of 7–8
[33]. The failure to build large-scale oxy-fuel plant arises because of a
lack of effective carbon pricing, and an absence of government moti-
vation to tackle climate change, and the scale and inherent inter-
dependence of investors (private plant operator with publicly owned
transport and storage network) required to get such a project up andTa
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running [34]. Furthermore, where CCS plants have been deployed, they
have typically utilized post-combustion amine scrubbing systems be-
cause of their previous demonstration at scale (such as the Nieder-
aussem project, Dong power plant in Denmark, and the Canadian
SaskPower’s Boundary Dam project [35]) and the larger efficiency
penalty incurred by conventional oxy-fuel technology. As a result, the
scale-up of novel oxy-fuel technologies such as pressurized oxy-fuel
boilers is receiving attention.

2.1. Industrial-, pilot- and lab-scale oxy-fuel CFB

Table 1 shows the major experimental oxy-fuel CFB units and in-
dicates the extensive research carried out to date. The largest tested
oxy-fuel CFB unit so far is CIUDEN (City of Energy), an industrial-scale
30 MWth unit situated in northwest Spain [36,37]. Other large-scale
units in operation include: a 4 MWth oxy-fuel CFB demonstration plant
at Valmet, Finland [13,18], an oxy-fuel CFB calciner utilized as part of a
1.7 MWth post-combustion calcium looping CCS plant at La Pereda,
Spain [38], and a 0.8 MWth testing plant built at CanmetENERGY,
Canada [39,40]. These units have all undergone major experimental
campaigns focussing on the different aspects of oxy-fuel CFB operation
including combustion, emissions formation and heat transfer. Examples
of the scale-up process for air-fired CFBs can be seen elsewhere:
Glicksman [41], Glicksman et al. [42], Zlokarnik [43], Knowlton et al.
[44], and Leckner et al. [45,46].

A major difference between industrial-scale and smaller-scale units
is the degree of lateral gas mixing, localized air/fuel ratios, and heat
distribution within the furnace, which is influenced by the furnace
width. For lab- and pilot-scale units (see Fig. 3) the furnace width is
typically less than 0.2 m, while industrial-scale units can be 1m or more
and, thus, gas mixing in lab-scale units is effectively perfect [18].

2.2. Existing models for oxy-fuel CFB

The application of observed trends and correlations, and measured
parameters obtained from lab- and pilot-scale units is often unsuitable
for the design and operation predictions of large-scale units due to the
greater complexity of larger systems over smaller systems [66]. It is
necessary to be cautious when assessing the degree to which data ob-
tained from the smaller-scale units can be utilized for larger-scale units
[67].

Various research groups have developed oxy-fuel models to prop-
erly understand and analyze their experimental data. Thus, the mod-
elling scope and results are largely dependent on the type and scale of
the experimental setups and their corresponding data. In general, lab-
scale FB units are 1D and thus their corresponding extracted models are
more suitable for combustion chemistry. On the other hand, pilot-scale
units give valuable sets of data in relation to both axial and lateral
profiles leading to models capable of comprehensive 3D analysis of oxy-
fuel FB processes. There are several active groups developing compre-
hensive mathematical models for oxy-fuel CFBs using data from ex-
perimental units, including: Myöhänen et al. [57,68,69]; Seddighi et al.
[13,17,18,65]; and Krzywanski et al. [70,71]. Another modelling ap-
proach utilizes commercial computational fluid dynamics (CFD) codes
modified for oxy-fuel CFB boilers, such as work by: Zhou et al. [14];
Adamczyk [72]; and Amoo [73]. Table 2 presents the major modelling
tools developed specifically for oxy-fuel CFB boilers.

2.3. Design scenarios for large-scale oxy-fuel CFB boilers

The design of large-scale oxy-fuel fluidized bed boilers has been of
critical importance for minimizing the experimental costs of the scale-
up process. Examples of the work on the design of oxy-fuel FB boilers
can be found elsewhere [78,79]. The design of next-generation large-
scale oxy-fuel boilers is split between two pathways of: constant-fur-
nace-size scenario; and constant-thermal-power scenario (a detailed

discussion of these two scenarios is presented elsewhere [22]).

2.3.1. Constant-furnace-size scenario
The constant-furnace-size scenario is the only option for retrofitting

air-fired CFB boilers, thus providing a near-term CCS implementation.
Retrofit boilers are most attractive to the power sector since they can
reuse most of the plant equipment and reduce investment cost/risk,
making retrofitting oxy-fuel the most competitive technology option for
CCS [28,80,81]. However, to economically retrofit an oxy-fuel system
into an existing air-fired boiler, the original power plant must have
sufficiently high efficiency (high enough to be capable of handling
around 8% efficiency drop due to the energy penalty of the air se-
paration unit (ASU)).

With the same furnace geometry, an oxy-fuel CFB boiler with the
same O2 concentration as an air-fired boiler, i.e., 21 vol%, gives a lower
furnace temperature due to the specific heat capacity of CO2 relative to
N2. The same furnace temperature as an air-fired furnace can be
achieved with an oxy-fuel furnace, but O2 concentration of around
27–30 vol% is required [22]. By increasing the O2 concentration, the
boiler thermal power output changes, therefore necessitating additional
heat removal via external heat exchangers [22]. An increased rate of
circulating solids flux to improve heat removal ability also increases the
efficiency of the boiler (see Fig. 4) and reduces the unburnt carbon
content of the fly ash (see Fig. 5), both of which are economically and
environmentally favorable [82].

2.3.2. Constant-thermal-power scenario
The constant-thermal-power scenario involves downsizing the fur-

nace, as it is possible to achieve the same thermal power output with a
lower total volumetric flow rate and an increased O2 concentration.
Modelling by Leckner and Gomez Barea [83] found the potential to
reduce the boiler size by ∼80% by increasing the oxygen concentration
from 21 vol% to 80 vol%, for a 300 MWth oxy-fuel CFB boiler, as shown
in Fig. 6. In addition, a more homogeneous bed temperature profile and
a lower heat flux to the boiler tubes, compared to the constant-size
scenario, make the constant-thermal-power scenario a better pathway
for oxy-fuel CFB CCS development for new facilities [22].

Fig. 3. Schematic of pilot-scale 100 kWth (left) [17] and an industrial-scale 4
MWth (right) [64] oxy-fuel CFB boilers (image is taken from [65]).
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2.4. Pressurized oxy-fuel fluidized bed combustion

In order to improve the competitiveness of oxy-fuel fluidized bed
combustion, R&D has started on pressurized oxy-combustion. This has a
number of potential benefits including a further reduction in boiler size,
increased net power plant efficiency, and the provision of alternative
pathways for removal of impurities such as O2, CO, NOx and

particularly SOx [84–86]. The challenges faced by previous air-fired
pressurized fluidized bed combustion (PFBC) demonstrations [87–90]
have been recognized by the research community and thus configura-
tions that do not include hot gas filters and gas turbines are being de-
veloped.

There are at least five global research groups developing oxy-PFBC
technology including those in Canada (CanmetENERGY and the
University of Ottawa) [91], in the UK (Cranfield University) [92], in the
USA (Gas Technology Institute, GTI) [93,94], in China (Southeast
University) [95], and in Poland (Czestochowa University of Tech-
nology, AGH University of Science and Technology, and the Institute
for Chemical Processing of Coal) [96–98]. The largest oxy-PFBC pilot
plant built to date (1 MWth), in collaboration with GTI and Linde, is
located at CanmetEnergy in Ottawa. The facility includes CO2 pur-
ification equipment for removal of NOx, SOx, and oxygen.

3. Heat transfer challenges

Under oxy-fuel conditions, the specific heat of the furnace gas is
higher than under air-fired conditions due to the higher concentrations
of CO2 and H2O. A higher specific heat capacity of the mixed gas lowers
the furnace temperature and alters the heat removal duties
[13,74,75,99]. However, it has been demonstrated that raised inlet O2

concentration can considerably increase the furnace temperature [13].
The main research questions in relation to heat transfer in oxy-fuel CFBs
are: “What is the most appropriate mechanism for heat removal?” and
“How is the heat/temperature distributed within the overall system?”

Within the constant-furnace-size scenario, if the inlet O2 con-
centration rises above 60 vol%, the thermal power output theoretically
can be tripled for an equivalent size combustor [22]; however, the
furnace heat extraction area and, consequently, the maximum ex-
tractable heat from the furnace are limited. Thus, above a certain inlet

Table 2
Models previously utilized for oxy-fuel CFB boilers.

Developer Focus of model Type of model Dimensions

Myöhänen et al. [57,68,69] Comprehensive: combustion, heat transfer, fluid dynamics Mathematical model 3D
Seddighi et al. [13,17,18,65] Comprehensive: combustion, heat transfer, fluid dynamics Mathematical model, MATLAB 3D, 1.5D
Krzywanski et al. [70,71] Comprehensive: combustion, heat transfer, fluid dynamics Mathematical model 3D, 0D
Zhou et al. [14] Comprehensive: combustion, heat transfer, fluid dynamics CFD, Fluent 2D
Adamczyk [72] Fluid dynamics, combustion, heat transfer CFD, Fluent 3D
Amoo [73] Heterogeneous combustion, emissions production CFD, STAR-CD 3D
Bolea et al. [74,75] Boiler heat extraction modelling Mathematical model 1.5D
Takkinen et al. [76] Emissions modelling 1D particle model
Pikkarainen et al. [77] Combustion modelling Mathematical model 1D

Fig. 4. Effects of circulating solids flux (70 and 100% of maximum flux) on the
combustion and boiler efficiency [82]. Maximum continuous rating (MCR) is
the maximum thermal output of the boiler under continuous and normal op-
erational conditions over one year.

Fig. 5. Effects of circulating solids flux (70 and 100% of maximum flux) on the
unburnt carbon content in fly ash [82].

Fig. 6. Furnace size reduction with increase in inlet O2 concentration for con-
stant thermal power of 300 MWth [83].
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O2 concentration, heat must come from the CFB return leg or through
external heat exchangers in order to compensate for the increased
thermal power output [13,16,100]. Figs. 7 and 8 show the increase in
the share of heat extraction required within the return leg and external
heat exchangers due to an increase in O2 concentration. The extent to
which heat can be usefully obtained from the solids within the external
heat exchanger is unclear and depends on circulating solids flux and
heat transfer rates [40].

So far, the only way to utilize high O2 inlet concentrations is to
increase the circulating solids flux, requiring dramatically higher heat
extraction requirements in the external heat exchanger. For example, a
324 MWth furnace with 27 vol% O2 inlet concentration requires around
240 kg/s of circulating solids, but for a similarly sized unit operating at
70 vol% O2 inlet concentration, the capacity becomes 1079 MWth, re-
quiring ∼3000 kg/s of circulating solids [13]. Therefore, when main-
taining the furnace size, the heat balance often necessitates a very high
circulating solids flux. Higher O2 inlet concentrations can have dra-
matic impacts on the boiler’s fluid dynamics, combustion efficiency,
heat transfer requirements and effectiveness, and can increase erosion
due to the higher solids flux. Thus, for the retrofit scenario, inlet O2

concentrations are limited to below 40 vol% [22]. Therefore, in order to
utilize greater inlet O2 concentrations, a new CFB design is required
which is capable of operating with a high circulating solids flux and
with large heat extraction duty within the external heat exchanger.

Effective design and scale-up of heat transfer equipment depend on
heat transfer modelling which itself requires accurate empirical data
and experimental data obtained under realistic conditions [101–107]. A
major challenge in the design and scale-up of oxy-fired systems is the
unrepresentative results obtained from the use of heat transfer models
which apply data derived from lab-scale units [105]. In part, the in-
adequacies of lab-scale units are due to their aspect ratio being much
larger than industrial- and large-scale furnaces, leading to heat transfer
correlations which are unreliable at larger scales. Furthermore, the
knowledge, experience and correlations gained from air-fired CFB
conditions can be unreliable for oxy-fuel CFB due to significantly dif-
ferent solid fluxes. Thus, critical evaluation of available heat transfer
models is paramount.

Numerous fluidized bed heat transfer models with different struc-
tures and assumptions exist [108]. The most important parameters in
modelling heat transfer in a CFB furnace are: the solids suspension
density; particle size; bed temperature; particle specific heat; and hy-
drodynamic conditions in the furnace, which are typically assumed to
involve a core-annulus structure [107].

3.1. Convection

Convection in the CFB context refers to: (1) convection from gases
to heat transfer surfaces; and (2) conduction from solid particles to the
heat extraction surfaces. These two mechanisms can be modelled se-
parately [109–113] or together in a single convective heat transfer
coefficient [13,114,115].

3.2. Radiation

Radiation is the main heat transfer mode under oxy-fuel CFB con-
ditions; however, some experimental results have shown that the ra-
diative heat transfer coefficient decreases dramatically when suspen-
sion density exceeds 5 kg/m3 [13,73,116] due to the increased
absorption of the heat by the particles. Radiative heat flux in oxy-fuel
combustion can be enhanced due to higher-temperature combustion;
Bordbar and Hyppänen [117] found up to a 40% increase in furnace
radiative heat flux when changing from air-fired to oxy-fuel combustion
(Fig. 9). The spatial radiative heat flux variations observed in Fig. 9
result from multiple cyclones, which allow the gas to bypass before
injection to the furnace, in addition to the flow oscillations due to
bubbles rupturing above the dense bed.

With regard to heat radiation in CFB furnaces, two calculation
methods that can be used are Monte Carlo analysis and the net radiation
methods [118]. The Monte Carlo approach is based on statistical fea-
tures relating to the physical phenomena where the radiation is simu-
lated by modelling stochastic paths of photon bundles leaving and
reaching the combustor wall [119–121]. Although it is a mature
method, it requires extensive calculation resources for complex systems
and geometries [122]. This is especially so for the simulation of oxy-
fired systems with high solids flux and hence greater complexity.

The required heat extraction duty from a furnace is usually over-
estimated due to the high level of uncertainty linked to the expected
heat losses of the overall system [13,123]. In addition, the uneven solid
flow rate within the furnace leads to errors in the measurements and
modelling of the heat flux distribution [124].

3.3. Furnace temperature

Control of temperature levels in oxy-fired CFB furnaces is a critical
issue for their scale-up [83,125]. The temperature profile is largely
homogeneous in air-fired CFB furnaces, but under oxy-fuel conditions
with increased inlet O2 concentration, can lead to large, localized gra-
dients in the furnace temperature profile due to hotspots [13,126].

The furnace temperature of oxy-fuel CFBs can be lower than those of
air-fired CFBs for equivalent inlet O2 concentrations due to the higher
heat capacity of the gas in the oxy-fuel atmosphere, caused by the re-
circulation of CO2 [13,24,73,127]. The steam content of oxy-fired CFB
furnaces will vary due to the use of wet or dry FGR and, in turn, higher
furnace steam concentrations can reduce the furnace temperature
[127].

Fig. 10 shows the effect of the recirculation rate on the temperature
distribution in an oxy-fired CFBC furnace [82]. Increasing the fly ash
recirculation rate from 0 to 8 t/h leads to a reduction of the bed tem-
perature from 1233 K to 1153 K, but also causes the furnace exit tem-
perature to rise from 1033 K to 1083 K. The primary reason for the
temperature change is the transfer of more heat from the bed’s dense
phase to its dilute phase.

High-temperature oxidation under oxy-fuel conditions is particu-
larly problematic for furnaces since it leads to fireside corrosion from
the reactions between the reactor internals and the surrounding hot
gaseous environment. This can eventually lead to the failure of boiler
tubes, superheaters, reheaters, and water walls by typical metal loss
mechanisms or by the generation of cracks [128]. In addition, the
corrosion in oxy-fuel furnaces can be intensified due to the FGR pro-
ducing elevated concentrations of corrosive gases (HCl and SO2)
[128–130]. Syed et al. [128] and Hussain et al. [131] both found

Fig. 7. Change in boiler heat extraction duty from air-fired to oxy-fuel (70 vol%
O2) CFB according to data from Alstom and U.S. Department of Energy [100].

S. Seddighi et al. Applied Energy 232 (2018) 527–542

532



thicker ash-oxide layers on the combustor internals under oxy-fuel
conditions compared to air-fired conditions, up to an ≈40% increase.
They also found that sulphur penetrated deeper into the oxide layer
under oxy-fuel conditions, leading to higher levels of S-stabilized cor-
rosion compounds such as alkali-iron tri-sulphates.

3.4. Maximum heat flux

The maximum heat flux to the boiler water tubes is of great sig-
nificance for the furnace design and is used for selecting the materials
utilized for the construction of the water tubes [13,132,133]. Heat flux
prediction and modelling become more important in large-scale su-
percritical units, where the values of heat flux should be designed to
avoid steam generation in water tubes [134]. The furnace maximum
heat flux must be designed to ensure a reasonable safety margin before
reaching the critical heat flux, to avoid vapor films, overheating and
potentially the rupture of the water tube walls [13,123,135]. The lo-
cation of the maximum heat flux depends on the fuel type, thermal
power, secondary gas injection arrangements and the heat extraction
panel arrangement [136].

For air-fired CFB boilers with an electrical power generation capa-
city in the range of 1–200 MWe, heat fluxes are typically found to be in
the range of 120–150 kW/m2, which can increase by a third for oxy-fuel
conditions [13,114,117,137,138]. Fig. 11 provides a comparison of the
reported maximum heat fluxes for CFB and PC units under both air and
oxy-fired conditions.

The heat flux to the furnace water walls is much lower in a constant-
thermal-power scenario than in a constant-furnace-size scenario be-
cause the furnace net heat extraction duty is higher in the latter sce-
nario at high O2 concentration [22].

3.5. Slagging, fouling and sintering

Deposition of ash on heat transfer surfaces which occurs through
slagging and fouling is a major cause of boiler tube and combustor wall
damage [144]. Ash deposition has been widely explored for air-fired
CFB, but little such data exist for oxy-fuel CFB conditions.

Ash deposition through slagging usually occurs in furnace locations
with high temperatures while fouling typically occurs at lower tem-
peratures. The co-utilization of coal and biomass has been studied by
various groups such as [145–147] and can correspond to increased
slagging and fouling on heat transfer surfaces [148]. Oxy-fuel condi-
tions can increase the rate of ash deposition compared to air-fired
conditions, owing to the gas physical properties, which lead to changes
in deposition behavior [149,150]. In addition to an increased rate of
ash deposition, the sulphur content of the ash deposits also increases
under oxy-fuel conditions (Fig. 12), producing a higher risk of corrosion
of fireside surfaces when approaching the acid dew point [151].

The deposition process varies largely among different ash particles
depending on their composition and size. Once ash particles are de-
posited on the surface of a combustor component they can begin to

Fig. 8. Increased share in loop seal heat ex-
traction duty when increasing the O2 con-
centration in oxy-fuel CFB. HWW refers to heat
extraction from water walls, Hseal is heat ex-
traction from loop seals, Hflue is heat extraction
from flue gases and Hpanel refers to heat ex-
traction from wing and division walls.
Information on right of the graph refers to the
heat extraction from a typical air-fired CFB
boiler which is taken as reference case [16].

Fig. 9. Radiative heat flux for air-fired (diamond symbols) and oxy-fired (solid
line) combustion [117].

Fig. 10. Effect of recirculation rate on temperature distribution in an oxy-fired
CFB furnace [82].

S. Seddighi et al. Applied Energy 232 (2018) 527–542

533



coalesce and fuse via sintering. Particle sintering typically occurs at
temperatures lower than the melting temperature of the ash material,
but higher than the Tamman temperature.

Like slagging, increased fouling can lead to the following issues
[139,148,152]:

• Reduction of boiler efficiency and availability;

• Increase in boiler temperature due to lower heat extraction cap-
ability;

• Higher levels of NOx emissions due to the promotion of thermal
NOx;

• Lower thermal power output of the boiler; and

• An increase in ash deposition due to the formation of alkali sul-
phates on the surfaces encouraging the collection and agglomeration
of ash particles.

The increased furnace temperature of an oxy-fired furnace can also
lead to the enhanced oxidation rate of boiler tubes which will increase
their required replacement rate [153]. The frequency of boiler tube
replacement is influenced by erosion and abrasion caused by solid
particles impacting the surfaces and by oxidation and corrosion caused
by higher oxygen partial pressures and ash-influenced corrosion [154].

A critical problem in CFB furnaces is the melting and sintering of
solid bed particles, which increases at elevated temperatures and in the
presence of alkaline earth compounds [23]. Ash melting temperature
varies for different fuels: for biomass it typically occurs above 1250 K ,
for lignite above 1350 K and for hard coal above 1450 K [155–157].

Some key elements in ash contributing to corrosion in CFB boilers
include Cl, Br, Zn and Pb [158]. In the upper part of the furnace, ash
deposition is mainly of K-, Na- and CaSO4-derived materials. However,
in the lower parts of the furnace alkali chlorides and bromides are
found in the form of K and Na compounds and CaSO4, while the heavy
metals in ash found on water walls are typically in the form of Zn, Pb,
and Cu sulphates and chlorides [158]. With this information, it is
possible to design and implement suitable materials for the type of
deposition expected at each location in the furnace. For a more com-
plete discussion of corrosion in oxy-combustion systems and for sug-
gestions regarding materials of construction, see elsewhere [159].

Iron oxide is an important contributor to slagging on heat transfer
surfaces during coal combustion and its effects can be enhanced further
by the formation of pyrrhotite (FeSx) and FeO–FeS, which derive from
pyrite and have low melting points and, therefore, enhance the slagging
process [144,160–164]. In oxy-fuel conditions, pyrite undergoes faster
oxidation due to the increased steam concentration, leading to the
production of magnetite, which can impact ash deposition rates [144].

4. Fluid dynamics challenges

The operation of a large-scale CFB furnace consists of multiphase
flow with interactions significantly influenced by the contact between
the gas and solid phases. Fig. 13 shows a schematic of the main
transport regions in a CFB loop.

4.1. Furnace flow characteristics

In a typical CFB furnace, the formation and break-up of particle
clusters is the main characteristic of the flow at the meso scale; here we
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Fig. 11. Maximum heat fluxes to the furnace water walls reported for CFB and
PC furnaces under air-fired and oxy-fuel-fired conditions [65]. Data presented
from Wang et al. [139], Xu et al. [140], Seltzer et al. [141], Butler et al. [142],
Huilin et al. [114], Sun et al. [137], II’chenko et al. [138], Seddighi et al.
[13,143].

Fig. 12. Sulphur retention of the ash particles under oxy-fuel and air-fired
conditions [149]. AAEM refers to alkali and alkaline earth metal species.

Fig. 13. Regions of a CFB loop according to the distribution of the solids [65].
Arrows show the direction of solids motion.
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refer to the meso scale as the length scale between the largest particle
size and the diameter of the furnace. The dense-bottom/dilute-top and
dense-wall/dilute-core structures are the characteristic of the flow at
the macro scale [65,165]. Here we refer to the micro scale as that which
is relevant to a length equal to or smaller than the particle diameter
[166].

The furnace dense bed contains the major proportion of the solids
and it is the region where most of the char particles burn [167,168],
while the volatiles and lighter char particles predominantly combust in
the O2-rich bubble phase [17]. The rise of the bubbles generates the
general upward motion of the solids; the bubbles rupture at the top of
the dense phase – the so-called ‘splash zone’ – producing a further
driving force for the upward motion of the solid particles [169]. The
‘transport zone’ is located above the splash zone and is characterized by
a core-annulus structure and a dispersed outer phase which generally
falls back into the bed resulting in back-mixing [168,170,171].

4.2. Circulating solids

Circulating solids play a key role in shaping the hydrodynamics of
the furnace and temperature profile in the CFB loop. Circulating solids
also transfer furnace heat to external heat exchangers, which are lo-
cated in the loop seals of the return leg (Fig. 13).

Increasing the amount of circulating solids avoids excessive tem-
peratures but can significantly increase operating costs. A major chal-
lenge for modelling, design and scale-up is that the quantity of circu-
lating solids varies considerably among different boiler manufacturers
and units [13]. While circulating solids have been reported as high as
25 kg/m2 s [171,172], the typical value is less than 10 kg/m2 s [16]. A
higher circulating solids flux increases the heat extraction capability of
the CFB and minimizes the amount of unburnt carbon in the fly ash
[82]. Nevertheless, practical methods for increasing the circulating
solids flux when utilizing lower gas flow rates are challenging; one
potential solution would be increasing the efficiency of the cyclones
and decreasing their cut-off particle diameter, thereby circulating more
solids back into the furnace.

In CFB furnaces, particle segregation due to differences in particle
size and density can have a major impact on flow behavior and reaction
kinetics [173]. Within the fluidized bed itself there exists a certain
amount of axial particle segregation that is caused by the smaller par-
ticles fluidizing and entraining within the gas stream more easily than
the larger particles [173]. The concentration of solids and, hence, fuel
in the dense zone of the fluidized bed can be around 1000 times that at
the top of the bed [17]. Jang et al. [174] found that the average ash
particle size under oxy-fuel conditions was smaller than in air-fired
conditions due to a reduced ash particle growth mechanism caused by
the different properties of the oxy-fuel gas.

A major problem for fluid dynamics scale-up is that the majority of
experimental work in this field has mimicked air-firing conditions such
as in [175]. However, simulation of the fluid dynamics and solid flows
is different in oxy-fuel conditions compared to typical air-fired condi-
tions due to the varying inlet O2 concentrations and, consequently,
differences in volumetric flow rates and FGR rates [24,50,51]. Another
difference in the oxy-fuel CFB furnaces lies in their considerably higher
solids fluxes when high inlet O2 concentrations are specified, which
leads to a shift toward the fast fluidization regime.

4.3. Mixing

Mass transfer phenomena can be divided into two categories: lateral
(perpendicular to the flow); and axial (vertical movement of gas and
solids within the combustor) mixing. In the lower section of the
transport zone, the effects of solid-solid mixing are dominant, while in
the upper section gas-gas mixing is more significant [176].

A major reason for studying mixing is that the reaction mechanisms
and the combustion kinetics by themselves fail to predict the measured
furnace gas profiles in both lab- and large-scale units [17,68,177]. Si-
mulation studies often add adjustment coefficients to the reaction rates
in order to take into account the mixing effects of the gas and solids
[68,177,178]. Others reconcile the lack of exact kinetic data in large-
scale systems (partly due to the hefty calculation costs) by assuming
that CFB combustion can be modelled as mixing-controlled combustion,
thus lumping kinetics and mixing together [179].

4.3.1. Lateral mixing
In general, the extent of lateral mixing is better in lab-scale units

than in large-scale units; therefore, information obtained from lab-scale
experiments is less robust for direct application to large-scale units
[17].

Lateral gas mixing in fluidized bed furnaces can be described by
dispersion, which may be assumed to be the sum of the dispersion
coefficients from large-scale structures (eddies - generated by bubble
eruptions and localized pressure differences within the bed), and lo-
calized small-scale particle motions [180–183].

It has been demonstrated previously, that lateral gas mixing within
the core region of an FBC can be modelled as turbulent flow within a
pipe (Eqs. below) [181,183–185].
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where r is the distance from the combustor centreline, zgd is the dis-
tance between the injection plane and sampling plane, Gi is the mass
flux of species i, C is the tracer-gas concentration, Dg is radial dispersion
coefficient and U is velocity. The two main approaches for increasing
the gas dispersion coefficient and, hence, the degree of lateral gas
mixing within the bed are: (1) increasing the concentration of solids;
and (2) increasing the fluidization velocity. The method of increasing
the furnace solids concentration works by increasing the fluidization
velocity, but is limited as it requires considerable design changes to the
existing large-scale boiler which is unlikely as the fluidization velocity
utilized lies in a limited range [13].

Overall, the poor lateral gas mixing commonly associated with CFBs
can often lead to maldistribution of the reactant gases and incomplete
combustion [186]. The maldistribution of gas is greater under oxy-fuel
conditions given the higher fuel feeding rates (in the cases where the
geometry is kept constant), but the higher solids flux may positively
influence lateral gas mixing. Improving the lateral mixing is important
to ensure homogeneous heat distribution throughout the combustor,
which in turn will minimize any localized hot spots that could lead to
the formation of ash melts [18].

Table 3
Modelling approaches for axial gas mixing in CFB boilers.

Unit power [MWth] Unit width [m] Air-/oxy-fired Description Reference

0.1 0.08 Air and oxy-fuel Semi-empirical relation used for axial gas mixing [17]
4 1 Air and oxy-fuel Semi-empirical relation used for axial gas mixing [18]
12–300 1.5–8.5 Air Adjustment coefficient applied to kinetic rates to fit measured gas concentration [178]
15 3.6 Air Adjustment coefficient applied to kinetic rates to fit measured gas concentration [68]
– 0.8 Air Adjustment coefficient applied to kinetic rates to fit measured gas concentration [177]

S. Seddighi et al. Applied Energy 232 (2018) 527–542

535



4.3.2. Axial mixing
Prediction of the interaction between the solid and gas phases is

critical in establishing effective axial mixing in fluidized bed boilers.
The distribution of the phases within CFB furnaces will affect how the
reactants mix. Table 3 presents some of the past approaches used for
modelling axial gas mixing.

Axial gas mixing in a CFB furnace is often divided into three distinct
zones. From the bottom to the top of the combustor, they are: (1) re-
stricted mixing in the dense bed; (2) improved mixing close to where
the bubble eruptions occur; and finally (3) restricted mixing in the
transport zone [17]. Axial gas mixing is of course dependent on the
furnace geometry, the properties of the solids and gases, and the op-
erating conditions. Mixing in the dense phase of the CFB bed can be
limited because of poor mixing between the combustible gas containing
emulsion and the oxygen containing bubbles, but provided that there is
sufficient fluidization mixing generally proceeds rapidly [187].

Secondary air injection has an important effect as this additional
gas, injected at an angle into the furnace, will cause the eruption of
bubbles into a relatively dense bed of material, improving axial gas
mixing [17]. Secondary injection can dominate fluid dynamics across
the entire cross-section of a lab-scale CFB furnace, while affecting only
a portion of the injection plane in larger units [17,18]. Varol et al.
[188], using a 30 kWth CFB unit, suggested that the secondary air
should be injected into the furnace at an angle of 10–15 degrees to the
horizontal in the upward direction, to produce optimal mixing between
the injected air and the furnace flow. While such studies are valuable in
optimizing the properties of secondary gas injection, concerns about the
generality of their conclusions is such that further measurements in
industrial-scale oxy-fuel CFBs with high inlet O2 concentrations are
required.

4.4. Fluid dynamics scaling

Dimensional analysis is one of the most useful tools in providing
scaling laws between lab-scale and large-scale units. Geometric and
dynamic similarity are both important in scaling studies, while geo-
metric similarity is a prerequisite for dynamic similarity [42]. Geo-
metric similarity is valid when the dimensions of one unit relate to the
second unit with just one constant factor. Thus, dynamic similarity has
two conditions: first, geometric similarity is valid; and second, all in-
dependent dimensionless numbers are the same. Dynamic scaling can
be divided into three major parts: fluid dynamics scaling; combustion
scaling; and boiler design scaling [45]. Fluid dynamics scaling has been
studied in detail by Glicksman et al. [42].

The set of dimensionless numbers which contribute to fluid dy-
namics similarity are as follows:
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However, solving this set of dimensionless numbers would lead to a
unique set of parameters like particle size, bed size and unit size. While
finding a unique set of parameters is desirable, often it is practically
impossible to find the correct solution in such a constrained set of
parameters. Simplifying the dimensionless numbers gives more choices
and fewer constraints on the dimensions of the unit. For example, ty-
pically in CFB units, friction between the gas and the furnace walls is
small, compared to other forces and if eliminated from the gas mo-
mentum equation, allows the set of dimensionless numbers in Eq. (3) to
be simplified to [42]:
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In order to achieve fluid dynamics similarity between two units of
varying size, the dimensionless numbers indicated in (4) and the geo-
metry should be similar. The comparison of lab-scale units with

industrial or even other lab-scale units is often difficult due to the lack
of geometric similarity. Industrial CFB units used for electricity pro-
duction typically have an aspect ratio lower than 10 [189], whereas
lab-scale units have aspect ratios> 30 [45]. In such narrow units, lat-
eral mixing tends to be better than in large-scale units [17]. This lack of
geometric similarity raises the question of the extent to which CFB
transport and mixing phenomena are transferable from a narrow small-
scale unit to a wider large-scale unit.

In all, if the results of the experimental campaigns presented in
Section 2 are divided into three categories of combustion chemistry,
axial mixing and lateral mixing, the fluid dynamics scaling for the de-
sign of large-scale oxy-fuel CFB boilers can take the lateral mixing in-
formation only from pilot- and industrial-scale experimental cam-
paigns.

5. Combustion challenges

The combustion reactions are critical for an oxy-fired CFB, starting
with char combustion.

5.1. Char combustion

Char combustion is the most important energy-releasing reaction for
the combustion of solid fuels and is the main source of energy, CO and
CO2 in solid fuel boilers. Murphey and Shaddix found a dramatic in-
crease in the particle temperature in pulverized fuel flames when in-
creasing the O2 concentration [190].

Heterogeneous reactions consist of three stages: (1) adsorption of
oxygen onto the char surface; (2) surface reaction between char and O2;
and (3) desorption of CO2 or CO formed. Modelling the formation of the
combustion reaction products requires the simulation of several parallel
adsorption-desorption processes, each with individual activation en-
ergies [190,191]. The most widely used approach for detailed reaction
mechanism evaluation is the Langmuir–Hinshelwood derivation
[190,192]. The Arrhenius equation is also widely used for quantifying
kinetic rate constants across a range of temperatures for various reac-
tions [17,18,65,191,193–195]. The most important heterogeneous re-
actions relevant to combustion efficiency and temperature profile in
oxy-fuel CFBs are the char combustion and gasification reactions, as
described below.

CO is an effective marker to observe the progression of combustion
in CFB furnaces. CO measurements can also show to what extent the
combustion is complete or incomplete at different heights along the
furnace [17,18,196,197]. Riaza et al., using an entrained flow reactor,
reported that char burnout slows down at low inlet O2 concentrations
during oxy-fuel combustion owing to higher heat capacity and lower
diffusivity of CO2 in comparison with N2 [198]. Riaza et al. also noted
that switching to oxy-fuel conditions led to an increased char particle
ignition temperature [198]. Yuzbasi and Selçuk reported that the char
combustion process is retarded in oxy-fuel conditions as compared to
air-fired conditions at the same oxygen levels, and is characterized by a
lower rate of reaction and higher burnout temperature [199,200].

Solid fuel conversion in oxy-fuel conditions produces a char with a
higher carbon content due to the loss/conversion of more hydrogen and
oxygen. Furthermore, these chars typically have a higher specific sur-
face (almost six times). Furthermore, the high concentration of CO2

prevents secondary char formation (by shifting the equilibrium position
of the Boudouard reaction) and tar polymerization reactions, but may
lead to additional CO production [201].

A major challenge with modelling char combustion via
Langmuir–Hinshelwood type mechanisms or Arrhenius methods is that
most of them are semi-empirical models valid only in the range of
temperatures and oxygen partial pressures for which the correlations
parameters are derived [17,190,202]. Fitting factors, such as the tor-
tuosity factors and the effectiveness factors are used to adapt intrinsic
kinetic parameters derived at the lab scale for a larger-scale system,
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although this is still limited to the range over which the data are
gathered.

5.2. Gasification reactions

Although gasification reactions are negligible in air-fired CFB
combustion due to their slow reaction rates compared to combustion
reactions, they become more relevant in the oxy-fuel atmosphere
[14,170]. The predominant equations, the Boudouard and water–gas
reactions, are given by Eqs. (5) and (6), respectively:

+ ↔C CO CO22 (5)

+ ↔ +C H O CO H2 2 (6)

Many studies are available on gasification reactions in atmospheres
with high concentrations of CO2 and steam [203–205].

However, the importance of the gasification reactions is highly
temperature- and fuel-dependent. For example, Jia and Tan [206] re-
ported that the gasification reaction between CO2 and carbon becomes
relevant at temperatures above 1033 K for low-rank, high-reactivity
coals (such as lignite) and at temperatures above 1173 K for anthracite
and petroleum coke.

5.3. NOx and N2O emissions

NO arises from three mechanisms: prompt-, fuel- and thermal-NOx,
with fuel-NOx the primary source of NOx from FBC systems. Typically,
prompt-NO occurs in gas flames, while thermal-NOx will only become
significant at temperatures above 1273 K.

A schematic of the fate of fuel nitrogen in combustion is shown in
Fig. 14. Air-fired FBCs typically have lower total NOx emissions com-
pared to conventional PC combustion, due to the lower combustion bed
temperature. It should be noted that N2O emissions are not a problem
for woody biomass, where the bulk of the fuel-N is released in the form
of NH3 rather than HCN, or during char-N oxidation [207]. The de-
pendence of the NOx emission on O2 concentration is also discussed
elsewhere [208].

NOx pollutants can be generated from either char-bound or volatile-
bound nitrogen compounds but the type and quantity of emissions
depend significantly on the operating conditions and fuel character-
istics [209].

Hofbauer et al. [56] concluded that the NOx emissions increased
with increasing inlet O2 concentration (26–36 vol%) when conducting

the combustion reactions in a 150 kWth pilot-scale CFB unit, the results
of which are shown in Fig. 15.

de Diego et al. [211] reported that, regardless of initial concentra-
tion of NO and temperature, oxy-CFB FGR leads to more than 60% of
the recycled NO being converted to N2, which is mainly due to the
reburning process, while less than 5% is converted to N2O [212,213]. In
pilot plant runs with a 0.8 MWth CFBC, NOx emission were shown to
increase modestly, around 18%, when changing bed temperature from
1123 K to 1193 K utilizing bituminous coal [40]. These pilot plant re-
sults also demonstrated that the final emitted NOx was considerably
lower in oxy-fuel conditions. Duan et al. [62] concluded that the
emission of NOx under oxy-fuel was much lower due to enhanced gas
phase reduction from FGR.

It is widely known that the presence of char and CO in the bed leads
to reduction of the NOx into N2 and N2O; this was demonstrated re-
cently by Duan et al. [214], using a 50 kWth oxy-fuel CFB with a 21%
inlet O2 concentration. Further, they found that increasing the inlet O2

concentration from 21 vol% to 40 vol% led to a higher conversion of the
fuel-N to NO. In a modelling study, Peng et al. [215] suggested that the
levels of NO and N2O emissions increase with the increase in excess
oxygen. This has also been supported experimentally for air-fired sys-
tems but is less clear for oxy-fired systems [209].

Air staging is a proven method for reducing NOx emission from CFB
furnaces [216]. Duan et al. [214] concluded that O2 staging in oxy-fuel
CFB was more effective in reducing NO emissions compared to air-fired
conditions, while de las Obras-Loscertales et al. [217] reported that wet

Fig. 14. Possible fates of nitrogen contained in coal [210].

Fig. 15. NOx concentration and the percentage of nitrogen conversion for air-
fired and oxy-fired combustion showing that increasing the oxygen con-
centration from 26% to 36% increased the overall NOx production [56].
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FGR caused a sharp decrease in NO emissions and a slight increase in
N2O emissions.

5.4. Chlorine

During the combustion process, molecular chlorine, Cl2, and hy-
drogen chloride gas, HCl, may be produced; modelling has shown that
Cl2 formation is favored at temperatures above 600 °C and in oxygen-
rich environments [218]. Chlorine-containing product formation is
highly temperature-dependent and thus may vary when changing to
oxy-fired CFB. Font et al. reported that due to the high organic affinity
of chlorine in coal, the retention of chlorine at any stage of the process
or gas clean-up was difficult under oxy-fuel conditions [219].

Lupiáñez et al. [146] found that oxy-firing increased the chlorine
detected in fly ashes in comparison to the air-fired tests, whereas, no
chlorine was detected in the solids taken from the bed bottom under
both air- and oxy-fired conditions.

Chlorine is a key contributor to the formation of aerosols and sub-
micron particles [220] and high-temperature corrosion in boilers firing
biomass and waste, due to the formation of KCl and NaCl compounds.

5.5. Bromine

In boilers firing solid recovered fuels or sludge, bromine plays a key
role in aerosol formation and high-temperature corrosion. The bromine
in sludge comes from water treatment chemicals containing bromine
[158]. The formation and reduction behavior of Br mimics the Cl be-
havior and will form similar halogenated compounds with alkaline
earth metals and heavy tars, if present [221]. While fuels typically have
only tens of ppm levels of Br, the slags and wall deposits are reported to
contain up to 3 wt%, mainly in the form of KBr and NaBr [158]. While
Br is very important in emission evaluation and ash deposition, there is
no information available on it in oxy-fuel CFB conditions.

5.6. Mercury

Suriyawong et al. [222,223] investigated mercury speciation under
O2/CO2 coal combustion in a tubular furnace with a coal feeding
system, and experimental results indicated that the distribution of Hg
was similar between air and O2/CO2 combustion. Font et al. [219]
quantitatively analyzed the fate of mercury in a 90 kWth bubbling
fluidized bed in O2/CO2 combustion conditions, and found that ele-
mental Hg was the major species in the exhaust gas, while the major
mercury species retained in bag filters was Hg2+. Wang et al. evaluated
mercury speciation in 50 kWth [224] and 6 kWth [225,226] fluidized
beds, and observed a distinct difference in mercury speciation between
air and O2/CO2 coal combustion. Gharebaghi et al. [227] simulated the
results of mercury oxidation and speciation under oxy-coal combustion
using the combined homogeneous-heterogeneous model. Contreras
et al. [228] conducted a series of thermodynamic equilibrium calcula-
tions on the fate of mercury, in which they found that chlorine spe-
ciation was the key factor affecting the fate of mercury in O2/CO2

combustion.
Cl2, SOx, and NOx also play important roles in Hg oxidation in both

air- and oxy-fuel combustion [229]. Chatel-Pelage et al. [230] studied
mercury emission in a pilot-scale (1.5 MWth) pulverized coal-fired
boiler in O2/CO2. SOx and NOx were both important factors in de-
termining the mercury emission. Fernandez-Miranda et al. [231]
pointed out that SO2, NOx, and HCl can accelerate Hg0 oxidation. Wu
et al. [232] provided evidence that NO concentration can influence
mercury oxidation.

The level of mercury emissions also depends on the furnace tem-
perature, with higher temperatures leading to the reaction of elemental
mercury with chlorine [233,234], which may lead to capture of both
elements in the form of fly ash. Font et al. [219] used a 90 kWth oxy-fuel
bubbling fluidized bed (BFB) with coal and limestone and reported high

levels of mercury emissions in the exhaust gases (2.15 μg/m3); of these
total mercury emissions, 82% was elemental and the rest was Hg2+,
which is in gaseous form and is of great environmental concern. The
retention of chlorine and mercury in the form of bottom ash is desirable
since it minimizes the risk of atmospheric emission in the case of less
effective flue gas filters. Further research on the interaction of mercury,
chlorine and Na-based sorbents is necessary for efficient in-furnace
emission removal [235].

6. Conclusions – Scale-up challenges and opportunities

Oxy-fuel CFB combustion is based on mature fluidized bed boiler
technology, and offers a good opportunity for reducing CO2 emissions
from heat-generating facilities. The major conclusions from this study
are:

Scale-up: Lab- and pilot-scale units give valuable information on
the chemical kinetics since they offer more or less the same residence
time and environment as larger-scale oxy-fuel boilers. While there are
numerous measurement campaigns in pilot- and industrial-scale oxy-
fuel CFB units, only limited results taken from such experimental
campaigns are reliable for design and scale-up of large-scale oxy-fuel
CFB units. For instance, data and models on reaction mechanisms are
transferable from lab- and pilot-scale furnaces to large-scale units.
However, utilization of heat transfer correlations, ash deposition data
and furnace hydrodynamics requires further investigation. In parti-
cular, mixing is very much dependent on the unit size and, therefore,
scale-up requires experimentation into the mixing issue in industrial- or
large-scale boilers.

Boiler design: The two roadmaps of Constant-Furnace-Size
Scenario and Constant-Thermal-Power Scenario are of technical and
economic importance. Both scenarios rely on the economic potential of
oxy-fuel CCS at increased O2 concentrations. The Constant-Furnace-Size
Scenario is the more suitable option for retrofitting air-fired CFB boilers
where, with the same furnace geometry, elevated O2 concentration
causes enhanced boiler thermal power. In the Constant-Thermal-Power
Scenario, the furnace size becomes smaller when increasing O2 con-
centration due to the reduced volumetric flow rate of RFG at increased
O2 concentration. Achieving high inlet O2 concentration is important
for reducing the cost of generated power by increasing the boiler
thermal power or by furnace size reduction. In addition to the con-
siderable furnace size reduction, the more homogeneous temperature
profile and the lower heat flux from furnace water walls make the
Constant-Thermal-Power Scenario a better roadmap to commerciali-
zation.

Heat transfer: Radiative heat extraction is normally the dominant
heat extraction mechanism. Control of the furnace maximum heat flux
and local temperatures under oxy-fuel conditions is necessary to avoid
damage to water walls at high inlet O2 concentrations. Ash deposition
mechanisms on the heat extraction surfaces can be different from those
seen in typical air-fired conditions due to temperature variations and
different chemistry.

Fluid dynamics: The considerable increase in circulating solids at
high inlet O2 concentration leads to changes in furnace hydrodynamics
including high solids concentration, high share of fine particles and
aerosols (down to nanoparticles) in the furnace and the need for much
more efficient cyclones. From a hydrodynamics point of view, the ret-
rofit scenario is applicable only at low to medium inlet O2 concentra-
tions. For high inlet O2 concentrations, a new boiler design is necessary
and the semi-empirical data taken from typical air-fired CFB or from
pilot-scale oxy-fuel CFB should be re-evaluated if used for design of
large-scale units with an inlet O2 concentration above 40%.

Combustion: Major reactions can vary from air-fired to oxy-fuel.
Char gasification reactions become important while in-furnace profiles
of gases like CO, SOx and NOx vary considerably compared to typical
air-fired CFB. However, indirect sulphation is likely to be the dominant
sulphur capture route. NOx emission should be lower under oxy-fired
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conditions due to the NOx reburn process and higher concentrations of
steam coming from the wet RFG.
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