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Vehicle underbody longitudinal vortices can have a significant effect on the 

aerodynamic loads experienced by a body in close ground proximity.  A series of 

wind tunnel tests at a nominal Reynolds number of 2.26 x 10
6
,were carried out to 

investigate both (i) the influence of a moving ground plane simulation compared to 

fixed ground and (ii) the effect of relative location and strength of underbody 

longitudinal vortices on a simple flat plate, at zero incidence, fitted with vane vortex 

generators. 

The presence of vortices between the plate and the ground plane serve to reduce the 

local pressure and generate a negative lift on the plate.  The data indicate that an 

increase in vortex strength (proportional to an increase in vane vortex generator 

angle, β) increases plate negative-lift coefficient (CL. The lift coefficient becomes 

more negative with decreasing ground clearance (h/c) for all cases except those for 

which there is evidence of vortex breakdown (high vane angles and low ground 

clearance).  The variation of negative-lift-to-drag coefficient ratio shows that the 

overall aerodynamic efficiency is greater for smaller vortex generator angles at the 

lowest ground clearances. The pitching moment coefficient was found to change 

from nose down to nose up as ground proximity reduced indicating a movement in 

the centre of pressure position towards the plate trailing edge. 

 
AR = Aspect ratio (d/H) 

β = Vortex generator angle (deg) 

CL = Lift coefficient 

CD = Drag coefficient 

Cm = Pitching moment coefficient (+ve nose down, reference 30% chord) 

c = Chord (plate length 1m) 

d = Vortex generator spacing (mm) 

D = Drag (N) 

L = Lift (N) 

H = Height of vortex generator (25mm) 

h =  vertical distance between plate and ground (m) 
I = Turbulence Intensity 

L/D = Lift to Drag Ratio 

μ = Viscosity (kg/ms) 

μt = Turbulent viscosity (kg/ms) 

y = Lateral distance from plate centre line (m) 
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I. Introduction 

he use of longitudinal vortices to generate and enhance aerodynamic lift has been applied to many 

configurations including; delta wings, dog-tooth wing leading edges and leading-edge-root-extensions. The 

application has also been valuable in automotive applications to enhance the performance of inverted aerofoils in 

ground effect and underbody diffusers, see for example Kuya et al [1]. This type of application has raised challenges 

in terms of the accuracy of computational simulations when used to aid prediction of vortex trajectory and strength.  

In order to support fundamental understanding an experimental study by Garcia et al. [2] and a numerical simulation 

by Knight [2] have investigated the characteristics of vortex generated forces on simple flat plates in ground effect 

fitted with conventional vane vortex generators. This work demonstrated the effectiveness of such configurations in 

terms of aerodynamic lift (downforce) generation, but the experimental study was carried out over a fixed ground 
plane which may have a considerable impact on the flow characteristics at small ground clearances. Numerical 

studies by Ranzenbach et al [4] on a cambered aerofoil in ground effect showed an appreciable error with downforce 

increasing and drag in most cases reducing when the ground plane is stationary. 

Ranzenbach found that lift increases with ground proximity until such a point when the ground and body boundary 

layers merge thus reducing the underbody flow velocity and giving a lift peak at some finite ground clearance.   

Zerihan et al [5] concluded that the loss of lift on aerofoils below the “peak” height was due to the increasing 

adverse pressure gradient on the trailing edge of the aerofoil on the suction surface. Kuya [1] later found that using 

vortex generators on the suction surface allowed the flow to remain attached at closer ground proximity due to the 

high energy vortex flow so increasing the lift at lower ground clearances. 

In the flat plate case the vortex generators act to create reduction in the pressure between the plate and the ground 

plane. Based on the work of Kuya[1] and Rae [6] counter rotating vortex generators were used by Garcia [2] with 
two vortex generators either side of a symmetry line at angles of 10, 20 and 30 degrees to the freestream direction. 

Garcia found the larger vortex generator angles produced stronger vortices and so increased lift coefficient at lower 

ground clearances.  However, in the 20 and 30 degree cases Garcia states that vortex burst occurs closer to the 

trailing edge of the vortex generator at low ground clearance causing a peak lift coefficient. Whereas for the 10 

degree case lift coefficient is seen to increase asymptotically within the range of ground clearance tested. A similar 

trend is observed in the drag coefficient data. 

Garcia also investigates the effect of lateral spacing on the vortex generators normalised in terms of aspect ratio. 

The results presented show that both lift coefficient increased for all values of ground clearance tested. 

 

II. Experimental Methodology 

An experimental test programme was carried out in the Cranfield University Automotive Wind Tunnel. This is a 

closed return layout facility with a rectangular working section 2.4m wide and 1.8m high with a flow velocity in the 

working section in the range 5 to 45m/s and free stream turbulence intensity of 0.1% at the wind tunnel velocity 

tested of 35m/s. A moving ground plane with primary ram intake and secondary porous plate variable boundary 

layer suction is also fitted in the working section, Figure 1. 
 

 
 

Figure 1 – Schematic arrangement of the moving ground plan, plate mounting strut and upstream boundary 

layer control system in the 2.4m x 1.8m working section  

 

T 
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The wind tunnel model comprises of a flat plate, 1000mm long, 667mm wide and 12mm thick with 500mm 

leading and trailing edge planform radii each with a 6mm radius cross section profile, Figure 2. The planform 

reference area is taken to be 0.667m2 

 

 

 

   
 

 

Figure 2 – Model geometry reproduced from Byrne [10] viewed from beneath plate 
 

The vane vortex generators are aluminium flat plates, 1.6mm thick, 25mm high and 150mm long. Spacing and angle 

of each vane is achieved through two small location lugs at either end of the vane which locate into a series of pre-

drilled holes in the flat plate. The vanes are mounted, orthogonal to the plate under-surface, at angles of 10, 15, 20 

and 25 degrees to the free stream at a vane pair spacing of AR=1.  The effect of variations in spacing between the 

individual vortex generator pairs, was also assessed at three spacings (AR=0.5, 1 and 2) for a fixed vane angle of 20 

degrees. 

 

The plate is mounted onto a six component Aerotech strain gauge balance at the bottom of a driven strut system 

which allows the ground clearance to be varied from h/c=0.005 to 0.1, Figure 3.  

 

The plate is transition free. 
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Figure 3 – Wind tunnel setup reproduced from Byrne [10] 

 

A preliminary assessment of vortex trajectory at the plate trailing edge was also carried out for the AR=1 , vortex 

generator angle of 20 degrees case, using wool tufts, approximately 30mm in length, attached to a wire at a spacing 

of nominally 25mm, which was drawn across the wind tunnel working section at the mid-point between the plate 

and the ground plane. 

III. CFD Methodology 

A parallel RANS CFD study using Star CCM+ is used to determine whether a RANS simulation can predict this 

type of flow field with sufficient accuracy in order to interpret the flow field changes in the region between the flat 

and the ground plane. 

 
The CFD setup parameters may be seen in Table 1 and boundary conditions in Table 2, 

 

Feature Properties 

Body Full-Scale 3D Model 

Domain Simplification Half-Symmetrical Domain 

Ground Condition Ground simulation (relative movement) 

Simulation Approach RANS 

Freestream 35m/s 

Time Regime Steady-state 

Flow Solver Segregated 

Equation of State Constant Density 

Flow Regime Turbulent 

Turbulence Model Realizable k-ε two layer 

Gradient Method 2nd order hybrid Gauss LSQ 

Number of Cells ~2x106 

 

Table 1 – CFD simulation parameters 

 

 

 

Heave Control 

Moving Ground Plane 

6-component 

Force balance 

Vortex Generator 
Pairs 
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Boundary Condition Parameters 

Inlet Velocity Inlet 35m/s 

Outlet Pressure Outlet I=0.1%, μt/μ=20 

Symmetry Symmetry  

Walls Symmetry  

Model Wall No slip 

Ground Wall No slip relative movement, Uground=Ufreestream 

 

Table 2 – CFD Boundary Conditions 

 

Assumptions: 

Symmetrical flow characteristics 

 
The balance and support strut are not replicated in the CFD simulation. 

 

Simulations have been carried out for h/c=0.005 to 0.1, AR=0.5, 1 and 2 and for the flat plate alone. 

 

IV. Experimental Results 

A. Effect of Vortex Generator Angle 

 

 

The influence of vortex generator angle for AR=1on lift coefficient variation with non-dimensional height is 
presented in figure 4, it should be noticed that the y-axis is presented as negative lift coefficient. 

 

 

 
 

Figure 4 – Effect of VG angle on –CL (AR=1) 

 

 

Negative lift coefficient is seen to increase with decreasing ground clearence for all cases except a vane angle of 

25 degrees. In this instance the lift coefficient drops sharply when h/c<0.01. The 20 degree case is also seen to 

exhibit a significant decrease in rate of change of lift coefficient below this height and does not show notable 

improvement over the 15 degree case for the lowest ground clearance tested. 

It is suggested that the increase in negative lift coefficient is a result of the plate at low ground clearance 
restricting the vertical movement of the vortex so it is unable to move away from the plate over a large portion of the 

plate length so increasing the suction effect. The decrease in negative lift for the 25 degree case may be a result of 

vortex breakdown. Zhang t al [7] reported a similar decrease in rate of change of CL with ground clearance. At the 

higher vortex generator angles it may be likely that vortex breakdown is occuring closer to the trailing edge of the 

vortex generator so reducing the suction. 
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Flow visualisation tests have show the vortex to be weaker below h/c=0.01 and not defined at all at h/c=0.005. 

Garcia [2] reported similar findings stating that the reduced ground clearance caused the vortices to “untwist” and 

breakdown for the higher vortex generator angles.  

 

The drag coefficient, Figure 5 is seen to exhibit the same trends as seen in the lift coefficient. With drag 

increasing (albeit slowly above h/c=0.05) for all cases except 25 degrees at the lowest ground clearance tested. The 
lower drag for the 25 degree case at the lowest ground clearance is as a result of the loss of vortex induced lift. 

 

 
 

Figure 5 – Effect of changes in VG angle on CD (AR=1) 

 

 

Garcia saw a similar trend for 20 and 30 degree vortex generator cases fixed ground at the lowest ground 

clearances. 

 

Study of the efficiency of the vortex generators assessed through analysis of the lift to drag ratio shows that 

careful consideration should be given to the ground proximity of the vortex generator when selecting suitable angles. 

Figure 6 shows the increased effcieincy of the 15 degree vortex generator for the lowest ground clearances (15% 

increase in negative lift and 18% reduction in drag compared to 25 degree case) whereas the higher angles are more 
effective as ground proximity decreases. 

 

 
 

Figure 6 – Effect of changes in VG angle on -L/D (AR=1) 

 

 

Figure 7 present the pitching moment coefficient data for the configurations taken about a reference point of 

30% plate length or 40mm of the vortex generator length. Positive pitching moment coefficient corresponds to a 

nose down pitching moment. 



 

American Institute of Aeronautics and Astronautics 
 

 

7 

 
 

Figure 7 – Effect of changes in VG angle on Cm (AR=1) 

 

 

Vortex generator angle is seen to have a significant influence on the sensitivity of the plate pitching moment 

coefficient (Cm) to ground clearance (h/c), see Figure 7.  This is assumed to be due to the strong vortices produced 

at higher vortex generator angles acting to move the centre of pressure closer to the plate trailing edge. 
The original tests by Garcia [2] were carried out over a fixed ground plane. Runs were also carried out in this test 

programme for vortex generator angle of 10 degrees and AR=1 with the moving belt held stationary. 

Figure 8 and 9 present the change in negative lift coefficient and drag coefficient between the moving ground 

and fixed ground cases. 

 

 
 

Figure 8 – Effect of moving ground simulation (fixed or moving) on plate negative lift coefficient (–CL) for vane 

spacing (AR)=1, and vane angle (β)=10 degrees. 
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Figure 9 – Effect of moving ground on CD (AR=1, β=10) 

 

At low ground clearances (h/c<0.03) negative lift coefficient and drag coefficient are seen to be greater for the 

moving ground case, with the effect reversing above this height and a notable difference still being present at 

h/c=0.1 At the higher ground clearances, whilst the ground boundary layer is not directly interacting with the vortex 

generators, it presence is assumed to be reducing the  effective ground clearance and hence increasing the flow 
velocity for the fixed ground case 

B. Effect of Vortex Generator Spacing 

 

Data for cases where lateral spacing has been varied and vortex generator angle kept constant at 20 degrees have 

been non-dimensionalised as aspect ratio in this case spacing normalized by depth of vortex generator (25mm). Data 

are also presented for the plate alone with no vortex generators and for cases with the outer vortex generator from 

each pair removed to represent an “infinite” spacing case. 

Negative lift coefficient data are presented in Figure 10. 

 

 
 

Figure 10 – Effect of VG Spacing on –CL (β=20) 

 

It is general thought based on the work by Rossow [8] that  two “fences” are required for the production of a 
stable vortex. However, the single vortex generator case is seen to produce a negative lift coefficicnet of similar 

magnitude to the smaller spaced pairs (AR=0.5 and 1) for all but the lowest ground clearances. 

The negative lift coefficient is greater across the range of ground clearances tested for the AR=2 case with a 

constant increment of lift between AR=1 and AR=2 for ground clearances below h/c=0.05. 

The curve for AR=1 is seen to flatten between 0005<h/c<0.01where a limit may have been reached. The vortices 

will co-rotate and it is possible that at some spacings and ground clearance the effect of one will be to damp the 

other so reducing vortex strength. This will be dependent on spacing and vortex radius. 
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The plate only is generating some negative lift at the highest ground clearance , as can been seen in Figure 3 the 

plate is mounted to a force balance and strut on the upper surface. These will act as a blockage and so induce an 

effective camber which will influence the lift produced. It is highly possible that at this ground clearance the plate is 

not free of the gound effect influence whih will also contribute to the lift force. 

 

The variation of plate drag coefficient (CD) with ground clearance (h/c), for  different vortex generator aspect 
ratios is shown in Figure 11. The general trend is seen to be similar to that for lift coefficient for the single vortex 

generator and both AR=0.5 and 1.  

 

 

 
 

Figure 11 – Effect of VG Spacing on CD (β=20) 

 

However, for AR=2 a decrease in drag coefficient is seen for h/c=0.005 despite the increasing negative lift, see 

Figure 10. Pearcey [9] suggests that the interaction between the high energy flow in the vortex and the low energy 

flow in the boundary layer may reduce the boundary layer thickness, it is possible that the stronger vortex produced 

in the AR=2 case is sufficient to have this affect is this case. 

The drag cofficient for the plate alone is seen vary very little in comparison to the vortex genetaor on cases as 

would be expected with the absence of vortex induced lift. 
 

Pitching moment coefficient, Figure 12, is again seen to vary from nose down to nose up with increasing ground 

proximity (positive pitching moment is taken as nose down). For these constant angle cases, vortex generator 

spacing is seen to have limited effect on the pitching moment particuarly for the closeest ground proximities with 

the variation at h/c=0.005 being as little as 5%. The plate alone gives a nose down pitching moment which is likely 

to be as a result  of the effective camber caused by the balance and support strut on the upper surface of the plate. 

 

 
 

Figure 12 – Effect of VG Spacing on Cm (β=20) 
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C. Comparison with Previous Work 

 

 
 

Figure 13 – Effect of VG Spacing on –CL (β=20), Comparison with Garcia [2] 

 

 
 

Figure 14– Effect of VG Spacing on CD (β=20), Comparison with Garcia [2] 

 
Figures 13 and 14 compare the 10 and 20 degree vortex generator case (AR=1) for the fixed ground Garcia test 

and the present data. The 10 degree data are found to be in relatively close agreement which is not expected given 

the difference between fixed and moving ground whereas the 20 degree data are significantly different with the fixed 

ground plane giving a far higher negative lift. There are two posisible explanations, the interaction with the 

boundary layer growth mentioned earlier will be highly Reynolds number sensitive. The present data are acquired at 

a Reynolds number of 2.26x106, whereas the Garcia data is acquired at 2.7x106. The plate used by Garcia is square 

edged (see figure 21) and so will form vortices from the sharp edges of the plate leading to greated gains in induced 

lift. 
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V. CFD Results 

A. Effect of Vortex Generator Spacing 

 

A parallel CFD study was undertaken using a RANS simulation in StarCCM+, setup is presented in section III. 
Results showed that whilst the CFD study was able to produce similar trends to the experimental data absolute 

magnitude were not well predicted. Figure 15 shows the incremental negative lift coefficient relative to the plate 

only for the three aspect ratios testing at a fixed vortex generator angle of 20 degrees 

 

 

 
 

Figure 15 – Effect of VG Spacing on increment of negative lift coefficient from plate only (Δ-CL) (β=20), 

Comparison with CFD 

 
CFD data represent the rapid reduction in rate of change of negative lift coefficient between h/c=0.005 and 0.01 

but implies the loss of negative lift to be be more significant for the AR=1 case than for AR=0.5 and 2 which is not 

seen in the experimental data. The reason for this is not clear. 

B. Vortex Trajectory 

 

Comparison between predicted lateral vortex core position at the trailing edge of the plate is presented in 

Figure16. The experimental data is taken from tuft flow visualisation on a fixed grid and so is subject to error in 

position prediction. 

 

 

 
 

Figure 15 – Vortex Trajectory (β=20, AR=1), Comparison with CFD 
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Correlation at the higher ground clearances is reasonable, decreasing as ground clearance decreases. The 

experimantal methodolody made position detection at these low ground clearances challenging as the vortices 

became less distinct. Both CFD and experiment predict the motion of the vortex is towards the cntre of the plate as 

gound clearance is reduced. 

Figure 17 to 19 highlight the volution of the vortex for h/c=0.005, 0.02 and 0.1 respectively.  

At ground clearances below h/c=0.02 the vortex appears to lose deifnition and spreads over a larger area but at 
h/c=0.02 two distint co-rotating structures are visible. At h/c=0.05 and 0.01we observe one large stable structure. 

 

 

 
Figure 17 – CFD velocity contours h/c=0.005(AR=1, β=20) 

 

 

 
Figure 18 – CFD velocity contours h/c=0.02(AR=1, β=20) 
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Figure 19 – CFD velocity contours h/c=0.2(AR=1, β=20) 

 

VI.  

VII. Conclusion 

The induced negative lift coefficient on the plate is found to increase with increasing vortex generator angle and 

reduced ground clearance when spacing is held constant at AR=1. This is true for all cases except 25 degrees and 

h/c=0.005 where it is though that vortex breakdown occurs close to the plate trailing edge. During the experiments 

the plate was seen to vibrate significantly at the trailing edge for this condition supporting this theory. For 

0.05<h/c<0.1 the change is drag coefficient is very small but increases as h/c is reduced below 0.03. Analysis of the 

lift to drag ratio suggests that for this spacing higher vortex generator angles are not always advantageous and 
thought should be given to ground proximity. For h/c=0.1 a vortex generator angle of 25 degrees yields the greatest 

lift to drag ratio whereas at h/c=0.005 a vortex generator angle of 15 degrees is the most efficient. At larger ground 

clearance pitching moment coefficient is positive (nose down) for all cases, however, at some ground clearance the 

centre of pressure moves downstream of the 30% plate length reference position and the pitching moment becomes 

negative. The point at which this changeover occurs varies with vortex generator angle, occurring at increasing 

larger distances from the ground plane as vortex generator angle is increased. It is suggested that this occurs because 

the larger angles produce stronger vortices with larger radii that become trapped at higher ground clearances and so 

create a suction effect on the rear of the plate. 

Data for vortex generator spacing equal to aspect ratios of 0.5 (12.5mm), 1 (25mm) and 2 (50mm) at a fixed 

vortex generator angle of 20 degrees have been presented. Also studied were the flat plate alone and a single vortex 

generator. It was found that the single vortex generator produced negative lift coefficients and drag coefficients 
similar in magnitude to the AR=0.5 and 1 cases when the ground clearance was equal or greater then h/c=0.03.  

When AR=2 a significant increase in lift and drag coefficient occurs. CLmax increases across the aspect ratios 

tested and indeed a separate work by Bray [11] states that this would be the case up to AR=6. Application will 

dictate whether such a high aspect ratio is useful as this represents a vortex generator spacing of 150mm. 

For AR=0.5 and 1 there is little change in pitching moment coefficient indicating that vortex generator angle is 

more significant than spacing. 

Comparison to fixed ground data from Garcia [2] shows generally trends are well reproduced but absolute values 

are not. The exact cause is not clear although Reynold number is slightly mismatched and the Garcia plate has sharp 

corners and edges so may be producing vortices that are enhancing the lift. No data for plate alone is given by 

Garcia for comparison. 

The CFD simulation is able to produce the general trends seen in the experimental data for the effect of vortex 

spacing but is not able to well predict absolute magnitudes of negative lift coefficient. 
Vortex trajectory at the trailing edge is in reasonable agreement between CFD and experimental data for all but 

low ground clearances. The experimental technique in this region was found to be insufficient so positions presented 

have a high level of uncertainty. 
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