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ABSTRACT

The use of the thermoelectric material BiCuSeO as a support and promoter for

catalytic ethylene oxidation is reported here. The catalytic activity of a continuous

and non-continuous Pt catalyst supported on BiCuSeO was observed to be

promoted significantly by an in-situ generated thermoelectric Seebeck voltage by the

temperature difference across the material. It has also been shown that this

promotion of catalysis by thermoelectric effect enabled the material BiCuSeO itself to

be highly catalytically active for ethylene oxidation. A linear relationship between the

logarithm of the reaction rate and the thermoelectric Seebeck voltage was also

observed. The thermoelectric promotion of catalysis is attributed to the change of

work function of the catalyst surface, accompanied by a charge transfer from the bulk

to the surface due to the thermoelectric effect.

KEYWORDS: thermoelectric materials; promotion of catalysis; electrochemical

energy; work function; ethylene oxidation
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 INTRODUCTION

It is highly attractive to be able to tune the catalytic activity under operation of a

system, particularly for operations under dynamic conditions. 1 Generally this can be

achieved by tuning the particle size of the active component in-situ, 2,3 or introducing

promotional species onto the catalyst surface by applying an external small current

or voltage to the metal catalysts supported on solid state electrolyte, through non-

Faradaic electrochemical modification of catalytic activity (NEMCA). 4-9 NEMCA has

been observed in many catalytic chemical reactions but its practical industrial use is

rare. This is because it requires the catalyst (often expensive noble metals) to be an

continuous electrode to maintain electrical connection under often harsh chemical

reaction conditions, the efficiency of catalytic materials is very low. 10,11 To

overcome these shortcomings of the NEMCA technique, recently the concept of self-

sustained electrochemical promotion of catalysis and the use of mixed ionic

electronic conducting electrode has been reported.11-13

A novel method to tune catalytic activity in-situ has been reported recently by using

thermoelectric (TE) materials as a catalyst support and promoter. It was reported that

the CO2 hydrogenation and CO selectivity on Pt catalysts supported on a TE material

BiCuSeO ceramics was increased significantly when there was a large temperature

difference across the TE material, and the phenomenon was called thermoelectric

promotion of catalysis (TEPOC).14 TE materials convert a temperature gradient into

electrical voltage via the Seebeck effect, S= -V/ΔT, here S is called the Seebeck 

coefficient, ΔT is the temperature difference across the TE material,  and V is the 

voltage. The oxyselenide BiCuSeO (BCSO) was used as the TE material for its low
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thermal conductivity (<0.5 Wm-1K-1) so that a large temperature gradient can be

established easily across the material. It also has a high Seebeck coefficient which

enables the generation of a large Seebeck voltage, and high temperature stability

with no decomposition below 773 K .15-21 It was further observed that there exists a

linear relationship between the logarithm of the reaction rate and the ratio -eV/kbTh

(a dimensionless parameter), i.e.

Ln(r/r0) = -γeV/kbTh (1)

where γ is a dimensionless positive constant, -e the charge of an electron, kb the

Boltzmann constant, r0 is the reaction rate without any Seebeck voltage, i.e. when

Tc=Th, Tc and Th are the temperatures at the cold and hot surface of the TE

material.14

The TEPOC was interpreted by assuming that the work functions of the catalyst Pt

and also the thermoelectric material BCSO were changed by the Seebeck energy –

eV, 14 as it has been established that a change of work function of a catalyst will lead

to the exponential change of its catalytic activity. 22 The general nature of the

mechanism suggests that TEPOC may be a universal phenomenon. It is therefore of

paramount importance to demonstrate that TEPOC can also be observed in other

catalysed chemical reactions. For this purpose, ethylene oxidation has been chosen

as the model reaction in this work. Ethylene oxidation on platinum has been

extensively investigated before, because this reaction has been used in automotive

exhaust catalyst converters, and the reaction mechanisms were well understood.4,5,23

Other benefits were that the forward reaction products include carbon dioxide CO2

which is very stable, and the reverse reaction was very hard to take place, so it can

often be ignored when considering the whole process.24
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 EXPERIMENTAL SECTION

Thermoelectric materials preparation. The TE material BiCuSeO (BCSO) was

produced by using a B2O3 flux solid-state reaction method. A cold press system was

used to form a dense disc of 20 mm in diameter and 2 mm in thickness, followed by

sintering in argon atmosphere at 923 K for 10h. Further details can be found in

previous publications.14, 25 For the solid electrolyte, the dense Yttria-stabilized

zirconia (YSZ) discs were prepared from 8 mol% YSZ (CoorsTeK powder, 99.99%;

average grain size, 0.5-0.7 µm), and sintered at 1773 K for 2 hours in air (achieved

density higher than 98%). YSZ discs were 16 mm in diameter and 1.5 mm in

thickness. The composite discs of (BiCuSeO)0.9(YSZ)0.1 were synthesized by mixing

commercial YSZ powders and lab prepared BiCuSeO powders in ethanol. The

composite suspension was homogenized in ultrasonic for ~ 30 minutes, followed by

ball milling for 24 hours with a zirconia milling balls to powder weight ratio of 5:1. The

ethanol solvent was evaporated in an oven (Memmert model UNE 300) with

enforced air circulation. The resulting powders were compacted at 150 MPa using a

hydraulic press system. The above prepared discs were then sintered in argon at

923 K for 10 hours. Scanning electron microscopy (Philips XL30 S-FEG) and X-ray

diffraction (Siemens D5005) techniques were employed for structural and

compositional characterisation.

Pt catalysts preparation. A number of Pt catalyst systems were investigated. Thin

films of Pt catalyst with nominal thickness 80 nm were deposited on the one side of

the BCSO disc in Argon atmosphere at room temperature, and referred to as

Pt(80)/BCSO. Further details of the Pt films, with nominal thickness of 15 and 80 nm,
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can be found in the previous publication.14 All the BCSO, Pt(80)/BCSO and

Pt(15)/BCSO discs weighed 5.8g.

Pt nanoparticle containing samples (Pt(NP)/BCSO) were prepared by mixing BCSO

powders with a solution of H2PtCl6 (Sigma-Aldrich, 8wt% in water), using ultrasonic

agitation at 313 K for 60 min. The excess water was evaporated overnight at 383 K,

and finally the green disc was formed using cold pressing, and calcined at 823 K for 1

hour under argon. This sample also weighed 5.8g.

For NEMCA investigation, electrodes were prepared by sputtering of noble metals

onto the disc samples of YSZ. Platinum was used as the catalyst and working

electrode (WE), and was deposited on one side of a pellet by DC magnetron sputtering,

whilst gold (Au) as the counter and reference electrodes were deposited on the other

side by RF magnetron sputtering. The working and counter electrodes were located in

a symmetrical face-to-face arrangement on the opposite sides of the disc, in a

configuration typical for carrying out NEMCA testing. This sample is referred to as

Pt(80)/YSZ. A 80 nm thin film of Pt catalyst deposited on a composite pellet of 90%wt

BiCuSeO and 10%wt YSZ was prepared similarly (weight 5.02g) and was coded as

Pt(80)/(BiCuSeO)0.9(YSZ)0.1.

The reaction chamber. The chamber reactor (Figure S1a) which can combine

thermoelectric effect with catalytic chemical reaction has been described in detail in a

separate publication.14 Briefly, the reactor consisted of a stainless steel cylinder of 40

cm3 in volume capped with a cover plate that was sealed with an O-ring and secured

by screws. The cover plate was cooled with running water. The reactor was sitting on

a hotplate, with gold wires and thermocouples led out of the reactor chamber through
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two four-hole alumina clad tubes (Omega, Omegatite 350). A disc sample was placed

into a specific glass ceramic holder (MACOR) and attached to the cooling surface of

the cover plate for normal thermoelectric effect experiments. Gold wire was selected

because of its minimal catalytic activity, as verified through blank control experiments.

In order to eliminate artefacts, gas leaks were carefully monitored throughout the

progress of experiments. The Seebeck voltage, or catalyst potential difference

according to the procedure generally used in conventional NEMCA three-electrode

electrochemical cells, were measured using a potentiostat-galvanostat (VersaStat 3F,

Princeton Applied Research) between the bottom hot and upper cold surfaces, or

between the working electrode (Pt) and the reference electrode (Au).

Chemical reaction characterisation. The chemical reactions were carried out

under atmospheric pressure, and the schematic of the experimental set-up is shown

in Figure S1b. A set of three gas mass flow controllers (MFCs) was used to control

the gas composition and flow rate. The reactant gases were BOC certified standards

of O2 (99.996%) supplied as a 20% mixture in He (99.996%), and 4% C2H4 mixture

in He (99.996%), with helium (BOC, 99.996%) being used as a carrier gas to obtain

the desired concentrations. The overall flow rate was 200 mL min-1 and the reactive

mixture was composed of ethylene with partial pressure P����= 0.189 kPa and

oxygen with partial pressure P�� = 3.01 kPa. For the structure stabilization, the Pt

film was pre-treated in 5% H2/Ar at 603 K for 2 h in order to reduce the platinum,

before the sample was cooled down to room temperature under the flow of helium.

The sample was pre-treated at 723 K for 4h under the reaction mixture. Finally, the

temperature was decreased to room temperature for catalytic activity measurements.
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Inline Gas Chromatography (GC8340, CE instruments) was used to quantify the

concentration of reactants and products C2H4, O2 and CO2, and in-line IR analyzer

(G150 CO2, Gem Scientific) was used to double check the concentration of CO2. The

gas chromatograph (GC) was equipped with a Thermal Conductivity Detector (TCD)

and two columns, containing Molecular Sieve 5A and a Porapak Q respectively. Data

acquisition and manipulation were performed using the TotalChrom Workstation

(Version 6.2.1 for Windows) data system. Each measurement was repeated three

times to test the stability and reproducibility. At each temperature, the catalyst was

allowed to reach a steady state for 20-30 min and then three GC injections and

measurements were performed. The average of three GC measurements at each

temperature is reported. Blank testing of the empty reactor and all samples were

performed in the temperature range of 300 – 723 K. It is noteworthy to mention that

the carbon mass balance was found to be within 6% for all experiments.

The reactions were evaluated using the rate of carbon dioxide production and ethylene

conversion from the outlet partial pressures of C2H4 and CO2, according to the

stoichiometry of the reaction:

C2H4 + 3 O2 2 CO2 + 2 H2O (6)

Carbon dioxide was the only observed product and its partial pressure at the outlet

was converted to area specific molar flow rate in nmols-1 by using the following

equation:

r��� =
(���� ���.�⁄ )

�����	�	��
x	�� x 10� (7)

where �� is the volumetric flow rate at the outlet of the reactor in ml min-1. The rate of

consumption of O (r�) was simply:
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r� = 3 x r���

The ethylene conversion into CO2 was defined as:

% C�H� Conversion =
����

�����	�	�����
x 100 (8)

where Pco� and P���� were the partial pressure of CO2 and C2H4 in the outlet,

respectively.

 RESULTS AND DISCUSSION

Microstructure of the catalyst system. Scanning electron microscopy (SEM)

surface morphology images for the samples Pt(80)/BCSO, Pt(15)/BCSO,

Pt(80)/(BiCuSeO)0.9(YSZ)0.1 and BCSO after they have been subjected to catalytic

reaction experiments are shown in Figure 1a-d. It can be seen that the BCSO had

grain size between 2 and 8 μm, with a very clean surface (Figure 1a). For the

Pt(15)/BCSO, small Pt particles on the surface of BCSO grains (indicated by arrow

heads) were observed (Figure 1b). For Pt(80)/BCSO (Figure 1c), more and larger

Pt particles were observed (indicated by arrow heads). 80 nm was deemed the

minimum Pt thickness to ensure electrical conductivity on the surface of the YSZ.

Pt(80)/(BiCuSeO)0.9(YSZ)0.1 consisted of relatively large BCSO grains and much

smaller (∼ 0.1 μm) YSZ grains (Figure 1d). Figure 1e shows X-ray diffraction (XRD)

patterns for the above samples. Apparently, BCSO was a single phase (PDF#45-

0296) in every sample, no second phase was observed. Strong Pt peak can be

observed for all the samples with a 80 nm Pt film. However, no Pt peak could be

seen for Pt(15)/BCSO, suggesting the Pt grain size in the Pt(15)/BCSO was beyond

the XRD detection limit, and therefore existed as separate nano-particles.
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Figure 1. Surface SEM images of catalyst systems after catalytic chemical reaction

characterisation: (a) bare BCSO; (b) Pt(15)/BCSO; (c) Pt(80)/BCSO; (d) Pt(80)

(BiCuSeO)0.9(YSZ)0.1. BCSO grains were much larger than YSZ grains; (e) XRD

patterns for all samples and Pt(80)/YSZ. The arrow heads point to Pt particles.
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Substantial higher catalytic activity for Pt catalysts supported on TE

materials with a Seebeck voltage. The reaction chamber was heated by a hot-

plate, and its top cap is water cooled (for details see Figure S1 and Figure S2). A

disc sample of 20 mm in diameter and about 2 mm in thickness was then placed into

a specific glass ceramic holder and attached to the cold surface of the cap for

catalytic reaction investigation under the TE conditions. As the back side of the disc

was in contact with the water cooled stainless steel cap, its temperature was always

less than 373 K (Table S1). When the front surface of the disc was at a high

temperature, a large temperature difference was created between the hot surface Th

and cold surface Tc, hence a high Seebeck voltage was generated. At the reduced

TE (RTE) condition, the back surface Tc of the disc was not in direct contact with the

cap, therefore the temperature difference across the disc thickness and also the

Seebeck voltage were much smaller.

Figure 2 shows the ethylene oxidation reaction rates for different front surface

temperatures Th for Pt(80)/BCSO with a large TE effect (Pt(80)/BCSO TE), and

under a reduced TE effect (Pt(80)/BCSO RTE) respectively. For Pt(80)/BCSO TE,

when the front surface Th was at 666 K, the backside temperature Tc was 349 K, so

a temperature difference of 317 K existed across the BCSO thickness, which

generated a Seebeck voltage -71 mV (more details in Table S1). The corresponding

reaction rate of oxygen was measured as 2258 nmols-1 and the conversion of C2H4

was 99.9% for the flow rate used within these studies (more details in Figure S3).

For the same sample under the RTE conditions (Pt(80)/BCSO RTE) at 553 K (more

details in Table S2), the measured Seebeck voltage was -3.1 mV, and the reaction

rate was only 0.08 nmols-1. These values for the RTE case became -8.6 mV, 7.1

nmols-1 and 1.2% respectively, when the hot surface Th was increased to 713 K. This
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highlights, that for the same sample, the reaction rate under the TE condition at 666

K was 318 times greater than the rate observed under the RTE condition at a higher

temperature of 713 K. For better comparison with the TE case, the rate under RTE

conditions was interpolated for the same temperature of 666 K and the new

estimated ratio of reaction rates between the TE and RTE conditions was found to

be 660. It is plausible to assume from this that if the temperature gradient could be

fully removed in the RTE case then the observed Seebeck voltage effect on this ratio

would be even higher. The above experiments have been repeated at least once and

the results have been shown to be reproducible, which helps to rule out the

possibility that the rate difference was due to particle aggregation at the surface. The

same samples were used for reported CO2 hydrogenation studies. 14

Figure 2. Ethylene oxidation rates as functions of temperature at the catalyst

surfaces, for Pt(80)/BCSO under large TE effect (Pt(80)/BCSO TE) and reduced TE

effect (RTE) conditions. Much higher Seebeck voltages were generated across the

thickness of the catalyst support BCSO under TE than under RTE conditions. Notice

the logarithm scale for rate.
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Seebeck voltage alone can greatly increase the catalytic activity. Another

experiment was carried out to demonstrate that even at a constant temperature, the

Seebeck voltage alone can increase the reaction rate substantially. BCSO powders

were mixed with Pt containing solvent H2PtCl6 to form a green ceramic and it was

sintered at 823 K for 1h before being used as a catalyst for this investigation (sample

Pt(NP)/BCSO). This sintering temperature was 100 K lower, and the duration was

only a tenth of the usual used (923K for 10hrs) for other samples, so this ceramic

was not fully sintered. As a consequence, the BCSO can continue its crystallization

processes in the reaction chamber with time, and therefore change its TE properties

such as the Seebeck coefficient. Figure 3a shows XRD patterns for the back side

and the front side of the Pt(NP)/BCSO after the catalytic reaction experiment. The

back side’s temperature never exceeded 350 K, so no further sintering could take

place and it maintained the structure of the as-prepared green ceramics, which

contained some 2nd phases such as Bi2O3. The hot side experienced temperatures

of up to 773 K for several hours, allowing further crystallisation and sintering in the

reaction chamber which reduced the amount of the second phase materials and

increased its crystallinity, as indicated by Figure 3a.
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Figure 3. (a) XRD patterns for the cold side (top) and the hot side (bottom) of the

Pt(NP)/BCSO after catalytic reaction measurement. (b) The ethylene oxidation rate

as a function of the Seebeck voltage at constant temperatures Th= 705 K and Tc=

339 K for Pt(NP)/BCSO. The increase in the Seebeck voltage was due to the

increase of its Seebeck coefficient. Notice the logarithm scale for rate.
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The effect of the increased Seebeck voltage on the reaction rate was monitored as a

function of time while the chamber temperature was kept the same. Table S3

summarises the reaction rates at different Seebeck voltages at a constant Tc and Th,

so therefore the rate increase can be attributed to the change of the Seebeck

voltage. An excellent exponential increase of the reaction rate with the Seebeck

voltage was observed (Figure 3b), demonstrating that the change of the Seebeck

voltage alone can increase the catalytic reaction rate significantly.

Relationships between Seebeck voltage and catalytic activity. Figure 4

shows the relationships for the temperature, Seebeck voltage, and catalytic reaction

rate for ethylene oxidation for the three samples; Pt(80)/BCSO0.9YSZ0.1,

Pt(15)/BCSO, and BCSO only (without any Pt). Figure 4a shows their temperature

dependence on the reaction rate. All three samples, show a similar behaviour to the

sample Pt(80)/BCSO TE, i.e. an increase of 3 to 4 orders of reaction rate and 100%

C2H4 conversion (Figure S3) when the temperature was increased from 300 K to

around 700 K. This showed BCSO, like other conductive oxides such as IrO2 and

RuO2, have high catalytic activity for ethylene oxidation. 26 The Seebeck voltage was

recorded continuously during the experiment, and a typical time profile of the

Seebeck voltage, for the sample BCSO, is shown in Figure S4. The Seebeck

voltages at different temperature differences ΔT for all four samples are shown in 

Figure 4b. The negative voltage means the potential was lower at the hot surface Th

than at the cold surface Tc. All the Seebeck voltages were zero at room temperature,

and increased linearly with ∆T. The extracted best-fit line gradients, i.e. the Seebeck 

coefficients, were different for different samples, and ranged from 206 μV/K for 

Pt(80)/BCSO0.9YSZ0.1  to 485 μV/K for BCSO. These Seebeck coefficients for BCSO 
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were within the values for BCSO reported in literature.17-19 For the same

temperature, the measured Seebeck voltage was higher for Pt(15)/BCSO and

BCSO, than for the composite Pt(80)/BCSO0.9YSZ0.1. It was expected the composite

sample to have a lower Seebeck coefficient, since YSZ was not a TE material. For

all these four samples, the Seebeck coefficients decreased at high temperatures.

This is not unusual, as generally speaking, the Seebeck coefficient of a TE material

is temperature dependent.

Figure 4. (a) reaction rate r increased by more than 3 orders with the increase of

the temperature Th. (b) measured Seebeck voltages as functions of temperature

gradient across sample thickness. (c) a linear relationship between Ln(r) and -

eV/kbTh when the Seebeck voltage was small. (d) at higher Th with large Seebeck

voltages, the rate r was proportional to the Seebeck voltage V.
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In the following analysis, we assume the intrinsic ethylene oxidation was the rate

limiting step. More precisely, under the fuel-lean conditions explored in this study,

the rate-limiting step has been suggested to be the reaction between ethylene and

adsorbed oxygen atom at the catalyst surface. 23 We further assume there were no

mass transportation limitations (as discussed later this was only the case when the

reaction rate was smaller than a certain value). There were several reasons to justify

this assumption. As shown in Figure 1, there should be no pore-diffusion limitation as

the samples were not porous. Also, a large temperature difference (∼200-300 K

when Th >500 K) existed between the hot-surface Th and the bottom of the chamber

(see Figure S1a and Figure S2), there should be strong gas convection within the

chamber, especially in a perpendicular direction. This can increase the reactants

supply to the Th surface and take away the reaction products. Also, it is known that

CO2 is a very stable chemical and the reaction of CO2 with H2O under excess

oxygen environment is very difficult to take place. 24 Furthermore, the absolute

concentrations of the reactants were relatively small, the initial partial pressures for

C2H4 and O2 were 0.189 kPa and 3.01 kPa, respectively. For these reasons, the

ethylene oxidation was considered irreversible. The fact that all four experiments

achieved 100% conversion of ethylene at about 700 K (Figure S3) provided further

support for these assumptions.

In principle, the ethylene oxidation could have been carried out on the front surface

(nominal surface area 314 mm2) Th, and back surface Tc, as well as the side wall of

the disc samples. All our measurement data, (Table S1), showed no observable

reaction rate for Th < 350 K. At the same time, Tc was always below this temperature,

so the rate contribution from the Tc surface (nominal surface area 314 mm2) was
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negligible for all samples under the TE conditions. We further assumed that the rate

contribution from the side wall (with nominal area 126 mm2) was also negligible (will

be discussed later), and therefore the measured ethylene oxidation rate was

attributed to the hot surface Th only. Figure 4c shows the plotted data of Ln(r) versus

-eV/kbTh for all four samples. It can be seen for each sample, that under a certain

temperature or Seebeck voltage, a linear relationship existed between Ln(r ) the

logarithm of the reaction rate, and -eV/kbTh the ratio between the Seebeck energy

and the thermal energy, the same as those observed for CO2 hydrogenation.14 The

best-fit line gradients  γ were 2.8, 2.4, 3.0, and 3.2 for Pt(80)/BCSO,  

Pt(80)/BCSO0.9YSZ0.1, Pt(15)/BCSO, and BCSO, respectively. For p-type TE

materials, V is negative, from the equation Ln(r/r0) = -γeV/kbTh it can be seen that the

reaction rate should be much higher with a TE voltage than without. Looking at the

data for Pt(80)/BCSO (Table S1) when Th = 543 K; Ln(r/r0) = 3.29, so r/r0 =26.8. This

means at the temperature 543 K, the reaction rate was promoted by 26.8 times with

a Seebeck voltage of -55 mV.

The ethylene oxidation also depends on the pre-exponential term, such as the total

surface area and adsorptions. These factors may account for the rate dependence

on sample materials in Figure 4a & c. Two reasons contributed to the observed

result that the bare BCSO has similar ethylene oxidation rate as the Pt covered

Pt(80)/BCSO: the exponential term with a high Seebeck voltage was the dominant

factor and oxygen is adsorbed to the negatively charged surfaces of Pt and BCSO.

Catalytic activity with a high Seebeck voltage. Referring to Figure 4c again, no

linear relationship was observed between Ln(r) and -eV/kbTh with further increasing

of the temperature and Seebeck voltage. For all of the samples, at high

temperatures, Ln(r ) increased rapidly whilst -eV/kbTh changed little, or even reduced
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for BCSO. In fact a good linear relationship between the rate r and the Seebeck

voltage V was observed (Figure 4d). The parameter conditions at which the rate

started to increase linearly with V (i.e. temperature, Seebeck voltage, -eV/kbTh,

Ln( r)) were as follows: (543 K, -55 mV, 1.18, 4.94) for Pt(80)/BCSO, (656 K, -69 mV,

1.18, 4.94 ) for Pt(80)/BCSO0.9YSZ0.1, (633 K, -81 mV, 1.48, 4.63) for Pt(15)/BCSO,

and (625 K, -105.2 mV, 1.95, 4.85) for BCSO. For all of the four samples, these

“transition points” had very similar Ln( r) values, 4.94, 4.94, 4.63 and 4.85

respectively, suggesting the reaction rate was the main factor determining the

“transition point”. The extracted line gradients for the four samples were similar, and

were 122.4, 101.9, 82.6 and 85.5 nmol mV-1 respectively.

Figures 4c-d show that once the reaction rate reached above 120 nmols-1, the

relationship between the reaction rate r and the Seebeck voltage V changed from

exponential to linear. We believe this was due to the change of the rate limiting

mechanism. At low reaction rate (<120 nmols-1), the ethylene oxidation was

activation energy limited. However, at higher rate >140 nmols-1, the ethylene

oxidation became either mass transfer limited or charge transfer limited. If it was

charge transfer limited, one would expect different materials (BCSO, Pt(80)/BCSO or

Pt(15)/BCSO) to have different “transition point” because their surface electrical

conductivity should be different. The fact that all the different samples had the

“transition point” at the same reaction rate suggested that the mass transfer of

reactant, most likely to be ethylene transfer (as the inlet gases were highly oxygen

rich) was the rate limiting step. The gradients for different samples as shown in figure

4d had similar values, further supporting the assumption that the rate limiting factor

was the ethylene mass transport, independent of the catalyst samples. Both the

Seebeck voltage and the ethylene diffusion (onto the reaction surface) were
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proportional to the temperature gradient, which resulted in an apparent linear

relationship between the reaction rate and the Seebeck voltage.

It is interesting to notice that the r — (-V) curves as shown in figure 4c-d resemble

the I — V curve for a p-n diode under bias, where an I-V linear relationship at high

voltage is often observed. 27 The “transition point” in figure 4c-d is analogous to the

“knee point” in the I—V curve of a p-n junction. This is not entirely surprising as there

is similarity between the Schottky barrier formed at the Pt-BCSO interface and a p-n

junction in a diode (this will be discussed later).

Under TE conditions, the Tc side never reached more than 350K, and no reaction

was ever recorded for Th less than 350K, therefore it was a fact that no reaction had

taken place on the Tc side under TE conditions. Under RTE conditions, the Tc side

could have reached temperatures higher than 350K, however, the Seebeck voltage

at the Tc side was positive, so the rate equation on the Tc side becomes Ln(r/r0) = -

γeV/kbTc < 0 because V > 0. This means the reaction rate on the Tc side was

effectively inhibited, and the rate on the Tc side should be much smaller than the rate

at the Th side under RTE conditions. For the same reason, as the temperature at the

side wall was always lower than at the hot surface, due to the thermoelectric

promotion of catalysis, the reaction rates at the side wall were negligible relative to

that on the Th side.

Having established the reactions were mainly taking place on the Th surface, the

turnover frequency (TOF) can be estimated. For simplicity we consider Pt(80)/BCSO

where the surface was a continuous Pt layer, with a nominal area 314 mm2. The

actual surface area should be larger (but less than twice if not porous and using

sphere particle model) due to the surface roughness, but usually not all the surface
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area is catalytically active. Taking all these into consideration we use the nominal

area as the total surface area. Pt is cubic with a lattice constant 0.3924 nm. So there

are 2x1015 surface Pt atoms on the Th side. For a rate of 120 nmols-1, the

corresponding TOF was 36 s-1.

Electron Fermi levels change with temperature. Combining the previously

reported results,14 the TEPOC phenomena has been demonstrated on two different

chemical reactions, namely CO2 hydrogenation and ethylene oxidation. Also, it was

reported recently that thermoelectric materials can function as electrocatalysts and

Seebeck voltage can initiate and boost electrocatalytic reactions. 28 We believe the

mechanisms for all these were the same and will be discussed below. With the help

of numerical modelling, we show that the electrochemical energy of electrons in the

TE material increases with temperature, as a result, its work function and those for

the Pt supported on it were decreased.

The platinum supported on BCSO (Pt/BCSO) is a typical metal on semiconductor

system. According to metal-semiconductor contact theory, the Fermi levels of the

metal and the semiconductor should be the same at the surface after the contact.

Before contact, the metal and the semiconductor have different work functions, and

then upon contact, charge will flow to the material with a lower Fermi level, until their

Fermi levels are equalized.29,30

The work function and Fermi level of BCSO and their temperature dependence were

calculated using ab initio method based on density functional theory.31,32 Figure 5

shows (a) the electrostatic potential distribution, and (b) charge density difference at

the interface for the optimised structure of eight layers of Pt on two unit cells of

BCSO along the [001] direction at the room temperature. In Figure 5b, yellow and
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blue represent gaining and losing of electrons respectively, it can be seen that

charge transfer happened mainly from Bi to Pt. From the first principle calculation,

the obtained work functions were 3.94 eV for the intrinsic BCSO, and 5.67 eV for Pt

which is close to its experimental value 5.64 eV.33 As BCSO has a much smaller

work function than Pt, upon contact electrons will be transferred from BCSO to Pt,

forming a Schottky barrier at the interface.

The Fermi level of BCSO changes with temperature as well, Figure 6 shows the

calculated Fermi levels of BCSO as functions of temperature at different charge

carrier concentrations. At a particular temperature, higher carrier density leads to a

smaller change in the Fermi level. At a particular charge carrier density, higher

temperature makes the Fermi level move closer to the intrinsic value (middle of the

band gap). For the p-type BCSO, the Fermi level increases with increasing

temperature, and for a n-type BCSO, its Fermi level decreases with increasing

temperature.
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Figure 5. (a) the distribution of electrostatic potential; (b) the charge density

difference.

Figure 6. The Fermi level dependence on temperature at different charge carrier

concentrations for n-type and p-type BCSO.
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Electron work function changes with the Seebeck voltage. Work function is

defined as the minimum energy required to remove an electron from a material to

vacuum immediately outside its surface. It is a measure of how tightly a material

holds its electrons, and can affect many of the material’s properties especially the

surface and interfacial properties. 34-36 In general, work function is determined by the

electrochemical energy (Fermi level) εF and the inner potential χ, i.e. 

φ = -εF -e χ             (2) 

According to definition a voltmeter measures the difference in electrochemical

energy, which equals the Seebeck voltage V,

-eV =  εF,h  – εF,c  = - (φh – φc) - e (χh - χc) = -Δ φ - e (χh - χc) (3)

here the subscripts h and c indicates hot and cold sides respectively.

Or Δ φ = eV - e Δ χ           (4) 

In other words, the change of work function is consisted of two parts, one from the

change of the Femi level which equals to eV for TE materials, and the other from the

change of the inner potential.

Generally speaking the electron work function for metals decreases with increasing

temperature, with a linear coefficient about – (1∼15) x10-5 eVK-1.37 This can be

understood by regarding the work function as a barrier for the electrons to be moved

from inside a solid to a point in vacuum immediately outside the solid surface.34

Increasing temperature should thermally excite electrons to be able to move out

easier. As a rough estimation, in metals the reduction in work function was assumed

equal to the thermal energy of an electron
�

�
kbT: 38,34
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If we apply the above estimation to the oxide BCSO as well, i.e., the reduction in

work function for the non-thermoelectric origin equals to βkbΔT where β is a 

constant, then for thermoelectric materials we have

Δ φ = -eS(Th – Tc) - βkb(Th –T0) (5),

if the cold side temperature Tc is not the same as the initial temperature T0.

So the change of work function is linearly proportional to the temperature gradient,

and, when the magnitude of the Seebeck coefficient |S| ≫ βkb/e, it is equal to eV. As

it has been established that the work function change at catalyst’s surface will lead to

the exponential change of the reaction rate, 22 the experimentally observed equation

Ln(r/r0) = -γeV/kbT can therefore be explained. It should be emphasised here it is the

change of Work Function, not the Fermi level, that is responsible for the change of

the reaction rate. This has been well discussed in the case for NEMCA.39

Charge transfers accompanying the temperature change. For Pt supported

on the p-type BCSO, upon a temperature increase, the Fermi level of the BCSO

increases, but Pt’s Fermi level hardly changes, and as a consequence more

electrons are transferred from BCSO to Pt, reducing the work function of the Pt

further.

So the change of the work function for Pt supported on BCSO has two aspects. The

first is the reduction of work function due to the difference in their work functions

upon contact. The second aspect is the further reduction of work function with the

increasing temperature due to the TE effect, as discussed above.

It can be shown there is a net charge built up on the surface of a thermoelectric

material with the increase of temperature. This is similar to the case of the Pt
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supported on BCSO, which could at least partially explain the observed similar

catalytic behaviours as shown in Figure 4. Take an example of a p-type TE disc of

20 mm in diameter and thickness L, with its cold side at Tc and hot side at Th, and

Seebeck coefficient S. The total Seebeck voltage is V0 = -S(Th-Tc). If Z axis is along

the thickness direction, with origin at the cold side, at any point z within TE, V(z) =

V0z/L assuming the temperature gradient within TE is uniform. From Poisson’s

equation, we know the free charge density within TE is zero, and electrical field E =

V0/L is a constant. The surface charge density is σ = ε0εE = ε0εV0/L, where ε0 is the

dielectric constant of vacuum, and ε the relative permittivity of the TE material. So at 

the hot surface, the net charge density is σh = -ε0εS(Th-Tc)/L, and at the cold surface,

the net charge density is σc = ε0εS(Th-Tc)/L. Take the values of Th-Tc = 300K, S = 300

μVK-1, ε = 5 (calculated relative permittivity for BCSO), L=2 mm, then  σh = -2 x 10-9

Cm-2, or ∼1.25 x 106 electrons per square centimetre. This is a small charge

density. Nevertheless, this net surface charge and surface potential should have a

significant effect on the surface, for example the adsorption property. This suggests

that the reduced work function, and the negative charges on the surface, will reduce

the activation energy for the reaction between the ethylene and the adsorbed oxygen

atom, therefore makes the whole reaction easier. Further studies are needed to

reveal the specific mechanisms for thermoelectric promotion of catalysis of a

particular reaction.

TEPOC is an universal phenomenon. Generally chemical reactions follow the

Arrhenius law (Figure S5), i.e. r0 = k0 exp(-Ea/kbT), here Ea is the activation energy

of the reaction, and k0 a constant. Combining Equation (1) with Arrhenius law gives r

= k0 exp(-(Ea + γeV)/kbT), hence the activation energy is reduced by – γeV (a 

negative number for the cases here).
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Apparently there are similarities and differences between TEPOC and NEMCA. Both

achieve the promotion of catalysis through a change of electron work function of the

catalyst surface, but the mechanisms to achieve the change of work function are

different. In TEPOC, the change of work function is mainly due to the change of

Fermi level, a direct electronic effect of thermoelectricity. Whilst in NEMCA it is the

formation of a double-layer leads to the change of work function. NEMCA has been

observed in over 80 different chemical reactions.4, 5, 10-11 The similarity in the

underlying fundamental mechanisms between the two make us believe TEPOC can

also be observed in those reactions.

A major difference is that a solid state electrolyte is a critical component in NEMCA

but it is not needed in TEPOC. It has been reported that BCSO has negligible ionic

conductivity,40,41 i.e. any spillover of ionic species was negligible. Also, we did

observe the NEMCA phenomenon for the Pt(80)/YSZ (Figures S5-S7). However,

when a positive or negative voltage was applied onto the Pt(80)/BCSO or

Pt(80)/BCSO0.9YSZ0.1 using a typical NEMCA configuration, no noticeable change of

reaction rate could be observed. This is understandable because TE materials are

electrically conductive, a non-ohmic potential drop could not be realised through an

external applied voltage across this material.

 CONCLUSIONS

In summary, we have investigated an innovative use of the thermoelectric ceramics

as a catalyst support and promoter, through the ethylene C2H4 oxidation to produce

CO2 and H2O. It was found that the catalytic activity of Pt supported on the

thermoelectric materials can be promoted significantly by a Seebeck voltage, which
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was produced directly by a temperature difference across its thickness. Also, the

thermoelectric material BiCuSeO itself was found to be catalytically active for

ethylene oxidation, and it can also be promoted significantly by a Seebeck voltage.

Furthermore, catalytic activity was found to increase exponentially with -eV/kbT when

the reaction was activation energy limited. However, upon further increase of the

reaction rate, the process became mass transport limited and instead, a linear

relationship between the reaction rate and the Seebeck voltage was observed.

Further analysis indicates that this thermoelectric promotion of catalysis was

accompanied by a charge transfer from the thermoelectric material to the metal

catalyst on the surface or from the bulk to the surface thermoelectric materials, and

the thermoelectric promotion of catalysis was due to the change of the catalyst work

function with temperature and temperature gradient of the thermoelectric materials.
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Table S1: Summary of experimental conditions and catalytic reaction measurement

results for Pt(80)/BCSO TE in Figure 2. Tc, Th were the temperatures at the top (cold)

and bottom (hot) surfaces respectively, V the Seebeck voltage.

Tc ( K) 302.4 302.4 306.5 306.7 308.7 311.6 315.2 319.5 325.6 332.0 339.0 340.0 349.0

Th(K) 302.5 302.5 315 328.4 345 366 393 425.5 467 543 603 627 666

∆T (Th-Tc) 0.1 0.1 8.9 21.7 36.3 54.4 77.8 106.0 141.4 211.0 264.0 287.0 317.0

Seebeck V (-mv) 7.9 12.5 20 29.8 39.5 55 59 68 71

CO2 (kPa) 0.000 0.000 0.000 0.000 0.000 0.001 0.002 0.004 0.009 0.011 0.175 0.325 0.508

C2H4 (kPa) 0.194 0.195 0.197 0.196 0.195 0.194 0.194 0.192 0.187 0.165 0.015 0.001 0.000

O2 (kPa) 2.99 2.94 2.91 2.85 2.85 2.85 2.85 2.85 2.83 2.84 2.66 2.42 2.23

r CO2 (nmol(O)/s) 0.0 0.0 0.0 0.0 0.0 6.0 10.9 15.7 38.9 49.8 775 1445 2258

C2H4 Conv (%) 0.0 0.0 0.0 0.0 0.0 0.3 0.6 0.9 2.3 3.3 84.9 99.1 99.9

ln ( r) 1.78 2.39 2.75 3.66 3.91 6.65 7.28 7.72

-eV/KbTh 0.40 0.59 0.81 0.98 1.17 1.13 1.26 1.24
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Table S2: Summary of experimental conditions and catalytic reaction measurement

results for Pt(80)/BCSO RTE in Figure 2. Th was the temperature at the bottom (hot)

surface, V the Seebeck voltage. Tc was not measured, but could be calculated from

the corresponding Seebeck voltage and the Th.

Th(K) 298 352 423 493 553 623 713 778

Seebeck V (-mv) 2.1 3.1 4.9 8.6 11

CO2 (kPa) 0.0000 0.0000 0.0000 0.0000 0.0001 0.0020 0.0048 0.0178

C2H4 (kPa) 0.20 0.19 0.20 0.20 0.20 0.20 0.19 0.19

O2 (kPa) 2.970 2.881 2.889 2.882 2.879 2.876 2.851 2.827

r CO2 (nmol(O)/s) 0.0 0.0 0.0 0.0 0.1 2.9 7.1 26.4

C2H4 Conv % 0.0 0.0 0.0 0.0 0.0 0.5 1.2 4.4

ln ( r) -2.5 1.1 2.0 3.3

-eV/kbTh 0.05 0.06 0.09 0.14 0.16
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Table S3: Summary of Seebeck voltage, reaction rate and ethylene conversion at

constant temperatures Th = 705 K and Tc = 339 K for the sample Pt(NP)/BCSO in

Figure 3.

V (-mV) 104 105 106 107 107.5

rCO2 (nmol (O)/s) 124 157 204 250 281

C2H4 Conv % 9.6 13.8 20.0 26.8 31.7
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Figure S1. (a) Schematic of the single chamber reactor which can combine

thermoelectric effect with catalytic chemical reaction. (b) Schematic of the

experimental set-up for ethylene oxidation reaction characterisation.
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Figure S2. Schematic of the arrangement of the sample and the measurement

parameters for all the catalytic reaction experiments. Tc and Th were measured

temperatures at the top and bottom surfaces of the sample, and V the corresponding

Seebeck voltage. The bottom surface of the sample was about 8 mm above the bottom

of the stainless steel chamber. The temperature of the chamber bottom was 200 ∼

300 K higher than the bottom of the disc sample.
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Figure S3. The corresponding ethylene conversions as functions of the temperature

Th for the Pt(80)/BCSO TE in Figure 2, and for the three samples BCSO,

Pt(15)/BCSO, and Pt(80)/BCSO0.9YSZ0.1 in Figure 4a. The conversion was increased

by 3 orders with the increase of the temperature Th.
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Figure S4. Time profile of the recorded Seekeck voltage during catalytic reaction

characterisation experiment for the BCSO in Figure 4. Time zero was the start of

heating up of the hot-plate. Gas concentration measurement using the gas

chromatograph was carried out 30 minutes after a fixed Seebeck voltage is reached

at a certain temperature. After that the temperature Th was increased to the next

value, which has a larger (more negative value) Seebeck voltage.
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Figure S5. Arrhenius plot for the ethylene oxidation on Pt(80)/YSZ. Ln(r ) as a

function of 1/T for ethylene oxidation rate on Pt(80)/YSZ. YSZ is not a thermoelectric

material.
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Figure S6. SEM images of the Pt(80)/YSZ after catalytic chemical reaction

measurement. (a) secondary electron image; (b) back-scattered electron image from

the same area shown in (a).
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Figure S7. (a) Cross-sectional, and (b) plan view of electrodes for Non-Faradaic-

electrochemical-modification-of-catalytic-activity (NEMCA) characterisation for

Pt(80)/YSZ. (c) the ethylene oxidation reaction rate was reduced from 12.3 to 2.5 n

mol s-1 when an external voltage of -1000 mV was applied to the Pt/YSZ. The

working electrode was Pt, the reference and counter-electrode electrodes were Au.
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Simulation and modelling: The modelling was built with eight layers of Pt on top of

two unit cells of BCSO along XYZ directions, above Pt there were at least 1.5 nm of

vacuum to ensure an accurate energy level for the vacuum to be obtained. First

principle calculation was carried out using VASP (Vienna ab initio simulation

package). The exchange-correlation term was described within the generalized

gradient approximation (GGA) parameterized by Perdew-Burke-Ernzerh (PBE)

functional.

For intrinsic semiconductor, the Fermi level is

*

0
*

3
ln

2 4

pc v
i

n

mE E k T
E

m

+
= + （S1）

the intrinsic carrier concentration is

3/2 * * 3/4
0

3
0

2(2 ) ( )
exp( )

2

p n g

i

k T m m E
n

h k T

π 
= − 
   （S2）

Here h is Planck’s constant, Ec and Ev are the energy at the bottom of the conduction

band, and maximum of the valance band, respectively. *
pm and *

nm are the effective

mass for holes and electrons respectively, Eg the band gap. After the band structure

has been obtained, the effective mass was obtained using

12
* 2

2

E
m

k

−
 ∂

=  
∂ 

h （S3）

The so obtained *
pm = 0.54 m0, and *

nm =0.23 m0 (these values agree with those in

references). S1,S2 So, the term
*

0
*

3
ln

4

p

n

mk T

m
in equation (S1) is less than 0.02 eV，



S13

which is negligible compared with Eg (0.80 eV). S3 This indicates that the intrinsic

Fermi level is in the middle of the band gap, and independent with temperature. The

work function can be obtained as the difference between the energy of the vacuum

and this Fermi level.

The Fermi level of a doped BCSO can be obtained using equation (S4),

1
0 ( )

2
d

f i

i

N
E E k T sh

N
−= + ⋅ （S4）

Charge transfer as a function of temperature is also calculated for Pt supported on a

BCSO with donor concentration 1019 cm-3. In this case, as the work function of Pt

was much larger than the work function of the BCSO, the charge transfer made the

interface area to become a charge depleted area in the semiconductor side,

therefore form a contact barrier, and the bending of the energy band near the

interface.

The amount of charge transferred upon the contact between Pt and BCSO can be

calculated using equation (S5): S4

1/2( ) [2 ( ) 0 ]d i s d iQ e N n W e N n Vε= + = +
（S5）

Here Nd is the donor concentration, ni the intrinsic carrier concentration, sε the

dielectric constant, V0 the difference in work function between the metal Pt and the

semiconductor BCSO.
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