ASME Accepted Manuscript Repository

Institutional Repository Cover Sheet

Cranfield Collection of E-Research - CERES

First

Last

ASME Paper Title: Analyses of the costs associated with very high turbine entry temperatures in helium recuperated gas turbine cycles for Generation IV nuclear power plants

Authors: A. Gad-Briggs, P. Pilidis and T. Nikolaidis

ASME Journal Title: Journal of Nuclear Engineering and Radiation Science

Volume/Issue: Volume 5, Issue 1

Date of Publication (VOR* Online): 24 January 2019

DOI: 10.1115/1.4041276

*VOR (version of record)
Analyses of the Costs associated with Very High Turbine Entry Temperatures in Helium Recuperated Gas Turbine Cycles for Generation IV Nuclear Power Plants

A. Gad-Briggs1 2 a.a.gadbriggs@cranfield.ac.uk
P. Pilidis2 p.pilidis@cranfield.ac.uk
T. Nikolaidis2 t.nikolaidis@cranfield.ac.uk

1. EGB Engineering
28 Beaumont Avenue, Southwell. Nottinghamshire. NG25 0BB. U.K.

2. Gas Turbine Engineering Group,
Cranfield University, Cranfield, Bedfordshire, MK43 0AL U.K.

ABSTRACT

Previous analyses of Generation IV (GEN IV) helium gas turbine cycles indicated the possibility for high Turbine Entry Temperatures (TETs) up to 1200°C in order to improve cycle efficiency, using improved turbine blade material and optimum turbine cooling fractions. The purpose of this paper is to understand the effect on the Levelised Unit Electricity Cost (LUEC) of the Nuclear Power Plant (NPP), when the TET is increased to 1200°C from an original TET of 950°C and when an improved turbine blade material is used to reduced the turbine cooling fraction. The analyses focus on the Simple Cycle Recuperated (SCR) and the Intercooled Cycle Recuperated (ICR). The baseline LUECs of the NPPs were calculated as $61.84/MWh (SCR) and $62.16/MWh for a TET of 950°C. The effect of changing the turbine blades improved the allowable blade metal temperature by 15% with a reduction in the LUEC by 0.6% (SCR) and 0.7% (ICR). Furthermore, increasing the TET to 1200°C has a significant effect on the power output but more importantly it reduces the LUECs by 22.7% (SCR) and 19.8% (ICR). The analyses intends to aid development of the SCR and ICR including improving the decision making process on choice of cycles applicable to the Gas-cooled Fast Reactors (GFRs) and Very High-Temperature Reactors (VHTRs), where helium is the coolant.

INTRODUCTION

The design intent of Generation IV (GEN IV) reactors is to advance the designs of Nuclear Power Plants (NPPs), but the design is expected to be underpinned by sound economics in comparison to incumbent technologies. This also applies to conducting design impacts studies. The studies help to understand the effect of improving the solution. However, for GEN IV NPP designs, the economics are not fully understood thus the economic effect of such impact studies are not known. The objective of this paper to understand the effects on the Levelised Unit Electricity Cost (LUEC) when the Turbine Entry Temperature (TET) is increased to 1200°C from an original TET of 950°C and when an improved turbine blade material is used to reduced to turbine cooling fraction based on an earlier study in [1]. The study applies to the Simple Cycle Recuperated (SCR) and Intercooled Cycle Recuperated (ICR) in a closed Brayton direct configuration using helium as the working fluid.

NOMENCLATURE

Notations

\(A \) Area (m\(^2\))
\(C \) Cash Flow
\(C_p \) Spec. Heat of Gas at Constant Pressure (J/kg K)
\(C_W \) Compressor Work (W)
\(F \) Fuel Cycle Component
\(J \) Number of Periods
\(m \) Mass Flow Rate (kg/s)
\(P \) Pressure (Pa) or Power (W) (Economic Analysis)
\(P_W \) Power (W)
\(PR \) Pressure Ratio
\(Q \) Reactor Thermal Heat Input (W)
\(q \) Heat Flux (W/m\(^2\))
\(r \) Discount Rate (%)
\(S_W \) Specific Work/Power Output (J/Kg/s)
\(T \) Temperature (K or °C) or Time/Date (Econ. Analysis)
\(T_W \) Turbine Work (W)
\(t \) Time or Date
\(W \) Work (W)
\(U_W \) Useful Work (W)
\(X \) Real Discount Rate (%)

Greek Symbols

\(\gamma \) Ratio of Specific Heats
\(\Delta \) Delta, Difference
\(\varepsilon \) Effectiveness (Heat Exchanger; cooling)
\(\eta \) Efficiency

Subscripts

\(c \) Compressor
\(c_{in} \) Compressor Inlet
\(c_{out} \) Compressor Outlet
\(e/e\text{lec} \) Power for Electrical Conversion
\(e\text{lec}_{\text{annual}} \) Annual Electricity
\(h_e \) Helium
\(h_{e\text{min}} \) Helium with minimum gas conditions
\(i\text{c} \) Intercooled Cycle; intercooled coefficient
\(i_s \) Isentropic (Compressor)
component inefficiencies during the compression and expansion phases, the processes are not isentropic [3]. Consequentially, the heating and cooling stages of the cycle (without consideration of the heat exchangers) are not achieved at constant pressure. This results in losses in the cycle. These losses translate into additional work input that is required for the compression of the helium due to the increase in temperature, therefore resulting in a higher than preferred exit temperature. The heat added into the cycle is not isobaric, thus total gas exit pressure is reduced accordingly [3]. Thus, the potential total power extraction is not realised due to the reduced gas exit pressure and reduced component efficiencies. The turbine exhaust heat is hotter than expected, which in turn influences the inlet compression temperature as it becomes hotter than ideal.

Simple and Intercooled Recuperated Brayton Cycles

The SCR includes a compressor and a turbine, which make up the turbomachinery. The Compressor Work (C_W) is lower than Turbine Work (T_W), thus Useful Work (U_W) generated is used to drive the generator load. However, due to component inefficiencies during the compression and expansion phases, the processes are not isentropic [3]. Consequently, the heating and cooling stages of the cycle (without consideration of the heat exchangers) are not achieved at constant pressure. This results in losses in the cycle. These losses translate into additional work input that is required for the compression of the helium due to the increase in temperature, therefore resulting in a higher than preferred exit temperature. The heat added into the cycle is not isobaric, thus total gas exit pressure is reduced accordingly [3]. Thus, the potential total power extraction is not realised due to the reduced gas exit pressure and reduced component efficiencies. The turbine exhaust heat is hotter than expected, which in turn influences the inlet compression temperature as it becomes hotter than ideal.
A typical NPP would include a precooler and a recuperator in addition to the turbomachinery. The precooler cools down the helium using a cooling medium such as seawater. The cooled helium at the compressor entry is necessary at the cycle inlet temperature. This is because it reduces the SW but in turn, the compressor exit temperature rises, which results in increases in the reactor input thermal power. Due to the thermal power being fixed for a given COT, the precooler as a lone component will not provide the necessary specific work required for the NPP. This devalues the economics of the plant and therefore falls short of the Generation IV International Forum (GIF) requirements. As mitigation, the recuperator is introduced to improve the economics. The heat from the turbine exhaust gas is used to exchange heat to the helium upstream at the inlet of the reactor. This significantly raises the temperature of the helium and reduces the amount of thermal heat input and reactor power, which positively impacts cycle efficiency.

At simplified baseline configurations, the SCR and ICR feature all of the aforementioned components. However, in addition, the ICR includes an intercooler and a second compressor, which is downstream of the first compressor. The reason is the ICR improves the Specific Work (SW) and UW by reducing the compressor work. The helium downstream of the first compressor is reduced to a lower temperature as it passes through the intercooler, before entering the second compressor upstream, with some negligible reductions in pressure observed.

The thermodynamic consequences resulting from changing to helium in a nuclear gas turbine have been extensively covered in [4]. The study is also documented in [7] and [8] and focuses on off-design, control and transient operational modes of a helium gas turbine, which is also applicable to the plant operations for this study.

Technical Performance Modelling and Simulation of Nuclear Power Plants

When the focused is on the modeling capabilities, the technical model was created using FORTRAN in [7]. The tool is able to determine the temperatures, pressures and mass flow rate for every component based on known cycle inlet conditions and COTs, with consideration of component efficiencies, pressure losses and cooling requirements. This enables the NPP output and cycle efficiency to be derived. The tool is also capable of analysing the effects on cycle output, capacity and efficiency by investigating changes to any of the above parameters. In addition to the Design Point (DP) capabilities, the tool includes component maps and algorithms to calculate the optimal Off-Design Points (ODPs) for long term operation at reduced power or where changes in ambient temperature DP are observed. In situations where changes in ambient temperature vary and demand load-following or reduced power is required for short term operation, the NPP can be controlled using Inventory Pressure Control (IPC). This requires the tool to model the typical load-following characteristics. The model has been used in studies documented in [3], [8], [1], [9]–[13]. Figures 1 and 2 illustrate typical schematics of the SCR and the ICR. Table 1 provides the key technical DP values, which underpins the configurations for the economic analyses in this study. The equations implemented within the code environment of the technical model are described in the proceeding sections for steady state design point calculations against each component and cycle. The model was used to match known NPPs configurations in the public domain. The results were satisfactory.

Compressor

Prerequisite parameters for DP considerations of the compressor include the compressor PR, compressor inlet conditions (temperature, pressure and mass flow rate), component efficiency and the working fluid gas properties (\(C_p \) and y).

![Figure 1 – Typical Simple Cycle with Recuperator (SCR)](image)

The compressor outlet pressure (in Pa) is:

\[
P_{\text{out}} = P_{\text{in}} \cdot PR_c
\]

(1)

The isentropic efficiency of the compressor is \(\Delta T \) and is also indicative of the specific work input or total temperature increase.

Thus, the temperature (°C) at the exit can be derived from the inlet temperature, \(PR \), isentropic efficiency and ratio of specific heats:

\[
T_{\text{out}} = T_{\text{in}} \left[1 + \frac{\left(\frac{P_{\text{out}}}{P_{\text{in}}} \right)^{\frac{\gamma-1}{\gamma}} - 1}{\eta_{\text{is}} c} \right]
\]

(2)

The mass flow rate (kg/s) at inlet is equal to the mass flowrate at outlet as there are no compositional changes:

\[
m_{\text{out}} = m_{\text{in}}
\]

(3)

The compressor work (W) is the product of the mass flow rate, specific heat at constant pressure and the temperature delta:
\[CW = m_c \cdot C_p h_e \cdot (\Delta T_e) \] \hspace{1cm} (4)

whereby \(\Delta T_e = T_{e\text{out}} - T_{e\text{in}} \) \hspace{1cm} (5)

Bypass splitters are incorporated within the performance simulation tool to allow for compressed coolant to be bled for reactor and turbine cooling.

![Figure 2 – Typical Intercooled Cycle with Recuperator (ICR)](Image)

Turbine

Prerequisite parameters of the turbine include the turbine inlet conditions (temperature, pressure and mass flow rate), the pressure at outlet, component efficiency and the working fluid gas properties \((C_p \text{ and } \gamma)\).

The temperature \((^\circ C)\) at the outlet is derived from the following expression:

\[T_{e\text{out}} = T_{e\text{in}} \cdot \left\{1 - \eta_{le} \left[1 - \left(\frac{T_{e\text{out}}}{T_{e\text{in}}}\right)^{\frac{\gamma - 1}{\gamma}}\right]\right\} \] \hspace{1cm} (6)

As with the compressor, Eqs. (3) and (4) also apply to the turbine for mass flow rate \((kg/s)\) conditions and turbine work \((W)\) but:

\[\Delta T_t = T_{t\text{in}} - T_{t\text{out}} \] \hspace{1cm} (7)

A mixer is incorporated within the performance simulation tool to allow for the coolant to mix with the hot gas to simulate turbine cooling.

Recuperator

The calculation method for the rate of heat transfer is based on the Number of Transfer Units (NTU) method, which has been documented by [14] and applied for complex cross flow heat exchangers by [15]. The algorithm in the code ensures satisfactory results and numerical stability.

Prerequisite parameters include the recuperator effectiveness, hot and cold inlet conditions (pressure and temperature) and the delta pressures due to losses at the high and low pressure sides.

Effectiveness of the recuperator is given as:

\[\varepsilon_{re} = \frac{q_{re\text{real}}}{q_{re\text{max}}} \] \hspace{1cm} (8)

The maximum amount of heat flux \((W/m^2)\) of the recuperator \(q_{re\text{max}}\), must consider the hot and the cold inlet conditions. It must also consider the minimum specific heat because it is the fluid with the lowest heat capacity to experience the maximum change in temperature. This is expressed as:

\[q_{re\text{max}} = \frac{C_p h_{e\text{hot}}(T'_{re\text{hot}} - T'_{re\text{cold}})}{A} \] \hspace{1cm} (9)

and the real heat flux \((W/m^2)\) is:

\[q_{re\text{real}} = \frac{C_p h_{e\text{hot}}(T'_{re\text{hot}} - T_{re\text{hot}})}{A} = \frac{C_p h_{e\text{cold}}(T'_{re\text{cold}} - T_{re\text{cold}})}{A} \] \hspace{1cm} (10)

With helium as the working fluid, \(C_p\) is considered to be constant, thus \(C_p h_{e\text{min}} = C_p h_{e\text{cold}} = C_p h_{e\text{hot}}\) in the energy balance equation. The temperatures at the hot and cold ends can be obtained when considering Eq. (10) (either hot or cold sides) and considering an arbitrary effectiveness.

The temperature for the cold end \((^\circ C)\) is then expressed as:

\[T_{re\text{cold}} = T_{re\text{cold}}' + [\varepsilon_{re} \cdot (T'_{re\text{hot}} - T'_{re\text{cold}})] \] \hspace{1cm} (11)

With \(C_p h_{e\text{min}} = C_p h_{e\text{cold}} = C_p h_{e\text{hot}}\), the energy balance is:

\[\left[m_{re\text{cold}} \cdot (T'_{re\text{cold}} - T'_{re\text{cold}}) \right] = \left[m_{re\text{hot}} \cdot (T'_{re\text{hot}} - T_{re\text{hot}}) \right] \] \hspace{1cm} (12)

Thus, the hot outlet \((^\circ C)\) is:

\[T_{re\text{hot}} = T_{re\text{hot}}' - \frac{m_{re\text{cold}}(T'_{re\text{cold}} - T'_{re\text{cold}})}{m_{re\text{hot}}} \] \hspace{1cm} (13)

With regard to pressures, the exit conditions can be calculated if the pressure drops (%) across the hot and cold sides are known:

\[P_{re\text{cold}} = P_{re\text{cold}}' \cdot (1 - \Delta P_{re\text{HPloss}}) \] \hspace{1cm} (14)

\[P_{re\text{hot}} = P_{re\text{hot}}' \cdot (1 - \Delta P_{re\text{LPloss}}) \] \hspace{1cm} (15)
Due to no compositional changes, mass flow rate (kg/s) conditions are:

$$m_{\text{re_hot}} = m'_{\text{re_hot}} \quad (16)$$

$$m_{\text{re_cold}} = m'_{\text{re_cold}} \quad (17)$$

Precooler and Intercooler

Prerequisite parameters for the precooler and intercooler (ICR only), take into account that the components are upstream of the first and second compressors respectively, thus compressor inlet temperature and pressure are of importance including the pressure losses. The conditions for the precooler are as follows:

$$T_{p\text{_out}} = T_{p\text{_in}} \quad (18)$$

$$p_{p\text{_in}} = p_{p\text{_out}} \cdot (1 + \Delta p_{p\text{_loss}}) \quad (19)$$

$$m_{p\text{_out}} = m_{p\text{_in}} \quad (20)$$

With regard to the intercooler, Eqs. (18), (19) and (20) also apply, but are differentiated for the intercooler. An addition of a second compressor for ICR only, means that the PR for both compressors is determined as:

$$PR_{ic} = \frac{ic}{\sqrt{PR}} \quad (21)$$

whereby the ic coefficient denotes the number of intercoolers in the cycle +1, leading to a reduction in the PR per compressor (ICR only).

Modular Helium Reactor

The helium reactor is a heat source with pressure losses. The prerequisite are the thermal heat input from burning the fuel and the known reactor design pressure losses.

The heat source does not introduce any compositional changes, thus mass flow rate (kg/s) is:

$$m_{MHR\text{_out}} = m_{MHR\text{_in}} \quad (22)$$

Pressure taking into account losses (%):

$$P_{MHR\text{_out}} = P_{MHR\text{_in}} \cdot (1 - \Delta P_{MHR\text{_loss}}) \quad (23)$$

and the thermal heat input (Wt) is:

$$Q_{MHR} = m_{MHR\text{_in}} \cdot C_{\text{he}} \cdot (\Delta T_{MHR}) \quad (24)$$

whereby \(\Delta T_{MHR} = T_{MHR\text{_out}} - T_{MHR\text{_in}}\)

A mixer is incorporated within the code to allow for coolant to be mixed with the heated fluid upstream of the reactor to simulate reactor vessel cooling.

Cooling Calculations

As described in [1], compressor bleed air is used to cool the turbine and the reactor. Steady state conditions for the reactor operation stipulates a steady state cooling requirement that does not require regulating. Turbine cooling requires regulating due to variation is cycle conditions. The prerequisites to calculate the cooling flow are the turbine metal temperature (simply known as blade metal temperature), compressor exit coolant temperature, COT/TET (simply known as gas) and cooling effectiveness. The cooling effectiveness (<1) is expressed as:

$$\varepsilon_{cool} = \frac{(T_{\text{gas}} - T_{\text{blade}})}{(T_{\text{gas}} - T_{\text{coolant}})} \quad (26)$$

Cycle Calculations

The useful work, specific work and thermal efficiency output values are of interests after executing each set of thermodynamic station parametric calculations. The useful work \(W_U\), that is the work available for driving the load is:

$$UW = TW - CW \quad (27)$$

whereby Eq. (27) is also applicable to the ICR and IC cycles but the \(CW\) is the summation of the LPC and HPC work requirements to be delivered by the turbine. The specific work or capacity of the plant \((J/kg/s)\) is:

$$SW = UW/m \quad (28)$$

and the thermal efficiency (%) of the cycle is:

$$\eta_{th} = UW/Q_{MHR} \quad (29)$$

Economical Modelling of Nuclear Power Plants

With regard to the economic model, the main equations that define the Total Capital Investment Costs (TCIC), the Specific Overnight Costs (SOC) and the levelised costs for the economic model are described in the proceeding sections and considers the plants to be Nth Of A Kind (NOAK). The calculation of the TCIC takes into consideration typical cash flow, the Total Capital Costs (TCC) and the Interest During Construction (IDC) in accordance with [16], [17]. The economic model is part of the work in [7].

Interest During Construction (IDC)

The IDC (constant dollars) which is applied to the capital loan for the period the plant is being built is determined as follows:

$$IDC: \sum_{j=1}^{J} C_j \cdot [(1 + r)^{ J \cdot op - j } - 1] \quad (30)$$

whereby \(j\) is the period number, \(J\) is the number of periods (quarters or years of construction), \(C_j\) is cash flow for year or 5
quarter and reflects the ‘beginning of the borrowing’ period, r is the real discount rate expressed annually or quarterly as appropriate and t_{op} is the quarterly or yearly commercial operation.

Total Capital Investment Cost (TCIC)

The TCIC ($) is determined as:

$$TCIC = BCC + TOCC + CFC$$

(31)

whereby BCC is the Baseline Construction Cost derived from estimating the direct and indirect costs using either a top down or bottom up approach, TOCC is the Total Overnight Construction Cost, which includes the cost of the fuel, contingencies e.t.c. and CFC is the Capitalised Financial Cost.

Specific Overnight Cost (SOC)

The SOC ($/kWe) is the cost derived after the TCIC cost is calculated. This is expressed as:

$$SOC = \left(\frac{TCIC}{1000}\right) \cdot P_{elec}$$

(32)

whereby the P_{elec} is the power output at the generator (We).

Levelised Capital Cost (LCC)

As part of the assumptions of equal energy generation as advised by the GIF Economic Modelling Working Group (EMWG) [16], the LCC ($$/kWh) is:

$$LCC = \frac{FCR \cdot TCIC}{P_{elec _ annual}}$$

(33)

whereby the FCR is the Fixed Charge Rate and $P_{elec _ annual}$ is the annual electricity production for a single plant (kWh/year). The FCR is typically used to account for various entities such as the interim replacements, return on capital, income and property tax and depreciation. For Gen IV NPP projects, the cost estimation tax and depreciation are ignored. This is due to the process being generalised and is not inclusive of tax [16]. For this reason, it is calculated as a capital recovery factor or the principal loan repayment over a time period:

$$FCR = \left(1 - \frac{X}{1+(1+X)^{-L_{econ}}-1}\right)$$

(34)

whereby X represents the real discount rate of 5% or 10%, and L_{econ} represents the operational life of the plant. The TCIC plus the cost of the construction loan is converted into a mortgage-type loan, which recovers the capital investment (principal loan including the interest) over the life of the plant [16].

Levelised Operation and Maintenance (O&M) Cost

The levelised O&M cost ($$/kWh) is the overall total annual costs divided by the annual electricity produced. The main assumption here is that the constant dollar costing will be the same for the entire plant life.

Levelised Fuel Cycle Cost

The Levelised Fuel Cycle Cost (LFCC) is expressed as:

$$LFCC = \sum_{t=t_{0}+L+T_{2}}^{t_{0}+L} \frac{C_{D}(t)}{(1+r)(t+T_{1})^{-t_{0}}}$$

(35)

whereby t_{0} is the reference commissioning date, L is the operational life of the plant, T_{2} is the maximum value of lag time (in the back-end), T_{1} is the maximum value of lead time (in the front end) and r is the discount rate. A simplified method of estimating the fuel costs prior to levelising the annual costs is detailed in [16].

Levelised Decontamination and Decommissioning (D&D) Costs

The D&D funds accumulate over the operational life of the plant into the sink fund as expressed below:

$$DD = CDD \cdot SFF(t_{real}, L_{econ})$$

(36)

whereby DD is the annual constant dollar payment to the D&D sinking fund, CDD is the decommissioning costs, $SFF(t_{real}, L_{econ})$ is the sinking fund factor at a rate of r for a time period in years of t, which is expressed as:

$$SFF(r, t) = \frac{r}{[(1+r)^t-1]}$$

(37)

Thus, the D&D can be levelised and expressed as:

$$LDD = \frac{DD}{P_{elec _ annual}}$$

(38)

Levelised Unit Electricity Cost (LUEC)

The LUEC is calculated after deriving the aforementioned components of the economic model. This is expressed as:

$$LUEC = LCC + \frac{OM+FC+DD}{P_{elec _ annual}}$$

$$LCC + \frac{OM+FC+DD}{P_{elec _ annual}}$$

(39)

Results and Discussion

Calculate Efficient Cycle Configurations

Table 1 provides the input values for the SCR and the ICR, which were used to calculate the cycle configurations for this study. The aim was to create a design space for a range of Core Outlet Temperatures (COTs) and compressor Overall Pressure.
Ratios (OPRs). The effects of the cooling have been discussed and the results of the technical performance calculations are partly provided in an earlier study by the authors, which is documented in [1]. The results are also provided in this study to aid the analyses.

Table 1 – Input Parameters for Design Point (DP)

<table>
<thead>
<tr>
<th>Design Point Performance Input Parameters</th>
<th>SCR</th>
<th>ICR</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inlet Temp. (T₁)</td>
<td>28</td>
<td>28</td>
<td>°C</td>
</tr>
<tr>
<td>Inlet Pressure (P₁)</td>
<td>3.21</td>
<td>3.21</td>
<td>MPa</td>
</tr>
<tr>
<td>Mass flow rate at inlet (mᵢ)</td>
<td>410.4</td>
<td>410.4</td>
<td>kg/s</td>
</tr>
<tr>
<td>Compressor Efficiency (Isentropic)</td>
<td>90</td>
<td>90</td>
<td>%</td>
</tr>
<tr>
<td>Turbine Efficiency (Isentropic)</td>
<td>94.5</td>
<td>94.5</td>
<td>%</td>
</tr>
<tr>
<td>Recuperator Effectiveness</td>
<td>96</td>
<td>96</td>
<td>%</td>
</tr>
<tr>
<td>Pressure Loss (Precooler)</td>
<td>2.5</td>
<td>2.5</td>
<td>%</td>
</tr>
<tr>
<td>Pressure Loss (Intercooler ICR only)</td>
<td>-</td>
<td>2.5</td>
<td>%</td>
</tr>
<tr>
<td>Pressure Loss (Reactor)</td>
<td>2</td>
<td>2</td>
<td>%</td>
</tr>
<tr>
<td>Pressure Loss (Recup. HP side)</td>
<td>6 combined</td>
<td>6 combined</td>
<td>%</td>
</tr>
<tr>
<td>Pressure Loss (Recup. LP side)</td>
<td>6 combined</td>
<td>6 combined</td>
<td>%</td>
</tr>
<tr>
<td>Reactor Cooling flow (% of Mass flow rate)</td>
<td>0.25</td>
<td>0.25</td>
<td>%</td>
</tr>
</tbody>
</table>

NB: The conditions such as mass flow rate, pressure losses and component efficiencies are based on GTHTR300 JAEA reactor [18][19]. Pressure losses are based on the 850°C, which were scaled upwards (where necessary) to meet requirements for the COTs analysed in this study.

The cycle cooling optimisation analyses considered 2 types of turbine blades with different allowable blade metal temperatures. Blade A is derived from direct solidification casting with thermal barrier coating and film impingement, forced convection cooling technology. Blade A has an allowable blade metal temperature of 755°C because of the material, grain structure and casting process. Blade B is derived from a single crystal material with no grain boundaries and employs film impingement, forced convection cooling technology. Blade B has an allowable blade metal temperature of 870°C. The use of 2 blades with different blade metal temperatures demonstrates the effect of material on the minimum turbine cooling fraction and the overall effect on cycle efficiency for the various cycles.

Table 2 provides the results for the SCR and the ICR. The results show the calculated Overall Pressure Ratios (OPRs), output power and plant efficiencies for both blades at 950°C and 1200°C. From the results in table 2, it is clear that blade B provides an advantage for both cycles. However, the increase in TET had a significant effect on the cycle power outputs. However, due to the fact that the calculation algorithm optimised plant efficiency over capacity, the ICR had a reduced power output for blade B at 1200°C, when compared to blade A. This was a contrast in the results when compared to other results. The reason for this was because the OPR was reduced for blade B as a larger OPR did not result in a more efficient plant. As stated in the previous study [1], the difference the intercooler and the second compressor makes to the efficiency of the ICR plant is ~3%, which is evident in table 2. The benefit of the TET increase is ~5% in efficiency for both cycles with the SCR experiencing ~36% increase in power compared to ~34% for the ICR.

Calculate the Baseline Economic Cost of the Plant.

Table 3 lists the economic assessments for both plant cycle at 950°C, with a turbine that uses blade A. The cost of components such as the reactor and services are based on data in [20] and enabled for the costs for year 2020 to be derived. The costs are based on an inflation factor of 2% per year from the year the data was first published. Furthermore, the costs have been scaled using the ratio of the thermal power for the reactor and power outputs for applicable components of the SCR and ICR. The cost of the heat exchangers, pumps and turbomachinery have been derived using methods developed in [7]. A 25% contingency is included in the BCC to mitigate the risks associated with underestimation and reactor performance.

The SCR has a lower BCC of 21% when compared to the ICR. This is due to the cost of the turbomachinery and the reactor. The same difference in price is also reflected in the TCIC and takes into account the first fuel load, the IDC for a 5 year construction period and the scheduled contingency. The SOC is comparable for both plants with the ICR slightly more expensive per kWe by less than 1%. The fuel cycle is based on the methods in the guideline [16] and utilises a Mixed Oxide (MOX) fuel cycle. The MOX fuel cycle utilises recycled plutonium mixed with depleted uranium and is in line with the non-proliferation and spent fissile waste reduction objectives of Gen IV. The D&D costs are based on costs in [21] for 2007 constant dollars for a Light Water Reactor (LWR). However, it was judged that the D&D costs will be greater for the GFRs and VHTRs due to more systems and structures in direct contact with the working fluid. For this reason, the cost was assumed to be 1992 constant dollars inflated to year 2020.
The D&D cost of the ICR is determined from scaling using ratios of the power output between the ICR and the SCR. The final LUEC is based on the mortgage-style payment method. This means that the costs are recuperated over the operating life of the NPPs. The operating plant life is 60 years with a capacity factor of 92% of total annual electricity generation (kWh). An availability factor of 80% of the capacity factor is assumed to cover any operational and performance shortfalls in the price. The discount rate applied to financing of the capital is 5%. The final LUECs for both cycles were calculated to be $61.80/MWh (SCR) and $62.10/MWh (ICR). The prices of both cycle options are estimated to be cheaper than the Generation III+ (Gen III+) technology based on an average price of ~$100/MWh documented in [22] for the year 2015 and the cost of £92.50 for the UK Hinkley Point C plant [23].

Economic Evaluation of Improved Turbine Blade.

Table 4 shows data from the economic analysis for both plant cycles when the blade is changed to blade B at 950°C. The improved turbine blade means less cooling air is required for the turbine due to an improved metal temperature from 755°C to 870°C. The increases across the cycles include turbine costs and the TCC. The additional benefit of an improved turbine for the SCR and ICR includes fuel cost savings. This translates into savings of 0.6% and 0.7% on the LUEC respectively.

It will be important for Plant Operators to review the maintenance requirements for the SCR and ICR turbines prior to making a decision about whether to introduce an improved turbine. The necessary maintenance requirements have not been considered in this study because it will be plant specific. This will need to be considered in the plant construction phase.

Economic Evaluation of Increased TET.

Table 5 shows a comparison of the baseline economic evaluation at 950°C versus 1200°C for both cycle configurations.
The cost evaluation assumes that the decommissioning costs will remain the same due to a negligible increase in infrastructure. Therefore it can be assumed that there is no increase in the nuclear and turbine island area. As a result, the SCR has the highest decrease of 22.7% in the LUEC, when compared to a decrease of 19.8% for the ICR. When the combination of an improved turbine with an increased TET of 1200°C is considered, the SCR has a LUEC of $47.40/MWh; the ICR has a LUEC of $49.40/MWh. The cost benefits as observed at 950°C are improved at 1200°C but a new turbine does not provide a significant improvement for the SCR and ICR. Any advances in design improvements would need to be judged on the merit of the economic improvements and the cost of maintenance as a result of this improvement. This is crucial, especially if the reactor undergoes shorter inspection intervals due to increased Core Outlet Temperatures (COTs).

Conclusion

In summary, the objective of this paper was to understand the effects on the Levelised Unit Electricity Cost (LUEC) when the TET is increased to 1200°C from an original TET of 950°C and when an improved turbine blade material is used to reduced to turbine cooling fraction. This was aided by using a modeling, performance simulation and economic tool designed for this study. The cycles of interest are the Simple Cycle Recuperated (SCR) and Intercooled Cycle Recuperated (ICR). The results provide good bases to support the decision-making process on choice of cycles during the preliminary design phases of Gas Cooled Fast Reactors (GFR) and Very High Temperature Reactors (VHTR) for Generation IV NPPs. The main conclusions are:

- From the results, it is clear that blade B provides an advantage for both cycles. However, the increase in TET had a significant effect on the cycle power outputs.
- The difference the intercooler and the second compressor makes to the efficiency of the ICR plant is ~3% increase in efficiency over the SCR.
- The benefit of the TET increase in performance is ~5% in efficiency for both cycles with the SCR experiencing ~36% increase in power and ~34% for the ICR. The benefit of the improved turbine blade is ~1% efficiency improvement at 950°C and ~ 2% efficiency improvement at 1200°C for both cycles.
- The SCR has a lower Baseline Construction Costs (BCC) of 21% when compared to the ICR. This is due to the cost of the turbomachinery and the reactor. The same difference in price is also reflected in the TCIC and takes into account the first fuel load, the IDC for a 5 year construction period and the scheduled contingency.
- The final LUECs for both cycles were calculated to be $61.80/MWh (SCR) and $62.10/MWh (ICR). The prices of both cycle options are estimated to be cheaper than the Generation III+ (Gen III+) technology based on an average price of ~$100/MWh for the year 2015 and the cost of £92.50 for the UK Hinkley Point C plant.
- The improved turbine blade means less cooling air is required for the turbine due to an improved metal temperature from 755°C to 870°C. The increases across the cycles include turbine costs and TCC. The additional benefit of an improved turbine for the SCR and ICR includes fuel cost savings. This translates into savings of 0.6% and 0.7% on the LUEC respectively.
- With regard to the effect of increasing the TET, the SCR has the higher decrease of 22.7% ($47.80/MWh) in the LUEC, when compared to a decrease of 19.8% ($49.80/MWh) for the ICR. When the combination of an improved turbine with an increased TET of 1200°C is considered, the SCR has a LUEC of $47.40/MWh, the ICR has a LUEC of $49.40/MWh. The cost benefits as observed at 950°C are improved at 1200°C but a new turbine does not provide a significant improvement for the SCR and ICR.
- Any advances in design improvements would need to be judged on the merit of the economic improvements and the cost of maintenance as a result of this improvement. This is crucial, especially if the reactor undergoes shorter inspection intervals due to increased Core Outlet Temperatures (COTs).
- Validation is recommended for this tool to enable optimisation and improve the applicability and accuracy. Furthermore, this will encourage its use thereby improving the decision making process for plant operators.

ACKNOWLEDGMENTS

The authors wish to thank the Gas Turbine Engineering Group at Cranfield University for providing the necessary support in progressing this research study and EGB Engineering LTD. UK for funding the overall research.

REFERENCES

Analyses of the costs associated with very high turbine entry temperatures in helium recuperated gas turbine cycles for Generation IV nuclear power plants

Gad-Briggs, Arnold

ASME

Arnold Gad-Briggs, Pericles Pilidis and Theoklis Nikolaidis. Analyses of the costs associated with very high turbine entry temperatures in helium recuperated gas turbine cycles for Generation IV nuclear power plants. Journal of Nuclear Engineering and Radiation Science, Volume 5, Issue 1, January 2019, Article number 011019
https://doi.org/10.1115/1.4041276
Downloaded from Cranfield Library Services E-Repository