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Multi-Sensor Multi-Target Tracking Using Domain
Knowledge and Clustering

Shaoming He, Hyo-Sang Shin*, Antonios Tsourdos

Abstract—This paper proposes a novel joint multi-target track-
ing and track maintenance algorithm over a sensor network.
Each sensor runs a local joint probabilistic data association
(JPDA) filter using only its own measurements. Unlike the
original JPDA approach, the proposed local filter utilises the
detection amplitude as domain knowledge to improve the esti-
mation accuracy. In the fusion stage, the DBSCAN clustering in
conjunction with statistical test is proposed to group all local
tracks into several clusters. Each generated cluster represents
the local tracks that are from the same target source and the
global estimation of each cluster is obtained by the generalized
covariance intersection (GCI) algorithm. Extensive simulation
results clearly confirms the effectiveness of the proposed multi-
sensor multi-target tracking algorithm.

Index Terms—Multi-sensor multi-target tracking, Joint proba-
bilistic data association, Detection amplitude, DBSCAN clustering

I. INTRODUCTION

Proliferation of low-cost sensors and recent advances in
wireless sensor technology inspired the employment of multi-
ple sensor nodes, capable of communicating with each other.
With respect to the single sensor target tracking, utilisation of
a sensor network can significantly improve the sensor coverage
and the estimation accuracy, enabling complicated sensing and
tracking tasks [1], [2]. Unfortunately, the quality of low-cost
sensors is relatively poor compared with the high performance
sensors. Thus, such a sensor is subject to a certain degree
of uncertainty, resulting in relatively high miss-detections and
false alarm rates. This could become exacerbated in multi-
target tracking (MTT) scenarios, where the mappings between
the targets and the measurements are unknown [3], [4]. The
number of targets in the surveillance area of interest is also
not known a priori in a typical MTT problem.

This paper aims to develop a multi-target tracking algorithm
using a network of low-cost sensors that are subject to a certain
degree of uncertainties. In general, the multi-sensor multi-
target tracking consists of two stages: the first stage is a local
multi-target tracking phase and the second is the estimation
fusion phase. The focus of this paper is to develop efficient
algorithms for handling important issues in both stages.

In the local estimation stage, each sensor node runs a
MTT algorithm to obtain the local tracks. As discussed, the
key issue is that the measurement uncertainty could signifi-
cantly degrade the performance of MTT. Data association is
a plausible and widely-accepted solution in MTT to resolve
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the problem of measurement uncertainty. This technique dis-
cerns target-generated measurements from clutters and finds
the mappings between targets and measurements. Multiple
hypothesis tracking (MHT) is one of the most well-known
association algorithms and a well-established paradigm [5]–
[7]. Fundamentally, MHT maintains all incompatible (e.g.,
unresolved) track hypotheses in track trees during a slid-
ing window. A decision is made to remove the impossible
hypotheses until enough information is available, provided
by the observations. At each time instant, MHT utilises the
Maximum a Posterior scheme (e.g., finding the most probable
global hypothesis) for track update. Although MHT is widely
accepted as the most powerful MTT solution, the inherent
multi-scan data association problem is NP-hard due to the
explosion of hypotheses. Therefore, the optimal solution of
MHT is computationally intractable and approximations are
required for practical implementation [8]–[10].

Another alternative of data association is JPDA filter,
which is known as a sub-optimal minimum-mean-squared-
error (MMSE) estimator for MTT. Unlike MHT, JPDA allows
for the possibility that a measurement can be associated to
a number of candidate targets within the validation gate.
Since all of the potential candidates are considered in data
association, JPDA is particularly advantageous in MTT, es-
pecially for dense clutter scenarios, and shows wide range
of applications in sonar-based tracking [11], computer vision
[12], space object tracking [13], [14], cell tracking [15], radar-
based tracking [16], etc. Compared to MHT, JPDA can achieve
reasonable tracking accuracy with lower computational burden
[11].

Considering the balance between the sensitivity issue and
the computational cost, this paper adopts the JPDA concept
as the underlying data association approach and proposes a
modified JPDA algorithm. Unlike the typical JPDA algorithms,
the proposed JPDA algorithm incorporates additional domain
knowledge in obtaining the measurement likelihood for data
association and track initialisation. Note that most MTT algo-
rithms utilise only the kinematics measurement, i.e., position,
angle and range, for track update. It is certain that additional
domain knowledge can be utilised to improve the tracking
performance. In radar applications, for example, the target
detection is achieved by thresholding the signal amplitude
[17], [18]. This amplitude feature, therefore, can be taken as
the domain knowledge and exploited in the development of
tracking algorithms to enhance tracking quality and continuity.
The rational behind this is that the received measurement
with its amplitude higher than a pre-specified threshold is
more likely to be a target-generated measurement. The signal
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amplitude information is also helpful in track initialisation
and data association in a low signal-to-noise ratio (SNR)
environment [19], which is common for low-cost sensors.
Therefore, the additional domain knowledge incorporated in
this paper is the signal amplitude information. Leveraging
this information can drastically reduce the number of false
tracks for low SNR targets, consequently improving the target
tracking performance.

In the fusion stage, the sensor nodes communicate with
each other to perform estimation fusion through a sensor
network topology. Although the sensor fusion technology for
single target tracking is well-established, a direct extension
of these fusion algorithms to a multi-target tracking scenario
is not straightforward. In multi-target tracking cases, track-
to-track association is essential to find the target source of
local tracks that come from different sensors. Track-to-track
association, similar to measurement-to-track association in
MHT, is a multidimensional assignment problem, known as
S − D (S−dimensional) assignment, where S refers to the
number of sensors [20]–[25].

The main challenge in associating data from three or more
sensors is that the resulting multidimensional assignment prob-
lem is NP-hard. Due to this intrinsic property, finding optimal
solution of the S −D assignment problem is intractable even
for fairly small-sized problems. The mainstream suboptimal
solution of the S−D assignment in track-to-track association
is the well-established Lagrangian relaxation approach [26]–
[28]. However, this algorithm too can become inefficient for
fairly large scenarios, since it involves iteratively solving a
2−D assignment problem to produce better solutions to the
original S−D assignment problem. Therefore, it is imperative
and meaningful to find an alternative solution of the S − D
assignment problem.

To this end, this paper also proposes a new tractable track-
to-track association and fusion algorithm for multi-sensor
multi-target tracking. To find the target origin of the local
tracks at the fusion stage, we utilise the clustering concepts
and develop a modified DBSCAN clustering algorithm. The
proposed clustering algorithm alleviates the issue of computa-
tional tractability in track-to-track association while retaining
reasonable tracking performance. The analysis shows that
the proposed track-to-track algorithm is less computationally
complex compared with the exact S − D algorithm and the
well-known Lagrangian relaxation approach. After clustering,
the fusion centre obtains the global fused estimation of each
cluster by using the GCI technique.

The contributions of this paper are twofold. On one hand,
a new domain knowledge-aided JPDA filter is proposed for
MTT to improve the estimation performance in a low SNR
environment. On the other hand, the track-to-track association
problem is solved through a modified DBSCAN clustering
algorithm in a computationally efficient way. The performance
characteristics of the proposed multi-sensor multi-target track-
ing scheme are investigated through extensive empirical tests.
We define simulation scenarios with a low SNR to validate
the performance of the proposed approach in the case where
local sensors in a network are subject to a certain level of
uncertainties. For rigorous evaluation, the performance of the

proposed approach is also compared with other well-known
approaches.

The rest of the paper is organised as follows. Sec. II presents
some preliminaries this study. Sec. III provides the details
the proposed feature enhanced local JPDA filter, followed
by the track-to-track fusion shown in Sec. IV. Finally, some
simulations and conclusions are offered. Throughout the paper,
we use the symbol i to refer to the target index, j the
measurement index, and l the sensor index.

II. PROBLEM FORMULATION

A. Multi-Target Model

Suppose at scan k of there are Nk targets and Mk sensor
measurements, A multi-target state and a multi-target measure-
ment are then defined by random finite sets as

Xk =
{
x1
k, ..., x

Nk

k

}
, Zk =

{
z0
k, z

1
k, ..., z

Mk

k

}
(1)

where xik denotes the ith target at scan k, zjk (j 6= 0) the
jth measurement received at scan k, and z0

k the dummy
measurement for convenient representation of miss detection.

We assume that the temporal evolution of each target is
independent of each other and follows a Markov transition
model p

(
xik
∣∣xik−1

)
. Each sensor measurement zjk consists of

a kinematic part z̃jk, i.e. position, angle and range, and a detec-
tion amplitude part ajk, that is, the single measurement vector

has the form zjk =
[
z̃jk
T , ajk

]T
. To facilitate the design process,

we assume that the kinematic measurement is independent of
the signal amplitude and thereby the measurement likelihood
for the target-generated measurement can be formulated as

p
(
zjk
∣∣xik ) = p

(
z̃jk
∣∣xik ) p1

(
ajk

)
(2)

where p1

(
ajk

)
denotes the probability density function of the

amplitude that is originated from a target.
Similarly, the clutter likelihood c

(
zjk

)
is given by

c
(
zjk

)
= c

(
z̃jk

)
p0

(
ajk

)
(3)

where p0

(
ajk

)
denotes the probability density function of the

amplitude that is due to noise only.
Typically, the amplitude probability density function is

parametrised by the SNR and the target SNR is fluctuating
randomly subject to four different models, i.e. Swerling type
1, 2, 3, and 4 [29]. In this paper, we adopt the well-known
Rayleigh target amplitude model [30] and the amplitude is
assumed to be provided by a specific single ping detector.
Assuming a normalized background noise, the probability
density functions of the amplitude are given by

p1

(
ajk

)
= ak exp

−
(
ajk

)2

2

 , ajk ≥ 0 (4)

p0

(
ajk

)
=

ajk
1 + d

exp

−
(
ajk

)2

2 (1 + d)

 , ajk ≥ 0 (5)
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Fig. 1: Amplitude probability density functions of Rayleigh
likelihoods for clutter and different SNRs.

where 1 + d represents the expected (or mean) SNR, which is
typically defined in the log scale SNR (dB) = 10 log (1 + d).

Figure 1 depicts the amplitude probability density functions
of Rayleigh likelihoods for clutter and different SNR targets.
Each target-generated measurement is independent of others
and is detected once the amplitude is larger than a pre-
designated threshold τ . When thresholding the received signal
by τ , the probability of detection PD and the probability of
false alarm PFA can, respectively, be obtained as

PD =

∫ ∞
τ

p1

(
ajk

)
dajk (6)

PFA =

∫ ∞
τ

p0

(
ajk

)
dajk (7)

For simplicity, we assume that clutters or false alarms
are modelled by a Poisson point process (PPP) with spatial
intensity λFA before signal thresholding. Then, λFAVs with
Vs being the sensor volume provides the expected number of
false alarms.

B. Target Existence Model

In this paper, we assume that target birth is modeled as a
PPP with intensity λB . Note that by incorporating the PPP
birth model into JPDA filter, we can easily utilise the am-
plitude feature in track initialization, which will dramatically
increase the track confirmation speed for low SNR cases.
This will be confirmed in the simulations. Each track is
confirmed or terminated based on target existence probability
p
(
χik |Zk−1

)
. The time evolution of χik can be formulated by

the Markov Chain One model [31].

C. Algorithm Overview

The problem considered in this paper involves a set of Ns
sensors that provide local track estimations of an unknown
number of targets using their own observations. These local
track estimations are then transmitted to a fusion centre via a
communication network to perform track-to-track fusion.

Fig. 2: Information flow of the proposed algorithm.

The proposed multi-sensor multi-target tracking algorithm
consists of two modules: (1) feature enhanced local JPDA fil-
ter; and (2) track-to-track fusion. In local estimation, each sen-
sor of the sensor network runs an amplitude feature enhanced
JPDA filter using its own measurements for the prediction
and update stages. Furthermore, a PPP target existence model
is also embedded into the local JPDA filter for automatic
track maintenance. In the fusion stage, sensors transmit their
local estimates to a fusion centre to perform track-to-track
association based on the modified DBSCAN clustering method
to generate several clusters with each cluster representing the
local estimations that originate from the same target. Once
the track-to-track association is finished, the global estimation
fusion is achieved through the GCI method for each cluster.
The information flow of the proposed algorithm is presented
Fig. 2.

III. FEATURE ENHANCED LOCAL JPDA FILTER

This section proposes a feature enhanced local JPDA filter
by utilising the amplitude information. For brevity, we ignore
the sensor index in this section.

A. Joint Probabilistic Data Association

The relationship between targets and measurements is as-
sumed to satisfy: (1) each measurement (except for the dummy
one) is assigned to at most one target; and (2) each target
is uniquely assigned to a measurement. Let Θk =

{
θik
}

,
i ∈

{
1, 2, . . . , Nk|k−1 +Mk|k−1

}
, denote the joint associa-

tion event. For each pre-existed target i ∈
{

1, 2, . . . , Nk|k−1

}
,

define θik ∈ {0, 1, . . . ,Mk} as the association event, and
let θik = j denote the jth measurement is originated from
the ith target. We create a new track for each measurement
j ∈

{
1, 2, . . . ,Mk|k−1

}
at scan k, and the association

event for these new targets are defined by θ
Nk|k−1 +j

k ∈{
1, . . . , Nk|k−1 +Mk

}
. That is, if target Nk|k−1 +j is associ-

ated with the jth measurement, then θ
Nk|k−1 +j

k = Nk|k−1 +j.
Under the assumption that that each single association event
is independent, the MMSE estimate of each target is given by
as

p
(
xik
∣∣χik, Zk ) =

∑
θik

p
(
xik
∣∣θik, χik, Zk ) p (θik ∣∣χik, Zk ) (8)

In practice, propagation of mixture is computationally in-
tractable and therefore JPDA approximates (8) by a sin-
gle probability density function based on simple moment-
preserving approach. Note that the hypothesis-conditioned
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distribution p
(
xik
∣∣θik, χik, Zk ) can be calculated by standard

Kalman filter algorithm. According to Bayesian theory, the
marginal association probability p

(
θik
∣∣χik, Zk ) is determined

by

p
(
θik
∣∣χik, Zk ) =

p
(
θik, χ

i
k |Zk

)
p
(
χik |Zk

) =
p
(
χik
∣∣θik, Zk ) p (θik |Zk )
p
(
χik |Zk

)
(9)

where the posterior existence probability is given by

p
(
χik |Zk

)
=
∑
θik

p
(
θik, χ

i
k |Zk

)
(10)

The joint probability p
(
θik, χ

i
k |Zk

)
can be obtained as

p
(
θik, χ

i
k |Zk

)
= p

(
χik
∣∣θik, Zk ) p (θk |Zk ) (11)

According to the law of total probability, p
(
θik |Zk

)
can

be theoretically calculated by enumerating all possible joint
events as p

(
θik = j |Zk

)
=

∑
θik(∈Θk)=j

p (Θk |Zk ), where the

posterior distribution of the joint association event p (Θk |Zk )
is given by

p (Θk |Zk ) ∝

 ∏
i∈[Nk|k−1 ],θik=0

1− PDp
(
χik |Zk−1

)
×

 ∏
i∈[Nk|k−1 ],θik=j

PDp
(
χik |Zk−1

)
p
(
zjk

∣∣∣xik|k−1

)
×

 ∏
θ
Nk|k−1 +j

k =Nk|k−1 +j

λ̃FA + PDλBp
(
zjk |xb

)
(12)

where xb represents the possible states of new targets and λ̃FA
denotes the pseudo clutter intensity after thresholding. Since
a measurement either belongs to an existing confirmed track
or an external source (new target or false alarm), Eq, (12) can
be reformulated as

p (Θk |Zk ) ∝

 ∏
i∈[Nk|k−1 ],θik=0

1− PDp
(
χik |Zk

)
×

 ∏
i∈[Nk|k−1 ],θik=j

PDp
(
χik |Zk

)
p
(
zjk
∣∣xik )

λ̄FA + PDλBp
(
zjk
∣∣xik )


(13)

Notice that the clutter spatial distribution is given by
c
(
z̃jk

)
= 1/Vs. Using Eq. (3) gives the intensity of the pseudo

clutter as

λ̃FA = λFAVsc
(
zjk

)
= λFAp0

(
ajk

)
(14)

Substituting Eqs. (2) and (14) into (13) yields

p (Θk |Zk ) ∝

 ∏
i∈[Nk|k−1 ],θik=0

1− PDp
(
χik |Zk

)
×

 ∏
i∈[Nk|k−1 ],θik=j

PDp
(
χik |Zk

)
p
(
z̃jk
∣∣xik ) ηik

λFA + PDλBp
(
z̃jk
∣∣xik ) ηik


(15)

where ηik = p1

(
aik
)
/p0

(
aik
)

denotes the amplitude likelihood
ratio.

Note that Eq. (15) can be modelled as a graphic model,
by considering each association event as a node. For the
considered graphic model, Gibbs sampling is leveraged here
to find approximate marginal association probability. This
strategy can directly avoid enumerating all possible joint
events and thus is computational efficient. Finally, providing
the marginal association probability p (θk |Zk ), local feature-
aided JPDA can be implemented via Eqs. (8)-(11).

Remark 1. It is clear from Eq. (15) that the ampli-
tude likelihood ratio ηik affects the probability terms
PDp

(
χik |Zk

)
p
(
z̃jk
∣∣xik ) ηik (e.g., existing targets) and

PDλBp
(
z̃jk
∣∣xik ) ηik (e.g., new birth targets) by favouring a

high amplitude measurement. Therefore, a strong measure-
ment will receive a higher probability of being a target by the
tracker. This could enable the improvement of data association
and track initialisation in low SNR scenarios, where the
detection probability is low.

B. Algorithm Summary

Algorithm 1 summarises the proposed feature enhanced
local JPDA filter discussed above.

Algorithm 1 Feature enhanced local JPDA filter

Input: The previous fused estimation
{
xik−1|k−1 , P

i
k−1|k−1

}
,

current measurement set Zlk of the lth sensor
Output: Current local estimation

{
xi,lk|k , P

i,l
k|k

}
of the lth

sensor
1: function LOCAL JPDA

({
xik−1|k−1 , P

i
k−1|k−1

}
, Zlk

)
2: Predict the existed tracks using target dynamics
3: Update each track with all possible measurements by

Kalman filter
4: Calculate the marginal probability p

(
θik
∣∣Zlk ) using

Gibbs sampling
5: Calculate the existence-conditioned marginal probabil-

ity p
(
θik
∣∣χik, Zlk )

6: Forming a new track for each measurement
7: Calculate the target state estimation
8: Perform track confirmation and deletion based on

existence probability
9: end function

IV. TRACK-TO-TRACK FUSION

Unlike single target sensor fusion, track-to-track associ-
ation is required to find the same source origins of all
local tracks that are from different sensors for multi-target
tracking scenarios. Typical track-to-track association utilises
the so-called S − D formulation, which is similar to track-
to-measurement multi-dimensional assignment in MHT algo-
rithm. The main difference between track-to-track association
and measurement-to-track association is the formulation of
association cost function. It is known that when the number
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of sensors is larger than 2, the S − D association is NP-
hard and thus exact solution is tractable only for some small-
scale problems. To this end, we propose a novel efficient
track-to-track association strategy using a modified DBSCAN
clustering algorithm. For simplicity, the proposed track-to-
track association algorithm is designed based on the ideal
environmental condition, e.g., no communication delay and
packet loss. However, the effect of these physical constraints
will be empirically analysed in simulations.

A. Modified DBSCAN Clustering Using Statistical Test

Intuitively, if the estimated tracks from different sensors are
close enough, it is logical to consider that they originate from
the same target. From this rational, it should be possible to
exploit clustering algorithm in finding different local estimated
tracks that have the same origin. The original DBSCAN clus-
tering algorithm [32] is an efficient data clustering algorithm to
group together points that are closely packed together using
Euclidean distance and to sort out outliers that lie alone in
low-density regions. The advantage of DBSCAN clustering is
that it requires no knowledge on the number of clusters and,
hence, is suitable for the target tracking applications. However,
due to unperfect sensors and environmental noises, the local
estimations always contain uncertainties and, thereby, the
simple DBSCAN might not perform well for target tracking
applications. To mitigate the effect of estimation uncertainty
on track-to-track fusion, we embed the statistical test into
DBSCAN clustering for a more reliable track-to-track fusion
scheme.

Without loss of generality, we consider the track-to-track
association as a hypothesis testing problem. For the purpose
of illustration, we assume that the true target state xik is related
to the local tracks xi,l1k and xi,l2k of the l1th and l2th sensors.
Denote H12 as the hypothesis that the local tracks xi,l1k and
xi,l2k come from the same target. Then, we have the hypothesis
probability as

Λ (H12) = p
(
xi,l1k , xi,l2k

∣∣xik ) (16)

Without any knowledge of the sensing environment, all
tracks in the sensor’s field-of-view (FOV) are equally likely.
Then, (16) can be reduced to

Λ (H12) = p
(
xi,l1k , xi,l2k

∣∣xik )
= p

(
xi,l2k

∣∣∣xi,l1k

)
p
(
xi,l1k

∣∣xik )
= p

(
xi,l2k

∣∣∣xi,l1k

)
p
(
xi,l1k

)
=

1

Vs
p
(
xi,l2k

∣∣∣xi,l1k

)
(17)

Note that we utilise the track from the l1th sensor as the
reference track in (17). It is obviously legitimate that any
other tracks can be used as reference track. Assuming that

p
(
xi,l1k

∣∣xik ) and p
(
xi,l2k

∣∣xik ) are Gaussian, we can obtain
the analytical solution of Λ (H12) as

Λ (H12) =
1

Vs
p
(
xi,l2k

∣∣∣xi,l1k

)
=

1

Vs
N
(
xi,l2k ;xi,l1k , P l1k + P l2k − P

l1,l2
k −

(
P l1,l2k

)T)
=

1

Vs
N
(
xi,l2k − xi,l1k ; 0, P l1k + P l2k − P

l1,l2
k −

(
P l1,l2k

)T)
(18)

where P l1,l2k denotes the cross-covariance between these two
estimated tracks, resulting from the common process noise,
and can be obtained by a recursive update or the approximated
approach shown in [33].

Based on (18), the statistical distance between xi,l1k|k and
xi,l2k|k can be formulated as

D
(
xi,l1k , xi,l2k

)
=
(
xi,l2k − xi,l1k

)T
×
(
P l1k + P l2k − P

l1,l2
k −

(
P l1,l2k

)T)−1 (
xi,l2k − xi,l1k

)
(19)

which is also known as the χ2 based common origin test.
As the statistical distance D

(
xi,l1k , xi,l2k

)
can be utilised

as a similarity measure between two local estimations, we
embed D

(
xi,l1k , xi,l2k

)
into the original DBSCAN cluster-

ing method for track-to-track association. If the statistical
distance D

(
xi,l1k , xi,l2k

)
between two local estimated tracks

from different sensors satisfies the similarity condition, i.e.,
D
(
xi,l1k , xi,l2k

)
≤ ε, we confirm that these two tracks have

the same origin.
Note that the original DBSCAN clustering used a tune

parameter minPts, known as the minimum number of points
required to form a dense region, to find the outliers. In
our case, as the measurement noise and false alarms are
tackled by the local JPDA filter, we assume that track-to-track
fusion is performed under outlier-free condition and hence
one can simply adopt minPts = 1 here. Noting that each
sensor has its own FOV limit, a target, therefore, might be
observed by only one sensor. This means that minPts = 1
also has practical meaning. Since minPts = 1, it is clear
that the proposed modified DBSCAN clustering has only one
tuning parameter, i.e. the similarity threshold ε, and thus the
clustering performance is highly dependent on the selection of
ε. On one hand, if ε is too large, the estimated tracks from
different targets might be clustered into one group, leading
to target miss detection, especially when targets are moving
closely. On the other hand, small ε will enforce the estimated
tracks that have the same origin into different clusters. This
reveals that the similarity threshold ε is a trade-off tuning
parameter between miss detection and clustering accuracy. To
tackle this problem and improve the clustering accuracy, we
enforce the following constraint for each cluster.

Constraint. The local estimations obtained by the same
sensor cannot be clustered into the same cluster.
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Note that this constraint is helpful in fusing closely-
spaced local estimates. Consider a scenario, where two sen-
sors are monitoring two closely moving targets. Assume at
time instant k sensor 1 provides local estimates x1,1

k , x2,1
k

and sensor 2 generates local estimates x1,2
k , x2,2

k . Clearly, if
conditions D

(
x1,1
k , x1,2

k

)
≤ ε,D

(
x1,1
k , x2,2

k

)
> ε are satis-

fied, DBSCAN clustering can identify the two targets. When
D
(
x1,1
k , x1,2

k

)
≤ ε,D

(
x1,1
k , x2,2

k

)
≤ ε, the aforementioned

hard constraint will enforce the fusion either between x1,1
k and

x1,2
k or between x1,1

k and x2,2
k . In other words, only one local

estimate from sensor 2 can be utilised for fusion with x1,1
k .

Therefore, by imposing the preceding constraint, the elements
of each cluster are the local estimations with different sensor
index and thus each cluster represents a specific target. With
these in mind, we summarise the pseudocode of the proposed
modified DBSCAN clustering algorithm using statistical test
in Algorithm 2.

Remark 2. It is known that the original S − D assignment
problem amounts to a linear binary programming problem
with O

(
NNs

k

)
variables and O (NkNs) constrains. Therefore,

the complexity of the problem increases exponentially with
the number sensors. The mainstream Lagrangian relaxation
algorithm iteratively solves a 2−D assignment problem with
complexity O

(
[NsNk]

3
)

[26], [27]. This means that the com-

plexity of this algorithm is given by O
(
Nite [NsNk]

3
)

, where
Nite denotes the number of iterations. As a comparison, since
the neighbourhood query in DBSCAN clustering executes in
O (log [NsNk]) [32], the overall average runtime complexity
is given by O (NsNk log [NsNk]). This reveals that the pro-
posed track-to-track algorithm is less computationally complex
compared with the exact S−D algorithm and the well-known
Lagrangian relaxation approach.

B. Local Estimation Fusion

Once we obtain the clustering results, the next step is to fuse
the local estimated tracks to generate the global estimation for
each cluster. For multi-sensor system, the fused estimation is
a mixture distribution. Generally, propagation of the mixture
distribution is computationally intractable due to the explosion
of mixture terms. An alternative solution is to find a single
candidate distribution to approximate the mixture distribution.
Therefore, the estimation fusion itself is a mixture reduction
problem.

Here, the GCI approach is utilised to fuse the estimations.
The advantage of GCI lies in its robustness against the un-
known correlations among the information sources. For local
estimations

{
xi,lk|k , P

i,l
k|k

}
, the closed-form solution of GCI is

given by [34]

P ik|k =

[
Ns∑
l=1

ωil

(
P i,lk|k

)−1
]−1

xik|k = P ik|k

Ns∑
l=1

ωil

(
P i,lk|k

)−1

xi,lk|k

(20)

where ωil denotes the weightings.
It should be noted that the the track continuity or the target

identity is lost during the clustering process, i.e., target ID
cannot be maintained during clustering. In order to maintain
track continuity, we apply the simple bi-partition matching
algorithm [35], [36] to every consecutive two scans. This
choice is motivated by the fact that we do not need to handle
the clutter issue and sensor noise problem at this stage as they
have already been treated by the local JPDA filter.

C. Algorithm Summary

Algorithm 3 summarises the proposed multi-sensor multi-
target tracking with feature augmentation and clustering dis-
cussed above.

V. NUMERICAL SIMULATIONS

In this section, the effectiveness of the proposed multi-
sensor multi-target tracking algorithm is demonstrated through
numerical simulations in a cluttered environment. Our exper-
iments explore a scenario, shown in Fig. 3, that consists of
4 sensors and 10 moving targets with different birth times.
To accommodate the nonlinear measurements, the well-known
UKF is utilised in the local JPDA filter.
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Fig. 3: Ground truth and sensor locations.

A. Simulation Setup

The state vector contains planar position and velocity. We
use the well-known coordinated turning (CT) model for target
prediction. The CT model is defined as

xk = Fxk−1 +Gwk−1 (21)

with

F
∆
=


1 sin(ωkT )

ωk
0 − 1−cos(ωkT )

ωk

0 cos (ωkT ) 0 − sin (ωkT )

0 1−cos(ωkT )
ωk

1 sin(ωkT )
ωk

0 sin (ωkT ) 0 cos (ωkT )

 , G ∆
=


T 2/2
T

T 2/2
T


(22)

where T = 1s denotes the sampling period and wk ∼
N
(
·; 0, σ2

v

)
is the Gaussian process noise with σv = 15m/s2.

ωk stands for the turning rate, which is assumed to be a ran-
dom walk process as ωk+1 = ωk + εk with εk ∼ N

(
·; 0, σ2

ω

)
.
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Algorithm 2 Modified DBSCAN clustering algorithm using statistical test

Input: The local estimation set Tk =
{
xi,lk|k , P

i,l
k|k

}
, the similarity threshold ε

Output: The clusters with each cluster representing a unique target origin
1: function OUR DBSCAN(Tk , ε)
2: C← 0
3: for each local track estimation xi,lk|k in Tk do
4: if xi,lk|k is visited then
5: continue next local estimation
6: end if
7: mark xi,lk|k as visited
8: for all sensors l′ with l′ 6= l do
9: NeighborPts← all local estimations xi,l

′

k|k satisfy similarity condition
10: end for
11: C← next cluster
12: function EXPANDCLUSTER(xi,lk|k , NeighborPts, C, τ )
13: add xi,lk|k to cluster C

14: for each local track estimation xi
′,l′

k|k in NeighborPts do
15: if xi

′,l′

k|k is not visited then
16: mark xi

′,l′

k|k as visited
17: for all sensors l̄ with l̄ 6= l′ do
18: NeighborPts’← all local estimations xi,l̄k|k satisfy similarity condition
19: end for
20: NeighborPts← NeighborPts joined with NeighborPts’
21: end if
22: if xi

′,l′

k|k is not yet member of any cluster then
23: if Cluster C contains no local estimation from the l′th sensor then
24: add xi

′,l′

k|k to cluster C
25: end if
26: end if
27: end for
28: end function
29: end for
30: end function

Algorithm 3 Multi-sensor multi-target tracking with feature augmentation and clustering

Input: The previous fused estimation
{
xik−1|k−1 , P

i
k−1|k−1

}
, current measurement set

{
Z1
k , Z

2
k , . . . , Z

Ns

k

}
provided by all

sensors
Output: Current fused estimation

{
xik|k , P

i
k|k

}
1: function MULTI-SENSOR MULTI-TARGET

({
xik−1|k−1 , P

i
k−1|k−1

}
,
{
Z1
k , Z

2
k , . . . , Z

Ns

k

})
2: for the lth sensor do
3:

{
xi,lk|k , P

i,l
k|k

}
← Local JPDA

({
xik−1|k−1 , P

i
k−1|k−1

}
, Zlk

)
. Algorithm 1

4: end for
5: Transmit all local estimations Tk =

{
xi,lk|k , P

i,l
k|k

}
to the fusion centre

6: Clustering results ← Our DBSCAN(Tk, ε) . Algorithm 2
7: for the ith cluster do
8:

{
xik|k , P

i
k|k

}
←Perform GCI estimation fusion

9: end for
10: Perform bi-partition matching for every two consecutive scans
11: end function
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The standard deviation of the random walk process is chosen
as σω = 3◦.

The target-generated nonlinear range and bearing measure-
ments are modelled by

z̃k =

[
rk
αk

]
=

 √(xT,k − xs)2
+ (yT,k − ys)2

arctan
(
yT,k−ys
xT,k−xs

) + vk

(23)
where (xT,k, yT,k) is target position, (xs, ys) sensor position,
and vk ∼ N (·; 0, Rk) the Gaussian measurement noise with
Rk = diag

(
σ2
r, σ

2
a

)
. The standard deviations of the measure-

ment noise are selected as σr = 5m, σa = 1◦.
The clutter is assumed to be uniformly distributed in the

surveillance region with its number being Poisson with NFA
average returns at each scan. Gating is performed with a
threshold such that the gating probability is PG = 0.999. A
tentative track is confirmed if the existence probability satisfies
p
(
χik |Zk

)
≥ 0.8 and a confirmed track is deleted immediately

once p
(
χik |Zk

)
≤ 0.1. For simplicity, we assume that

all sensors have equal properties and thus have the same
fusion weighting coefficient, i.e. ωil = 1/Ns, in our cases.
For running the proposed modified DBSCAN algorithm, the
similarity threshold ε is selected as ε = 5. In order to show
the advantage of using amplitude feature augmentation, we
consider a low SNR environment with SNR = 10dB. Note that
the target detection is obtained by thresholding the signal with
τ . However, there is no theoretical way to tune this parameter.
In simulations, we utilise the empirical convention [18] that

τ = − log
[
12σ2

mλFA
]

(24)

where σm denotes the standard deviation of position measure-
ments.

In order to apply (24) to the nonlinear angle and range
measurement case, it is required to convert the standard devi-
ations of the polar measurements σr, σa to the Cartesian one
σm. One typical way of solving the measurement converting
problem is the well-known extended Kalman filter. However,
this technique utilises a simple first-order approximation,
which includes the potential threat of inconsistency between
the calculated error covariance and the true error. To avoid this
pitfall, we leverage the recently proposed unbiased converted
measurement (UCM) [37] in our study. The converted position
measurement covariance matrix of UCM is given by

R11
k =

1

2

(
r2
k + σ2

r

) [
1 + cos (2αk) e−2σ2

a

]
− eσ

2
ar2
kcos2 (αk)

R22
k =

1

2

(
r2
k + σ2

r

) [
1− cos (2αk) e−2σ2

a

]
− eσ

2
ar2
ksin2 (αk)

R12
k = R21

k =
1

2

(
r2
k + σ2

r

) [
sin (2αk) e−2σ2

a

]
− eσ

2
ar2
k cos (αk) sin (αk)

(25)

For simplicity, we ignore the correlated term R12
k and

choose the standard deviation of the position measurements
σm as σ2

m = max
{
R11
k , R

22
k

}
, which represents the maximum

uncertainty in the converted position measurements.
The optimal sub-pattern assignment (OSPA) distance metric

[38] is considered here for overall evaluation of performance,

namely, cardinality and position estimation errors. Let X and
Y be the position estimation set and true target position set,
respectively. The cardinality of these two sets are m and n,
respectively. Then, for c > 0 and 1 ≤ p < ∞, the OSPA
distance dcp (X,Y ) is defined as [38]

dcp (X,Y )
∆
=

[
1

n

(
min
π∈Πn

m∑
i=1

dc
(
xi, yπ(i)

)p
+ cp (n−m)

)]1/p

,m ≤ n

dcp (Y,X) , m > n
(26)

where Πn denotes the set of all permutations on
{1, 2, . . . , n} for any positive integer n. dc

(
xi, yπ(i)

)
=

min
(
d
(
xi, yπ(i)

)
, c
)

is the cut-off Euclidean distance
between two vectors with d

(
xi, yπ(i)

)
being the Euclidean

distance. The order parameter p determines the sensitivity
of dcp (X,Y ) in penalizing estimation outliers, while the
cut-off parameter c determines the relative weighting of the
penalties allocated to cardinality and localization errors. In all
simulations, these two parameters are set as p = 1, c = 100.

B. Simulation Results

To show the effectiveness of the proposed algorithm, the
following different testing cases are considered in simulations.

1) With/without amplitude feature: To show the advantages
of utilising amplitude feature, Figs. 4 (a) and 4 (b) compare
the mean OSPA distances of 100 Monte-Carlo runs between
the fused estimation and local estimations. Figure 4 (a) shows
the results that never consider the amplitude information while
Fig. 4 (b) is for amplitude feature enhanced estimation. These
two figures clearly reveal that the fused estimation greatly
improves the tracking performance (approximately 60% im-
provement) in terms of OSPA accuracy whether or not we
consider the amplitude augmentation. In order to demonstrate
that the effect of the feature information on the tracking
performance, Fig. 5 depicts the comparisons of the mean
OSPA distances between trackers with and without feature
augmentation. From this figure, one can observe that utilising
the detection amplitude provides more accurate estimations.
Notably, augmenting the original JPDA with the amplitude
knowledge significantly increases the track confirmation speed
for a low SNR environment.

2) Variation of SNR: In MTT, the clutter rate plays an im-
portant role in governing the overall estimation performance.
Figure 6 shows the mean OSPA distance of the proposed
algorithm with respect to different SNR = 7dB, 10dB, 13dB.
Intuitively, higher SNR environment will generate more clut-
ters with the same detection threshold τ , increasing the pos-
sibility of data association failure. Therefore, the performance
will degrade with lower SNR. This can be clearly observed
from Fig. 6. However, by utilising the detection amplitude
as the domain knowledge, the performance of the proposed
algorithm does not show much difference even in a low SNR
environment, demonstrating the strong robustness against the
variation of SNR or clutter rate.
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(a) Without amplitude feature
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Fig. 4: Mean OSPA distance.
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Fig. 5: Mean OSPA distance comparison.
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Fig. 6: Mean OSPA distance with respect to different SNRs.

3) Computational complexity: To further show the advan-
tages of the proposed approach in terms computation com-
plexity, comparisons are made with exact S − D solution
and approximate Lagrange relaxation algorithms. The mean
OSPA distances of 100 Monte-Carlo runs obtained from three
different algorithms are presented in Fig. 7. The quantitative
comparison results of average OSPA distance over time and
running time are provided in Table I. From Fig. 7, one can
note that the exact S −D solution provides the best tracking
performance among these three different algorithms. However,
the exact S − D solution is highly computational expensive,
as confirmed by the running time shown in Table I. Even
though the approximate Lagrange relaxation executes within
an acceptable time, it provides the worst tracking accuracy in
terms of OSPA distance. Compared to exact S − D solution
and Lagrange relaxation approach, the proposed algorithm
achieves reasonable accuracy with lower computational de-
mand.
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Fig. 7: Mean OSPA distance comparison.

4) Communication delay: Practically, communications be-
tween the fusion centre and sensor nodes usually suffer from
time delays. We investigate the effect of time delay on the
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TABLE I: Average OSPA distance and running time compar-
isons.

Exact S −D Lagrange relaxation Proposed approach
Mean OSPA 11.2810 15.2237 12.4820
Running time 469.31s 36.19s 21.51s
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Fig. 8: Mean OSPA distance with communication delay.

performance of proposed algorithm. To this end, four different
cases are considered here: (1) without delay; (2) one sensor
delay; (3) two sensors delay; and (4) three sensors delay. Here,
cases (2)-(4) consider one-three sensors that cannot commu-
nicate with the fusion centre within the sampling period due
to communication delay. Figure 8 presents the performance
of the proposed algorithm with respect to different cases.
From this figure, it is obvious that the performance of the
proposed algorithm improves with less communication delay.
This can be attributed to the fact that more information is
gained from sensor nodes with less communication loss, thus
leading to performance improvement in information fusion.
However, unless there is certain amount of information for
fusing, e.g., cases (2)-(3), the performance of the proposed
algorithm does not differ much from the ideal case, e.g., case
(1). This demonstrates that the proposed algorithm can tolerant
certain degree of communication loss and time delay.

5) Limited sensor FOV: In reality, every sensor has its own
FOV and thus a target cannot be detected by a sensor if the
target is out of the sensor’s FOV. To show the effectiveness
of the proposed algorithm with limited sensor coverage, sim-
ulations are performed for the case: 6 sensors with detection
range 1800m and limiting sensing angles 90o. The ground
truth and sensor locations of this case is shown in Fig. 9,
where colour solid lines are target true trajectories, the blue
dashed lines the sensor’ FOV and the blue triangles the sensor
locations. Figure 10 compares the mean OSPA distances of
100 Monte-Carlo runs between the fused estimation and local
estimations. From this figure, it is clear that single sensor with
limited FOV cannot provide reliable tracking results due to
target loss. As a comparison, the fused estimation still provide
reasonably good tracking performance through information
communication among all sensors.
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Fig. 9: Ground truth and sensor locations.
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Fig. 10: Mean OSPA distance with limited sensor FOV.

VI. CONCLUSIONS

We have proposed a multi-sensor multi-target tracking algo-
rithm using an feature enhanced local JPDA filter in conjunc-
tion with a DBSCAN clustering-based track-to-track fusion
scheme. Unlike classical JPDA filter, the proposed local filter
utilises the detection amplitude augmentation as the domain
knowledge in measurement-to-track association. As confirmed
by the simulation results, utilising the amplitude knowledge
is beneficial for track confirmation and maintenance in a
low SNR environment. In the fusion stage, we embed the
statistical test into the DBSCAN clustering algorithm to group
the local tracks that originate from the same target and the
GCI approach is leveraged to fuse the local estimations of
each cluster. Simulation results clearly show that the proposed
algorithm is a competitive alternative for multi-sensor multi-
target tracking.
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[20] D. Mušicki, X. Chen, T. L. Song, T. Kirubarajan, and H. H. Lee, “Track-
to-track fusion with target existence,” IET Radar, Sonar & Navigation,
vol. 9, no. 3, pp. 241–248, 2015.

[21] R. W. Osbome, Y. Bar-Shalom, and P. Willett, “Track-to-track asso-
ciation with augmented state,” in 14th International Conference on
Information Fusion, July 2011, pp. 1–8.

[22] H. Chen and Y. Bar-Shalom, “Track association and fusion with het-
erogeneous local trackers,” Proceedings of the IEEE Conference on
Decision and Control, pp. 2675–2680, 2007.

[23] F. Fkie, F. Strasse, and G. Email, “On Decorrelated Track-to-Track
Fusion based on Accumulated State Densities,” Information Fusion
(FUSION), 2014, pp. 1–6, 2014.

[24] Y. Bar-Shalom and H. Chen, “Multisensor track-to-track association for
tracks with dependent errors,” 43rd IEEE Conference on Decision and
Control, vol. 3, no. 1, pp. 3–14, 2004.

[25] J. Areta, Y. Bar-shalom, and M. Levedahl, “Comparison of Two MDA
Algorithms for a Problem in Missile Defense,” Proceedings of SPIE,
vol. 6236, no. 1, pp. 1–12, 2006.

[26] S. Deb, K. R. Pattipati, and Y. Bar-Shalom, “A multisensor-multitarget
data association algorithm for heterogeneous sensors,” IEEE Transac-
tions on Aerospace and Electronic Systems, vol. 29, no. 2, pp. 560–568,
1993.

[27] S. Deb, M. Yeddanapudi, K. Pattipati, and Y. Bar-Shalom, “A general-
ized sd assignment algorithm for multisensor-multitarget state estima-
tion,” IEEE Transactions on Aerospace and Electronic Systems, vol. 33,
no. 2, pp. 523–538, 1997.

[28] A. B. Poore and A. J. Robertson III, “A New Lagrangian Relaxation
Based Algorithm for a Class of Multidimensional Assignment Prob-
lems,” Computational Optimization and Applications, vol. 8, no. 2, pp.
129–150, 1997.

[29] M. I. Skolnik, Introduction to Radar System, 3rd ed. New York:
McGraw-Hill, 2002.

[30] D. Lerro and Y. Bar-Shalom, “Automated tracking with target amplitude
information,” in Proceeding of American Control Conference, San
Diego, 1990, pp. 2875–2880.

[31] S. Challa, Fundamentals of object tracking. Cambridge, UK: Cam-
bridge University Press, 2011.

[32] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A density-based
algorithm for discovering clusters in large spatial databases with noise,”
in KDD, vol. 96, 1996, pp. 226–231.

[33] L. M. Kaplan, Y. Bar-Shalom, and W. D. Blair, “Assignment costs
for multiple sensor track-to-track association,” IEEE Transactions on
Aerospace and Electronic Systems, vol. 44, no. 2, pp. 655–677, 2008.

[34] G. Battistelli and L. Chisci, “Kullback–leibler average, consensus on
probability densities, and distributed state estimation with guaranteed
stability,” Automatica, vol. 50, no. 3, pp. 707–718, 2014.

[35] K. Shafique and M. Shah, “A noniterative greedy algorithm for mul-
tiframe point correspondence,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 27, no. 1, pp. 51–65, 2005.

[36] J. Hopcroft and R. Karp, “An n5/2 Algorithm for Maximum Matchings
in Bipartite Graphs,” vol. 2, no. 4, pp. 225–231, 1973.

[37] S. Bordonaro, P. Willett, and Y. Bar-Shalom, “Decorrelated unbiased
converted measurement Kalman filter,” IEEE Transactions on Aerospace
and Electronic Systems, vol. 50, no. 2, pp. 1431–1444, 2014.

[38] D. Schuhmacher, B. T. Vo, and B. N. Vo, “A consistent metric for
performance evaluation of multi-object filters,” IEEE Transactions on
Signal Processing, vol. 56, no. 8 I, pp. 3447–3457, 2008.

Shaoming He was born in 1991. He received his MSc degree in Aerospace
Engineering from Beijing Institute of Technology in 2016. He is currently
a PhD student in the School of Aerospace, Transport and Manufacturing,
Cranfield University. His research interests include multi-target tracking,
guidance and control.

Hyo-Sang Shin received his BSc from Pusan National University in 2004
and gained an MSc on flight dynamics, guidance and control in Aerospace
Engineering from KAIST and a PhD on cooperative missile guidance from
Cranfield University in 2006 and 2010, respectively. He is currently Reader
on Guidance, Control and Navigation Systems in Autonomous and Intelligent
Systems Group at Cranfield University. His current research interests include
multiple target tracking, probabilistic target detection and distributed control
of multiple agent systems.

Antonios Tsourdos obtained a MEng in electronic, control and systems
engineering from the University of Sheffield (1995), an MSc in systems
engineering from Cardiff University (1996), and a PhD in nonlinear robust
missile autopilot design and analysis from Cranfield University (1999). He is a
Professor of Control Engineering with Cranfield University, and was appointed
Head of the Centre for Cyber-Physical Systems in 2013. He was a member of
the Team Stellar, the winning team for the UK MoD Grand Challenge (2008)
and the IET Innovation Award (Category Team, 2009).



Cranfield University

CERES Research  Repository https://dspace.lib.cranfield.ac.uk/

School of Aerospace, Transport and Manufacturing (SATM) Staff publications (SATM)

Multi-sensor multi-target tracking using

domain knowledge and clustering

He, Shaoming

2018-08-03

Attribution-NonCommercial 4.0 International

Shaoming He, Hyo-Sang Shin and Antonios Tsourdos. Multi-sensor multi-target tracking using

domain knowledge and clustering. IEEE Sensors Journal, Available online 3 August 2018

https://doi.org/10.1109/JSEN.2018.2863105

Downloaded from CERES Research Repository, Cranfield University


