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Abstract 

The design of aircraft has evolved over time from the classical design approach to the 

more modern computer based design method utilising multivariate design 

optimisation. In recent years aircraft concepts and configurations have become more 

diverse and complex thus pushing many synthesis packages beyond their capability. 

Furthermore, many examples of aircraft design software focus on the analysis of one 

particular concept thus requiring separate packages for each concept. This can lead to 

complications in comparing concepts and configurations as differences in 

performance may originate from different prediction toolsets being used. This paper 

presents the GENUS Aircraft Design Framework developed by Cranfield University’s 

Aircraft Design Group to address these issues. The paper reviews available aircraft 

design methodologies and describes the challenges faced in their development and 

application. Following this, the GENUS aircraft design environment is introduced, 

along with the theoretical background and practical reasoning behind the program 

architecture. Particular attention is given to the programming, choice of methodology 

and optimization techniques involved. Subsequently, some applications of the 

developed methodology, implemented in the framework are presented to illustrate the 

diversity of the approach. Three special classes of aircraft design concept are 

presented briefly. 
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1. Introduction 

 

The aircraft design process is a field of science in itself; there are various theories and 

methodologies developed over the years by the practitioners of these methods, 

sometimes referred to as a “black art”. Often methodologies are based on the 

individuals’ or organizations’ beliefs of how design should be performed, what has 

worked in the past, and various interpretations of different design theories. Inevitably, 

over the relatively short history of modern aviation, there have been various aircraft 

design theories, schools, methods, books, guides, computer tools and so on.  

Perhaps, the best known examples of aircraft design theories are Howe’s 1, Raymer’s 

2, Roskam’s 3,Torenbeek’s 4 and Stinton’s 5, Corke’s 6 and Jenkinson’s 7. Howe’s 
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design method considers configuration, propulsion, layout, mass, performance, 

aerodynamics, cost and optimization. The methods discussed are limited to speeds 

below Mach 3. Raymer discusses sizing, geometry, aerodynamics, configuration, 

systems integration, propulsion, weights, stability, performance, and also cost and 

trade studies. Its Mach range extends up to values just below Mach 4. Roskam’s 

aircraft design integrates sizing, configuration, structural and systems layout, weight 

estimation, performance and stability evaluation methods with the “softer” aspects of 

design such as cost, design development, manufacturing and operation parts. The 

maximum Mach numbers are usually discussed up to M 2.5. Torenbeek includes 

configuration, systems and propulsion layout, flight deck and structures design, 

performance, but does not discuss cost aspects or supersonic flight. Stinton considers 

aspects of airworthiness, configuration, performance, propulsion, stability and weight 

estimation. His methods are not applied to supersonic designs. Thomas Corke, a 

professor of engineering at the Notre Dame University, combined aerodynamics, 

structures, propulsion, stability and control to develop a design philosophy that 

captures the interactions of different disciplines within the aircraft design process and 

the compromises resulting from such interactions. Jenkinson deals with aspects of 

modern civil jet aircraft design. 

In addition to the aforementioned few, there are other authors with publications on 

aircraft design. Crawford’s 8 book deals with practical aspects of GA aircraft design. 

Fielding 9 also gives an excellent overview on aircraft design, with many practical 

examples. 

In addition to the classical printed version of the design methods, there are many 

computerized options available ranging from simple codes to design environments. 

These design environments are computer based, with variable fidelity levels and 

features. Levels of fidelity can be described based on the work of Robinson and 

Martin (NASA) 10. They identified different levels of fidelity with numbers ranging 

from 0 to 4, representing simple empirical or analytical equations to full 3D, and 

knowledge based methods. The method was originally developed for NASA’s System 

Analysis Project (SAP), which aimed to standardize definitions of design fidelity. 

There are numerous examples of these design environments. Among the first ones 

were General Dynamic’s SYNAC (Synthesis of Aircraft) 1967, Boeing’s CPDS 

(Computer-aided Preliminary Design System) 1972 11, NASA’s ACSYNT (Aircraft 

Synthesis) 1987, Northrop’s CDS (Conceptual Design Synthesis) and Delft’s Aircraft 

Design and Analysis System (preceded by the Delft Interfaculty CAD Installation, 

ICI). From the more modern ones, NASA’s Integrated Design and Engineering 

Analysis (IDEA) 12 environment uses the Adaptive Modelling Language as its 

underlying framework. It integrates a higher fidelity method to evaluate geometry, 

configuration, propulsion, aerothermodynamics, trajectory and structural analysis. An 

earlier effort from NASA was the Advanced Engineering Environment (AEE) 13, part 

of the Next Generation Launch Technology program. It uses an Oracle database to 

link the modules together, and uses code developed independently in various NASA 

centres. 

 

Some successful publicly available codes are so widespread today, that some of them 

have become the de facto industry standard for many aerospace companies. Piano 14 

is perhaps the most commonly known computer aided tool, used by aircraft and 

engine OEMs worldwide. Its primary area of application is for the analysis of 

conventional subsonic commercial aircraft in the preliminary design phase, especially 

powerplant-airframe integration. The code also allows designers to perform 



competitor evaluations, performance studies and emission estimations among many 

other aspects of aircraft design. It also has a large and validated database of aircraft 

designs. NASA’s Flight Optimization System (FLOPS) 15, 16 is also widely known 

amongst aircraft designers. It is a collection of programs from various engineering 

disciplines that are integrated into an analytical design tool which is capable of 

producing conceptual and preliminary level designs. It also integrates optimization 

algorithms, that allow the user to set up variable driven inputs and generate optimized 

output variables. 

VSP and Open VSP 17, 18 are part of NASA’s aircraft design software tools. VSP 

stands for Vehicle Sketch Pad, and it can be used to create parametrized aircraft 

geometry representations. These 3D models then can be exported into various 

engineering geometry formats for further analysis. Open VSP is the open source 

release of the code, which also integrates analysis tools such as VSPAero. Although 

the software has a comprehensive set of modelling tools, the analysis capability is 

very limited, due to its open source nature. Results available are for example Centre 

of Gravity (or volumetric centre), wetted area, and similar geometry derived 

properties. 

The APD design software from Pacelab 19, 20 is also among the well-known aircraft 

design tools in existence. APD is a conceptual and preliminary level knowledge based 

aircraft design tool. It was designed to provide well-defined interfaces that allow it to 

communicate with other software, offering the user the option to use higher fidelity 

methods or to use the code as a platform for detailed aircraft-level analysis. Pacelab 

also developed a systems architecture design tool, SysArc 21, 22, and various 

solutions for more detailed aspects such as flight path optimization. 

Multidisciplinary Integrated Conceptual Aircraft Design and Optimization 

(MICADO) 23 developed by Aachen University, is aimed to conduct fast parameter 

studies with minimal user input using an .xml interface to couple various software 

together. It has a modular architecture, allowing different analysis software (FEA, 

CFD, etc.) to be integrated in the environment, but also uses more empirical methods 

such as Digital DATCOM 24. The method it uses for the design synthesis is not 

documented. Another example, DARcorporation’s Advanced Aircraft Analysis 25 

program, represents a lower complexity procedure based on Roskam’s methodology. 

Raymer also has a design environment, the Conceptual Design Corporation’s RDS 26 

based on his methodology. The software provides a comprehensive tool for aircraft 

design, including economic analysis for aircraft and operations and built in 

optimization tools. Adjustment factors are available when the methods are applied to 

designs where they are outside the bounds of applicability. CEASIOM 27 is a free 

engineering environment, developed within the SimPAC project, utilizing various 

design methodologies, for example its weight estimation module incorporates 

Howe’s, Torenbeek’s, Raymer’s, USAF, and Cessna methods, from which the user 

can select the desired method. Extensive use of this environment has been made and a 

broad list of publications are available demonstrating the capability of the 

environment 28, 29, 30, 31, 32, 33, 34, 35. 

Desktop Aeronautics developed the Program for Aircraft Synthesis Studies (PASS) 

36. It is suited for conventional subsonic layouts, but is also capable of analysing 

supersonic business jets or oblique wings. However, it does not state what 

methodology is used for its modules. 

Focusing more on the MDO aspects, the AGILE development framework 37, 38, 39 is 

reported to be currently under development by a wide consortium of industry, 

research agency and academic partners. The EU collaboration project was started in 



2015, and it is estimated to last until late 2018. The framework aims to further 

develop and speed up current MDO methodologies using a distributed approach. 

There are various examples available demonstrating the effectiveness of the approach, 

applied for conventional and non-conventional (BWB, box-wing, braced-wing, etc) 

configurations. 

As a more specialist application, Hypersonic Aerospace Sizing Analysis (HASA) 40 

was developed by NASA. As the name implies, HASA focuses on hypersonic 

transports and single stage to orbit vehicles, and for validation, compares the methods 

to existing designs and concepts. For a longer list, Chudoba 41 lists a summary of 86 

aerospace vehicle synthesis systems in his book. 

In addition to the more generic design methodologies, there are many methods that 

are applicable only to a single specific class of aerospace vehicle. A review of these 

specialized methodologies is outside the scope of the current paper. 

2. The GENUS aircraft conceptual design environment 
 

Many design synthesis programmes have been developed to investigate the 

characteristics of a specific aircraft configuration or concept. The resulting parametric 

studies or design space investigations, for the specific class of vehicle, being the 

desired end point. More recently there has developed a strong need to make 

comparisons between different concepts – particularly with regard to identifying more 

environmentally benign civil aircraft. Whilst the results from these separate 

investigations can be compared there is a risk that performance differences may result 

due to differences in prediction tools rather than the concepts themselves. The 

GENUS Aircraft Conceptual Design environment is a new software tool, developed 

by researchers in Cranfield University’s Aircraft Design Group, based on the vision 

developed by the author. The programme seeks to enable the comparison of concepts 

and configurations on a self-consistent basis by using identical models and toolsets 

where applicable. The accuracy of the results would, of course, be limited by the 

fidelity of the toolset but relative differences will be more a function of the 

configuration and concept and less a function of the use of different tools. Thus, a 

design synthesis framework has been devised by the authors to permit a wide range of 

configurations and concepts to be modelled. It is intended that the compatibility of the 

framework can be extended to further configurations and concepts through the 

addition of extra modules. To accommodate this flexibility, and to get the best from 

the code and user, it is assumed that the user is a knowledgeable aircraft designer with 

some programming skills. 

The word ‘genus’ originates from either the Latin term genus (descent or family) or 

the Greek ‘genos’ (race, kin). It is used by biologists as a taxonomic rank to classify 

organisms; Genus is positioned above the rank of species and below the rank of 

family in the hierarchy. The choice of this name represents the tool’s place in the 

taxonomy of aerospace vehicles; it is a design environment that is not only focused on 

a particular type of vehicle (single species) but rather a large and diverse group of 

aerospace vehicles. 

An additional motivating factor behind the development of this tool came from the 

experience of supervising many post-graduate level researchers in the field of aircraft 

conceptual design. More often than not researchers, often under severe time 

constraints, would choose the first and most convenient tools and methods to achieve 

their specific aircraft design objective. And while the majority of these researchers 

have done an excellent job with their ad-hoc tools and methods, this often results in a 



barrier being created to the continuity and development of their work; a serious 

knowledge management issue. Why a tool or method can’t be reused by future 

researchers can be due to many reasons; the most common ones encountered being 

unstructured, monolithic, poorly commented code - lack of documentation - use of 

proprietary tools that may not be accessible in the future - use of specific versions of 

proprietary software causing future compatibility issues and the adoption of niche 

programming languages. 

Examples of concept/configuration specific multivariate optimisation aircraft design 

synthesis packages include Djafri 42, Siegers 43, Woodford 44, Watjatrukul 45, 

Niyomthai 46 and Rajendran 47. Focusing primarily on slightly different aspects, 

Chudoba 48 investigated conceptual design from a more fundamental stability and 

control point of view.  

One key issue for aircraft design tools is the topic of data format and flow. This key 

question is common to most research in this area. One of many successful attempts at 

standardising data flow, DLR has developed a common configuration format referred 

to as CPACS 49, 50. This format is used as the primary means of data transfer 

throughout all DLR aircraft design projects and to couple established MDO 

environments together. The additional great benefit of using the standardised format is 

that it enables the efficient collaboration between different contributors and their own 

aircraft design methods during large projects. Essentially CPACS couples the 

different models and namespaces of the various contributing design environments 

which enables all players to use their own potentially proprietary tools without 

modifications. The CPACS standard offers methodology to define conventional 

aircraft components similarly to most other commonly used design tools available 

today. Complex/unconventional configurations can be theoretically dealt with by 

combining the various predefined components.  

The GENUS environment in its current format covers a smaller breadth of aircraft 

design; at the moment it is specifically created to enable the conceptual level design 

of various, potentially radically different aircraft configurations. With this approach, 

the “tool bias” can be avoided, where comparing different configurations, such as a 

BWB and a conventional configuration, one or the other can be shown in a better 

light, purely because different tools were used to evaluate the design concepts. The 

GENUS environment is thus aimed to reuse and generalize lower level tools as much 

as possible, rather to provide seamless link to a large variety of high fidelity tools. 

Furthermore, because most of the tools are appropriate for conceptual level design, 

the execution duration is fairly small compared to a higher fidelity (FEA, Navier-

Stokes CFD, etc.) tool. This means, that computational overheads such as writing and 

reading input/output files from the hard disc can amount to significant proportion of 

calculation time. For this reason, most codes are modified and integrated into the 

environment, to enable programmatic data transfer as opposed to using these files, 

speeding up the individual execution in the process. Since GENUS was written in 

JAVA, it provides convenient interfacing to many other programming languages, and 

even where no native solution exists, practically all significant languages can be 

interfaced when going through JNI and a C wrapper. It would be fairly easy to 

connect the software using the JAVA API to CPACS and similar. However, the 

original version of the GENUS tool did not consider data and workflow integration 

into standards. Current and future researchers on the project are investigating options 

to enable cooperation with such international efforts. 

Based on the GENUS concept, the first working version of the tool was developed by 

the authors. The demonstration of the framework as applied to the design of solar 



powered unmanned aerial vehicles was completed by Abbe 51. Okonkwo 53 applied 

the framework to Blended-Wing-Body (BWB) aircraft concepts, and Sziroczák 54 

applied it to hypersonic transport and space launcher vehicles, his work also describes 

the major part of the programming architecture design and implementation. These 

three references demonstrate the capability of the tool to implement the 

methodologies developed for various classes of aerospace vehicles. Subsequent to 

these founding studies GENUS is being applied to supersonic business jets 55 and 

Unmanned Combat Air Vehicles 56. 

The GENUS software tool’s main task is to implement the Design framework, the 

structure of which is shown in Figure 1. 

 
Figure 1: Genus Design Framework 

The Design framework allows the user to manipulate the tool using a graphical user 

interface. Behind the graphics interface, the various modules available for the 

different classes of aircraft design are loaded into the Design program. This essential 

part of the framework is where the developed conceptual design methodologies are 

implemented; based on the user defined inputs. This part of the code generates a 

single instance of aircraft conceptual design. This instance is then further processed 

using the constraint analysis tools. Using the outputs, design responses (objectives, 

constraints) can be provided for an optimization or exploration loop to drive the 

design process. 

The key element of the Design framework is the Design program, using a 

combination of various developed modules to facilitate the production of a single 

aircraft design. Synthesis of an aircraft design is a complex task which requires a 

broad knowledge of multi-disciplinary design areas or modules. The modules 

typically addressed during aircraft design are the following: 

 Geometry 

 Mission specification 

 Propulsion 

 Mass estimation 

 Aero(thermo)dynamics 

 Systems 

 Environmental considerations 

 Certification 

 Flight testing and prediction 

 Reliability 



 Packaging and CG 

 Performance 

 Stability and control 

 Maintainability 

 Manufacturing 

 Operational cost 

 

Out of these modules, not all of them are always addressed during conceptual design. 

Most of the “softer” aspects of design, such as cost, maintainability, manufacturing 

and so on are usually approximated as some function of aircraft mass at conceptual 

level. Thus minimizing mass, which is oftentimes the objective, would usually drive 

towards minimum cost as well (Certain technologies need to be treated more 

carefully, such as avionics – where software is expensive and yet does not contribute 

to mass). Consequently, based on experience, and the evaluation of various concepts 

and design methods, 9 essential modules where defined and implemented in the 

GENUS design tool as shown in Figure 2. 

 
Figure 2: Design program essential structure with example data flow 

 

These modules are the essential elements of any conceptual level aircraft design; and 

when all these aspects of design are addressed through the application of appropriate 

constraints, the conceptual design can be deemed complete, self-consistent and fit for 

purpose. 

The Design program is required to perform its task, and perform it robustly; generate 

single instances of design based on any conceivable output. This is essential as 

modern aircraft design relies on optimization methods to generate feasible, or the 

“optimum” designs. This is due to the fact that the computerized and human thought 

processes work in fundamentally different ways. Figure 3 shows the difference 

between the flow of information in the two thought processes. The human mind relies 

on its creativity to overcome the challenge of reverse engineering the required inputs 



from the desired outputs. This can be done by relying on rigorous, sequential multi-

fidelity design processes, but also engineering judgement, “gut feelings”, “rules of 

thumb”, educated guesses or similar, intuitive approaches. While this comes to us 

naturally, this is not how a computer behaves, or could behave in the foreseeable 

future. 

Computers excel at performing simple operations repeatedly without error. A current 

PC or laptop can perform about 177 GFLOPS (177 ∙ 109 Floating Point Operations 

per Second), and there seems to be little indication that Moore’s law is slowing down. 

Thus this increasing computing power should be utilized. To fully utilize a 

computer’s capacity, it is traditionally used in a design process that is fundamentally 

different to the manual (or human approach). The method of operation is to assume, 

synthesize, evaluate, and then iterate by changing initial assumptions until a viable, 

self-consistent and optimum solution is achieved. Whilst this is, in theory, a sound 

and logical approach it does carry with it a number of limitations. Optimisation 

processes tend to lose robustness and the capability to locate the optimum solution 

(local or global) as the design problem becomes more complex resulting high CPU 

time requirements and, often, failure to converge. Potential solutions will always be 

constrained, to a greater or lesser extent, by the design space defined by the software 

and, where a solution is found, little comprehension as to how the solution was driven 

to the end point. 

 The best solution from the whole design process point of view is to create a hybrid of 

both approaches. Both the creative designer and the power of the computer should be 

used in a way that they both do what they do best. As such the designer needs to use 

his experience and knowledge, to steer the computer into the required direction and 

fully utilize its capabilities. This can be achieved by the designer limiting the number 

and choice of variables that the optimiser can vary as the design develops. Thus the 

design might start by exploring the effect of thrust and wing loading, then progress to 

packaging and stability, prior to allowing a full optimisation to be attempted. Where 

necessary, the designer has the ability to modify/augment specific modules where 

required. This enables the knowledgeable user to progressively explore the design 

space, move close to the optimum, maintain awareness of design issues, apply 

creative approaches to the design and finish with a design that is viable, (to a greater 

extent) optimised and well understood. Additionally, whilst this, in common with 

most design processes, does not guarantee the global optimum (as opposed to a local 

optimum) it does offer further strength in this direction. 

 



 
 
Figure 3: Primary data flow direction in computerized (top) and human design process (bottom) 

The GENUS tool was designed to fully utilize this computerized design process. 

Automatic processes, such as optimization or exploration loops are internal parts of 

the framework, integrated deep into the flow of data. An example optimization loop 

can be seen in Figure 4. 

 
Figure 4: GENUS data flow 

The program architecture allows the knowledgeable user to dynamically specify any 

number of inputs and outputs for the chosen automatic process. With this approach, 

an initial optimization loop can be run with relatively few variables in order to search 



for feasible solutions in the design space. Subsequently additional degrees of freedom 

can be freed up or locked, so optimization loop can be run with less or more variables. 

This ensures that solution processes such as a gradient based optimization starts from 

a position where it is feasible to come to a converged optimal solution. Also 

sensitivity effects of individual parameters to the overall solution can be easily 

investigated by altering the list of inputs or outputs used in the process. 

 

The core of the GENUS design program is written in Java. Java is one of the most 

popular programming languages available today (based on IEEE top 10 in 2014 57). 

It’s free to use, easy to learn and there is a very large knowledge base available online 

in the form of forums, discussion boards, official tutorials, and so on. It is also a 

general purpose programming language that does not depend on other software. It is 

platform independent, and being popular, there is an active community and it’s likely 

to stay for a long while. As Java runs on a Java Virtual Machine (JVM) due to this 

extra layer, it cannot match the speed of a classical compiled language, such as 

Fortran or C, but it is considerably faster than interpreter languages such as Python or 

Matlab scripts. At conceptual level design the models used are generally simpler and 

smaller, so the code is not expected to perform very large matrix inversions or similar, 

thus even with low processing speed many iterations can be achieved in a short space 

of time. 

What Java also offers is object orientation, and the use of inheritance and 

polymorphism; the GENUS data architecture extensively relies on these features of 

the language. A last, but key point of Java, is that it’s capable of interfacing with 

many different programming languages. It has an official Java Native Interface (JNI) 

to interface with C programs, which then can be used as a wrapper to interface with 

many other languages, such legacy codes written in Fortran (to use legacy aerospace 

design codes). In addition there are libraries available to directly communicate with 

other popular codes, such as Python or Matlab. 

There are 2 other key elements of engineering computing, that were considered during 

the design of the GENUS environment. Since each individual researcher is focusing 

on a specific class of aerospace vehicle, there are many fields of knowledge that need 

to be evaluated at potentially different fidelity level. Although it is the design aim of 

the GENUS environment, to develop common tools, this inevitably still leads to a 

large suite of numerical codes addressing different aspects of a concept, ranging from 

simple calculations, to complex, full vehicle flow simulations. Taking into account the 

level of detail appropriate to and the exploratory nature of conceptual level aircraft 

design, it is imperative that every part of the design code performs, without 

unnecessary calculations or activities. For example, writing and reading data from/to a 

conventional hard disk at random locations, is about 4 magnitudes slower than 

accessing the computer’s memory directly.58  Thus by avoiding writing to disk, and 

modifying existing codes, not to access the disk, significant increases in performance 

can be achieved. 

The final, but perhaps most important numerical element is the use of optimizers, and 

other design driver processes. Optimization is a key, integrated part of aircraft design; 

many optimization methods were actually developed to support aircraft design 

activities. Also, serious aircraft design activity today is not feasible without these 

tools, due to the complexity of the task at hand; larger, lighter, more efficient and 

greener aircraft than ever before.  

Most of the optimization problems faced in aircraft design are inherently 

multidisciplinary, multivariable, and many times multi-objective. While at conceptual 



level design, minimising mass is often the objective of choice, there are many, often 

conflicting requirements the designer has to satisfy. Design driver tools, such as the 

various optimization methods, DoE (Design of Experiments), Pareto analysis, Monte-

Carlo simulation, or robust design methods such as Taguchi and Six-sigma analysis 

are all well known, documented and ready tools for today’s designers. 

Perhaps the most often used and most widely known design driver is the optimisation 

process. The classic optimization procedure is designed to minimise (or maximise) 

objective variables by changing input variables, while adhering to set constraints. 

Formally, it can be written as: 

 Minimize: 𝑓(𝑥̅) 

 Subject to: 
o 𝑔𝑗(𝑥̅) ≤ 0 𝑓𝑜𝑟 𝑗 = 1,2, … 𝐽 

o ℎ𝑘(𝑥̅) = 0 𝑓𝑜𝑟 𝑘 = 1,2, … 𝐾 

o 𝑥𝑖
(𝐿) ≤ 𝑥𝑖 ≤ 𝑥𝑖

(𝑈)  𝑓𝑜𝑟 𝑖 = 1,2, … 𝑁 

Where: 

 𝑥̅ is the array of optimization input variables, dimension of N 

 𝑓(𝑥̅) is the objective function, scalar (for multi objective optimization it is an 
array of dimension M) 

 𝑔𝑗(𝑥̅) are the inequality constraints, J in total 

 ℎ𝑘(𝑥̅) are the equality constraints, in practical terms |ℎ𝑘(𝑥̅)| <  𝜀, where 𝜀 is a 
small positive number, K in total 

 𝑥𝑖
(𝐿) and 𝑥𝑖

(𝑈) are the respective lower and upper bounds for variables. 
Depending on the process, the variables can be unbounded 

There are different families of optimizers available today, according to Raymer 59 

and Hammond 60. The most commonly used in aerospace vehicle design are the 

following:  

 Calculus based: gradient, finite difference, Lagrange multiplier, sequential 
quadratic programming, general reduced gradient, implicit function theorem, 
etc. 

 Response surfaces 

 Expert systems 

 Evolutionary algorithms 

 Simulated annealing 

 Neural networks 

 Monte-Carlo 

 Hybrid methods 

As it can be seen, there are many different methods available, and a designer 

intending to utilise the optimisation procedure to its fullest has to be aware of the 

strengths and weaknesses of each procedure. As Wolpert and Macready 61 famously 

described, there is “no-free-lunch”; an algorithm that outperforms another solving one 

type of problem will have inferior performance solving a significantly different 

problem. Methods such as a gradient based optimizer are very good at efficiently 

homing in on local maxima for example. As opposed to a multi-island generic 

algorithm is more exploratory in nature; it is more likely that it will find a global 

maximum as opposed to getting stuck at local extrema, and it will handle 

discontinuous design spaces better, but is not as quick or efficient to converge on the 

solution, as the calculus based gradient method. 

The initial version of the GENUS design environment had 2 optimizers integrated; a 

calculus based, and an evolutionary method. The calculus based is the LSGRG2, 

which is a Large-Scale Generalized Reduced Gradient method. It is a very robust and 

well performing optimizer, it is also probably the most widespread, as it is the default 



optimisation process used by Microsoft Excel’s Solver plug-in. The second optimizer, 

PDGenetic was written by Sziroczák 54, to provide a tool that can be tuned to 

mitigate the LSGRG2’s known weaknesses, such as exploring the design space and 

finding a feasible initial configuration, even in discontinuous design spaces. 

Subsequent additions to the software include additional widely used execution 

options, such as DOE, and potential future aircraft design methods. 

3. Application examples 
The basic functionalities of the GENUS Aircraft Design Environment were validated 

by performing conceptual level designs of conventional and unconventional aircraft 

configurations. Example conventional aircraft include the A320 and Boeing 737 

family, and similar classic turbofan driven airliners. Some aspects of this validation 

process were already presented at conferences 62. 

 

Okonkwo 53 has developed a conceptual design methodology appropriate for Blended 

Wing Body (BWB) aircraft configurations. The BWB aircraft concept arose from the 

desire to create an environmentally friendly aircraft that is aerodynamically efficient 

and capable of conveying large numbers of passengers over long ranges at a reduced 

direct operating cost. The design offers immense aerodynamics and environmental 

benefits and is suitable for the integration of advanced systems and concepts such as 

laminar flow technology, jet flaps and distributed propulsion amongst others. 

However, despite these benefits, the BWB is yet to be developed for commercial air 

transport. This is due to several challenges resulting from the highly integrated nature 

of the configuration, the attendant inter-disciplinary couplings as well as the absence 

of well-developed design tools incorporating physics based disciplinary models, and 

other design issues 63. 

The GENUS BWB framework integrates a deterministic geometry sizing model, 

BWB–tailored mass breakdown models and a physics-based Athena Vortex Lattice 

aerodynamics analysis tool to create an enhanced conceptual design methodology that 

enables the synthesis and exploration of the design space of this novel class of 

aircraft. To illustrate the capabilities of the GENUS environment to use a common 

framework to minimize differences resulting from the applied tools, Figure 5 shows 

the modules used to perform such design studies. It can be seen that the only BWB 

specific methods are in the mass breakdown and stability and control modules; the 

rest are reusable between conventional and BWB configurations. 



 

Figure 5: BWB Design essential modules - BWB specific modules highlighted 

Other highlights of the developed tool includes the implementation of a performance 

model using real time theoretically derived estimation of masses at different phases of 

flight; the integration of a Class Shape Transform packaging module 64 that ensures 

all items are well enclosed within the geometry to prevent expensive redesign later in 

the preliminary design stage; and a stability module encompassing longitudinal static 

stability, trim, turbulence sensitivity and a structural parameter. Trim and turbulence 

sensitivity are introduced to improve handling quality and enhance passenger’s 

comfort and ride quality. The structural parameter is provided to resolve any potential 

conflicts between the aerodynamic and structural requirements in the design. 

 

To demonstrate the capability to handle different classes of aircraft in the same 

environment using a consistent set of tools, a conventional airliner configuration was 

compared to the Cranfield FW12 flying wing concept. The requirements for both 

concept were the same, as specified in Table 1. 

 
Table 1: Conventional and FW12 configuration design requirements 

Requirement Value 

Range at full payload 12000 km 

Cruise Mach number 0.82 

Cruise Altitude 10.7 km 

Maximum manoeuvre normal load factor, nz 2.5 

Number of passengers 248, 1 class configuration 

Passenger and baggage mass 83 + 30 kg 



 

 
Figure 6: Conventional airliner (left), Cranfield FW12 (right) 

Figure 6 shows the graphical representation of the two concepts, generated by the 

GENUS design environment. The mass breakdown of the two concepts, shown in 

Figure 7, demonstrates the benefit of the flying wing configuration; to perform the 

same mission, the aircraft MTOM is reduced from 180.8t to 161.0t, a 10.9% decrease.  

 
Figure 7: Conventional airliner and Cranfield FW12 mass breakdown comparison 

The main factor for this difference is a significant, 26% reduction in fuel mass. The 

OEM decrease is only about 2%. Due to the aerodynamic improvements resulting 

from the large lifting surface, the CL required to sustain cruise (based on respective 

Sgross areas) is significantly smaller, 0.21308 for the flying wing, compared to 0.52090 

for the conventional airliner. Figure 8 shows the comparison of the drag polars of the 
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two configurations. It can be seen that to sustain cruise CD is larger for the 

conventional configuration, 0.02962 compared to 0.00957 for the FW12.   

 

 
 

Figure 8: Conventional airliner and Cranfield FW12 drag polar comparison at Mach 0.82 
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This reduced drag results in significantly reduced fuel consumption. Figure 9 shows 

that the achievable range of the flying wing aircraft can be extended significantly 

compared to the similar conventional configuration. 

 
Figure 9: Conventional airliner and Cranfield FW12 payload-range comparison 

The short summary of the conceptual level comparison of a conventional airliner and 

the FW12 concept shows that the GENUS environment can generate conceptual level 

results for aircraft design using the same framework and as many common tools as 

possible. 

The geometrical representation of concept aircraft is an important element of the 

conceptual design process. The examples shown here were performed using a 

simplified representation of aircraft geometry, to enable robust methods and runs thus 

facilitating the more complete exploration of the design space of the various aircraft. 

51 describes some of the issues with this approach, relating to fuselage, nacelle and 

simple wing geometry generation. The geometry module in GENUS enables the user 

to define arbitrary aircraft geometry with unlimited number of surfaces and bodies, in 

arbitrary configuration, and define as many cross-sections as desired. There does not 

have to be a direct definition for every cross-section for example, each individual 

module can use its own rule- or knowledge-based geometry definition, such as the 

Class Shape Transform already mentioned. But regardless of how the user defines it, 

the geometry is stored in the common format for the rest of the program to use. From 

the common stored geometry format, GENUS is capable of outputting various 

geometry formats, such as simple surfaces for external and internal components 

visualised in VTK, or the NASA LAWGS format, CATIA surface parts, Digital 

DATCOM equivalent inputs or PANAIR input mesh format, and so on. 

An ultra-long endurance solar powered UAV, including perpetual flight capable 

aircraft design methodology was researched by Abbe 52. The continued concerns and 

interest over rapid climate changes and global energy security has spurred scientific 

efforts towards alternative energy technology. In the aerospace community, this has 

involved research into alternative energy sources, propulsion solutions and perpetual 

flight missions; the basic aim has not only been the environmental benefits, but also 

the capability of expanding the mission range and duration optimally. Research and 

development of high altitude long endurance, and even perpetual flight aircraft 

systems have become a significant theme in the search for low cost communications 

and surveillance solutions. 
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The design space for solar-powered aircraft has evolved over the years, rendering it 

the subject of several design studies. Since the first solar powered aircraft attempt in 

1974, advancements in the capacity and efficiency of energy storage technologies, 

solar cells, electric motors, and sensors, as well as improvements in robust light 

weight structural material technologies have further expanded the possible 

applications of this class of aircraft.  

Solar-powered aircraft design is a combination of several multi-disciplinary aspects 

which include aircraft structural design, propulsion system design, electrical system 

design, and power and control system design. Key points of the research activity and 

their critical appraisal are given by Abbe and Smith 65, and their utilization in 

conceptual level aircraft design. 

An extensive study was performed on the design mathematical modelling of the 

subparts, generating a large database of empirical information. Equations derived 

from the multivariate regression analyses of this data were then used in the design 

syntheses to perform a minimum power flight performance analysis, hence obtaining 

a vehicle weight under minimum energy conditions. A relationship between the 

calculated parameters was then derived. 

 

 
Figure 10: Solar powered small scale UAV geometry in GENUS 51 

 

The following example shows the use of the GENUS environment to generate a 

conceptual level design of a small-scale Solar powered UAV, as shown in Figure 10. 

The aircraft design is based on Noth’s Sky-sailor concept65. Table 2 shows the 

requirements that were used as the input for the design process.   

 
Table 2: Solar powered UAV design requirements 

Requirement Value 

Endurance with full payload Perpetual 



Cruise speed 8.03 m/s 

Day of year, Latitude, Altitude 172th day, 45º, 3km 

Maximum manoeuvre normal load factor, nz 3.8 

Payload mass 0.250 kg 

Payload power consumption 0.5 W 

 

The mass breakdown generated using the methodology in GENUS was compared to 

Noth’s method and the measured mass values from the Sky-sailor. Figure 11 shows 

the comparison, demonstrating the excellent agreement between the different values. 

 

 
Figure 11: Solar powered UAV mass breakdown comparison 

The drag polar of the solar powered UAV is shown in Figure 12. It should be noted 

that the graphs were generated at significantly different flight conditions; typical 

cruising speed of an airliner is about Mach 0.82, while a typical solar UAV cruises at 

Mach 0.025.  
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Figure 12: Drag polar of solar UAV compared to conventional airliner 

  

 

Sziroczák54 investigated aerospace vehicles capable of operating in the hypersonic 

speed regime; Space Launchers and Hypersonic Transports. The idea of hypersonic 

flight has been around since the late 1930s, and there has been varying, but constant 

interest ever since. Both classes of aircraft provide capabilities beyond the state of the 

art; Hypersonic Transports drastically reduce travelling times, which is a critical 

feature in applications such as emergency response, military applications or important 

business trips. Advanced Space Launchers on the other hand have the capability to 

reduce the cost and increase the reliability of contemporary space access and return 

capability. Also, they enable repeated space access due to reduced turnaround times, 

which enables for example rapid deployment of satellites; a critical strategic 

advantage. Despite these substantial benefits, there are still a range of design issues to 

be addressed until hypersonic flight becomes more widespread. 67 

The developed methodology enables the user to generate designs of both Space 

Launchers and Hypersonic Transports within the GENUS Aircraft Design 

Environment. The full range of common powerplant choices are available in the tool; 

turbojets, ramjets, scramjets, liquid rocket engines, with a range of fuels and 

fuel/oxidizer combinations. Aerodynamic estimation methods ranging from the 

subsonic regime up to high hypersonic (Mach 25+) speeds are available. The 

methodology relies on both empirical, such as Digital Datcom, and computational 

methods, such as the Supersonic/Hypersonic Arbitrary Body Program. 68 All 

essential design areas identified at conceptual level are addressed in the research 
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work. Figure 13 shows example hypersonic vehicles, the Space Shuttle and the 

Skylon concept, analysed using the GENUS environment. 

 
Figure 13: Example hypersonic concept vehicles generated from GENUS; Left: Space Shuttle 

simplified concept, Right: Skylon fuselage without engines 54 

Table 3 shows an example list of requirements that were used to generate a SSTO 

Space Launcher concept. Compared to more conventional configurations the critical 

question, in the case of a space launcher, is not necessary optimum, but feasibility. 

 
Table 3: Hypersonic space launcher design requirements 

Requirement Value 

Design mission duration 5 days 

Orbital ΔV capacity 300 m/s 

Target orbit 400 km, circular, 0º 

inclination 

Maximum manoeuvre load factor normal/axial, nz / 

nx 

2 / 7 

Design payload 3000 kg 

Launch site Equator, 0º Lattitude 

 

An advanced technology Space Shuttle derivative space launcher vehicle with double 

delta wings, single vertical tail and approximate fuselage was designed using the 

GENUS methodology. Apart from the specific mass breakdown estimation and the 

complex performance calculations, the conceptual design was performed using the 

same 7 essential GENUS modules that were used in the case of a conventional airliner 

concept. The mass breakdown of the space launcher vehicle is shown in Figure 14. 

Note that for clarity, propellant is not included in the mass breakdown. This class of 

aerospace vehicle requires very high fuel fractions, for this specific concept;84.2%, so 

mass breakdown includes an additional 28t LH2 and 140t LOX. 



 
Figure 14: Hypersonic space launcher mass breakdown, excluding propellant 

When aerodynamic performance is estimated, hypersonic vehicles need to be 

evaluated in a wider operating range than conventional configurations. Typical 

operating speeds of a space launcher, for example the Space Shuttle range from about 

Mach 0.2 up to Mach 25 and potentially above. This requires methodologies to 

estimate subsonic, transonic, supersonic and hypersonic aerodynamic performance. In 

the GENUS environment, a common framework is used so that the different tools can 

produce consistent results when evaluating a single concept, and that multiple 

concepts can be consistently analysed with the same set of tools also consistently. 

Figure 15 shows a comparison of the concept space launcher drag polars at various 

Mach numbers as generated in GENUS. An example drag polar for a conventional 

airliner is added to the graph for reference. 
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Figure 15: Drag polar comparison, conventional airliner and space launcher (SL) at various Mach 

numbers 

Ongoing development is currently adding further capability to the GENUS toolset. 

This work currently included stealth characteristics and sonic boom modelling. Whilst 

the methods currently include static stability may explore dynamic stability, as 

discussed in 69 and the incorporation of more high fidelity tools such as FE analysis 

as discussed in 70. 

4. Conclusion  
A new approach to air vehicle design synthesis is presented that aims to better support 

the knowledgeable aircraft designer and gets the best performance from both user and 

computer. The GENUS Aircraft Design Environment is an implementation of this 

new approach to the development of the tools used to perform conceptual level 

aircraft design. Methodologies appropriate to contemporary, or advanced aircraft 

concepts can be implemented into the Design Environment. The study has not only 

focused on the discipline specific modules but the overall architecture that permits the 
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knowledgeable user to interact with it, control it and further develop it to handle 

additional concepts and variable fidelity models. The modular approach also ensures 

that development effort is effectively used by avoiding the need to repeatedly create 

common elements.  

In addition to the analysis of individual classes of vehicle, the capability will better 

enable comparisons between conventional and advanced concepts and configurations 

to be made. 

The design environment has been demonstrated to work for a range of concepts and 

its capability continues to be expanded.  
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