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Further Development of Feedback Control of Cavity Flow
Using Experimental Based Reduced Order Model
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Gas Dynamics and Turbulent Laboratory; Collaborative Center for Control Science
The Ohio State University, Columbus, Ohio

In our recent work we presented preliminary results for subsonic cavity flow control
using a reduced-order model based feedback control derived from experimental
measurements. The model was developed using the Proper Orthogonal Decomposition of
PIV images in conjunction with the Galerkin projection of the Navier-Stokes equations onto
the resulting spatial eigenfunctions. A linear-quadratic optimal controller was designed to
reduce cavity flow resonance by controlling the time coefficient and tested in the
experiments. The stochastic estimation method was used for real-time estimation of the
corresponding time coefficients from 4 dynamic surface pressure measurements. The results
obtained showed that the controller was capable of reducing the cavity flow resonance at the
design Mach 0.3 flow, as well as at other flows with slightly different Mach number. In the
present work we present several improvements made to the method. The reduced order
model was derived from a larger set of PIV measurements and we used 6 sensors for the
stochastic estimation of the instantaneous time coefficients. The reduced order model so
obtained shows a better convergence of the time coefficients. This combined with the 6-
sensor estimation improves the control performance while using a scaling factor closer to the
theoretically expected value. The controller also performed better in off design flow
conditions.

I. Introduction

In this paper, we report recent progresses and improvements made by applying state estimation and proper
orthogonal decomposition (POD) in the development and experimental validation of a reduced-order model based
control of the resonant subsonic flow over a shallow cavity. This work continues and expands our previous ones
based on numerical data (Yuan et al. 2005) and experimental data (Caraballo et al. 2005,) towards the design and
implementation of a feedback controller by applying system identification and modeling techniques to direct
measurements of physical flow quantities. This work is part of a larger multidisciplinary effort in the development
of a basic understanding and implementation of feedback flow control techniques (Samimy et al. 2004).

Successful application of feedback control is widespread in areas such as robotics, aerospace,
telecommunication, transportation systems, manufacturing systems, and chemical processes. Recently, various
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attempts have been made to apply feedback control techniques to aerodynamic flow phenomena (Gad-El-Hak 2000, 
Cattafesta et al. 2003). In contrast with open-loop flow control, which can produce useful results but lacks the 
responsiveness or the flexibility needed for application in dynamic flight environments, closed-loop flow control 
appears to be suited for the successful management of flow in many applications due to its adaptability to variable 
conditions and to its potential for significantly reducing the power required for controlling the flow (Cattafesta et al. 
1997). However, the tools of classical control systems theory are not directly applicable to fluid flow systems which 
display spatial continuity and nonlinear behavior, and pose formidable modeling challenges due to their infinite 
dimensionality, the complexity introduced by the Navier-Stokes equations, and the peculiar characteristics of the 
measurement and actuation devices. In order to design and successfully implement a closed-loop control strategy, it 
is necessary to obtain simple dynamical models of the system, which on one hand capture the important dynamic 
characteristics of the flow and the effect of the actuation, and on the other hand are simple enough to be used for 
model-based feedback control. 
 The benchmark case selected in our study is the flow over a shallow cavity (Samimy et al. 2004), a configuration 
present in many practical applications that benefits from having been extensively studied by several researchers (e.g. 
Rossiter 1964, Heller and Bliss 1975, Cattafesta et al. 2003). This flow is characterized by a strong coupling 
between flow dynamics and flow-generated acoustic field that produces a self-sustained resonance known to cause, 
among other problems, store damage and airframe structural fatigue in weapons bays. A comprehensive review of 
this phenomenon and of different control and actuation strategies developed for its suppression is given in Cattafesta 
et al. (2003). 
 The approach we follow in the development of a reduced order model for the cavity flow is based on proper 
orthogonal decomposition (POD). This technique extracts information on the coherent structures, which are the most 
dominant characteristic of the flow and the only entities that can effectively be controlled, on the basis of the spatial 
correlation tensor of the velocity field in the flow. It represents the dynamics of flow field as a set of spatial 
eigenmodes that are modulated by time coefficients obtained by projecting the instantaneous flow fields onto the 
POD basis. Obtaining a time varying description would require simultaneous, real-time flow measurements at every 
spatial point. While this is feasible using data from numerical simulations, it becomes an extremely challenging task 
with data obtained experimentally even in low-speed flows (Thurow et al. 2005). In this case the obstacle can be 
surmounted by exploiting stochastic estimation methods that correlate the velocity field with a variable that can be 
measured continuously in time, such as surface pressure (Glauser et al. 2004, Ukeiley and Murray 2005, Caraballo et 
al. 2005). 

The state equation employed for controller design is in the form of a system of nonlinear ordinary differential 
equations for the time coefficients. It is obtained by using the Galerkin projection method to project the governing 
flow equations with velocities approximated by the POD description onto the spatial basis. The system of equations 
can be recast in a form expressing the control input explicitly as required to apply the tools of control theory for the 
development of feedback control. 
 The procedure that we are using is summarized in more details in Caraballo et al. (2005). The state equation (i.e. 
the POD time coefficients) is estimated in real-time from dynamic surface pressure measurements by employing the 
stochastic estimation technique with correlations obtained from off-line simultaneous particle image velocimetry 
(PIV) and dynamic pressure measurements at several locations on the surface of the cavity. 

Equilibrium analysis led to the linearization of the reduced-order model around the equilibrium point. A simpler 
model for controller design was then obtained by shifting the origin of the coordinates to the equilibrium point. This 
corresponds to removing the effect of the mean flow from the low-order model, and considering the local behavior 
of the system around the mean flow. The availability of real-time estimates of the state of the model allowed the use 
of linear state feedback control.  To this aim we designed and tested experimentally a linear-quadratic optimal state 
feedback controller.  

From the results obtained we can conclude that the controller significantly reduces the resonance peak of the 
Mach 0.3 single Rossiter mode, for which it was designed, by switching it to a multi-mode resonance. The controller 
seems also to be quite robust, as it can control the flow with some variations in the flow Mach number. In this paper 
we report further improvements to the technique that we have developed and used. Among these are a better 
convergence of the time coefficients calculated from the Galerkin system, enhanced control performance and a 
better scaling of the control gain which is closer to the unity theoretical value.  
 In the next sections we will introduce the flow facility used in this study and then focus on the POD and Galerkin 
methods adopted for deriving the reduced-order model, and the stochastic estimation approach used for real-time 
estimate of the model variables directly from dynamic pressure measurements. This is followed by the design and 
application of the linear-quadratic controller and by the presentation and discussion of the results. 
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II. The experimental facility 

The experimental facility is described in detail in Debiasi and Samimy (2004). It is an instrumented, optically 
accessible wind-tunnel that operates in a blow-down fashion with atmospheric exhaust. The filtered, dried air is 
conditioned in a stagnation chamber before entering a smoothly contoured converging nozzle to the 2 inch by 2 inch 
test section.  The facility can run continuously in the subsonic range between Mach 0.20 and 0.70 and transonic and 
supersonic applications are possible by changing modular components. 

A shallow cavity is recessed in the test section with a depth D = 12.7 mm and length L = 50.8 mm for a length to 
depth aspect ratio L/D = 4. For control the cavity shear-layer 
receptivity region is forced by a 2-D synthetic-jet type actuator 
issuing at 30 degrees relative to the main flow from a 1 mm 
slot embedded in the cavity leading edge and spanning the 
width of the cavity, Fig. 1. A Selenium D3300Ti compression 
driver provides the mechanical oscillations necessary to create 
the zero net mass, non-zero net momentum flow for actuation. 
The actuator signals are produced by either a BK Precision 
3011A function generator for open-loop forcing or by a 
dSPACE 1103 DSP control board in closed-loop studies and 
are amplified by a Crown D-150A amplifier. 

The “snapshots” of the flow field, required for the 
development of the low dimensional model, are acquired and 
processed using a LaVision Inc. PIV system. Details of the 
PIV system, procedure, and results are presented in Little et al. 
(2006). The main flow is seeded with Di-Ethyl-Hexyl-Sebacat 
(DEHS) particles by using a 4-jet atomizer upstream of the 
stagnation chamber. This location allows homogenous 
dispersion of the submicron particles throughout the test 
section. A dual-head Spectra Physics PIV-400 Nd:YAG laser 
operating at the 2nd harmonic (532 nm) is used in conjunction 
with spherical and cylindrical lenses to form a thin (~1mm), vertical sheet spanning the streamwise direction of the 
cavity at the middle of test section width. In order to minimize beam reflections, a small slot cut into the cavity floor 
allows the laser sheet to exhaust and diffuse in a sealed light-trap. The time separation between the lasers pulses 
used for PIV can be tuned according to the flow velocity. For Mach 0.30 flow this value is 1.8 microseconds.  Two 
images corresponding to the pulses from each laser head were acquired by a 2000 by 2000 pixel CCD camera 
equipped with a 90 mm macro lens with a narrow band-pass optical filter.  The images were divided into 32 by 32 
pixel interrogation windows which contained 6-10 seed particles each. For each image sub regions were cross 
correlated by using multi-pass processing with 50% overlap. The resulting vector fields were post-processed to 
remove any remaining spurious vectors. This setup gave a velocity vector grid of 128 by 128 over the measurement 
domain of 50.8 mm which translates to each velocity vector being 
separated by approximately 0.4 mm. 

 

Figure 1. Scaled drawing of the experimental 
set up showing the incoming flow, the 
actuation location (at the receptivity location 
of the free shear layer formed over the cavity), 
and other geometrical details. 
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Flush-mounted Kulite transducers were placed on various locations 
on the walls of the test section for dynamic pressure measurements. 
Figure 2 shows the locations of the transducers used in this study. All 
these transducers have an almost flat frequency response up to about 
50 kHz and are powered by a dedicated signal conditioner that 
amplifies and low-pass filters at 10 kHz their signals.  

For state estimation, dynamic pressure measurements were 
recorded simultaneously with the PIV measurements using a National 
Instruments (NI) PCI-6143 S-Series data acquisition board mounted 
on a Dell Precision Workstation 650. The system allows synchronous 
sampling of 8 channels with a maximum sampling frequency of 250 
kHz per channel.  Each pressure recording was band-pass filtered 
between 100 Hz and 10 kHz to remove spurious frequency 
components. In the current study 1000 PIV snapshots were recorded 
for each flow/actuation condition explored. For each PIV snapshot 128 
pressure samples from the laser Q-switch signal and from each of the 

 
Figure 2. Location and numbering of 
Kulite pressure transducers in the 
cavity flow.
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transducers of Fig. 2 were acquired at 50 kHz. The NI board was triggered by a programmable timing unit (PTU) 
housed in the PIV system that activated the beginning of the acquisition to allow the Q-switch TTL to fall 
approximately in the middle of the 128 data points. The simultaneous sampling of the laser Q-switch signal with the 
pressure signals allows for each snapshot the identification of the section of pressure time traces corresponding to 
the instantaneous PIV velocity field. Additional, longer recordings of 262,144 samples per channel acquired at 200 
kHz were also used to derive SPL spectra as described in Debiasi et al. (2004). 

For closed-loop control of the flow a dSPACE 1103 DSP board connected to the Dell Precision Workstation 650 
was used. This system utilizes four independent, 16-bit A/D converters each with 4 multiplexed input channels and 
allows simultaneous acquisition and control processing of 4 signals and almost simultaneous, due to multiplexing, 
acquisition and processing of additional signals at a rate up to 50 kHz per channel to produce at the same rate a 
control signal from a 14-bit output channel. Similar to state estimation pressure data, the pressure signals were band-
pass filtered between 100 Hz and 10 kHz to remove spurious frequency components. 

 

III. Reduced-order Modeling 
Reduced-order models of the flow were derived from PIV and surface pressure measurements of the cavity flow 

as described by the authors in previous works (Samimy et al. 2004, and Caraballo et al. 2004, 2005). The approach 
is based on the combination of three separate tools. First, the POD method is used to obtain a spatial basis of the 
flow. Then, the POD expansion is combined with the Galerkin projection method to obtain the flow model which 
consists of a set of ordinary differential equations for the POD temporal coefficients. In this set of equations the 
control input appears explicitly to facilitate the design of the feedback control algorithm. Finally stochastic 
estimation is used to estimate these temporal coefficients based on real time surface pressure measurements. 

A. POD Method  
This is the first tool used to obtain the reduced-order model. In recent years POD has been used in the study of 

several turbulent flows and in the development of feedback control for them. The method was introduced by Lumley 
(1967) as an objective way to extract large-scale structures in a turbulent flow. The technique originally was 
developed for data sets of large sample time T at a few spatial locations L. More details on the fundamentals of this 
method can be found in Holmes et al. (1996) and Delville et al. (1998). The POD approach used in this investigation 
is the snapshot method of Sirovich (1987), which is an alternative way of obtaining the POD modes more suitable 
for highly spatially resolved data sets (L >> T ) that can be obtained using numerical simulations or advanced laser-
based flow diagnostics. A detailed description of the application of the Sirovich POD method to the current study 
case is given in Samimy et al. (2004) and Caraballo et al. (2004). 

The POD method aims to describe the temporal-spatial evolution contained in T realizations of the fluctuating 
components of a flow variable (e.g. the fluctuating component u’ of the streamwise velocity u) as combination of N 
< T spatial modes (or eigenfunctions) ( )xiϕ , i.e. a reduced basis of modes that capture the coherent structures, the 
dominant features, present in the flow: 

( ) ( ) (xx i

N

i
i ϕ∑

=

≅
1

 ,' tatu )
 
 (3.1)

 The time coefficients ai(t) are functions of time only and capture the time evolution of the corresponding 
coherent structures. The number of modes, N, used depends on the nature of the problem and the purpose of the 
model. The time coefficients of a known instantaneous flow filed can be obtained from: 

( ) ( ) ( ) xxx i
D

i dtuta   ,' *ϕ∫=  
 (3.2)

where * denotes complex conjugate. Equation (3.2) requires that the instantaneous flow field be measured or 
numerically calculated simultaneously at every point in the flow domain of interest. 

For each of the flow conditions explored in this work, 1000 PIV snapshots of the flow field were acquired as 
described in the previous section and used in the derivation of the modes and their time coefficients. The increased 
number of snapshot compared to that (500) used in Caraballo et al. (2005) allowed complete convergence of the 
average turbulent kinetic energy of the flow in the shear layer region. Figure 3 shows how the mean turbulent kinetic 
energy at different location on the shear layer converges when more than 700 images are used. Figure 4 shows the 
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first two modes of the normal fluctuating velocity of the cavity flow using 500 and 1000 snapshots. It can be noticed 
how increasing the number of snapshots helps to obtain a smoother (cleaner) representation of the structures capture 
by the modes, as the small scale effects are captured by the higher modes added to the system. However, as it was 
noticed before (Caraballo et al. 2005), there is a small effect on the energy content of the modes, especially for the 
lower order modes.  

 

  
Figure 3. Mean turbulent kinetic energy of the cavity 
flow at different locations of the shear layer. 

Figure 4. First two POD modes of the normal 
fluctuating velocity for the cavity flow: top 500 
Snapshots; bottom 1000 snapshots. 

B. Galerkin Projection and Low Dimensional Model 
The Galerkin projection method was used to obtain a reduced-order model of the cavity flow dynamics, resulting 

in a system of ordinary differential equations for the time coefficients a(t)=[a1(t) a2 (t) … aN (t)]. The method relies 
on the projection of the governing equations of the flow, the compressible Navier-Stokes equations in this case, onto 
the basis of POD modes. Detailed explanation on the derivation of this model is given in our earlier works (Samimy 
et al. 2004, and Caraballo et al. 2004). The form of the governing equations used here is based on the work of 
Rowley (2002), where the compressible Navier-Stokes equations are simplified and written as: 
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where u = (u,v) is the velocity vector and c is the local speed of sound.  
 To apply the Galerkin method, first each flow variable is decomposed into its mean and fluctuating components, 
and then the POD expansion equation (3.1) is written for each of the fluctuating components. Next, the flow 
variables in (3.3) are replaced by the expanded expressions of mean and fluctuating components. The new form of 
the governing equations is then projected onto the basis of POD modes by taking the inner product of each term with 
the POD modes according to the vector norm (Rowley, 2002). This procedure yields a system of equations in which 
the control input is not separated from the rest of the flow, i.e. the control effect is implicit in the model. This is not 
useful for control law design. In order to derive a model where the control input appears explicitly in the equations, 
the spatial sub-domain where the control is active is separated from the rest of the field (Caraballo et al. 2005), 
yielding a system in the following form: 
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where the matrices of constant coefficients F, G, iH , B and iB , Ni K,1= , are obtained from the Galerkin 
projection, and Γ(t) is the control input applied at the forcing location, see Yuan et al. (2005). Equation (3.4) 
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represents a model of the cavity flow in terms of the time coefficients a(t) obtained with POD from T  time 
uncorrelated PIV data sets. 
 By using a finite number N of modes to describe the flow one not only loses some flow details, but also fails to 
capture the energy transfer process between the N retained modes and the neglected ones. Therefore, an additional 
viscous term, the modal eddy viscosity (Noack et al. 2004), was added to the model to maintain the overall flow 
energy balance and to compensate for other small errors introduced in the derivation of the model. This additional 
viscous term is added to the viscous term present in the flow equation, and is obtained by a modal energy balance as 
presented in Noack et al. 2004. 
 The system (3.4) was solved to check the evolution and convergence of the time coefficients and to compare it to 
the corresponding values obtained with (3.2) from the PIV snapshots. The time coefficients evolved to bounded 
values in most cases when 4 through 10 modes were used in (3.4). Figure 5 shows the evolution of the time 
coefficient of the first mode for the 
baseline Mach 0.3 flow when using N = 
4. After an initial transient this 
coefficients oscillates around close to 
zero with an amplitude comparable to 
the time coefficients obtained with (3.2) 
from the PIV snapshots. This is a better 
result than the one we previously 
obtained by using 500 snapshots of the 
same flow (Caraballo et al. 2005) which 
is also shown in Fig. 5 for the sake of 
comparison. However, we observed that 
the frequency of oscillation of the new 
set is slightly lower than the 
experimental value, which we relate to 
the additional viscous dissipation 
introduced into the model. It was 
observed that the system trajectories converged to the same behavior, irrespective of the initial condition of the time 
coefficient used for the solution of (3.4), showing the occurrence of a stable limit cycle. Similar results were 
obtained for the time coefficients of the other three modes of the baseline Mach 0.3 flow, and for the modes of the 
same flow with different types of forcing.  

 
Figure 5. First time coefficient form GS. Black (dots) PIV, Red (+) 
1000 Snapshots and Blue (x) 500 Snapshots. 

 The overall effect that these improvements had in the controller design and implementation will become clear 
later. Finally, we elected to use the N = 4 for the model used to design the controller so to simplify the control 
algorithm and its experimental implementation.  

C. Stochastic Estimation 
For the implementation of the feedback controller, availability in real-time of the time coefficient is required. 

This was achieved using Stochastic Estimation (SE). Stochastic estimation, proposed by Adrian (1979) as a method 
to extract coherent structures from a turbulent flow field, estimates flow variables at any location by using statistical 
information about the flow at a limited number L* of locations. The method has been used to study various flows 
(e.g. Adrian and Moin 1988, Cole and Glauser 1998), and as a complementary tool for POD modeling to estimate 
the time coefficients from experimental measurements in subsonic jets (Picard and Delville, 2000) and in cavity 
flows (Samimy et al. 2004 and Ukeiley and Murray, 2005). In recent years, it has also been used to estimate the time 
coefficient of POD models for feedback flow control (Glauser et al. 2004, Siegel et al. 2005, and Caraballo et al. 
2005).  

In this study, quadratic SE was employed to estimate the time coefficients of the flow model (3.4) directly from 
real-time measurements of surface pressure fluctuations at a small number L* of locations. The estimates of the time 
coefficients can be written in the following form: 

   i=1…N,  k, l…=1…L)()()()(ˆ tptpDtpCta lkiklkiki ′′+′= * ,          (3.5) 

where C, D… are the matrices of the estimation coefficients obtained by minimizing the average mean square error 
 between the values of  aie i (tr) obtained with (3.2) for the time of PIV image capture, and the estimated ones 

 at the same times, that is, )(ˆ ri ta
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[ ]2)()(ˆ ririi tatae −=                  r = 1… T.                   (3.6) 

 To calculate the matrices in (3.5), only L* pressure values taken simultaneously with of PIV measurements were 
used from each of the 1000 simultaneous PIV-pressure acquisitions. The procedure to obtain the estimation matrices 
is described in more detail in Caraballo et al. (2004). In our experimental setup, real-time measurements of the 
surface pressure were obtained at L* = 6 locations of interest in the cavity test section shown in Fig. 2. 
 The stochastic estimation method has been previously tested for the cavity flow under investigation, showing 
good agreement in the estimation of the time coefficients (Caraballo et al. 2005). When the method was applied to 
the new data set the estimated coefficients of all four modes remained close the values obtained from the PIV 
images. 

 

IV. Controller Design and Implementation 
In this section, we present a model-based controller design, and discuss real-time implementation results. The 

control design approach has been already presented in Yuan et al. (2005) and Caraballo et al. (2005) in details, and 
thus it will be only sketched briefly. The design procedure includes equilibrium computation, coordinates 
transformation, linear approximation and linear-quadratic state feedback control design. With respect to Yuan et al. 
(2005) and Caraballo et al. (2005), in this work the design procedure was implemented on a more accurate Galerkin 
model obtained using the larger experimental data set (PIV data). The real time implementation of the new 
controller showed a sizable improvement over the preliminary results presented in Caraballo et al. (2005).  The 
nominal flow model used here for control design is the nonlinear state space model for the baseline flow at Mach 0.3 
given by (3.4), with N = 4. 

A. Equilibrium analysis and model simplification 
Performing equilibrium analysis and coordinate transformation on model (3.4), the constant term F is removed 

from the model, shifting the origin of the coordinates to the equilibrium point. The resulting simplified state space 
model in the new set of coordinates 0

~ aaa −= reads as  
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where is the equilibrium point computed for the model (3.4) and                                                                       0a
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 Clearly, the modified model has an equilibrium at the origin, which is more convenient for controller design and 
stability analysis.  The reader is referred to Caraballo et al. (2005) for a detailed description of the model 
simplification techniques.   

B. Linear quadratic state feedback control 
 A linear approximation of (4.1) at the origin is readily obtained as 

Γ+= BaGa ~~~~& .                                                                       (4.3) 

 The eigenvalues of the unforced system have been computed as 
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~Gλ .                                                         (4.4) 

 
 The presence of two unstable conjugate eigenvalues implies, as expected, that the mean flow (corresponding to 
the equilibrium ) is an unstable solution for the Galerkin system (3.4).  0a
 Since the pair ( BG ~ ,~ ) is controllable, linear state-feedback design based on the linearized model (4.3) offers a 
simple approach to the design of a controller for the nonlinear model (4.1). It should be noted that the availability of 
estimates of the states of the Galerkin model (3.4) obtained via stochastic estimation, renders state-feedback control 
a feasible methodology for the problem at issue. Linear-quadratic (LQ) optimal control, in turn, offers a convenient 
and well-established methodology for obtaining the controller gains. The LQ design computes the gain matrix K 
such that the state-feedback law  

)(~)( taKt −=Γ ,                                                                   (4.5) 
minimizes the quadratic cost function  

( ) dtWaWaaJ a
T

c ∫
∞

Γ Γ+=Γ
0

2
~

~~),~( ,                                              (4.6) 

where  and are positive definite weighting functions for the state vector and the control signal, 
respectively. Minimization of  results in asymptotic stabilization of the origin, while keeping the control energy 
small. In our design, the weights have been chosen as and

0~ >aW 0>ΓW

cJ

44~ ×= IW a 1=ΓW , and the corresponding control gain 
reads as 

[ ]7746.122384.4178345.82176.56 −−−=K .                          (4.7) 

 Applying the state feedback control (4.5) to the linearized system (4.3) results in mirroring all the right-half 
plane eigenvalues of the matrix G~  to the left half plane, as indicated in Fig. 6. Figure 7 shows the simulation results 
obtained by applying the state feedback control (4.5) to the finite-dimensional nonlinear model (3.4), which indicate 
that the closed-loop state trajectories  converge to the equilibrium point )(ta

Ta ]4980.01930.02788.05036.0[0 −−= .                                        (4.8) 

 It can be concluded that, in principle, the LQ controller (4.5) designed for the linear approximation (4.3) 
succeeds in stabilizing the equilibrium of the four-modes nonlinear Galerkin system (3.4).  

  
Figure 6. Eigenvalues of the open loop system and 
closed loop system. 

Figure 7. Time coefficient solutions of the closed loop 
simulation results.    
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C. Real time control results 

Before presenting the experimental results, it is worth summarizing the structure of the model-based controller 
thus derived. As depicted in Fig. 8, the model-based 
controller includes a stochastic estimation subsystem 
and a feedback from the estimated states. The estimate 
â~  of the deviation from the equilibrium of the time 
coefficients of the Galerkin model, required to 
implement the feedback law (4.5), may be in principle 
obtained by means of stochastic estimation by first 
estimating  from raw pressure measurements 
using equation (3.5), and then subtracting the 
equilibrium value  computed from the model data. 
However, in implementing the controller, it was found 
that subtracting the equilibrium values from the 
estimated ones is not required since the values 
estimated with equation (3.5) from fluctuating pressure measurements (that neglect the effect of mean flow) are 
already oscillating around zero for each mode. That is, equation (3.5) naturally produces the values of a  form the 
experimental measurements. To protect the acoustic actuator, a saturation function is employed in cascade with the 
controller output. To prevent saturating the control input at all time, the controller is detuned using a constant 
scaling factor α, similarly to what has been presented in Caraballo et al. (2005). The largest possible scaling factor 
in this study has been found to be 

( )tâ

0a

~̂

265.0=α , and the corresponding scaled control is in the form 

â~
αΓ

-

Plant Stochastic 
Estimation

Controller

K
Γ

α

p

â~
αΓ

-

Plant Stochastic 
Estimation

Controller

K
Γ

α

p

 
Figure 8. Diagram of the closed loop system with LQ 
state feedback control. 

   )(~̂)( taKt αα −=Γ .                                                     (4.9) 

The performance of the scaled control law (4.9) has been tested in closed-loop experiments for different flows in 
the neighborhood of Mach 0.3, the nominal case for which the controller was designed. Figure 9 compares examples 
of SPL reduction obtained by the LQ state feedback control (left column) with the open-loop optimal forcing control 
for the same flow conditions presented in Debiasi et al. 2004 (right column). The thin red line yields the SPL of the 
unforced baseline flow recorded at the center of the cavity (location 5 in Fig. 2), whereas the thick line corresponds 
to the SPL of the flow at the same location under state feedback control (blue) or optimal forcing control (green). 
The baseline flows at Mach 0.3 (a), Mach 0.27 (b), and Mach 0.32 (c) exhibit a strong, single-mode resonant peak. 
The frequency of this peak slightly increases with flow velocity from about 2700 to about 2900 Hz as predicted by 
the Rossiter formula. For the nominal case at Mach 0.3 (a), LQ control reduces the resonant peak by more than 15 
dB, accompanied by the emergence of two additional peaks with frequencies around 2100 Hz and 3100 Hz, with 
lower SPL level than the original frequency. The same general characteristics and benefits are maintained when the 
control is applied to the lower Mach 0.27 flow (b) or to the higher Mach 0.32 one (c). Controlling the same flows 
with open-loop optimal forcing (right column) produces less noticeable reductions of the resonant peaks at Mach 
0.30 and 0.27 and always introduces peaks at the forcing frequency higher than the highest spectral peaks with LQ 
control. 

The scaled LQ state feedback control has been shown to successfully reduce the dominant Rossiter peak and 
have good robustness under different flow conditions, as shown by Fig. 9. The impact of the scaling factor α from 
the control systems point of view has been analyzed in our previous paper (Caraballo et al. (2005)). An 
improvement of the scaling factor from 0.05 to 0.265 has been achieved in this study, resulting in an increased 
attenuation of the resonant peak observed in the experiments. The analysis reveals that the scaled LQ control with α 
= 0.265 is still not a stabilizing controller, although it has moved the eigenvalues of the linearized closed-loop 
system (4.3)-(4.9) closer to the imaginary axis (compare Figure 10 to the results given in Caraballo et al. (2005)). 
Meanwhile, the scaled control with α = 0.265 reduced the amplitude of the oscillations in the nonlinear closed-loop 
model (4.1)-(4.9), to a great extent, as shown in Fig. 11. It is evident that, though the scaled LQ control is not able to 
asymptotically stabilize the origin of the nonlinear model (4.1), it nevertheless provides a significant reduction of the 
amplitude of the stable limit cycle. The experimental results agree with this interpretation, by showing a reduction of 
the amplitude of the Rossiter peak, Fig. 9.  
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Figure 9. Effect of LQ control with 4 modes (left plots) and of optimal open loop forcing (right) on cavity 
flow with different Mach number; thin (red) line is the unforced flow SPL spectrum and thick (blue or 
green) line is the spectrum with control at: a) Mach 0.30 (design condition); b) Mach 0.27; c) Mach 0.32. 
 

c) 

a) 

b) 
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Figure 10. Eigenvalues of the closed loop systems with 
different scaling factor α . 

Figure 11. Closed loop responses at  with 
different scaling factor

3P

α .    
 

IV. Conclusions 
The paper presents the most recent progress made by the flow control group at the Collaborative Center of 

Control Science at The Ohio State University in the development of reduced-order model based feedback flow 
control. A larger set of data composed of 1000 simultaneous PIV – pressure measurements were used to develop the 
feedback controller based on the reduced order model. The reduced-order model was obtained using the same 
methodology presented in our previous work, and is based on the use of snapshot based Proper Orthogonal 
Decomposition (POD) of PIV data in conjunction with Galerkin projection of the Navier-Stokes equations onto the 
POD eigenfunctions. The stochastic estimation method was used for real-time estimate of the time coefficients of 
the model from dynamic surface pressure measurements. It was observed that increasing the number of snapshots 
used for the derivation of the reduced order model improved the convergence of the model for the estimation of the 
time coefficients. The time coefficients for the model are oscillating around zero instead of about 1 as they did 
before. This suggests that the model is better predicting the experimental behavior of the flow. Equilibrium analysis 
led to the linearization of the reduced-order model around the equilibrium point. A simpler model for controller 
design was obtained by shifting the origin of the coordinates to the equilibrium point. This corresponds to removing 
the effect of the mean flow from the low-order model, and considering the local behavior of the system around the 
mean flow. The availability of real-time estimates of the state of the model allowed the use of linear state feedback 
control. To this aim we designed and tested experimentally a linear-quadratic optimal state feedback controller. 
From the results obtained we can conclude that the controller significantly reduces the resonance peak of the Mach 
0.3 single-mode, for which it was designed, while introducing a couple of lower amplitude peak at 2100 Hz and 
3100 Hz. As before, the controller seems to be quite robust, as it can control the flow with some variations in the 
flow Mach number. It was also noted that augmenting the number of snapshots used in the process increases the 
value of the scaling factor α for the real time implementation to values closer to unity suggesting that that the model 
is a better representation of the real flow.  

The improvements achieved so far indicate that a richer model and a better estimation of the states of the 
Galerkin model have been used in this study, in comparison with our earlier work. While the current results are quite 
encouraging, they could be further improved: at the present, models based on snapshots from several forced flow 
cases and combination of flow cases are being developed and tested. The results obtained so far are promising, but 
further analysis, interpretation, and development are required. Additional methods for the control separation and 
multi-time estimation of the time coefficient are being pursued as well.    
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